EP1411236B1 - Device for damping of pressure pulsations in a fluid system, especially in a fuel system of an internal combustion engine - Google Patents

Device for damping of pressure pulsations in a fluid system, especially in a fuel system of an internal combustion engine Download PDF

Info

Publication number
EP1411236B1
EP1411236B1 EP03015623A EP03015623A EP1411236B1 EP 1411236 B1 EP1411236 B1 EP 1411236B1 EP 03015623 A EP03015623 A EP 03015623A EP 03015623 A EP03015623 A EP 03015623A EP 1411236 B1 EP1411236 B1 EP 1411236B1
Authority
EP
European Patent Office
Prior art keywords
gas volume
pressure
diaphragm
housing
diaphragms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03015623A
Other languages
German (de)
French (fr)
Other versions
EP1411236A3 (en
EP1411236A2 (en
Inventor
Helmut Rembold
Wolfgang Bueser
Albrecht Baessler
Klaus Lang
Marcus Wuenning
Weidong Qi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10327408.1A external-priority patent/DE10327408B4/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to EP10180727A priority Critical patent/EP2284384B1/en
Priority to EP10180722A priority patent/EP2278150B1/en
Priority to EP10180742.8A priority patent/EP2278151B1/en
Publication of EP1411236A2 publication Critical patent/EP1411236A2/en
Publication of EP1411236A3 publication Critical patent/EP1411236A3/en
Application granted granted Critical
Publication of EP1411236B1 publication Critical patent/EP1411236B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0011Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
    • F02M37/0041Means for damping pressure pulsations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails

