EP1413708B1 - Thrust transmitting element for driving pipes - Google Patents

Thrust transmitting element for driving pipes Download PDF

Info

Publication number
EP1413708B1
EP1413708B1 EP03090362A EP03090362A EP1413708B1 EP 1413708 B1 EP1413708 B1 EP 1413708B1 EP 03090362 A EP03090362 A EP 03090362A EP 03090362 A EP03090362 A EP 03090362A EP 1413708 B1 EP1413708 B1 EP 1413708B1
Authority
EP
European Patent Office
Prior art keywords
pipes
pressure
end faces
fluid
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03090362A
Other languages
German (de)
French (fr)
Other versions
EP1413708A1 (en
Inventor
Karsten Dr.-Ing. Körkemeyer
Dietrich Prof. Dr.-Ing. Stein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stein and Partner GmbH
Original Assignee
Stein and Partner GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stein and Partner GmbH filed Critical Stein and Partner GmbH
Publication of EP1413708A1 publication Critical patent/EP1413708A1/en
Application granted granted Critical
Publication of EP1413708B1 publication Critical patent/EP1413708B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/20Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/005Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries by forcing prefabricated elements through the ground, e.g. by pushing lining from an access pit

Definitions

  • the invention relates to a method according to the preamble of claim 1.
  • engineering jacking pipes are driven from the ground through a jetty or a main press station with the help of intermediate pressing stations through the ground to a target shaft.
  • the propulsion in straight or curved lines is made possible by a controllable shield machine, which is connected upstream of the first pipe.
  • pressure transmission rings made of different materials can be used. However, those most commonly used are knot-free wood (e.g., beech) or wood-based materials (e.g., chipboard).
  • the latter are characterized by the fact that they are independent of growth properties and the anisotropy of the wood and insensitive to moisture changes of the wood.
  • Wood or wood-based material offers the advantage of a very low transverse strain, but has the disadvantage that the overall deformations are predominantly plastic. This large plastic deformation ratio affects primarily in the opposite direction control movements and changing, curved lines of the pipe string. When changing direction, a gap between the pipe end face and the pressure transmission ring is formed with the result that the pressure transmission surface is smaller and thereby higher voltages occur.
  • the dimensions, in particular the thickness of the transfer rings, are dependent on the radii required for trimming the respective paths and gradients or the mutual bendability of the tubes in the pipe connections. In exceptional cases, e.g. in uni-directional bends also wedge-shaped pressure transmission rings used.
  • a method for propulsion of substantially annular components in which between such a component and an abutment a male from a pressure hose pressure valve is introduced.
  • the pressure hose can be divided in the circumferential direction of the component, so that the pressure medium can be selectively used in this direction.
  • the pressure hose between the component and the abutment can remain and be provided with a permanent filling, so that an adaptive joint seal is obtained.
  • the DE 35 39 897 A describes a method for producing a tubular pipe string by successively pressing the pipe elements into the ground.
  • the tubular elements are gradually advanced by periodically changing the respective internal pressure by means of tubing spirals arranged between their end faces and connected to a pressure source, wherein the respectively driven tubular element is supported in the advancing phase on the tubular element behind it.
  • the hose spirals can be removed from the pipe string.
  • the EP-A-1 079 064 discloses a pressure equalization ring for insertion between the tube end faces in Underground propulsion of pipes, which has a plurality of pipe transmission elements made of elastomeric material, which are each arranged in a tube-axial plane with a distance from each other.
  • the shows DE 592 904 C a resilient connection for reconnectsenkende structure, in particular for tunnel tube shots, with engaging in recesses on the front sides of the building to be connected, inflatable elastic connecting links.
  • inflatable elastic connecting links can consist of several inflatable tubes and a jacket enclosing them.
  • a method for laying a pipe consisting of at least two pipes in the ground in which a pressure transmission part for the transmission of compressive forces between the facing end faces of two consecutive pipes in a propulsion of the pipe in the longitudinal direction, the at least one flexible, high-pressure-resistant shell, which has at least one circumferentially extending, fluid-filled chamber, is used to specify, which is easy to carry out and can be obtained by the low-cost, a dense pipeline.
  • Suitable pressure measuring devices can be provided which measure the pressure in the individual chambers and control the delivery device for the fluid for the individual chambers in such a way that there is always a desired pressure in the chambers.
  • the control can be done for the chambers individually or in groups, with a corresponding number of pressure measuring devices is provided. Also with regard to the plurality of pressure transmission parts in a pipeline, an individual control of the fluid pressure can be performed.
  • Fig. 1 shows two tubes 1 and 2, which lie behind each other in their longitudinal direction and are usually in a horizontal position in the ground.
  • the tubes are to be driven in their longitudinal direction through the soil, for example, from a pressing station to a target shaft to form a continuous pipe between them together with other longitudinally one behind the other tubes.
  • a pressure is exerted by the pressing station on the rear end face of the respective closest tube and this pressure is transmitted in each case over the end faces of tube to tube to the foremost tube.
  • a pressure transmission part in the form of a pressure transmission ring 3 is provided between each two tubes.
  • the pressure transmission ring 3 consists of a flexible, in cross-section approximately rectangular or flattened elliptical shell, which is filled with a fluid and which has sufficient strength to withstand the forces exerted on them, ie the propulsive forces during installation of the pipeline.
  • the shell is so flexible that it always rests over its entire surface on the end faces of the two adjacent tubes; regardless of whether it is a straight-line pipeline, as in Fig. 1 (a) shown, or around a curved pipe, as in Fig. 1 (b) shown, acts.
  • fluid displacement within the shell distance differences between the end faces of the tubes 1 and 2 are balanced, in particular from Fig. 1 (b) it can be seen, wherein the pressure is distributed uniformly over the contact surface, ie without the occurrence of local voltage spikes.
  • the sheath or pressure transmitting ring 3 may include a single annular chamber filled with fluid; more advantageous, however, is the use of multiple chambers.
  • Fig. 2 shows an embodiment with a plurality of over the cross section of the shell over and next to each other arranged chambers 4, which have no connection with each other. In the chambers 4, therefore, different pressures can occur, on the one hand by previous different filling with the fluid and on the other hand by different pressure load from the outside.
  • Fig. 3 shows a training with several over the cross section of the shell adjacent chambers 5, which are interconnected via passages 6 and therefore always have the same internal pressure. By between the chambers 4 and 5 existing intermediate chamber walls, the stability of the shell is increased.
  • Fig. 3 further shows a controllable valve 7, which is connected to one of the chambers 5 and serves to fill the envelope with the fluid and to empty the envelope.
  • a controllable valve 7 which is connected to one of the chambers 5 and serves to fill the envelope with the fluid and to empty the envelope.
  • An also provided vent valve to facilitate filling and emptying is not shown.
  • the chambers 4 and 5 may be annular, i. be continuous in the circumferential direction, or they may have the form of ring segments, in which case a corresponding number of ring segments is arranged in the circumferential direction one behind the other, which are optionally interconnected.
  • Fig. 4 shows a pressure transmission ring in cross-section, the two in the longitudinal direction of the tubes 1 and 2 behind or superimposed partial rings 3.1 and 3.2, which are each provided with a plurality of adjacent chambers 4 in the radial direction.
  • the number of chambers is arbitrary, moreover, they can be separated or connected to each other.
  • the partial rings for example, the configuration according to Fig. 2 or Fig. 3 or even contain only one chamber. In addition, the partial rings can also be different.
  • void-free intermediate layers 8 are arranged, which serve to divide the pressure transmission ring into a plurality of individual packages and are also suitable for receiving transverse strains. As a result, the pressure transmission ring is fully stabilized under load.
  • Fig. 5 shows a modification of the pressure transmission ring after Fig. 4 in such a way that the intermediate layers between the sub-rings 3.1 and 3.2 and the respective adjacent tubes 1 are formed as shells 9 with extending in the longitudinal direction of the tubes 1 and 2 edges, whereby the partial rings 3.1 and 3.2 fixed to the outer edges in the radial direction are.
  • the intermediate layers 8 or shells 9 can also be provided if the pressure transmission ring has only one shell 3, i. It is then only between the shell 3 and at least one of the adjacent tubes 1 and 2, an intermediate layer 8 or shell. 9
  • the material of the sheath may be elastic or inelastic.
  • the volume of the envelope can be influenced by the internal pressure of the fluid, while in the case of inelastic material the volume of the envelope is constant independently of the internal pressure of the fluid.
  • An elastic material has the advantage that even larger distances between the pipe end faces, especially if these as in Fig. 1 (b) are strongly different, can be bridged.
  • the rigidity of the pressure transmitting ring 3 can be adjusted depending on the internal pressure of the fluid. A lower stiffness or a lower fluid pressure is recommended for curved Pipelines, while in rectilinear pipelines a higher rigidity is desired.
  • the sheaths can be made simply and inexpensively by making them endless with cavities of extrudable material forming the chambers, and then cutting them to length and then bonding the ends together to form the annular sheath with annular chambers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Electric Cable Installation (AREA)
  • Measuring Fluid Pressure (AREA)
  • Manipulator (AREA)