Definitions

  • the invention relates to a device for damping pressure pulsations in a fluid system, in particular in a fuel system of an internal combustion engine, with a housing and with at least one working space, which communicates at least partially with the fluid system.
  • Such a device is from the DE 195 39 885 A1 known.
  • a fuel system of an internal combustion engine with direct fuel injection From a prefeed pump, the fuel is conveyed to a high-pressure piston pump, which compresses the fuel to a very high pressure. From the high-pressure piston pump, the fuel enters a fuel rail ("rail").
  • the high-pressure piston pump is driven by a camshaft of the internal combustion engine.
  • a quantity control valve is provided in order to adjust the delivery rate of the high pressure piston pump independently of the speed of the camshaft. Through this, the Delivery chamber of the high-pressure piston pump during a delivery stroke are briefly connected to the located between the electric feed pump and the high-pressure fuel pump portion of the fuel system.
  • a pressure damper is provided there. This consists of a housing and a piston which is biased by a spring.
  • a pressure damper which works with a spring-biased rubber membrane.
  • a stopper is present, against which the membrane is supported at low pressure.
  • the pressure between the prefeed pump and the high-pressure piston pump is approximately constant. However, in modern fuel systems, this pressure can be variable. Typically, it is between 0.5 and 8 bar, with an overload safety must be present to about 10 to 12 bar. If the known pressure damper, which has a rubber membrane, used in such a fuel system, there is a risk that at a low system pressure, for example. Of 0.5 bar and the superimposed pressure pulsations, the rubber membrane abuts against the stop. As a result, the damping effect of the pressure damper is weakened and it can damage the rubber membrane occur. The from the DE 195 39 885 A1 known pressure damper with a piston and a spring in turn would have to build very large when used in such a variable-pressure fuel system.
  • the NL-C2-1 016 384 describes a damping device which comprises a arranged in a working space and sealed by a membrane gas volume.
  • the state of the art is still on the US 6,079,450 , the EP 1 342 911 A2 , the EP 0 950 809 A2 , the US 3,366,144 , the US 3,948,288 , the JP 167299 A and the US 6,062,830 directed.
  • the present invention therefore has the object, a device of the type mentioned in such a way that it can be used in a fuel system with variable form, but it builds small and has a long life.
  • the compressibility of gases can be exploited to ensure the elastic movement of the membrane required to dampen pressure pulsations.
  • the membrane is not affected by any mechanical elements, which significantly increases their service life and reduces the risk of damage.
  • such a gas volume can be realized in almost any geometric shape. It can therefore be accommodated very space-saving in the fluid system.
  • Another advantage of the device according to the invention is that it can be dispensed with a leakage line, which simplifies the construction of the fuel system again.
  • the gas volume is limited by at least two membranes which are clamped in the region of their edges.
  • Such a pressure damper builds comparatively flat. All the more so, when the membranes are substantially parallel.
  • the gas volume is introduced into the space lying between the two membranes during their assembly, so that a filling opening can be dispensed with.
  • this device By limiting the maximum deflection of the membrane, this can be chosen so that damage to the membrane, such as a plastic deformation, are just avoided. Therefore, this device is at least in a certain area "overload-proof", that is, it still shows an overload function even with overloads, without being damaged.
  • the one membrane has at least one stop section and the other membrane at least one counter surface, which come into contact with each other at a maximum deflection of the two membranes. This makes use of the fact that in the case of a high pressure, the two membrane surfaces move towards each other. When they come into contact with each other, they support each other. A separate stop is not required.
  • the membrane is made of metal.
  • Such a membrane has several advantages: First, such a membrane compared to conventional gases and also to fluids very dense. In particular, the high density of metal membranes in comparison to HC emissions plays a positive role here. On the other hand occurs in a metal diaphragm even at low pressures, for example. With the engine OFF, no overstretching over time, so that a damper device can be used with a metal diaphragm in a fluid system, which has a variable fluid pressure in a wide range.
  • the gas volume is formed by a thin-walled and at its ends gas-tight sealed metal tube. This is very easy and inexpensive to realize.
  • At least one outer wall of the working space is likewise designed as a membrane, an additional hydraulically effective area is obtained in a minimum space.
  • the effectiveness of the device according to the invention is thereby significantly increased again, while requiring little space.
  • the enclosed gas volume has a defined pressure at a standard external pressure (for example 1013 hPa), preferably an overpressure.
  • a standard external pressure for example 1013 hPa
  • an overpressure With such a defined pressure, the "spring stiffness" can be adjusted.
  • an overpressure in the trapped gas volume in comparison to the external pressure will be chosen, because in this way the entire possible voltage range (tension and pressure) of the membrane material can be utilized.
  • a negative pressure or standard pressure Preferably, such an internal overpressure is selected, which is approximately half of the maximum Operating pressure minus the pressure increase caused by the compression of the component.
  • the membrane geometry can be designed for higher strokes and lower pressure load or small installation volume.
  • the gas volume may have a closable opening, via which the pressure can be adjusted. This facilitates the production of the gas volume. Otherwise, the production would have to be done even at a certain pressure.
  • the membrane has at least one bead.
  • the spring properties of the membrane itself and also their strength properties can be significantly influenced.
  • the membrane can thus be optimally adapted to the individual requirements of the fluid system.
  • the damper with comparable volume can have even more damping volume, or alternatively be built smaller.
  • the beads may have different height and / or a different course and / or a different cross-section.
  • the beads can also be shaped so that the maximum stress does not occur at the edge of the membrane, and the mechanical stresses are distributed as evenly as possible over the surface of the membrane. Furthermore, the entire material bandwidth in the tensile and compressive stress range can be used by a corresponding membrane design.
  • the membrane has at least one stop area which comes into contact with a maximum deflection of the membrane with a counter surface.
  • the maximum deflection is chosen so that damage to the membrane, such as a plastic deformation, are just avoided. Therefore, this device is at least in a certain area “overload-proof", that is, it still shows an overload function even with overloads, without being damaged.
  • the counter surface on the housing on a separate which the gas volume between the two membrane is formed and the two membranes each have at least one stop surface or a mating surface, which touch at a maximum deflection of the two membrane.
  • the edges of the two membrane are sealed together and clamped radially inwardly of the sealing line.
  • the connection is made by a weld, is prevented by this embodiment of the device according to the invention that the welds must withstand additional mechanical forces.
  • the sealing connection thus serves only for sealing and does not have to take on other tasks and can thus fulfill particularly high tightness requirements safely. For the evaluation of the durability of the pressure damper according to the invention so only the membranes themselves must be considered.
  • the clamping has a structural elasticity. This is understood to mean such an elasticity that is "constructively intended".
  • a retaining ring made of a rubber-elastic material may be used, or a metal support may be used which has a spring portion.
  • the clamping can attack at any location of the membrane, but particularly favorable is an approach in the region of a median plane of the two membranes.
  • the installation space of the device according to the invention is particularly small if the working space of the two membranes is subdivided into two fluid areas which communicate with one another by a fluid connection.
  • An annular spacer between the two membranes simply defines or increases the trapped volume of gas. In this case, it is inexpensive possible to form the fluid connection, which connects the two fluid areas of the working space with each other, in the spacer.
  • the device is integrated in a housing of a fuel pump.
  • the benefits of the invention are particularly noticeable, since such a fuel pump is usually to build very small.
  • the damping device according to the invention can be accommodated in a particularly space-saving manner when the working space comprises an annular space and the gas volume is likewise annular. It is particularly advantageous if the working space and the gas volume are arranged on a cylinder of a fuel pump at least approximately coaxially with the cylinder axis.
  • the pressure damper surrounds so to speak the cylinder and the existing in this piston, which additionally causes a noise attenuation.
  • the gas volume be arranged in the manner of a spiral in the annular space, wherein the spiral and the annular space are at least approximately coaxial.
  • a spiral results in a large deformation surface, which contributes to a particularly effective pulsation damping.
  • the effective area of the gas volume can be further increased if the spiral gas volume extends helically in the axial direction of the working space.
  • a further preferred embodiment of the device according to the invention is characterized in that the gas volume is filled with helium. This facilitates the detection of leakage.
  • the membrane and / or the housing may be magnetic.
  • appropriate manufacturing processes for example, mechanical rolling and embossing
  • the material martensitic structure (“Umformmartensit”), which has magnetic properties.
  • Umformmartensit material martensitic structure
  • the device can trap in the fluid existing magnetic dirt particles and prevent their further distribution. This increases the reliability of the components present in the fluid system, for example a pump.
  • costs are saved, since the complex demagnetization of the component is eliminated. Since no directly abutting and relatively movable parts are present in the device, the trapped dirt particles cause no functional damage to the device.
  • the membrane is made of a strip material which has residual stresses. Such residual stresses lead during the forming process to a flat distortion, so that the material is discarded in the formed state.
  • This can now be used specifically for the simplification of the production of the membrane can, especially if it has at least one bellows section: Due to the delay namely a targeted separation of the non-pressurized state flat contiguous areas of the membrane is no longer required. The safe evacuation of the membrane and filling of the gas volume, for example with helium is therefore easy and reliable possible.
  • the order of assembly can be as follows: First, the individual sections ("segments") of the membrane are stacked and "stacked" in a welding device. After closing the welding device whose interior is evacuated and filled with filling gas, such as helium, with a desired pressure. In this phase, the distorted membrane sections ensure that the filling gas flows safely into all cavities. Then the individual sections pressed together and welded together.
  • filling gas such as helium
  • the membrane comprises at least one bead section and at least one bellows section. This allows the combination of the advantages of both versions.
  • the membrane has at its radially outer edge a fastening portion which extends approximately parallel to the central axis and is secured to the housing. In this way, the entire inner diameter of the housing can be used hydraulically effective, which minimizes the required space and reduces costs.
  • the device comprises a clamping device which acts on the mounting portion radially against the housing.
  • the clamping device may be formed, for example, as a clamping ring. It relieves the attachment of the membrane to the housing.
  • FIG. 1 carries a fuel system of an internal combustion engine overall the reference numeral 10.
  • the internal combustion engine itself is not shown in detail.
  • the fuel system 10 includes a fuel tank 12 from which an electric fuel pump 14 delivers fuel to a low pressure fuel line 16.
  • the low-pressure fuel line 16 leads to a high-pressure fuel pump 18, which is shown symbolically dash-dotted lines.
  • the high-pressure fuel pump 18 comprises a delivery chamber 20, which from a in FIG. 1 Piston not shown is limited.
  • the piston is displaced by a drive shaft, also not shown, in a reciprocating motion.
  • the drive shaft is driven by the camshaft, again not shown, of the internal combustion engine driven.
  • the high-pressure fuel pump 18 further comprises an inlet valve 22, which is designed as a check valve. Further, an outlet valve 24 is provided, which is also formed by a check valve.
  • the high pressure fuel pump 18 compresses the fuel to a very high pressure and delivers into a fuel rail 26 ("rail"). In this the fuel is stored under high pressure.
  • a fuel rail 26 (“rail"). In this the fuel is stored under high pressure.
  • a plurality of fuel injectors 28 are connected to the fuel manifold 26 . These inject the fuel directly into each associated combustion chambers 30 a.
  • a quantity control valve 32 is provided in order to adjust the delivery rate of the high-pressure fuel pump 18 independently of the rotational speed of the drive shaft. This is actuated by a magnetic actuator 33, which in turn is driven by a control and device, not shown.
  • the quantity control valve 32 is designed such that during a delivery stroke of the high-pressure fuel pump 18, the inlet valve 22 can be forcibly opened. As a result, the fuel under pressure in the delivery chamber 20 is not conveyed into the fuel collecting line 26, but back into the low-pressure fuel line 16.
  • the corresponding switching position of the quantity control valve 32 bears the reference numeral 34.
  • pressure damper 36 is constructed as follows (see. FIG. 2 and 3 ):
  • the pressure damper 36 comprises a housing with a lower part 38 and a top 40.
  • the lower part 38 has in the in FIG. 2 It comprises an installation section 42 with an inlet channel 43 introduced centrally therefrom and a bottom plate section 44 which is generally plate-shaped and circular in plan view, the plane of which extends approximately at a right angle to the central axis 41 stands.
  • the upper part 40 of the housing is also plate-shaped and circular in plan view.
  • annular spacer 46 is arranged between the bottom portion 44 of the lower part 38 of the housing and the upper part 40 of the housing. It is welded on welds 48a and 48b firmly on the one hand with the bottom portion 44 of the lower part 38 of the housing and on the other hand with the upper part 40 of the housing.
  • annular holding portion 52 extending radially inwards on the spacer 46, two circular membranes 54a and 54b are provided which are generally circular in plan view. The attachment is made by circumferential welds 57a and 57b at the outermost edge of the membranes 54a and 54b (see. FIG. 3 ).
  • the two membranes 54a and 54b are thin-walled and made of metal, preferably of stainless steel.
  • a gas volume 58 is enclosed.
  • the gas is introduced through a channel 60 provided in the annular spacer 46 (see FIG. FIG. 2 ). After the introduction of the gas into the volume 58 between the two membranes 54a and 54b, the channel 60 is closed by a ball 62.
  • the entire area between the bottom portion 44, the Upper part 40 of the housing, and the spacer 46 forms a working space 66.
  • the gas volume 58 is thus arranged within the working space 66.
  • a first fluid region 64 of the working space 66 is formed between the bottom portion 44 of the lower part 38 of the housing and the lower diaphragm 54 b. Between the upper part 40 of the housing and the upper diaphragm 54a, a second fluid region 68 of the working space 66 is formed. Both fluid regions 64 and 68 may communicate with each other through a channel 70 in the annular spacer 46.
  • the two membranes 54a and 54b are of identical construction (for reasons of clarity, in FIG. 3 all the reference numerals for the upper diaphragm 54a only): At their radially outer edge they have a radially extending holding portion 72 with which they are welded to the annular spacer 54b. From the holding portion 72 of the diaphragm, a spring portion 74 bends at an angle of about 80 °. The spring portion 74 thus extends approximately in the axial direction. On the spring portion 74, in turn, a radially extending bead portion 76 is integrally formed. This is characterized by a plurality of extending beads 78. The beads 78 extend concentrically around the central axis 41 of the pressure damper 36. A central region of the two membranes 54a and 54b is flat. The corresponding region in the membrane 54a is referred to as a stopper portion 80a, the corresponding area on the membrane 54b as a counter-surface 80b (see. FIG. 2 ).
  • the pressure damper 36 operates as follows:
  • the pressure damper can be basically arranged arbitrarily in space) of the working space 66 with the low pressure fuel line 16. Via the channel 70 communicates the upper fluid portion 68 of the working space 66 in turn with the lower fluid portion 64.
  • the working space 66 of the two membranes 54a and 54b and the annular spacer 46 limited gas volume 58 is present. This is in the idle state of the fuel system 10 under a slight overpressure against the outside atmosphere. Due to this overpressure, the bead portion 76 and the abutment portion 80a and the counter surface 80b of the two diaphragms 54a and 54b, respectively, bulge slightly outward.
  • the distance between the two diaphragms 54a and 54b and the sections 54a or 40 of the housing adjacent to them is so great that, even in the idle state, that is to say with a pressureless fuel system, a contact of the two diaphragms 54a and 54b with the corresponding sections 40 and 44 of the housing is excluded.
  • Such a limitation of the "stroke" of the membranes is possible by the use of metal as a membrane material.
  • the distance of the membranes 54 a and 54 b from the housing 40 and 44 is selected so that at a system pressure, for example, less than 100 kPa in case of pressure undershoot the membranes 54 a and 54 b, the housing 40 and 44 do not touch.
  • a system pressure for example, less than 100 kPa in case of pressure undershoot the membranes 54 a and 54 b, the housing 40 and 44 do not touch.
  • the two diaphragms 54a and 54b become moved towards each other.
  • the pressure in the gas volume 58 on the one hand and the stiffness of the two diaphragms 54a and 54b are selected so that at normal operating pressure in the low-pressure fuel line 16, that is approximately between 0.5 and 8 bar, a contact of the two membranes 54a and 54b does not take place with each other. Pressure fluctuations can thus be easily absorbed in this normal operating range of the fuel system 10 by a corresponding movement of the two membranes 54a and 54b and a compression of the gas volume 58 and thereby damped.
  • the abutment portion 80a of the diaphragm 54a and the counter-surface 80b engage the diaphragm 54b.
  • the two membranes 54a and 54b can thus no longer move, so that an overload of the two membranes 54a and 54b can be excluded.
  • the stopper portion 80a and the mating surface 80b are machined flat or crowned.
  • the characteristic of the pressure damper 36 can also be influenced by the height of the annular spacer 46. This height in particular has an influence on the pressure at which the two diaphragms 54a and 54b come into contact with each other.
  • the internal volume also targeted be downsized.
  • the effectiveness of the air spring formed by the enclosed gas volume 58 can be further increased.
  • the shape of the beads 78 and their number plays an essential role in the properties of the pressure damper 36.
  • a number of three to six beads with different bead height proved to be advantageous.
  • the bead height can vary between +/- 0.15 and 2 mm.
  • the bead may be circular, sinusoidal or spline-shaped.
  • the shape of the beads 78 and the design of the spring portion 74 ensures that the maximum stresses do not occur at the outermost edge of the two membranes 54a and 54b, but are largely evenly distributed over the diameter of the two membranes 54a and 54b.
  • FIGS. 4 and 5 and 6 are referred to.
  • a second embodiment of a pressure damper 36 is shown. In doing so, carry such areas and elements which have equivalent functions to regions and elements of the Figures 2 and 3 illustrated embodiment, the same reference numerals. They are not explained again in detail.
  • FIGS. 4 and 5 represent pressure damper no spacer is no longer available. Instead, the top 40 and the bottom portion 44 of the housing are directly welded together. The corresponding weld bears the reference numeral 48. Accordingly, the two holding portions 72a and 72b of the two membranes 54a and 54b are welded directly together (weld seam 57).
  • FIG. 5 An in FIG. 5 only shown in dashed lines fluid connection 70, which is formed by regional breakthroughs in the clamping rings 82 and 84, the two fluid portions 64 and 68 of the working space 66 are fluidly connected to each other.
  • the openings 70 must be chosen so that the two membranes 54a and 54b are charged approximately equally.
  • FIG. 6 shows the lower membrane 54b schematically detail.
  • A is the depth of the diaphragm 54b, it corresponds to the maximum possible stroke.
  • B denotes a transition region, and C the height of the sinking of the membrane 54b.
  • FIG. 7 is a partial section through a fuel pump shown as high-pressure fuel pump 18, for example, in the in FIG. 1 shown fuel system 10 is used. It can be seen a cylinder housing 92 with a piston 88 which limits the delivery chamber 20.
  • the quantity control valve 32 can be seen in the upper region of the fuel pump 18.
  • the outlet valve 24 is located in the left area.
  • the inlet valve 22 is formed as a spring-loaded plate valve, which can be forced by a plunger (not numbered) of the quantity control valve 32 during a delivery stroke of the piston 88 forcibly in an open position.
  • a circumferential step 94 is incorporated in the outer boundary surface of the cylinder housing 92. About this a housing sleeve 96 is pushed. Due to the circumferential step 94 and the housing sleeve 96, a circumferential around the cylinder central axis 90 annular space 66 is provided. This communicates on the one hand via a channel 100 with a low-pressure inlet 102 of the fuel pump 18. On the other hand, it communicates via a channel 104 with a pressure relief groove 106, which in a cylinder bore 108 in which the piston 88 is guided, is present.
  • annular space 66 In the annular space 66, two annular peripheral membranes 54a and 54b are arranged. Their outer edges are via welds 57a to 57d on the one hand with the cylinder housing 92 and the other with the housing sleeve 96th welded. This creates two separate gas volumes 58a and 58b. Between these there is a fluid region 64 of the working space 66, which in particular communicates via the channel 100 with the low-pressure inlet 102.
  • the annular space 66 and the gas volumes 58a and 58b in this way form a pressure damper 36, which is arranged coaxially with the cylinder central axis 90 of the high-pressure fuel pump 18.
  • FIG. 8 a modified embodiment of such an annular pressure damper 36 is shown.
  • pressure damper 36 carry such elements and areas, which equivalent functions to elements and areas of the in the FIGS. 7 have shown pressure damper 36, the same reference numerals. They are not explained again in detail.
  • the pressure damper 36 which in FIG. 8 is shown, comprises a flattened metal tube 54, which is sealed gas-tight at the ends. Its interior forms a gas volume 58.
  • the metal tube 54a is wound in the working space 66 in a spiral and helical manner coaxially with the central cylinder axis 90. As a result, it stands on the one hand with respect to the housing sleeve 96 and the other with respect to the in FIG. 8 upper and lower end surfaces of the working space 66 under a bias and is thereby fixed.
  • FIG. 9 a further variant of a pressure damper 36 is shown.
  • elements and regions which have equivalent functions to elements and regions which have already been explained in connection with the preceding figures bear the same reference numerals. Normally they will not be explained again in detail.
  • the pressure damper 36 shown is in the left half of FIG. 9 differently designed than on the right half. Both devices 36 have in common that they have only a single membrane 54. This is welded in the region of its holding portion 72 in 57 with the upper part 40 of the housing. Unlike the example in the Figures 2 and 3 Membrane has the in FIG. 9 illustrated diaphragm 54 a bellows portion 110 which is disposed between the bead portion 76 and the holding portion 72 and is composed of individual segments 110a to 110d. This bellows portion 110 allows a comparatively large volume change of the gas volume 58 enclosed by the diaphragm 54 and the housing 40.
  • the gas volume 58 is thereby reduced overall in that between the membrane 54 and the upper part 40 of the housing, a packing 112 is attached to the upper part 40 of the housing.
  • a stopper portion 80a extends from the bead portion 76 of the diaphragm 54 to the lower portion 38 of the housing, whereas in the right half of the FIG. 9 the stopper portion 80a extends toward the packing 112.
  • the filler body 112 or the lower part 38 of the housing acts as a counter surface 80b for the stopper portion 80a.
  • the gas volume 58 trapped by the membrane 54 is filled with helium. This is under an overpressure, which corresponds to approximately half of the maximum operating pressure, minus the pressure increase caused by the compression of the diaphragm 54.
  • a magnetic metal material is used for the membrane 54.
  • the pressure damper 36 acts like a "dust catcher", because through them magnetic dirt particles from the fluid intercepted and prevented their distribution in the fluid system 10.
  • the bellows portion 110 of the membrane 54 in particular, a strip material is used in which residual stresses are present which lead to a flat distortion of the individual segments 110a, 110b, 110c, and 110d.
  • the individual segments 110a to 110d are never so close to each other that evacuation of the air and filling with helium is not reliably possible.
  • a conceivable procedure in the manufacture of the bellows section 110 is as follows:
  • the individual segments 110a to 110d of the bellows portion 110 are stacked in a welding apparatus (not shown). Then the welding device is closed and the interior evacuated. Then, the interior of the welding device is filled with helium to a desired internal pressure. By having a delay portions 110a to 110d of the bellows 110 ensures that helium can flow reliably into the corresponding cavities.
  • the individual segments 110a to 110d are then pressed together and welded together in FIG. 114 (for reasons of clarity, this reference symbol is only located at one point on the left side of FIG. 9 entered).
  • FIG. 10 shown An alternative to this is in FIG. 10 shown.
  • the in FIG. 10 shown pressure damper 36 differs from that in FIG. 9 shown by the fact that instead of a separate packing 112 in the upper part 40 of the housing, a deep-drawn section 112 is present, which on the one hand the trapped gas volume 58th reduced and on the other hand has the counter surface 80b, which cooperates with the stopper portion 80a of the diaphragm 54.
  • FIG. 11 again shows an embodiment in which a separate filler body 112 is present, which is not hollow, but solid and, moreover, in a the stopper portion 80a of the diaphragm 54 facing portion 116 has a smaller diameter.
  • the contour of the filling body 112 of FIG. 11 something adapted to the contour of the membrane 54, so that the corresponding gas volume 58 is particularly low.
  • FIG. 12 an embodiment is shown in which two membranes 54a and 54b are present, corresponding to, for example, the in FIG. 4 shown embodiment of a pressure damper 36.
  • FIG. 12 In contrast to FIG. 4 is at the in FIG. 12
  • the in FIG. 12 shown pressure damper has - analogous to that in the FIGS. 4 and 5 shown - upper and lower clamping rings 82 and 84, which, however, in FIG. 12 are shown only schematically.
  • the hydraulically effective area of the membranes 54a and 54b is maximized, which can be used to reduce the overall size of the pressure damper 36.
  • the clamping rings 82 and 84 are supported by spring portions 118 and 120 on the upper part 40 and on the lower part 38 of the housing. In this way, manufacturing tolerances of the membranes 54a and 54b can be compensated.
  • a disc-shaped retaining ring 122 is clamped, which has a central opening 124.
  • a two-piece Packing 112 inserted, and the retaining ring 122 is clamped between the two halves 112a and 112b of the filling body 112.
  • a circumferential groove is present, into which the edge of the opening 124 of the retaining ring 122 engages.
  • a one-piece design of the retaining ring 122 with the packing 112 is conceivable.
  • FIG. 13 Yet another variant of a pressure damper 36 is in FIG. 13 shown.
  • this pressure damper 36 no filler is present, so that this device is constructed similar to those in the FIGS. 4 and 5 is shown.
  • the differences relate in particular to the clamping rings 82 and 84, with which the membranes 54a and 54b are held on the housing 40 and 38:
  • the clamping rings 82 and 84 have cantilevered spring portions, wherein a spring portion 118a and 120a, the membranes 54a and 54b in FIG. 13 positioned in the vertical direction, whereas a spring portion 118b and 120b, the two membranes 54 and 56 in FIG. 13 positioned or centered in the horizontal direction.
  • the spring sections 118a and 120a are formed by individual radially inwardly facing brackets of the two clamping rings 82 and 84, which in the in FIG. 13 shown mounting position against the upper part 40 and the lower part 38 of the housing are biased.
  • the spring sections 118b and 120b are formed by individual radially outwardly acting brackets which abut against the inner circumferential surface of the upper part 40 of the housing 40 and are biased against it.
  • FIG. 14 a further modified embodiment of a pressure damper 36 is shown. This is at the radially outer edge of the bead portion 76th a tubular attachment portion 122 is provided which extends approximately parallel to the central axis 41 of the pressure damper 36 and is welded in its edge to the housing 40 in FIG. 57. Ultimately, therefore, the membrane 54 is attached directly to the housing 40, which saves otherwise required additional designs.
  • the pressure damper 36 in FIG. 14 a clamping ring 124, which presses the mounting portion 122 from radially inwardly against the housing 40.
  • the weld 57 is mechanically relieved.
  • the radially maximum outer weld 57 allows the use of the entire inner diameter of the housing 40 as a hydraulically effective diameter. This lowers the manufacturing costs.
  • the gas volume 58 can be established either during the production of the weld seam 57 (welding in a pressure chamber). Or the working space 66 is subsequently filled via the opening 60, which is then closed by the element 62. The latter can be welded to the housing 40, for example. As in the embodiments of the FIGS. 9 to 11 is also at the in FIG. 14 shown pressure damper 36, the gas volume 58 between the diaphragm 54 and the housing 40 is formed. This leads to a minimization of the required installation space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pipe Accessories (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft eine Vorrichtung zum Dämpfen von Druckpulsationen in einem Fluidsystem, insbesondere in einem Kraftstoffsystem einer Brennkraftmaschine, mit einem Gehäuse und mit mindestens einem Arbeitsraum, welcher wenigstens bereichsweise mit dem Fluidsystem kommuniziert.The invention relates to a device for damping pressure pulsations in a fluid system, in particular in a fuel system of an internal combustion engine, with a housing and with at least one working space, which communicates at least partially with the fluid system.

Eine solche Vorrichtung ist aus der DE 195 39 885 A1 bekannt. Dort ist ein Kraftstoffsystem einer Brennkraftmaschine mit Kraftstoff-Direkteinspritzung gezeigt. Von einer Vorförderpumpe wird der Kraftstoff zu einer Hochdruck-Kolbenpumpe gefördert, welche den Kraftstoff auf einen sehr hohen Druck komprimiert. Von der Hochdruck-Kolbenpumpe gelangt der Kraftstoff in eine Kraftstoff-Sammelleitung ("Rail"). Die Hochdruck-Kolbenpumpe wird von einer Nockenwelle der Brennkraftmaschine angetrieben. Um die Fördermenge der Hochdruck-Kolbenpumpe unabhängig von der Drehzahl der Nockenwelle einstellen zu können, ist ein Mengensteuerventil vorgesehen. Durch dieses kann der Förderraum der Hochdruck-Kolbenpumpe während eines Förderhubs kurzzeitig mit dem zwischen der elektrischen Vorförderpumpe und der Hochdruck-Kraftstoffpumpe gelegenen Bereich des Kraftstoffsystems verbunden werden.Such a device is from the DE 195 39 885 A1 known. There is shown a fuel system of an internal combustion engine with direct fuel injection. From a prefeed pump, the fuel is conveyed to a high-pressure piston pump, which compresses the fuel to a very high pressure. From the high-pressure piston pump, the fuel enters a fuel rail ("rail"). The high-pressure piston pump is driven by a camshaft of the internal combustion engine. In order to adjust the delivery rate of the high pressure piston pump independently of the speed of the camshaft, a quantity control valve is provided. Through this, the Delivery chamber of the high-pressure piston pump during a delivery stroke are briefly connected to the located between the electric feed pump and the high-pressure fuel pump portion of the fuel system.

Hierdurch werden jedoch erhebliche Druckpulsationen in diesen Bereich des Kraftstoffsystems eingeleitet. Um diese zu dämpfen, ist dort ein Druckdämpfer vorgesehen. Dieser besteht aus einem Gehäuse und einem Kolben, welcher von einer Feder vorgespannt wird.As a result, however, significant pressure pulsations are initiated in this area of the fuel system. To dampen this, a pressure damper is provided there. This consists of a housing and a piston which is biased by a spring.

Vom Markt her bekannt ist auch ein Druckdämpfer, welcher mit einer von einer Feder vorgespannten Gummimembran arbeitet. Damit bei drucklosen Systemen (also bspw. bei ausgeschalteter Brennkraftmaschine) die Gummimembran nicht mit der Zeit unzulässig gedehnt wird, ist ein Anschlag vorhanden, an dem sich die Membran bei geringem Druck abstützt.Also known from the market is a pressure damper, which works with a spring-biased rubber membrane. In order for non-pressurized systems (that is, for example, when the internal combustion engine is switched off), the rubber membrane is not stretched inadmissible over time, a stopper is present, against which the membrane is supported at low pressure.

Bei dem aus der DE 195 39 885 A1 bekannten Kraftstoffsystem ist der Druck zwischen der Vorförderpumpe und der Hochdruck-Kolbenpumpe in etwa konstant. Bei modernen Kraftstoffsystemen kann dieser Druck jedoch variabel sein. Typischerweise beträgt er zwischen 0,5 und 8 bar, wobei eine Überlastsicherheit bis ungefähr 10 bis 12 bar vorhanden sein muss. Wird der bekannte Druckdämpfer, welcher eine Gummimembran aufweist, bei einem derartigen Kraftstoffsystem eingesetzt, besteht die Gefahr, dass bei einem niedrigen Systemdruck bspw. von 0,5 bar und den überlagerten Druckpulsationen die Gummimembran an dem Anschlag anschlägt. Hierdurch wird die Dämpfungswirkung des Druckdämpfers geschwächt und es können Beschädigungen an der Gummimembran auftreten. Der aus der DE 195 39 885 A1 bekannte Druckdämpfer mit einem Kolben und einer Feder wiederum müsste beim Einsatz in einem solchen Kraftstoffsystem mit variablem Vordruck sehr groß bauen.In the from the DE 195 39 885 A1 known fuel system, the pressure between the prefeed pump and the high-pressure piston pump is approximately constant. However, in modern fuel systems, this pressure can be variable. Typically, it is between 0.5 and 8 bar, with an overload safety must be present to about 10 to 12 bar. If the known pressure damper, which has a rubber membrane, used in such a fuel system, there is a risk that at a low system pressure, for example. Of 0.5 bar and the superimposed pressure pulsations, the rubber membrane abuts against the stop. As a result, the damping effect of the pressure damper is weakened and it can damage the rubber membrane occur. The from the DE 195 39 885 A1 known pressure damper with a piston and a spring in turn would have to build very large when used in such a variable-pressure fuel system.

Die NL-C2-1 016 384 beschreibt eine Dämpfungseinrichtung, die durch ein in einem Arbeitsraum angeordnetes und durch eine Membran dicht abgeschlossenes Gasvolumen umfasst. Zum Stand der Technik wird weiter noch auf die US 6,079,450 , die EP 1 342 911 A2 , die EP 0 950 809 A2 , die US 3 366 144 , die US 3 948 288 , die JP 167299 A und die US 6,062,830 verwiesen.The NL-C2-1 016 384 describes a damping device which comprises a arranged in a working space and sealed by a membrane gas volume. The state of the art is still on the US 6,079,450 , the EP 1 342 911 A2 , the EP 0 950 809 A2 , the US 3,366,144 , the US 3,948,288 , the JP 167299 A and the US 6,062,830 directed.

Die vorliegende Erfindung hat daher die Aufgabe, eine Vorrichtung der eingangs genannten Art so weiterzubilden, dass sie in einem Kraftstoffsystem mit variablem Vordruck eingesetzt werden kann, dabei jedoch klein baut und eine lange Lebensdauer aufweist.The present invention therefore has the object, a device of the type mentioned in such a way that it can be used in a fuel system with variable form, but it builds small and has a long life.

Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a device having the features of claim 1.

Vorteile der ErfindungAdvantages of the invention

Durch die Verwendung eines abgeschlossenen Gasvolumens kann die Kompressibilität von Gasen dazu ausgenutzt werden, die für die Dämpfung von Druckpulsationen erforderliche elastische Bewegung der Membran sicherzustellen. Dabei wird die Membran durch keinerlei mechanische Elemente beaufschlagt, was ihre Lebensdauer deutlich erhöht und das Risiko von Beschädigungen reduziert. Darüber hinaus kann ein derartiges Gasvolumen in beinahe beliebiger geometrischer Form realisiert werden. Es kann also sehr platzsparend im Fluidsystem untergebracht werden. Ein weiterer Vorteil der erfindungsgemäßen Vorrichtung besteht darin, dass auf eine Leckageleitung verzichtet werden kann, was den Aufbau des Kraftstoffsystems nochmals vereinfacht.By using a sealed volume of gas, the compressibility of gases can be exploited to ensure the elastic movement of the membrane required to dampen pressure pulsations. The membrane is not affected by any mechanical elements, which significantly increases their service life and reduces the risk of damage. In addition, such a gas volume can be realized in almost any geometric shape. It can therefore be accommodated very space-saving in the fluid system. Another advantage of the device according to the invention is that it can be dispensed with a leakage line, which simplifies the construction of the fuel system again.