Abstract

The pipe sections (1, 2) moved horizontally in mining or tunneling by strong propelling forces are joined with ring-shaped elements (3) made of a strong material, which can be elastic and filled with a suitable fluid. The cross-section of each of the elements (3) is of a roughly rectangular shape in order to form contact surfaces permanently touching the edges of the adjacent pipe sections (1, 2). When the arrangement (1, 2, 3) is moved the motion of the fluid compensates the differences in the distances between the pipes (1, 2).

Description

Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1.The invention relates to a method according to the preamble of claim 1.

Für den Bau von Leitungen innerhalb des Erdreichs in der sogenannten geschlossenen Bauweise steht eine Reihe verschiedener Verfahren zur Verfügung.For the construction of pipes within the soil in the so-called closed construction, a number of different methods are available.

Eines der gebräuchlichsten Verfahren, insbesondere beim Bau sehr großformatiger und langer Rohrleitungen, stellt der (bemannt arbeitende) Rohrvortrieb dar. Anwendungsgebiete dieser Technik sind unter anderem der Bau von Abwasserkanälen und Leitungsgängen zur Aufnahme verschiedener Ver- und Entsorgungsleitungen, aber auch von Fahrrohren für den automatischen Transport von Stückgütern erheblicher Größe. Insbesondere der letztgenannte Anwendungsfall stellt beträchtliche Anforderungen an die Vortriebsarbeiten in Bezug auf Streckenlänge, Lage- und Höhengenauigkeit sowie Linienführung (Minimierung der Radien).One of the most common methods, especially in the construction of very large and long pipes, represents the (manned working) pipe jacking. Applications of this technique include the construction of sewers and ducts for receiving various supply and disposal lines, but also of driving tubes for the automatic Transport of general cargo of large size. In particular, the latter application case Significant requirements for the excavation work in terms of track length, position and height accuracy and line management (minimization of radii).

Bei dieser Verfahrenstechnik werden von einem Startschacht aus mit Hilfe einer Pressstation bzw. einer Hauptpressstation unter Zuhilfenahme von Zwischenpressstationen Vortriebsrohre durch den Baugrund bis in einen Zielschacht vorgetrieben. Der Vortrieb in gerader oder gekrümmter Linienführung wird dabei durch eine steuerbare Schildmaschine ermöglicht, die dem ersten Rohr vorgeschaltet ist.In this process engineering jacking pipes are driven from the ground through a jetty or a main press station with the help of intermediate pressing stations through the ground to a target shaft. The propulsion in straight or curved lines is made possible by a controllable shield machine, which is connected upstream of the first pipe.