Erfindungsgemäß wird das Gasvolumen durch mindestens zwei Membranen begrenzt, die im Bereich ihrer Ränder eingespannt sind. Ein solcher Druckdämpfer baut vergleichsweise flach. Dies umso mehr, wenn die Membranen im Wesentlichen parallel sind. Dabei ist grundsätzlich natürlich denkbar, dass das Gasvolumen in den zwischen den beiden Membranen liegenden Raum bei deren Zusammenfügung eingebracht wird, so dass auf eine Befüllöffnung verzichtet werden kann.According to the gas volume is limited by at least two membranes which are clamped in the region of their edges. Such a pressure damper builds comparatively flat. All the more so, when the membranes are substantially parallel. In principle, it is of course conceivable that the gas volume is introduced into the space lying between the two membranes during their assembly, so that a filling opening can be dispensed with.

Durch die Begrenzung der maximalen Auslenkung der Membran kann diese so gewählt werden, dass Beschädigungen an der Membran, beispielsweise eine plastische Verformung, gerade noch vermieden werden. Diese Vorrichtung ist daher zumindest in einem gewissen Bereich "überlastsicher", d.h., sie zeigt auch bei Überlasten noch eine Dämpfungsfunktion, ohne beschädigt zu werden.By limiting the maximum deflection of the membrane, this can be chosen so that damage to the membrane, such as a plastic deformation, are just avoided. Therefore, this device is at least in a certain area "overload-proof", that is, it still shows an overload function even with overloads, without being damaged.

Die eine Membran weist mindestens einen Anschlagabschnitt und die andere Membran mindestens eine Gegenfläche auf, welche bei einer maximalen Auslenkung der beiden Membranen in Anlage miteinander kommen. Hierdurch wird ausgenützt, dass sich im Falle eines hohen Drucks die beiden Membranflächen aufeinander zu bewegen. Wenn sie in Kontakt miteinander kommen, stützen sie sich aneinander ab. Ein separater Anschlag ist somit nicht erforderlich.The one membrane has at least one stop section and the other membrane at least one counter surface, which come into contact with each other at a maximum deflection of the two membranes. This makes use of the fact that in the case of a high pressure, the two membrane surfaces move towards each other. When they come into contact with each other, they support each other. A separate stop is not required.

Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.Advantageous developments of the invention are specified in subclaims.

In einer ersten Weiterbildung wird vorgeschlagen, dass die Membran aus Metall ist. Eine solche Membran hat verschiedene Vorteile: Zum einen ist eine solche Membran gegenüber üblichen Gasen und auch gegenüber Fluiden sehr dicht. Hier spielt insbesondere die hohe Dichtheit von Metallmembranen gegenüber HC-Emissionen eine positive Rolle. Zum anderen tritt bei einer Metallmembran auch bei niedrigen Drücken, bspw. bei ausgeschalteter Brennkraftmaschine, über die Zeit keine Überdehnung auf, so dass eine Dämpfervorrichtung mit einer Metallmembran in einem Fluidsystem eingesetzt werden kann, welches einen in einem großen Bereich variablen Fluiddruck aufweist.In a first development, it is proposed that the membrane is made of metal. Such a membrane has several advantages: First, such a membrane compared to conventional gases and also to fluids very dense. In particular, the high density of metal membranes in comparison to HC emissions plays a positive role here. On the other hand occurs in a metal diaphragm even at low pressures, for example. With the engine OFF, no overstretching over time, so that a damper device can be used with a metal diaphragm in a fluid system, which has a variable fluid pressure in a wide range.

Vorteilhaft ist auch, wenn das Gasvolumen durch ein dünnwandiges und an seinen Enden gasdicht verschlossenes Metallrohr gebildet wird. Dies ist sehr einfach und preiswert zu realisieren.It is also advantageous if the gas volume is formed by a thin-walled and at its ends gas-tight sealed metal tube. This is very easy and inexpensive to realize.

Wenn mindestens eine Außenwand des Arbeitsraums ebenfalls als Membran ausgebildet ist, erhält man auf minimalem Bauraum eine zusätzliche hydraulisch wirksame Fläche. Die Effektivität der erfindungsgemäßen Vorrichtung wird hierdurch nochmals deutlich erhöht, bei gleichzeitig geringem Platzbedarf.If at least one outer wall of the working space is likewise designed as a membrane, an additional hydraulically effective area is obtained in a minimum space. The effectiveness of the device according to the invention is thereby significantly increased again, while requiring little space.

Besonders vorteilhaft ist es, wenn das eingeschlossene Gasvolumen bei einem Norm-Außendruck (beispielsweise 1013 hPa) einen definierten Druck aufweist, vorzugsweise einen Überdruck. Mit einem solchen definierten Druck kann die "Federsteifigkeit" eingestellt werden. Üblicherweise wird ein Überdruck in dem eingeschlossenen Gasvolumen im Vergleich zum Außendruck gewählt werden, denn hierdurch kann der ganze mögliche Spannungsbereich (Zug und Druck) des Membranmaterials ausgenutzt werden.It is particularly advantageous if the enclosed gas volume has a defined pressure at a standard external pressure (for example 1013 hPa), preferably an overpressure. With such a defined pressure, the "spring stiffness" can be adjusted. Usually, an overpressure in the trapped gas volume in comparison to the external pressure will be chosen, because in this way the entire possible voltage range (tension and pressure) of the membrane material can be utilized.

Denkbar ist aber auch ein Unterdruck oder aber Normdruck. Vorzugsweise wird ein solcher Innenüberdruck gewählt, welcher in etwa der Hälfte des maximalen Betriebsüberdrucks, abzüglich des Druckanstiegs, der durch die Kompression des Bauteils entsteht, entspricht.It is also conceivable, however, a negative pressure or standard pressure. Preferably, such an internal overpressure is selected, which is approximately half of the maximum Operating pressure minus the pressure increase caused by the compression of the component.

Dabei kann auch durch eine Minimierung des eingeschlossenen Gasvolumens die Wirksamkeit des Gasvolumens optimiert werden. Durch eine solche Minimierung wird nämlich eine höhere Federsteifigkeit realisiert. Hierdurch kann die Membran dünner ausfallen und die Spannungen im Membranmaterial können minimiert werden. Außerdem wird im gesamten Arbeitsbereich ein anschlagfreies Arbeiten der Vorrichtung ermöglicht. Ferner wird die Belastung über den gesamten Betriebsbereich verkleinert, da durch den eingeschlossenen Innendruck die Druckdifferenz über der Membränwand reduziert wird. Damit kann die Membrangeometrie auf höhere Hubwege und geringere Druckbelastung bzw. kleines Einbauvolumen ausgelegt werden.It can also be optimized by minimizing the trapped gas volume, the effectiveness of the gas volume. By such minimization namely a higher spring stiffness is realized. This can make the membrane thinner and the stresses in the membrane material can be minimized. In addition, a stop-free operation of the device is made possible throughout the work area. Furthermore, the load over the entire operating range is reduced because the pressure difference across the membrane wall is reduced by the enclosed internal pressure. Thus, the membrane geometry can be designed for higher strokes and lower pressure load or small installation volume.

Dabei kann das Gasvolumen eine verschließbare Öffnung aufweisen, über die der Druck eingestellt werden kann. Dies erleichtert die Herstellung des Gasvolumens. Andernfalls müsste die Herstellung selbst bei einem bestimmten Druck erfolgen.In this case, the gas volume may have a closable opening, via which the pressure can be adjusted. This facilitates the production of the gas volume. Otherwise, the production would have to be done even at a certain pressure.

Besonders vorteilhaft ist jene Ausgestaltung der erfindungsgemäßen Vorrichtung, bei welcher die Membran mindestens eine Sicke aufweist. Durch eine derartige Sicke können die Federeigenschaften der Membran selbst und auch ihre Festigkeitseigenschaften maßgeblich beeinflusst werden. Mit einer Sicke kann die Membran also optimal an die individuellen Anforderungen des Fluidsystems angepasst werden. Vor allem kann der Dämpfer mit vergleichbarem Bauvolumen noch mehr Dämpfungsvolumen aufweisen, oder alternativ kleiner gebaut werden. Dabei können die Sicken unterschiedliche Höhe und/oder einen unterschiedlichen Verlauf und/oder einen unterschiedlichen Querschnitt haben.Particularly advantageous is that embodiment of the device according to the invention, in which the membrane has at least one bead. By such a bead, the spring properties of the membrane itself and also their strength properties can be significantly influenced. With a bead, the membrane can thus be optimally adapted to the individual requirements of the fluid system. Above all, the damper with comparable volume can have even more damping volume, or alternatively be built smaller. The beads may have different height and / or a different course and / or a different cross-section.

Auf diese Weise kann man eine unsymmetrische Federsteifigkeit der Membran je nach Belastungsrichtung erzielen.In this way one can achieve an asymmetrical spring stiffness of the membrane depending on the load direction.

Dadurch kann bspw. in dem Hauptarbeitsbereich der Druckdämpfervorrichtung eine gezielte, bspw. eine weitgehend konstante und eher weiche Federkonstante der Membran erreicht werden. In selten genutzten Betriebsbereichen dagegen kann eine höhere Steifigkeit realisiert werden. Auf diese Weise kann man eine nicht lineare bzw. nur stückweise lineare Federkennlinie erreichen. Letztlich wird hierdurch eine optimale Dämpfungswirkung im gesamten Betriebsbereich des Fluidsystems bei gleichzeitig geringem Bauraum erreicht.As a result, for example, in the main working range of the pressure damper device a targeted, for example, a largely constant and rather soft spring constant of the diaphragm can be achieved. In rarely used operating areas, on the other hand, higher rigidity can be achieved. In this way you can achieve a non-linear or only piecewise linear spring characteristic. Ultimately, this achieves an optimal damping effect in the entire operating range of the fluid system with at the same time low installation space.

Die Sicken können dabei auch so geformt sein, dass die maximale Spannung nicht am Rand der Membran auftritt, und die mechanischen Spannungen über der Fläche der Membran möglichst gleichmäßig verteilt sind. Des weiteren kann durch eine entsprechende Membranauslegung die gesamte Materialbandbreite im Zug- und Druckspannungsbereich genutzt werden.The beads can also be shaped so that the maximum stress does not occur at the edge of the membrane, and the mechanical stresses are distributed as evenly as possible over the surface of the membrane. Furthermore, the entire material bandwidth in the tensile and compressive stress range can be used by a corresponding membrane design.

Es kann auch vorgesehen sein, dass die Membran mindestens einen Anschlagbereich aufweist, welcher bei einer maximalen Auslenkung der Membran mit einer Gegenfläche in Anlage kommt. Die maximale Auslenkung wird dabei so gewählt, dass Beschädigungen an der Membran, beispielsweise eine plastische Verformung, gerade noch vermieden werden. Diese Vorrichtung ist daher zumindest in einem gewissen Bereich "überlastsicher", d.h., sie zeigt auch bei Überlasten noch eine Dämpfungsfunktion, ohne beschädigt zu werden.It can also be provided that the membrane has at least one stop area which comes into contact with a maximum deflection of the membrane with a counter surface. The maximum deflection is chosen so that damage to the membrane, such as a plastic deformation, are just avoided. Therefore, this device is at least in a certain area "overload-proof", that is, it still shows an overload function even with overloads, without being damaged.

In Weiterbildung hierzu wird vorgeschlagen, dass die Gegenfläche an dem Gehäuse, an einem separaten welcher das Gasvolumen zwischen den beiden Membran gebildet ist und die beiden Membranen jeweils mindestens eine Anschlagfläche bzw. eine Gegenfläche aufweisen, welche sich bei einer maximalen Auslenkung der beiden Membran berühren. Hierdurch wird ausgenützt, dass sich im Falle eines hohen Drucks die beiden Membranflächen aufeinander zu bewegen. Wenn sie in Kontakt miteinander kommen, stützen sie sich mit den Anschlagflächen gegenseitig ab. Diese Anschlagflächen können plan ausgeführt sein, um eine saubere Anlage der Membranen aneinander zu erhalten. Eine Überlastung der Membranen bei zu hohem Druck wird hierdurch zuverlässig ausgeschlossen, ohne dass ein separater Anschlag erforderlich ist.In a further development, it is proposed that the counter surface on the housing, on a separate which the gas volume between the two membrane is formed and the two membranes each have at least one stop surface or a mating surface, which touch at a maximum deflection of the two membrane. This makes use of the fact that in the case of a high pressure, the two membrane surfaces move towards each other. When they come into contact with each other, they support each other with the stop surfaces. These abutment surfaces can be designed plan to get a clean system of the membranes together. An overload of the membranes at too high pressure is thereby reliably excluded, without a separate stop is required.