Voraussetzung für einen lage- und höhengerechten Rohrstrang sind die gegenseitige Abwinkelbarkeit der Rohre im Rohrverbindungsbereich und die Übertragung der Vortriebskräfte von Rohr zu Rohr zur Überwindung der Reibungswiderstände zwischen Rohrstrang und dem anstehenden Boden. Dies erfolgt in fast allen Fällen durch einen Druckübertragungsring, der folgende Funktionen zu erfüllen hat:

  • Übertragung der Vortriebskräfte von Rohr zu Rohr
  • Ausgleich produktionsbedingter Unebenheiten der Rohrstirnflächen zur Vermeidung von Spannungsspitzen
  • Aufnahme von Abweichungen der Planparallelität der Rohrstirnflächen
  • Verhinderung der direkten Pressung der Rohre aufeinander
  • Vermeidung bzw. Verkleinerung der klaffenden Fuge bei gekrümmter Linienführung und Steuerbewegungen.
Prerequisite for a position and height-adjusted pipe string are the mutual bendability of the pipes in the pipe connection area and the transmission of the propulsive forces from pipe to pipe to overcome the frictional resistance between the pipe string and the upcoming soil. This is done in almost all cases by a pressure transmission ring, which has to fulfill the following functions:
  • Transmission of jacking forces from pipe to pipe
  • Compensation of production-related unevenness of the pipe end faces to avoid stress peaks
  • Recording deviations of the plane parallelism of the pipe end faces
  • Preventing the direct pressure of the tubes on each other
  • Avoidance or reduction of the gaping joint with curved lines and control movements.

Hierdurch ergeben sich folgende Anforderungen an die Druckübertragungsringe:

  • Hohe Flexibilität (geringe Steifigkeit) über den gesamten Beanspruchungsbereich zum Ausgleich von Unebenheiten der Rohrstirnflächen, d.h. der E-Modul ist deutlich kleiner als der E-Modul des Rohrwerkstoffes
  • Elastisches Verformungsverhalten zur Vermeidung einer klaffenden Fuge bzw. zur Realisierung einer gleichmäßigen Kraftübertragung bei Steuerbewegungen und ständig wechselnder Be- und Entlastung
  • Geringe Querdehnung, um Beschädigungen der Rohrstirnflächen zu vermeiden
  • Hohe Festigkeit.
This results in the following requirements for the pressure transmission rings:
  • High flexibility (low rigidity) over the entire load range to compensate for unevenness of the pipe end faces, ie the modulus of elasticity is significantly smaller than the modulus of elasticity of the pipe material
  • Elastic deformation behavior to avoid a gaping joint or to realize a uniform force transmission during control movements and constantly changing loading and unloading
  • Low transverse strain to avoid damaging the pipe end faces
  • High strength.

Grundsätzlich können Druckübertragungsringe aus unterschiedlichen Werkstoffen zur Anwendung kommen. Am häufigsten werden jedoch solche aus astfreiem Holz (z.B. Buche) oder Holzwerkstoffen (z.B. Spanplatte) eingesetzt.Basically, pressure transmission rings made of different materials can be used. However, those most commonly used are knot-free wood (e.g., beech) or wood-based materials (e.g., chipboard).

Letztere zeichnen sich dadurch aus, dass sie unabhängig von Wuchseigenschaften und der Anisotropie des Holzes sowie unempfindlich gegen Feuchteänderungen des Holzes sind.The latter are characterized by the fact that they are independent of growth properties and the anisotropy of the wood and insensitive to moisture changes of the wood.

Holz bzw. Holzwerkstoff bietet den Vorteil einer sehr geringen Querdehnung, hat aber den Nachteil, dass die Gesamtverformungen überwiegend plastisch sind. Dieser große plastische Verformungsanteil wirkt sich in erster Linie bei gegensinnigen Steuerbewegungen und wechselnder, gekrümmter Linienführung des Rohrstranges aus. Beim Richtungswechsel bildet sich ein Spalt zwischen der Rohrstirnfläche und dem Druckübertragungsring mit der Folge, dass die Druckübertragungsfläche kleiner wird und hierdurch höhere Spannungen auftreten.Wood or wood-based material offers the advantage of a very low transverse strain, but has the disadvantage that the overall deformations are predominantly plastic. This large plastic deformation ratio affects primarily in the opposite direction control movements and changing, curved lines of the pipe string. When changing direction, a gap between the pipe end face and the pressure transmission ring is formed with the result that the pressure transmission surface is smaller and thereby higher voltages occur.

Holz verhält sich bei kleiner Spannung elastisch, bei weiterer Spannungssteigerung verformt es sich, begleitet von Gefügezerstörungen, plastisch. Randspannungsspitzen werden deshalb zumindest bei den ersten Belastungen immer etwas abgebaut. Nach mehreren Lastwechseln, vor allem bei hohen Randspannungen, wird das Holzgefüge ganz zerstört.Wood behaves elastically at low tension, with further increase in tension it deforms plastically, accompanied by structural damage. Edge voltage peaks are therefore always degraded, at least for the first loads. After several load changes, especially at high edge stresses, the wood structure is completely destroyed.

Die Abmessungen, insbesondere die Dicke der Übertragungsringe, sind abhängig von der zur Auffahrung der jeweiligen Trassen und Gradienten erforderlichen Radien bzw. gegenseitigen Abwinkelbarkeit der Rohre in den Rohrverbindungen. In Ausnahmefällen werden z.B. bei einsinnigen Krümmungen auch keilförmig ausgebildete Druckübertragungsringe eingesetzt.The dimensions, in particular the thickness of the transfer rings, are dependent on the radii required for trimming the respective paths and gradients or the mutual bendability of the tubes in the pipe connections. In exceptional cases, e.g. in uni-directional bends also wedge-shaped pressure transmission rings used.

Weitere Maßnahmen (z.B. spezielle Variation der Druckübertragungsringe bezüglich Form, geometrischer Abmessung und Werkstoff bzw. Werkstoffkombinationen) zur Erhöhung der Tragfähigkeit der Vortriebsrohre im Lasteinleitungsbereich, insbesondere bei hohen Vortriebskräften und planmäßig bzw. unplanmäßig gekrümmter Linienführung oder bei Vortriebsrohren mit vom Kreis abweichendem Querschnitt sind im Einzelfall zu prüfen.Other measures (eg special variation of the pressure transmission rings in terms of shape, geometric dimensions and material or material combinations) to increase the load capacity of the jacking pipes in the load introduction area, especially at high propulsive forces and scheduled or unscheduled curved lines or jacking pipes with deviating from the circle cross-section are in the individual case to consider.

Auch die Verwendung bewehrter elastomerer oder polymerer Druckübertragungsringe hat sich bislang nicht bewährt, da diese Werkstoffe im Unterschied zu (quer zur Faserrichtung belastetem) Holz eine Querdehnung von 0,3 bis 0,4 besitzen. Dies führt zur Eintragung von erheblichen Querzugspannungen in die Rohrstirnflächen, die es stets zu vermeiden gilt.Also, the use of reinforced elastomeric or polymeric pressure transfer rings has hitherto not proven, since these materials, in contrast to (loaded transversely to the fiber direction) wood have a transverse strain of 0.3 to 0.4. This leads to the entry of considerable transverse tensile stresses in the pipe end faces, which must always be avoided.

Aus der DE 25 05 980 A ist ein Verfahren zum Vortrieb von im Wesentlichen ringförmigen Bauteilen bekannt, bei dem zwischen ein derartiges Bauteil und ein Widerlager ein von einem Druckschlauch aufzunehmendes Druckventil eingeführt wird. Der Druckschlauch kann in Umfangsrichtung des Bauteils unterteilt sein, so dass das Druckmittel in dieser Richtung gezielt eingesetzt werden kann. Nach Beendigung des Vortriebsvorgangs kann der Druckschlauch zwischen dem Bauteil und dem Widerlager verbleiben und mit einer dauerhaften Füllung versehen werden, so dass eine anpassungsfähige Fugendichtung erhalten wird.From the DE 25 05 980 A a method for propulsion of substantially annular components is known, in which between such a component and an abutment a male from a pressure hose pressure valve is introduced. The pressure hose can be divided in the circumferential direction of the component, so that the pressure medium can be selectively used in this direction. After completion of the propelling operation, the pressure hose between the component and the abutment can remain and be provided with a permanent filling, so that an adaptive joint seal is obtained.

Die DE 35 39 897 A beschreibt ein Verfahren zur Herstellung eines aus Rohrelementen bestehenden Rohrstrangs durch aufeinanderfolgendes Einpressen der Rohrelemente in den Erdboden. Die Rohrelemente werden durch zwischen ihren Stirnflächen angeordnete, an eine Druckquelle angeschlossene Schlauchspirale durch periodischen Wechsel des jeweiligen Innendrucks schrittweise vorgeschoben, wobei das jeweils vorgetriebene Rohrelement in der Vorschubphase an dem dahinter folgenden Rohrelement abgestützt wird. Nach Beendigung des Vortriebsvorgangs können die Schlauchspiralen aus dem Rohrstrang entfernt werden.The DE 35 39 897 A describes a method for producing a tubular pipe string by successively pressing the pipe elements into the ground. The tubular elements are gradually advanced by periodically changing the respective internal pressure by means of tubing spirals arranged between their end faces and connected to a pressure source, wherein the respectively driven tubular element is supported in the advancing phase on the tubular element behind it. After completion of the propulsion process, the hose spirals can be removed from the pipe string.

Die EP-A-1 079 064 offenbart einen Druckausgleichsring zur Einlage zwischen den Rohrstirnflächen beim unterirdischen Vortrieb von Rohren, der mehrere Rohrübertragungselemente aus Elastomermaterial aufweist, die in einer Rohr-Axialebene jeweils mit Abstand zueinander angeordnet sind.The EP-A-1 079 064 discloses a pressure equalization ring for insertion between the tube end faces in Underground propulsion of pipes, which has a plurality of pipe transmission elements made of elastomeric material, which are each arranged in a tube-axial plane with a distance from each other.

Schließlich zeigt die DE 592 904 C eine nachgiebige Verbindung für abzusenkende Baukörper, insbesondere für Tunnelrohrschüsse, mit in Ausnehmungen an den zu verbindenden Stirnseiten der Baukörper eingreifenden, aufblasbaren elastischen Verbindungsgliedern. Diese können aus mehreren aufblasbaren Schläuchen und einem diese umschließenden Mantel bestehen.Finally, the shows DE 592 904 C a resilient connection for abzusenkende structure, in particular for tunnel tube shots, with engaging in recesses on the front sides of the building to be connected, inflatable elastic connecting links. These can consist of several inflatable tubes and a jacket enclosing them.

Es ist die Aufgabe der vorliegenden Erfindung, ein Verfahren zum Verlegen einer aus mindestens zwei Rohren bestehenden Rohrleitung im Erdreich, bei dem ein Druckübertragungsteil für die Übertragung von Druckkräften zwischen den einander zugewandten Stirnflächen zweier hintereinanderliegender Rohre bei einem Vortrieb der Rohrleitung in deren Längsrichtung, das aus mindestens einer flexiblen, hochdruckfesten Hülle besteht, die mindestens eine sich in Umfangsrichtung erstreckende, mit Fluid gefüllte Kammer aufweist, verwendet wird, anzugeben, das einfach durchführbar ist und durch das mit geringem Aufwand eine dichte Rohrleitung erhalten werden kann.It is the object of the present invention, a method for laying a pipe consisting of at least two pipes in the ground, in which a pressure transmission part for the transmission of compressive forces between the facing end faces of two consecutive pipes in a propulsion of the pipe in the longitudinal direction, the at least one flexible, high-pressure-resistant shell, which has at least one circumferentially extending, fluid-filled chamber, is used to specify, which is easy to carry out and can be obtained by the low-cost, a dense pipeline.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1. Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens ergeben sich aus den Unteransprüchen.This object is achieved by a method having the features of claim 1. Advantageous developments of the method according to the invention will become apparent from the dependent claims.