Möglich ist auch, dass die Ränder der beiden Membran miteinander dicht verbunden und radial einwärts von der Abdichtlinie eingespannt sind. Insbesondere dann, wenn die Verbindung durch eine Schweißnaht erfolgt, wird durch diese Ausgestaltung der erfindungsgemäßen Vorrichtung verhindert, dass die Schweißnähte zusätzliche mechanische Kräfte aushalten müssen. Die Dichtverbindung dient somit nur zur Abdichtung und muss nicht noch andere Aufgaben übernehmen und kann so besonders hohe Dichtigkeitsanforderungen sicher erfüllen. Für die Bewertung der Dauerhaltbarkeit des erfindungsgemäßen Druckdämpfers müssen also nur noch die Membranen selbst betrachtet werden.It is also possible that the edges of the two membrane are sealed together and clamped radially inwardly of the sealing line. In particular, when the connection is made by a weld, is prevented by this embodiment of the device according to the invention that the welds must withstand additional mechanical forces. The sealing connection thus serves only for sealing and does not have to take on other tasks and can thus fulfill particularly high tightness requirements safely. For the evaluation of the durability of the pressure damper according to the invention so only the membranes themselves must be considered.

Dabei ist es besonders vorteilhaft, wenn die Einspannung über eine konstruktive Elastizität verfügt. Hierunter wird eine solche Elastizität verstanden, die "konstruktiv gewollt" ist. Beispielsweise kann ein Haltering aus einem gummielastischen Material verwendet werden, oder es kann eine Halterung aus Metall verwendet werden, welche einen Federabschnitt aufweist. Damit wird einerseits eine sichere Fixierung der Membranen erreicht, und andererseits können Fertigungstoleranzen ausgeglichen werden. Grundsätzlich kann die Einspannung an jedem Ort der Membran angreifen, besonders günstig ist jedoch ein Ansatz im Bereich einer Mittelebene der beiden Membranen.It is particularly advantageous if the clamping has a structural elasticity. This is understood to mean such an elasticity that is "constructively intended". For example, a retaining ring made of a rubber-elastic material may be used, or a metal support may be used which has a spring portion. Thus, on the one hand a secure fixation of the membranes is achieved, and on the other hand can Manufacturing tolerances are compensated. Basically, the clamping can attack at any location of the membrane, but particularly favorable is an approach in the region of a median plane of the two membranes.

Die Kosten für die erfindungsgemäße Vorrichtung werden reduziert, wenn die beiden Membranen identisch sind.The costs for the device according to the invention are reduced if the two membranes are identical.

Der Bauraum der erfindungsgemäßen Vorrichtung ist besonders klein, wenn der Arbeitsraum der beiden Membranen in zwei Fluidbereiche unterteilt wird, welche durch eine Fluidverbindung miteinander kommunizieren.The installation space of the device according to the invention is particularly small if the working space of the two membranes is subdivided into two fluid areas which communicate with one another by a fluid connection.

Ein ringförmiger Abstandshalter zwischen den beiden Membranen definiert bzw. erhöht auf einfache Art und Weise das eingeschlossene Gasvolumen. In diesem Fall ist es preiswert möglich, die Fluidverbindung, welche die beiden Fluidbereiche des Arbeitsraumes miteinander verbindet, in dem Abstandshalter auszubilden.An annular spacer between the two membranes simply defines or increases the trapped volume of gas. In this case, it is inexpensive possible to form the fluid connection, which connects the two fluid areas of the working space with each other, in the spacer.

Besonders vorteilhaft ist es, wenn die Vorrichtung in ein Gehäuse einer Kraftstoffpumpe integriert ist. Dort machen sich die erfindungsgemäßen Vorteile besonders stark bemerkbar, da eine derartige Kraftstoffpumpe üblicherweise sehr klein bauen soll.It is particularly advantageous if the device is integrated in a housing of a fuel pump. There, the benefits of the invention are particularly noticeable, since such a fuel pump is usually to build very small.

Bei Kraftstoffpumpen sind oft umlaufende Bereiche vorhanden, in denen Wellen oder Kolben angeordnet sind. In diesen Fällen kann die erfindungsgemäße Dämpfungsvorrichtung besonders platzsparend untergebracht werden, wenn der Arbeitsraum einen Ringraum umfasst und das Gasvolumen ebenfalls ringförmig ist. Besonders vorteilhaft ist es dabei, wenn der Arbeitsraum und das Gasvolumen an einem Zylinder einer Kraftstoffpumpe wenigstens in etwa koaxial zur Zylinderachse angeordnet sind. Der Druckdämpfer umgibt damit sozusagen den Zylinder und den in diesem vorhandenen Kolben, was zusätzlich noch eine Geräuschdämpfung bewirkt.In fuel pumps, there are often circumferential areas in which shafts or pistons are arranged. In these cases, the damping device according to the invention can be accommodated in a particularly space-saving manner when the working space comprises an annular space and the gas volume is likewise annular. It is particularly advantageous if the working space and the gas volume are arranged on a cylinder of a fuel pump at least approximately coaxially with the cylinder axis. The pressure damper surrounds so to speak the cylinder and the existing in this piston, which additionally causes a noise attenuation.

Vorgeschlagen wird auch, dass das Gasvolumen in der Art einer Spirale in dem Ringraum angeordnet ist, wobei die Spirale und der Ringraum wenigstens in etwa koaxial sind. Durch eine solche Spirale ergibt sich eine große Deformationsfläche, die zu einer besonders wirksamen Pulsationsdämpfung beiträgt.It is also proposed that the gas volume be arranged in the manner of a spiral in the annular space, wherein the spiral and the annular space are at least approximately coaxial. Such a spiral results in a large deformation surface, which contributes to a particularly effective pulsation damping.

Wenn das spiralförmige Gasvolumen gegen die Außenwand des Arbeitsraums vorgespannt ist, ergibt sich ohne zusätzliche Teile eine Fixierung des Gasvolumens im Arbeitsraum.If the spiral gas volume is biased against the outer wall of the working space, results without additional parts a fixation of the gas volume in the working space.

Die wirksame Fläche des Gasvolumens kann nochmals erhöht werden, wenn das spiralförmige Gasvolumen schraubenförmig in axialer Richtung des Arbeitsraums verläuft.The effective area of the gas volume can be further increased if the spiral gas volume extends helically in the axial direction of the working space.

Dabei wird wiederum die Fixierung des Gasvolumens ohne zusätzliche Teile ermöglicht, wenn das spiral- und schraubenförmige Gasvolumen in axialer Richtung gegen die Stirnenden des Arbeitsraums vorgespannt ist.Again, the fixation of the gas volume is made possible without additional parts when the spiral and helical gas volume is biased in the axial direction against the front ends of the working space.

Eine weitere bevorzugte Ausgestaltung der erfindungsgemäßen Vorrichtung zeichnet sich dadurch aus, dass das Gasvolumen mit Helium gefüllt ist. Dies erleichtert die Detektierung einer Leckage.A further preferred embodiment of the device according to the invention is characterized in that the gas volume is filled with helium. This facilitates the detection of leakage.

Außerdem kann die Membran und/oder das Gehäuse magnetisch sein. Durch entsprechende Herstellungsverfahren (beispielsweise mechanisches Walzen und Prägen) entsteht im Material martensitisches Gefüge ("Umformmartensit"), welches magnetische Eigenschaften aufweist. Wenn diese magnetische Eigenschaft gezielt in dem entsprechenden Bauteil belassen wird, kann die Vorrichtung im Fluid vorhandene magnetische Schmutzteilchen einfangen und deren weitere Verteilung verhindern. Dies erhöht die Zuverlässigkeit der im Fluidsystem vorhandenen Komponenten, beispielsweise einer Pumpe. Außerdem werden Kosten gespart, da die aufwändige Entmagnetisierung des Bauteils entfällt. Da in der Vorrichtung keine direkt aneinander anliegenden und relativ zueinander beweglichen Teile vorhanden sind, verursachen die eingefangenen Schmutzpartikel keine Funktionsschäden an der Vorrichtung.In addition, the membrane and / or the housing may be magnetic. By appropriate manufacturing processes (for example, mechanical rolling and embossing) arises in the material martensitic structure ("Umformmartensit"), which has magnetic properties. When this magnetic property targeted in the corresponding Component is left, the device can trap in the fluid existing magnetic dirt particles and prevent their further distribution. This increases the reliability of the components present in the fluid system, for example a pump. In addition, costs are saved, since the complex demagnetization of the component is eliminated. Since no directly abutting and relatively movable parts are present in the device, the trapped dirt particles cause no functional damage to the device.

Weiterhin ist es möglich, dass die Membran aus einem Bandmaterial hergestellt ist, welches Eigenspannungen aufweist. Derartige Eigenspannungen führen während des Umformprozesses zu einem flächigen Verzug, so dass das Material im umgeformten Zustand verworfen ist. Dieser kann nun gezielt für die Vereinfachung der Herstellung der Membrandose genutzt werden, insbesondere dann, wenn diese mindestens einen Faltenbalgabschnitt aufweist: Aufgrund des Verzugs ist nämlich ein gezieltes Auseinanderhalten der im drucklosen Zustand flächig aneinander liegenden Bereiche der Membran nicht mehr erforderlich. Die sichere Evakuierung der Membran und Befüllung des Gasvolumens beispielsweise mit Helium ist daher einfach und zuverlässig möglich.Furthermore, it is possible that the membrane is made of a strip material which has residual stresses. Such residual stresses lead during the forming process to a flat distortion, so that the material is discarded in the formed state. This can now be used specifically for the simplification of the production of the membrane can, especially if it has at least one bellows section: Due to the delay namely a targeted separation of the non-pressurized state flat contiguous areas of the membrane is no longer required. The safe evacuation of the membrane and filling of the gas volume, for example with helium is therefore easy and reliable possible.

Die Montagereihenfolge kann dabei wie folgt sein: Zunächst werden die einzelnen Abschnitte ("Segmente") der Membran aufeinandergelegt und in einer Schweißvorrichtung "gestapelt". Nach dem Schließen der Schweißvorrichtung wird deren Innenraum evakuiert und mit Befüllgas, beispielsweise mit Helium, mit einem gewünschten Druck befüllt. In dieser Phase wird durch die verzogenen Membranabschnitte sichergestellt, dass das Befüllgas in alle Hohlräume sicher einströmt. Dann werden die einzelnen Abschnitte zusammengepresst und miteinander verschweißt.The order of assembly can be as follows: First, the individual sections ("segments") of the membrane are stacked and "stacked" in a welding device. After closing the welding device whose interior is evacuated and filled with filling gas, such as helium, with a desired pressure. In this phase, the distorted membrane sections ensure that the filling gas flows safely into all cavities. Then the individual sections pressed together and welded together.

Bei einer anderen vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung umfasst die Membran mindestens einen Sickenabschnitt und mindestens einen Faltenbalgabschnitt. Dies gestatte die Kombination der Vorteile beider Ausführungen.In another advantageous embodiment of the device according to the invention, the membrane comprises at least one bead section and at least one bellows section. This allows the combination of the advantages of both versions.

Ferner wird bevorzugt, wenn die Membran an ihrem radial äußeren Rand einen Befestigungsabschnitt aufweist, welcher sich in etwa parallel zur Mittelachse erstreckt und an dem Gehäuse befestigt ist. Auf diese Weise kann der gesamte Innendurchmesser des Gehäuses hydraulisch wirksam genutzt werden, was den erforderlichen Bauraum minimiert und die Kosten senkt.It is further preferred if the membrane has at its radially outer edge a fastening portion which extends approximately parallel to the central axis and is secured to the housing. In this way, the entire inner diameter of the housing can be used hydraulically effective, which minimizes the required space and reduces costs.

Dabei ist es möglich, dass die Vorrichtung eine Spanneinrichtung umfasst, welche den Befestigungsabschnitt radial gegen das Gehäuse beaufschlagt. Die Spanneinrichtung kann beispielsweise als Spannring ausgebildet sein. Durch sie wird die Befestigung der Membran am Gehäuse entlastet.It is possible that the device comprises a clamping device which acts on the mounting portion radially against the housing. The clamping device may be formed, for example, as a clamping ring. It relieves the attachment of the membrane to the housing.