Zur Minimierung der Fugenspaltbreiten wird - nach Herausnahme der Hülle - der restliche Rohrstrang auf einer Seite geringfügig vorgetrieben (und zwar etwa um das Maß der herausgenommenen Hülle). Sukzessive werden dann - rückschreitend bis zur Pressstation - alle Hüllen bzw. Druckübertragungsteile entfernt und der verbleibende Rohrstrang um die entsprechenden Maße vorgeschoben. Damit werden minimale oder anderweitig vorgegebene, aber exakt definierbare Fugenspalte erzeugt, welche die Strömungswiderstände in der Leitung, z.B. bei Verwendung als Abwasserleitung, minimieren, und die nicht mit plastischen Dichtmitteln nachträglich verschlossen werden müssen. Alternativ besteht die Möglichkeit, nach dem Entfernen eines Druckübertragungsteils und vor dem Zusammenschieben der entsprechenden Rohre eine herkömmliche elastomere Stirnflächendichtung in den freigelegten Fugenspalt einzulegen und den verbleibenden Rohrstrang dann nur soweit vorzuschieben, dass die Stirnflächendichtung auf das für die Dichtwirkung erforderliche Maß komprimiert wird.To minimize the joint gap widths - after removal of the shell - the remaining pipe string on one side slightly advanced (and about the extent of the removed shell). successive Then - back to the pressing station - all cases or pressure transmission parts are removed and advanced the remaining pipe string by the appropriate dimensions. This minimum or otherwise predetermined, but exactly definable joint gaps are generated, which minimize the flow resistance in the pipe, eg when used as a sewer line, and must not be sealed with plastic sealants subsequently. alternative it is possible to insert a conventional elastomeric face seal in the exposed joint gap after removing a pressure transmission part and before pushing the corresponding tubes and the remaining tubing then only advance so far that the face seal is compressed to the extent required for the sealing effect.

Es können geeignete Druckmeßvorrichtungen vorgesehen sein, die den Druck in den einzelnen Kammern messen und die Zuführvorrichtung für das Fluid für die einzelnen Kammern so steuern, dass stets ein gewünschter Druck in den Kammern herrscht. Die Steuerung kann für die Kammern-individuell oder gruppenweise erfolgen, wobei eine entsprechende Anzahl von Druckmeßvorrichtungen vorgesehen ist. Auch hinsichtlich der mehreren Druckübertragungsteile in einer Rohrleitung kann eine individuelle Steuerung des Fluiddruckes durchgeführt werden.Suitable pressure measuring devices can be provided which measure the pressure in the individual chambers and control the delivery device for the fluid for the individual chambers in such a way that there is always a desired pressure in the chambers. The control can be done for the chambers individually or in groups, with a corresponding number of pressure measuring devices is provided. Also with regard to the plurality of pressure transmission parts in a pipeline, an individual control of the fluid pressure can be performed.

Die Erfindung wird im Folgenden anhand von in den Figuren dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1
eine Rohrverbindung mit zwei Rohren, deren Längsachsen zusammenfallen, sowie eine Rohrverbindung mit zwei Rohren, deren Längsachsen unter einem Winkel zueinander angeordnet sind,
Fig. 2
einen Druckübertragungsring im Querschnitt mit einer Vielzahl über- und nebeneinander angeordneter, voneinander getrennter Kammern,
Fig. 3
einen Druckübertragungsring im Querschnitt mit mehreren nebeneinander angeordneten, durch Durchlässe miteinander verbundenen Kammern,
Fig. 4
einen Druckübertragungsring im Querschnitt, der zwei in Rohrlängsrichtung hintereinanderliegende Teilringe aufweist, und
Fig. 5
einen Druckübertragungsring im Querschnitt, der gegenüber dem in Fig. 4 gezeigten modifiziert ist.
The invention will be explained in more detail below with reference to embodiments illustrated in the figures. Show it:
Fig. 1
a pipe joint with two pipes whose Longitudinal axes coincide, and a pipe joint with two tubes whose longitudinal axes are arranged at an angle to each other,
Fig. 2
a pressure transmission ring in cross section with a plurality of over and juxtaposed, separate chambers,
Fig. 3
a pressure transmission ring in cross-section with a plurality of juxtaposed, interconnected by passages chambers,
Fig. 4
a pressure transmission ring in cross-section, which has two in the tube longitudinal direction one behind the other partial rings, and
Fig. 5
a pressure transmitting ring in cross section, opposite to the in Fig. 4 is shown modified.

Fig. 1 zeigt zwei Rohre 1 und 2, die in ihrer Längsrichtung hintereinander liegen und sich üblicherweise in horizontaler Lage im Erdreich befinden. Die Rohre sollen in ihrer Längsrichtung durch das Erdreich beispielsweise von einer Pressstation zu einem Zielschacht vorangetrieben werden, um zusammen mit weiteren in Längsrichtung hintereinanderliegenden Rohren eine durchgehende Rohrleitung zwischen diesen zu bilden. Zur Durchführung des Vortriebs wird von der Pressstation ein Druck auf die hintere Stirnfläche des dieser jeweils nächstliegenden Rohres ausgeübt und dieser Druck wird jeweils über die Stirnflächen von Rohr zu Rohr bis zum vordersten Rohr übertragen. Fig. 1 shows two tubes 1 and 2, which lie behind each other in their longitudinal direction and are usually in a horizontal position in the ground. The tubes are to be driven in their longitudinal direction through the soil, for example, from a pressing station to a target shaft to form a continuous pipe between them together with other longitudinally one behind the other tubes. To carry out the propulsion, a pressure is exerted by the pressing station on the rear end face of the respective closest tube and this pressure is transmitted in each case over the end faces of tube to tube to the foremost tube.

Um hierbei die Stirnflächen nicht zu beschädigen und auch um gewünschte Krümmungen in der Rohrleitung zu erhalten, ist zwischen jeweils zwei Rohren ein Druckübertragungsteil in Form eines Druckübertragungsringes 3 vorgesehen.In order not to damage the end faces and also to obtain desired curvatures in the pipeline, a pressure transmission part in the form of a pressure transmission ring 3 is provided between each two tubes.

Der Druckübertragungsring 3 besteht aus einer flexiblen, im Querschnitt angenähert rechteckigen oder abgeflacht elliptischen Hülle, die mit einem Fluid gefüllt ist und die eine ausreichende Festigkeit besitzt, um den auf sie ausgeübten Kräften, d.h. den Vortriebskräften beim Verlegen der Rohrleitung, standzuhalten. Dabei ist die Hülle so flexibel, dass sie stets vollflächig an den Stirnflächen der beiden angrenzenden Rohre anliegt; unabhängig davon, ob es sich um eine geradlinige Rohrleitung, wie in Fig. 1(a) gezeigt, oder um eine gekrümmte Rohrleitung, wie in Fig. 1(b) gezeigt, handelt. Durch Fluidverlagerung innerhalb der Hülle werden Abstandsdifferenzen zwischen den Stirnflächen der Rohre 1 und 2 ausgeglichen, wie insbesondere aus Fig. 1(b) ersichtlich ist, wobei sich der Druck gleichförmig über die Anpressfläche verteilt, d.h. ohne das Auftreten lokaler Spannungsspitzen.The pressure transmission ring 3 consists of a flexible, in cross-section approximately rectangular or flattened elliptical shell, which is filled with a fluid and which has sufficient strength to withstand the forces exerted on them, ie the propulsive forces during installation of the pipeline. In this case, the shell is so flexible that it always rests over its entire surface on the end faces of the two adjacent tubes; regardless of whether it is a straight-line pipeline, as in Fig. 1 (a) shown, or around a curved pipe, as in Fig. 1 (b) shown, acts. By fluid displacement within the shell distance differences between the end faces of the tubes 1 and 2 are balanced, in particular from Fig. 1 (b) it can be seen, wherein the pressure is distributed uniformly over the contact surface, ie without the occurrence of local voltage spikes.

Die Hülle bzw. der Druckübertragungsring 3 kann eine einzige ringförmige Kammer enthalten, die mit Fluid gefüllt ist; vorteilhafter ist jedoch die Verwendung mehrerer Kammern. Fig. 2 zeigt eine Ausbildung mit einer Vielzahl von über den Querschnitt der Hülle über- und nebeneinander angeordneten Kammern 4, welche keine Verbindung miteinander aufweisen. In den Kammern 4 können daher unterschiedliche Drücke auftreten, einerseits durch vorherige unterschiedliche Befüllung mit dem Fluid und andererseits durch unterschiedliche Druckbelastung von außen. Fig. 3 zeigt eine Ausbildung mit mehreren über den Querschnitt der Hülle nebeneinander angeordneten Kammern 5, die über Durchlässe 6 miteinander verbunden sind und die daher immer den gleichen Innendruck aufweisen. Durch die zwischen den Kammern 4 bzw. 5 bestehenden Kammerzwischenwände wird die Stabilität der Hülle erhöht.The sheath or pressure transmitting ring 3 may include a single annular chamber filled with fluid; more advantageous, however, is the use of multiple chambers. Fig. 2 shows an embodiment with a plurality of over the cross section of the shell over and next to each other arranged chambers 4, which have no connection with each other. In the chambers 4, therefore, different pressures can occur, on the one hand by previous different filling with the fluid and on the other hand by different pressure load from the outside. Fig. 3 shows a training with several over the cross section of the shell adjacent chambers 5, which are interconnected via passages 6 and therefore always have the same internal pressure. By between the chambers 4 and 5 existing intermediate chamber walls, the stability of the shell is increased.

Fig. 3 zeigt weiterhin ein steuerbares Ventil 7, das mit einer der Kammern 5 verbunden ist und zur Befüllung der Hülle mit dem Fluid sowie zur Entleerung der Hülle dient. Ein ebenfalls vorgesehenes Entlüftungsventil zur Erleichterung des Befüllens und Entleerens ist nicht dargestellt. Fig. 3 further shows a controllable valve 7, which is connected to one of the chambers 5 and serves to fill the envelope with the fluid and to empty the envelope. An also provided vent valve to facilitate filling and emptying is not shown.

Die Kammern 4 bzw. 5 können ringförmig, d.h. in Umfangsrichtung durchgehend sein, oder sie können die Form von Ringsegmenten aufweisen, wobei dann eine entsprechende Anzahl von Ringsegmenten in Umfangsrichtung hintereinander angeordnet ist, die gegebenenfalls miteinander verbunden sind.The chambers 4 and 5 may be annular, i. be continuous in the circumferential direction, or they may have the form of ring segments, in which case a corresponding number of ring segments is arranged in the circumferential direction one behind the other, which are optionally interconnected.

Fig. 4 zeigt einen Druckübertragungsring im Querschnitt, der zwei in Längsrichtung der Rohre 1 und 2 hinter- bzw. übereinanderliegende Teilringe 3.1 und 3.2 aufweist, die jeweils mit mehreren in radialer Richtung nebeneinander liegenden Kammern 4 versehen sind. Die Anzahl der Kammern ist beliebig, darüber hinaus können sie voneinander getrennt oder auch miteinander verbunden sein. Die Teilringe können beispielsweise auch die Konfiguration nach Fig. 2 oder Fig. 3 aufweisen oder auch nur eine Kammer enthalten. Darüber hinaus können die Teilringe auch unterschiedlich sein. Fig. 4 shows a pressure transmission ring in cross-section, the two in the longitudinal direction of the tubes 1 and 2 behind or superimposed partial rings 3.1 and 3.2, which are each provided with a plurality of adjacent chambers 4 in the radial direction. The number of chambers is arbitrary, moreover, they can be separated or connected to each other. The partial rings, for example, the configuration according to Fig. 2 or Fig. 3 or even contain only one chamber. In addition, the partial rings can also be different.