Zeichnungdrawing

Nachfolgend werden besonders bevorzugte Ausführungsbeispiele der vorliegenden Erfindung unter Bezugnahme auf die beiliegende Zeichnung im Detail erläutert. In der Zeichnung zeigen:

Figur 1
eine schematische Darstellung eines Kraftstoffsystems einer Brennkraftmaschine mit einer Kraftstoffpumpe und einer dort vorhandenen Vorrichtung zum Dämpfen von Druckpulsationen;
Figur 2
einen Schnitt durch ein erstes Ausführungsbeispiel der Vorrichtung zum Dämpfen von Druckpulsationen von Figur 1;
Figur 3
ein Detail III der Vorrichtung zum Dämpfen von Druckpulsationen von Figur 2;
Figur 4
einen Schnitt durch ein zweites Ausführungsbeispiel der Vorrichtung zum Dämpfen von Druckpulsationen von Figur 1;
Figur 5
ein Detail V der Vorrichtung zum Dämpfen von Druckpulsationen von Figur 4;
Figur 6
einen schematischen Schnitt durch eine Membran der Vorrichtung zum Dämpfen von Druckpulsationen von Figur 4;
Figur 7
einen Schnitt durch eine Kraftstoffpumpe mit einem dritten Ausführungsbeispiel einer Vorrichtung zum Dämpfen von Druckpulsationen;
Figur 8
einen Schnitt durch einen Bereich der Kraftstoffpumpe von Figur 7 mit einem vierten Ausführungsbeispiel einer Vorrichtung zum Dämpfen von Druckpulsationen;
Figur 9
einen Schnitt durch ein fünftes und ein sechstes Ausführungsbeispiel einer Vorrichtung zum Dämpfen von Druckpulsationen;
Figur 10
einen Schnitt durch ein siebtes Ausführungsbeispiel einer Vorrichtung zum Dämpfen von Druckpulsationen;
Figur 11
einen Schnitt durch ein achtes Ausführungsbeispiel einer Vorrichtung zum Dämpfen von Druckpulsationen;
Figur 12
einen Schnitt durch ein neuntes Ausführungsbeispiel einer Vorrichtung zum Dämpfen von Druckpulsationen;
Figur 13
einen Schnitt durch ein zehntes Ausführungsbeispiel einer Vorrichtung zum Dämpfen von Druckpulsationen; und
Figur 14
einen Teilschnitt durch ein elftes und ein zwölftes Ausführungsbeispiel einer Vorrichtung zum Dämpfen von Druckpulsationen.
Hereinafter, particularly preferred embodiments of the present invention will be explained in detail with reference to the accompanying drawings. In the drawing show:
FIG. 1
a schematic representation of a fuel system of an internal combustion engine having a fuel pump and a device there for damping pressure pulsations;
FIG. 2
a section through a first embodiment of the device for damping of pressure pulsations of FIG. 1 ;
FIG. 3
a detail III of the device for damping of pressure pulsations of FIG. 2 ;
FIG. 4
a section through a second embodiment of the device for damping of pressure pulsations of FIG. 1 ;
FIG. 5
a detail V of the device for damping pressure pulsations of FIG. 4 ;
FIG. 6
a schematic section through a membrane of the device for damping of pressure pulsations of FIG. 4 ;
FIG. 7
a section through a fuel pump with a third embodiment of a device for damping pressure pulsations;
FIG. 8
a section through a portion of the fuel pump of FIG. 7 with a fourth embodiment of a device for damping pressure pulsations;
FIG. 9
a section through a fifth and a sixth embodiment of a device for damping pressure pulsations;
FIG. 10
a section through a seventh embodiment of an apparatus for damping pressure pulsations;
FIG. 11
a section through an eighth embodiment of a device for damping pressure pulsations;
FIG. 12
a section through a ninth embodiment of a device for damping pressure pulsations;
FIG. 13
a section through a tenth embodiment of a device for damping pressure pulsations; and
FIG. 14
a partial section through an eleventh and a twelfth embodiment of a device for damping pressure pulsations.

Beschreibung der AusführungsbeispieleDescription of the embodiments

In Figur 1 trägt ein Kraftstoffsystem einer Brennkraftmaschine insgesamt das Bezugszeichen 10. Die Brennkraftmaschine selbst ist nicht im Detail dargestellt.In FIG. 1 carries a fuel system of an internal combustion engine overall the reference numeral 10. The internal combustion engine itself is not shown in detail.

Das Kraftstoffsystem 10 umfasst einen Kraftstoffbehälter 12, aus dem eine elektrische Kraftstoffpumpe 14 den Kraftstoff in eine Niederdruck-Kraftstoffleitung 16 fördert. Die Niederdruck-Kraftstoffleitung 16 führt zu einer Hochdruck-Kraftstoffpumpe 18, welche symbolisch strichpunktiert dargestellt ist.The fuel system 10 includes a fuel tank 12 from which an electric fuel pump 14 delivers fuel to a low pressure fuel line 16. The low-pressure fuel line 16 leads to a high-pressure fuel pump 18, which is shown symbolically dash-dotted lines.

Die Hochdruck-Kraftstoffpumpe 18 umfasst einen Förderraum 20, der von einem in Figur 1 nicht dargestellten Kolben begrenzt wird. Der Kolben wird von einer ebenfalls nicht dargestellten Antriebswelle in eine Hin- und Herbewegung versetzt. Die Antriebswelle wiederum wird von der wiederum nicht dargestellten Nockenwelle der Brennkraftmaschine angetrieben. Die Hochdruck-Kraftstoffpumpe 18 umfasst ferner ein Einlassventil 22, welches als Rückschlagventil ausgebildet ist. Ferner ist ein Auslassventil 24 vorhanden, welches ebenfalls durch ein Rückschlagventil gebildet ist.The high-pressure fuel pump 18 comprises a delivery chamber 20, which from a in FIG. 1 Piston not shown is limited. The piston is displaced by a drive shaft, also not shown, in a reciprocating motion. The drive shaft, in turn, is driven by the camshaft, again not shown, of the internal combustion engine driven. The high-pressure fuel pump 18 further comprises an inlet valve 22, which is designed as a check valve. Further, an outlet valve 24 is provided, which is also formed by a check valve.

Die Hochdruck-Kraftstoffpumpe 18 komprimiert den Kraftstoff auf einen sehr hohen Druck und fördert in eine Kraftstoff-Sammelleitung 26 ("Rail"). In dieser ist der Kraftstoff unter hohem Druck gespeichert. An die Kraftstoff-Sammelleitung 26 sind mehrere Kraftstoff-Einspritzvorrichtungen 28 angeschlossen. Diese spritzen den Kraftstoff direkt in ihnen jeweils zugeordnete Brennräume 30 ein.The high pressure fuel pump 18 compresses the fuel to a very high pressure and delivers into a fuel rail 26 ("rail"). In this the fuel is stored under high pressure. To the fuel manifold 26 a plurality of fuel injectors 28 are connected. These inject the fuel directly into each associated combustion chambers 30 a.

Um die Fördermenge der Hochdruck-Kraftstoffpumpe 18 unabhängig von der Drehzahl der Antriebswelle einstellen zu können, ist ein Mengensteuerventil 32 vorgesehen. Dieses wird von einem Magnetaktor 33 betätigt, welcher wiederum von einem nicht dargestellten Steuer- und Gerät angesteuert wird. Das Mengensteuerventil 32 ist so ausgebildet, dass während eines Förderhubs der Hochdruck-Kraftstoffpumpe 18 das Einlassventil 22 zwangsweise geöffnet werden kann. Hierdurch wird der unter Druck im Förderraum 20 stehende Kraftstoff nicht in die Kraftstoff-Sammelleitung 26, sondern zurück in die Niederdruck-Kraftstoffleitung 16 gefördert. Die entsprechende Schaltstellung des Mengensteuerventils 32 trägt das Bezugszeichen 34.In order to adjust the delivery rate of the high-pressure fuel pump 18 independently of the rotational speed of the drive shaft, a quantity control valve 32 is provided. This is actuated by a magnetic actuator 33, which in turn is driven by a control and device, not shown. The quantity control valve 32 is designed such that during a delivery stroke of the high-pressure fuel pump 18, the inlet valve 22 can be forcibly opened. As a result, the fuel under pressure in the delivery chamber 20 is not conveyed into the fuel collecting line 26, but back into the low-pressure fuel line 16. The corresponding switching position of the quantity control valve 32 bears the reference numeral 34.

Die hierdurch in die Niederdruck-Kraftstoffleitung 16 eingeleiteten Druckpulsationen werden von einer Vorrichtung zur Dämpfung von Druckpulsationen gedämpft. Diese trägt in Figur 1 das Bezugszeichen 36 und wird nachfolgend kurz als "Druckdämpfer" bezeichnet. Der Druckdämpfer 36 ist folgendermaßen aufgebaut (vgl. Figur 2 und 3):The thus introduced into the low-pressure fuel line 16 pressure pulsations are attenuated by a device for damping pressure pulsations. This wears in FIG. 1 the reference numeral 36 and is hereinafter referred to briefly as "pressure damper". The pressure damper 36 is constructed as follows (see. FIG. 2 and 3 ):

Der Druckdämpfer 36 umfasst ein Gehäuse mit einem Unterteil 38 und einem Oberteil 40. Das Unterteil 38 hat in dem in Figur 2 dargestellten Schnitt pilzförmige Gestalt, ist also im Wesentlichen rotationssymmetrisch mit einer Mittelachse 41. Es umfasst einen Installationsabschnitt 42 mit einem in diesem zentrisch eingebrachten Zulaufkanal 43 und einen hierzu insgesamt tellerförmigen und in der Draufsicht kreisförmigen Bodenabschnitt 44, dessen Ebene insgesamt in etwa in einem rechten Winkel zur Mittelachse 41 steht. Das Oberteil 40 des Gehäuses ist ebenfalls tellerförmig und in der Draufsicht kreisförmig ausgebildet.The pressure damper 36 comprises a housing with a lower part 38 and a top 40. The lower part 38 has in the in FIG. 2 It comprises an installation section 42 with an inlet channel 43 introduced centrally therefrom and a bottom plate section 44 which is generally plate-shaped and circular in plan view, the plane of which extends approximately at a right angle to the central axis 41 stands. The upper part 40 of the housing is also plate-shaped and circular in plan view.

Zwischen dem Bodenabschnitt 44 des Unterteils 38 des Gehäuses und dem Oberteil 40 des Gehäuses ist ein ringförmiger Abstandshalter 46 angeordnet. Er ist über Schweißnähte 48a und 48b fest einerseits mit dem Bodenabschnitt 44 des Unterteils 38 des Gehäuses und andererseits mit dem Oberteil 40 des Gehäuses verschweißt. An einem sich an dem Abstandhalter 46 radial nach innen erstreckenden ringförmigen Halteabschnitt 52 sind zwei insgesamt in der Draufsicht kreisförmige Membranen 54a und 54b befestigt. Die Befestigung erfolgt durch umlaufende Schweißnähte 57a und 57b am äußersten Rand der Membranen 54a und 54b (vgl. Figur 3). Die beiden Membranen 54a und 54b sind dünnwandig und aus Metall, vorzugsweise aus Edelstahl.Between the bottom portion 44 of the lower part 38 of the housing and the upper part 40 of the housing, an annular spacer 46 is arranged. It is welded on welds 48a and 48b firmly on the one hand with the bottom portion 44 of the lower part 38 of the housing and on the other hand with the upper part 40 of the housing. At an annular holding portion 52 extending radially inwards on the spacer 46, two circular membranes 54a and 54b are provided which are generally circular in plan view. The attachment is made by circumferential welds 57a and 57b at the outermost edge of the membranes 54a and 54b (see. FIG. 3 ). The two membranes 54a and 54b are thin-walled and made of metal, preferably of stainless steel.