Zwischen den Teilringen 3.1 und 3.2 und gegebenenfalls zwischen diesen und den angrenzenden Rohren 1 bzw. 2 werden vorzugsweise hohlraumfreie Zwischenlagen 8 angeordnet, die zur Unterteilung des Druckübertragungsringes in mehrere einzelne Pakete dienen und auch für die Aufnahme von Querdehnungen geeignet sind. Hierdurch wird der Druckübertragungsring bei Belastung insgesamt stabilisiert.Between the partial rings 3.1 and 3.2 and, if necessary, between these and the adjacent tubes 1 2 or 2 preferably void-free intermediate layers 8 are arranged, which serve to divide the pressure transmission ring into a plurality of individual packages and are also suitable for receiving transverse strains. As a result, the pressure transmission ring is fully stabilized under load.

Fig. 5 zeigt eine Abwandlung des Druckübertragungsringes nach Fig. 4 in der Weise, dass die Zwischenlagen zwischen den Teilringen 3.1 bzw. 3.2 und den jeweils angrenzenden Rohren 1 als Schalen 9 mit sich in Längsrichtung der Rohre 1 und 2 erstreckenden Rändern ausgebildet sind, wodurch die Teilringe 3.1 und 3.2 an den Außenkanten in radialer Richtung fixiert sind. Fig. 5 shows a modification of the pressure transmission ring after Fig. 4 in such a way that the intermediate layers between the sub-rings 3.1 and 3.2 and the respective adjacent tubes 1 are formed as shells 9 with extending in the longitudinal direction of the tubes 1 and 2 edges, whereby the partial rings 3.1 and 3.2 fixed to the outer edges in the radial direction are.

Die Zwischenlagen 8 bzw. Schalen 9 können auch vorgesehen sein, wenn der Druckübertragungsring nur eine Hülle 3 aufweist, d.h. es befindet sich dann nur zwischen der Hülle 3 und mindestens einem der angrenzenden Rohre 1 bzw. 2 eine Zwischenlage 8 oder Schale 9.The intermediate layers 8 or shells 9 can also be provided if the pressure transmission ring has only one shell 3, i. It is then only between the shell 3 and at least one of the adjacent tubes 1 and 2, an intermediate layer 8 or shell. 9

Das Material der Hülle kann elastisch oder unelastisch sein. Bei elastischem Material kann das Volumen der Hülle durch den Innendruck des Fluids beeinflusst werden, während bei unelastischem Material das Volumen der Hülle unabhängig vom Innendruck des Fluids konstant ist. Ein elastisches Material hat den Vorteil, dass auch größere Abstände zwischen den Rohrstirnflächen, insbesondere wenn diese wie in Fig. 1(b) stark unterschiedlich sind, überbrückt werden können.The material of the sheath may be elastic or inelastic. In the case of elastic material, the volume of the envelope can be influenced by the internal pressure of the fluid, while in the case of inelastic material the volume of the envelope is constant independently of the internal pressure of the fluid. An elastic material has the advantage that even larger distances between the pipe end faces, especially if these as in Fig. 1 (b) are strongly different, can be bridged.

Weiterhin kann die Steifigkeit des Druckübertragungsringes 3 in Abhängigkeit vom Innendruck des Fluids eingestellt werden. Eine geringere Steifigkeit bzw. ein geringerer Fluiddruck empfiehlt sich bei gekrümmten Rohrleitungen, während bei geradlinigen Rohrleitungen eine höhere Steifigkeit erwünscht ist.Furthermore, the rigidity of the pressure transmitting ring 3 can be adjusted depending on the internal pressure of the fluid. A lower stiffness or a lower fluid pressure is recommended for curved Pipelines, while in rectilinear pipelines a higher rigidity is desired.

Die Hüllen können einfach und kostengünstig dadurch hergestellt werden, dass sie mit die Kammern bildenden Hohlräumen aus einem extrudierfähigen Material endlos hergestellt und dann auf entsprechende Länge geschnitten werden, worauf die Enden unter Bildung der ringförmigen Hülle mit ringförmigen Kammern miteinander verbunden werden.The sheaths can be made simply and inexpensively by making them endless with cavities of extrudable material forming the chambers, and then cutting them to length and then bonding the ends together to form the annular sheath with annular chambers.

Claims (5)

  1. A method of laying a pipe line comprising at least two pipes (1, 2) in the ground, in which a thrust-transmitting part (3) is used for transmitting thrust forces between the mutually facing end faces of two pipes (1, 2) arranged one behind the other when the pipe line is advanced in the longitudinal direction thereof, which thrust-transmitting part (3) comprises at least one flexible, high-pressure-resistant sleeve which has at least one chamber (4, 5) extending in the peripheral direction and filled with fluid, characterized in that after the termination of the advance the fluid is discharged at least in part out of the at least one chamber (4, 5) and the at least one sleeve (3) is removed out of the gap between the end faces of the pipes (1, 2) arranged one behind the other, and after the removal of the sleeve the gap between the end faces is reduced by the advance of one of the pipes (1, 2) to a minimum or pre-set width.
  2. A method according to Claim 1, characterized in that after the removal of the sleeve (3) an elastomeric end-face seal is inserted into the gap between the end faces, and the end-face seal is compressed by the advance of one of the pipes (1, 2) to the amount required for the sealing action.
  3. A method according to one of Claims 1 to 2, characterized in that the sleeve (3) and/or the fluid is or are used for a further laying procedure.
  4. A method according to any one of Claims 1 to 3, characterized in that the filling pressure in the at least one chamber (4, 5) is constantly measured on an individual or group basis during the advance.
  5. A method according to Claim 4, characterized in that the measured filling pressure is used for setting the filling state - desired in each case - of the associated chamber.
EP03090362A 2002-10-22 2003-10-22 Thrust transmitting element for driving pipes Expired - Lifetime EP1413708B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10249933 2002-10-22
DE10249933A DE10249933A1 (en) 2002-10-22 2002-10-22 Pressure transmission part and method for laying a pipeline consisting of at least two pipes