Zwischen der oberen Membran 54a und der unteren Membran 54b und dem Abstandshalter 46 ist ein Gasvolumen 58 eingeschlossen. Das Gas wird durch einen Kanal 60 eingebracht, der in dem ringförmigen Abstandshalter 46 vorhanden ist (vgl. Figur 2). Nach der Einbringung des Gases in das Volumen 58 zwischen die beiden Membranen 54a a und 54b wird der Kanal 60 durch eine Kugel 62 verschlossen. Der gesamte Bereich zwischen dem Bodenabschnitt 44, dem Oberteil 40 des Gehäuses, und dem Abstandshalter 46 bildet einen Arbeitsraum 66. Das Gasvolumen 58 ist also innerhalb des Arbeitsraums 66 angeordnet.Between the upper membrane 54a and the lower membrane 54b and the spacer 46, a gas volume 58 is enclosed. The gas is introduced through a channel 60 provided in the annular spacer 46 (see FIG. FIG. 2 ). After the introduction of the gas into the volume 58 between the two membranes 54a and 54b, the channel 60 is closed by a ball 62. The entire area between the bottom portion 44, the Upper part 40 of the housing, and the spacer 46 forms a working space 66. The gas volume 58 is thus arranged within the working space 66.

Zwischen dem Bodenabschnitt 44 des Unterteils 38 des Gehäuses und der unteren Membran 54b ist ein erster Fluidbereich 64 des Arbeitsraums 66 gebildet. Zwischen dem Oberteil 40 des Gehäuses und der oberen Membran 54a ist ein zweiter Fluidbereich 68 des Arbeitsraums 66 gebildet. Beide Fluidbereiche 64 und 68 können durch einen Kanal 70 im ringförmigen Abstandshalter 46 miteinander kommunizieren.Between the bottom portion 44 of the lower part 38 of the housing and the lower diaphragm 54 b, a first fluid region 64 of the working space 66 is formed. Between the upper part 40 of the housing and the upper diaphragm 54a, a second fluid region 68 of the working space 66 is formed. Both fluid regions 64 and 68 may communicate with each other through a channel 70 in the annular spacer 46.

Die beiden Membranen 54a und 54b sind identisch aufgebaut (aus Gründen der Übersichtlichkeit sind in Figur 3 nur für die obere Membran 54a alle Bezugszeichen eingetragen): An ihrem radial äußeren Rand weisen sie einen radial verlaufenden Halteabschnitt 72 auf, mit dem sie am ringförmigen Abstandshalter 54b verschweißt sind. Vom Halteabschnitt 72 der Membran biegt ein Federabschnitt 74 in einem Winkel von ungefähr 80° ab. Der Federabschnitt 74 verläuft also in etwa in axialer Richtung. An den Federabschnitt 74 ist wiederum ein radial verlaufender Sickenabschnitt 76 angeformt. Dieser zeichnet sich durch eine Mehrzahl verlaufender Sicken 78 aus. Die Sicken 78 verlaufen konzentrisch um die Mittelachse 41 des Druckdämpfers 36. Ein zentraler Bereich der beiden Membranen 54a und 54b ist eben ausgeführt. Der entsprechende Bereich bei der Membran 54a wird als Anschlagabschnitt 80a bezeichnet, der entsprechende Bereich an der Membran 54b als Gegenfläche 80b (vgl. Figur 2).The two membranes 54a and 54b are of identical construction (for reasons of clarity, in FIG. 3 all the reference numerals for the upper diaphragm 54a only): At their radially outer edge they have a radially extending holding portion 72 with which they are welded to the annular spacer 54b. From the holding portion 72 of the diaphragm, a spring portion 74 bends at an angle of about 80 °. The spring portion 74 thus extends approximately in the axial direction. On the spring portion 74, in turn, a radially extending bead portion 76 is integrally formed. This is characterized by a plurality of extending beads 78. The beads 78 extend concentrically around the central axis 41 of the pressure damper 36. A central region of the two membranes 54a and 54b is flat. The corresponding region in the membrane 54a is referred to as a stopper portion 80a, the corresponding area on the membrane 54b as a counter-surface 80b (see. FIG. 2 ).

Der Druckdämpfer 36 arbeitet folgendermaßen:The pressure damper 36 operates as follows:

Über den Zulaufkanal 43 im Installationsabschnitt 42 kommuniziert der in den Figuren 2 und 3 untere Fluidbereich 64 (die Begriffe "unten" und "oben" sind nachfolgend immer auf die Figuren bezogen; der Druckdämpfer kann grundsätzlich beliebig im Raum angeordnet sein) des Arbeitsraums 66 mit der Niederdruck-Kraftstoffleitung 16. Über den Kanal 70 kommuniziert der obere Fluidbereich 68 des Arbeitsraums 66 wiederum mit dem unteren Fluidbereich 64. Innerhalb des Arbeitsraums 66 ist das von den beiden Membranen 54a und 54b und vom ringförmigen Abstandshalter 46 begrenztes Gasvolumen 58 vorhanden. Dieses steht im Ruhezustand des Kraftstoffsystems 10 unter einem leichten Überdruck gegenüber der Außenatmosphäre. Durch diesen Überdruck werden der Sickenabschnitt 76 und der Anschlagabschnitt 80a bzw. die Gegenfläche 80b der beiden Membranen 54a und 54b etwas nach außen vorgewölbt.About the inlet channel 43 in the installation section 42 communicates in the Figures 2 and 3 lower fluid area 64 (the terms "bottom" and "top" are below always referring to the figures, the pressure damper can be basically arranged arbitrarily in space) of the working space 66 with the low pressure fuel line 16. Via the channel 70 communicates the upper fluid portion 68 of the working space 66 in turn with the lower fluid portion 64. Within the working space 66 of the two membranes 54a and 54b and the annular spacer 46 limited gas volume 58 is present. This is in the idle state of the fuel system 10 under a slight overpressure against the outside atmosphere. Due to this overpressure, the bead portion 76 and the abutment portion 80a and the counter surface 80b of the two diaphragms 54a and 54b, respectively, bulge slightly outward.

Der Abstand zwischen den beiden Membranen 54a und 54b und den zu ihnen benachbarten Abschnitten 54a bzw. 40 des Gehäuses ist jedoch so groß, dass auch im Ruhezustand, also bei drucklosem Kraftstoffsystem, eine Berührung der beiden Membranen 54a und 54b mit den entsprechenden Abschnitten 40 und 44 des Gehäuses ausgeschlossen ist. Eine derartige Begrenzung des "Hubs" der Membranen ist durch die Verwendung von Metall als Membranmaterial möglich.However, the distance between the two diaphragms 54a and 54b and the sections 54a or 40 of the housing adjacent to them is so great that, even in the idle state, that is to say with a pressureless fuel system, a contact of the two diaphragms 54a and 54b with the corresponding sections 40 and 44 of the housing is excluded. Such a limitation of the "stroke" of the membranes is possible by the use of metal as a membrane material.

Der Abstand der Membranen 54 a und 54b vom Gehäuse 40 bzw. 44 ist so gewählt, dass bei einem Systemdruck beispielsweise kleiner als 100 kPa im Falle eines Druck-Unterschwingens die Membranen 54a und 54b das Gehäuse 40 bzw. 44 nicht berühren. Damit ist die Dämpfungsfunktion des Druckdämpfers 36 auch noch in diesem Betriebsbeziehungsweise Druckbereich gewährleistet.The distance of the membranes 54 a and 54 b from the housing 40 and 44 is selected so that at a system pressure, for example, less than 100 kPa in case of pressure undershoot the membranes 54 a and 54 b, the housing 40 and 44 do not touch. Thus, the damping function of the pressure damper 36 is guaranteed even in this Betriebsbeziehungsweise pressure range.

Wenn das Kraftstoffsystem 10 in Betrieb ist, die elektrische Kraftstoffpumpe 14 also mit einem bestimmten Druck fördert, werden die beiden Membranen 54a und 54b aufeinander zu bewegt. Der Druck in dem Gasvolumen 58 einerseits und die Steifigkeit der beiden Membranen 54a und 54b sind dabei so gewählt, dass bei normalem Betriebsdruck in der Niederdruck-Kraftstoffleitung 16, also etwa zwischen 0,5 und 8 bar, eine Berührung der beiden Membranen 54a und 54b miteinander nicht stattfindet. Druckschwankungen können somit in diesem normalen Betriebsbereich des Kraftstoffsystems 10 durch eine entsprechende Bewegung der beiden Membranen 54a und 54b und eine Kompression des Gasvolumens 58 problemlos aufgenommen und hierdurch gedämpft werden.When the fuel system 10 is in operation, that is, delivering the electric fuel pump 14 at a certain pressure, the two diaphragms 54a and 54b become moved towards each other. The pressure in the gas volume 58 on the one hand and the stiffness of the two diaphragms 54a and 54b are selected so that at normal operating pressure in the low-pressure fuel line 16, that is approximately between 0.5 and 8 bar, a contact of the two membranes 54a and 54b does not take place with each other. Pressure fluctuations can thus be easily absorbed in this normal operating range of the fuel system 10 by a corresponding movement of the two membranes 54a and 54b and a compression of the gas volume 58 and thereby damped.

Bei einer Überlast in der Niederdruck-Kraftstoffleitung 16, wenn der Druck beispielsweise bis über 10 bar ansteigt, kommt der Anschlagabschnitt 80a der Membran 54a und die Gegenfläche 80b an der Membran 54b miteinander in Anlage. Die beiden Membranen 54a und 54b können sich somit nicht mehr weiterbewegen, so dass eine Überlastung der beiden Membranen 54a und 54b ausgeschlossen werden kann. Damit eine saubere Anlage der beiden Membranen 54a und 54b im Falle einer Überlast in der Niederdruck-Kraftstoffleitung 16 gewährleistet ist, sind der Anschlagabschnitt 80a und die Gegenfläche 80b plan oder ballig bearbeitet.In the event of an overload in the low-pressure fuel line 16, when the pressure rises, for example, to more than 10 bar, the abutment portion 80a of the diaphragm 54a and the counter-surface 80b engage the diaphragm 54b. The two membranes 54a and 54b can thus no longer move, so that an overload of the two membranes 54a and 54b can be excluded. In order to ensure a clean contact of the two diaphragms 54a and 54b in the event of an overload in the low-pressure fuel line 16, the stopper portion 80a and the mating surface 80b are machined flat or crowned.

Neben dem Druck des Gasvolumens 58, welches zwischen den beiden Membranen 54a und 54b eingeschlossen ist, kann die Charakteristik des Druckdämpfers 36 auch durch die Höhe des ringförmigen Abstandshalters 46 beeinflusst werden. Diese Höhe hat insbesondere einen Einfluss auf den Druck, bei dem die beiden Membranen 54a und 54b aneinander in Anlage kommen.In addition to the pressure of the gas volume 58, which is enclosed between the two membranes 54a and 54b, the characteristic of the pressure damper 36 can also be influenced by the height of the annular spacer 46. This height in particular has an influence on the pressure at which the two diaphragms 54a and 54b come into contact with each other.

Des weiteren kann durch einen geeignete Gestaltung der Innengeometrie des Halteabschnitts 52 (beispielsweise an der Position 53 in Figur 3) das Innenvolumen auch gezielt verkleinert werden. Dadurch kann die Wirksamkeit der durch das eingeschlossene Gasvolumen 58 gebildeten Luftfeder weiter erhöht werden.Furthermore, by a suitable design of the internal geometry of the holding portion 52 (for example, at the position 53 in FIG FIG. 3 ) the internal volume also targeted be downsized. Thereby, the effectiveness of the air spring formed by the enclosed gas volume 58 can be further increased.

Auch die Form der Sicken 78 sowie deren Anzahl spielt eine wesentliche Rolle für die Eigenschaften des Druckdämpfers 36. Bei einer Membran mit einem Durchmesser von 30 - 60 mm und einer Wandstärke von 0,2 - 1,0 mm hat sich eine Anzahl von drei bis sechs Sicken mit unterschiedlicher Sickenhöhe als vorteilhaft erwiesen. Die Sickenhöhe kann dabei zwischen +/- 0,15 und 2 mm variieren. Die Sicke kann dabei kreisförmig, sinusförmig oder splineförmig sein.The shape of the beads 78 and their number plays an essential role in the properties of the pressure damper 36. In a membrane with a diameter of 30 - 60 mm and a wall thickness of 0.2 - 1.0 mm, a number of three to six beads with different bead height proved to be advantageous. The bead height can vary between +/- 0.15 and 2 mm. The bead may be circular, sinusoidal or spline-shaped.