Publications (2)

Publication Number Publication Date
EP1413708A1 EP1413708A1 (en) 2004-04-28
EP1413708B1 true EP1413708B1 (en) 2010-03-03

Family

ID=32049621

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03090362A Expired - Lifetime EP1413708B1 (en) 2002-10-22 2003-10-22 Thrust transmitting element for driving pipes

Country Status (4)

Country Link
EP (1) EP1413708B1 (en)
AT (1) ATE459782T1 (en)
DE (2) DE10249933A1 (en)
ES (1) ES2341952T3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006005297U1 (en) * 2006-04-01 2006-06-14 Baumgartner, Franz, Dipl.-Ing. Pressure compensation ring
DE102008039820A1 (en) 2008-08-22 2010-03-04 Zerna Ingenieure Gmbh Driving tube for use in driving tube system of tunnel, has longitudinal axles and hollow space surrounding tube wall with front and rear flange faces, where flange faces are formed in spherical convex and concave manner, respectively
DE202012101383U1 (en) * 2012-04-16 2012-05-07 Elke Baumgartner Pressure compensation ring for the arrangement between two jacking pipes of an underground pipe jacking
CH709476A1 (en) * 2014-04-07 2015-10-15 Stefan Trümpi A method for sealing joints during the pressing pipe jacking.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE592904C (en) * 1934-02-19 Siemens Bauunion G M B H Komm Flexible connection for structures to be lowered, especially for tunnel pipe sections
DE2505980A1 (en) * 1975-02-13 1976-08-19 Holzmann Philipp Ag Tunnel tube section forwarding - uses hydraulic or pneumatic pressure from pressure pipe between component and abutment
CA1151436A (en) * 1979-06-16 1983-08-09 Michael A. Richardson Installation of tunnel linings
DE3539897A1 (en) * 1985-11-11 1987-05-21 Kev Metro Koezlekedesi Es Metr Method and arrangement for producing underground structural objects guided rectilinearly in a closed profile, in particular tunnel-like structures under the turf level, by pressing tube elements into the ground
DE3815141A1 (en) * 1988-05-04 1989-11-16 Phoenix Ag ACTIVATED SEAL FOR PRESSURE PIPES
DE19937344C1 (en) * 1999-08-11 2001-02-22 Franz Baumgartner Pressure compensation ring

Also Published As

Publication number Publication date
ES2341952T3 (en) 2010-06-30
EP1413708A1 (en) 2004-04-28
DE50312472D1 (en) 2010-04-15
DE10249933A1 (en) 2004-05-13
ATE459782T1 (en) 2010-03-15

Similar Documents

Publication Publication Date Title
DE2257001C3 (en) Leak protection device on pipeline systems
CH631533A5 (en) FORM-FITTED PIPE CONNECTION AND METHOD FOR THEIR PRODUCTION.
DE3844045C2 (en)
EP1413708B1 (en) Thrust transmitting element for driving pipes
EP2330326A1 (en) Tubular component
AT393552B (en) PIPELINE AND METHOD AND DEVICE FOR PIPING
EP2113702B1 (en) Coupling for connecting two ends of a pipe with secondary source seal
DE3626988C2 (en)
DE102005052751A1 (en) Fluid transfer device
EP1079064B1 (en) Pressure equalizing ring for connections between drive-in pipes
DE3312073A1 (en) Pressure build-up mandrel for the pressure-tight fixing of a tube
EP1020615B1 (en) Feeding method for laying underground pipes and pipe for carrying out this method
EP0414891A1 (en) Method and device for trench-free laying of pipelines
DE3729560A1 (en) METHOD AND DEVICE FOR PRODUCING A PIPELINE IN A HOLE DESIGNED IN THE GROUND
AT391538B (en) CONNECTION OR CONNECTING PIECE FROM A SINGLE PIECE, FOR THE DIRECT CONNECTION OF SMOOTH TUBES TO THREADED CONNECTIONS
DE19825582C2 (en) Device for trenchless re-laying of drinking water pipes in particular
AT412572B (en) Driven pipe for installation into a ground comprises a thin-walled metal or plastic inner pipe and a cast concrete outer pipe with thickened end sections
EP4063704B1 (en) Compensator
EP1472483B1 (en) Conduit pipe
DE3313907C2 (en)
DE19748643C1 (en) Compression ring transferring load between adjacent pipes during trenchless pipe installation or jacking
CH716935A2 (en) Pressure compensation ring with integrated sliding seal for pipe jacking and the process for its production.
DE102008039820A1 (en) Driving tube for use in driving tube system of tunnel, has longitudinal axles and hollow space surrounding tube wall with front and rear flange faces, where flange faces are formed in spherical convex and concave manner, respectively
EP1526313B1 (en) Pipeline and pipeline production method
DE102022107221A1 (en) Use of a feedthrough system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20041028

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060307

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: E21D 9/06 20060101ALN20091008BHEP

Ipc: E21B 7/20 20060101ALN20091008BHEP

Ipc: E21D 9/04 20060101AFI20091008BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50312472

Country of ref document: DE

Date of ref document: 20100415

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2341952

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20100923

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101014

Year of fee payment: 8

26N No opposition filed

Effective date: 20101206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101025

Year of fee payment: 8

Ref country code: GB

Payment date: 20101021

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20111025

Year of fee payment: 9

Ref country code: CH

Payment date: 20111024

Year of fee payment: 9

Ref country code: BE

Payment date: 20111013

Year of fee payment: 9

Ref country code: LU

Payment date: 20111024

Year of fee payment: 9

Ref country code: ES

Payment date: 20111026

Year of fee payment: 9

Ref country code: FR

Payment date: 20111103

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100904

BERE Be: lapsed

Owner name: STEIN & PARTNER G.M.B.H.

Effective date: 20121031

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 459782

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121022

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121022

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121022

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121022

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121022

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121022

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121022

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141030

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50312472

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503