Auf diese Weise kann auch eine unsymmetrische Federsteifigkeit bei einer Belastung der beiden Membranen 54a und 54b in den Figuren 2 und 3 von unten oder von oben erreicht werden. Hierdurch ist es möglich, im üblichen Betriebsdruckbereich des Kraftstoffsystems bzw. der Niederdruck-Kraftstoffleitung 16 eine vergleichsweise geringe Steifigkeit mit konstanter Federkonstante zu erreichen, wohingegen bei selten genutzten Betriebsbereichen, bspw. bei sehr niedrigem Druck in der Niederdruck-Kraftstoffleitung 16 oder bei einem dort herrschenden sehr hohen Druck, eine höhere Steifigkeit der Membranen 54a und 54b realisiert wird.In this way, an asymmetrical spring stiffness under load of the two membranes 54a and 54b in the Figures 2 and 3 be reached from below or from above. This makes it possible to achieve a comparatively low rigidity with constant spring constant in the usual operating pressure range of the fuel system or the low-pressure fuel line 16, whereas at very low operating ranges, for example. At very low pressure in the low-pressure fuel line 16 or at a prevailing there very high pressure, a higher rigidity of the membranes 54a and 54b is realized.

Durch die Form der Sicken 78 und durch die Gestaltung des Federabschnitts 74 wird erreicht, dass die maximalen Spannungen nicht am äußersten Rand der beiden Membranen 54a und 54b auftreten, sondern über den Durchmesser der beiden Membranen 54a und 54b weitgehend gleichmäßig verteilt sind.The shape of the beads 78 and the design of the spring portion 74 ensures that the maximum stresses do not occur at the outermost edge of the two membranes 54a and 54b, but are largely evenly distributed over the diameter of the two membranes 54a and 54b.

Nun wird auf die Figuren 4 und 5 sowie 6 Bezug genommen. In diesen ist ein zweites Ausführungsbeispiel eines Druckdämpfers 36 dargestellt. Dabei tragen solche Bereiche und Elemente, welche äquivalente Funktionen zu Bereichen und Elementen des in den Figuren 2 und 3 dargestellten Ausführungsbeispiels aufweisen, die gleichen Bezugszeichen. Sie sind nicht nochmals im Detail erläutert.Now on the FIGS. 4 and 5 and 6 are referred to. In these, a second embodiment of a pressure damper 36 is shown. In doing so, carry such areas and elements which have equivalent functions to regions and elements of the Figures 2 and 3 illustrated embodiment, the same reference numerals. They are not explained again in detail.

Ein wesentlicher Unterschied zwischen den beiden Ausführungsbeispielen besteht darin, dass bei dem in den Figuren 4 und 5 dargestellten Druckdämpfer kein Abstandshalter mehr vorhanden ist. Stattdessen sind das Oberteil 40 und der Bodenabschnitt 44 des Gehäuses direkt miteinander verschweißt. Die entsprechende Schweißnaht trägt das Bezugszeichen 48. Entsprechend sind auch die beiden Halteabschnitte 72a und 72b der beiden Membranen 54a und 54b unmittelbar miteinander verschweißt (Schweißnaht 57).An essential difference between the two embodiments is that when in the FIGS. 4 and 5 represented pressure damper no spacer is no longer available. Instead, the top 40 and the bottom portion 44 of the housing are directly welded together. The corresponding weld bears the reference numeral 48. Accordingly, the two holding portions 72a and 72b of the two membranes 54a and 54b are welded directly together (weld seam 57).

Sie werden darüber hinaus, an einer Position etwas radial einwärts von der Schweißnaht 57, mit der die beiden Membranen 54a und 54b gasdicht miteinander verschweißt sind, von einem oberen Klemmring 82 und einem unteren Klemmring 84, die an das Oberteil 40 bzw. den Bodenabschnitt 44 des Gehäuses angeformt sind, gegeneinander verklemmt. Hierdurch wird die Schweißnaht, welche die beiden Membranen 54a und 54b miteinander verbindet, von mechanischen Belastungen entlastet.They are also, at a position slightly radially inwardly of the weld 57, with which the two membranes 54a and 54b are gas-tight welded together, of an upper clamping ring 82 and a lower clamping ring 84, the upper part 40 and the bottom portion 44th of the housing are formed, clamped against each other. As a result, the weld, which connects the two membranes 54a and 54b with each other, relieved of mechanical loads.

Eine in Figur 5 nur gestrichelt dargestellte Fluidverbindung 70, welche durch bereichsweise Durchbrüche in den Klemmringen 82 und 84 gebildet wird, werden die beiden Fluidbereiche 64 und 68 des Arbeitsraums 66 fluidisch miteinander verbunden. Die Durchbrüche 70 müssen dabei so gewählt sein, dass die beiden Membranen 54a und 54b in etwa gleich belastet werden.An in FIG. 5 only shown in dashed lines fluid connection 70, which is formed by regional breakthroughs in the clamping rings 82 and 84, the two fluid portions 64 and 68 of the working space 66 are fluidly connected to each other. The openings 70 must be chosen so that the two membranes 54a and 54b are charged approximately equally.

Figur 6 zeigt die untere Membran 54b schematisch detailliert. Mit A ist die Tiefe der Membran 54b bezeichnet, sie entspricht dem maximal möglichen Hub. B bezeichnet einen Übergangsbereich, und C die Höhe der Versenkung der Membran 54b. FIG. 6 shows the lower membrane 54b schematically detail. A is the depth of the diaphragm 54b, it corresponds to the maximum possible stroke. B denotes a transition region, and C the height of the sinking of the membrane 54b.

In Figur 7 ist ein teilweiser Schnitt durch eine Kraftstoffpumpe dargestellt, wie sie als Hochdruck-Kraftstoffpumpe 18 beispielsweise in dem in Figur 1 dargestellten Kraftstoffsystem 10 zum Einsatz kommt. Man erkennt ein Zylindergehäuse 92 mit einem einen Kolben 88, welcher den Förderraum 20 begrenzt. Das Mengensteuerventil 32 ist im oberen Bereich der Kraftstoffpumpe 18 erkennbar. Das Auslassventil 24 befindet sich im linken Bereich. Das Einlassventil 22 ist als federbelastetes Plattenventil ausgebildet, welches von einem Stößel (ohne Bezugszeichen) des Mengensteuerventils 32 während eines Förderhubs des Kolbens 88 zwangsweise in eine geöffnete Stellung gedrückt werden kann.In FIG. 7 is a partial section through a fuel pump shown as high-pressure fuel pump 18, for example, in the in FIG. 1 shown fuel system 10 is used. It can be seen a cylinder housing 92 with a piston 88 which limits the delivery chamber 20. The quantity control valve 32 can be seen in the upper region of the fuel pump 18. The outlet valve 24 is located in the left area. The inlet valve 22 is formed as a spring-loaded plate valve, which can be forced by a plunger (not numbered) of the quantity control valve 32 during a delivery stroke of the piston 88 forcibly in an open position.

Koaxial zu einer Zylinder-Mittelachse 90 ist in die äußere Begrenzungsfläche des Zylindergehäuses 92 eine umlaufende Stufe 94 eingearbeitet. Über diese ist eine Gehäusehülse 96 aufgeschoben. Durch die umlaufende Stufe 94 und die Gehäusehülse 96 wird ein um die Zylinder-Mittelachse 90 umlaufender Ringraum 66 geschaffen. Dieser kommuniziert zum einen über einen Kanal 100 mit einem Niederdruckeinlass 102 der Kraftstoffpumpe 18. Zum anderen kommuniziert er über einen Kanal 104 mit einer Druckentlastungsnut 106, welche in einer Zylinderbohrung 108, in der der Kolben 88 geführt ist, vorhanden ist.Coaxial with a cylinder central axis 90, a circumferential step 94 is incorporated in the outer boundary surface of the cylinder housing 92. About this a housing sleeve 96 is pushed. Due to the circumferential step 94 and the housing sleeve 96, a circumferential around the cylinder central axis 90 annular space 66 is provided. This communicates on the one hand via a channel 100 with a low-pressure inlet 102 of the fuel pump 18. On the other hand, it communicates via a channel 104 with a pressure relief groove 106, which in a cylinder bore 108 in which the piston 88 is guided, is present.

In dem Ringraum 66 sind zwei ringförmig umlaufende Membranen 54a und 54b angeordnet. Deren äußere Ränder sind über Schweißnähte 57a bis 57d zum einen mit dem Zylindergehäuse 92 und zum anderen mit der Gehäusehülse 96 verschweißt. Hierdurch werden zwei voneinander getrennte Gasvolumina 58a und 58b geschaffen. Zwischen denen ist ein Fluidbereich 64 des Arbeitsraums 66 vorhanden, welcher insbesondere über den Kanal 100 mit dem Niederdruckeinlass 102 kommuniziert. Der Ringraum 66 und die Gasvolumina 58a und 58b bilden auf diese Weise einen Druckdämpfer 36, welcher koaxial zur Zylinder-Mittelachse 90 der Hochdruck-Kraftstoffpumpe 18 angeordnet ist.In the annular space 66, two annular peripheral membranes 54a and 54b are arranged. Their outer edges are via welds 57a to 57d on the one hand with the cylinder housing 92 and the other with the housing sleeve 96th welded. This creates two separate gas volumes 58a and 58b. Between these there is a fluid region 64 of the working space 66, which in particular communicates via the channel 100 with the low-pressure inlet 102. The annular space 66 and the gas volumes 58a and 58b in this way form a pressure damper 36, which is arranged coaxially with the cylinder central axis 90 of the high-pressure fuel pump 18.

In Figur 8 ist eine abgewandelte Ausführungsform eines derartigen ringförmigen Druckdämpfers 36 dargestellt. Dabei tragen solche Elemente und Bereiche, welche äquivalente Funktionen zu Elementen und Bereichen des in den Figuren 7 dargestellten Druckdämpfers 36 aufweisen, die gleichen Bezugszeichen. Sie sind nicht nochmals im Detail erläutert.In FIG. 8 a modified embodiment of such an annular pressure damper 36 is shown. In this case, carry such elements and areas, which equivalent functions to elements and areas of the in the FIGS. 7 have shown pressure damper 36, the same reference numerals. They are not explained again in detail.

Der Druckdämpfer 36, welcher in Figur 8 dargestellt ist, umfasst ein abgeflachtes Metallrohr 54, welches an den Enden gasdicht zugeschweißt ist. Sein Inneres bildet ein Gasvolumen 58. Das Metallrohr 54a ist in dem Arbeitsraum 66 spiral- und schraubenförmig koaxial zur Zylinder-Mittelachse 90 gewickelt. Dadurch steht es zum einen gegenüber der Gehäusehülse 96 und zum anderen gegenüber den in Figur 8 oberen und unteren Stirnflächen des Arbeitsraums 66 unter einer Vorspannung und wird hierdurch fixiert.The pressure damper 36, which in FIG. 8 is shown, comprises a flattened metal tube 54, which is sealed gas-tight at the ends. Its interior forms a gas volume 58. The metal tube 54a is wound in the working space 66 in a spiral and helical manner coaxially with the central cylinder axis 90. As a result, it stands on the one hand with respect to the housing sleeve 96 and the other with respect to the in FIG. 8 upper and lower end surfaces of the working space 66 under a bias and is thereby fixed.

In Figur 9 ist eine weitere Variante eines Druckdämpfers 36 gezeigt. Dabei gilt hier und bei allen nachfolgenden Figuren, dass solche Elemente und Bereiche, welche äquivalente Funktionen zu Elementen und Bereichen aufweisen, die bereits im Zusammenhang mit vorhergehenden Figuren erläutert worden sind, die gleiche Bezugszeichen tragen. Sie werden im Normalfall nicht nochmals im Detail erläutert.In FIG. 9 a further variant of a pressure damper 36 is shown. Here and in all subsequent figures, it applies that such elements and regions which have equivalent functions to elements and regions which have already been explained in connection with the preceding figures bear the same reference numerals. Normally they will not be explained again in detail.

Der gezeigte Druckdämpfer 36 ist dabei in der linken Hälfte der Figur 9 anders ausgestaltet als auf der rechten Hälfte. Beiden Vorrichtungen 36 gemeinsam ist, dass sie nur über eine einzige Membran 54 verfügen. Diese ist im Bereich ihres Halteabschnitts 72 in 57 mit dem Oberteil 40 des Gehäuses verschweißt. Anders als die beispielsweise in den Figuren 2 und 3 Membran weist die in Figur 9 dargestellte Membran 54 einen Faltenbalgabschnitt 110 auf, der zwischen dem Sickenabschnitt 76 und dem Halteabschnitt 72 angeordnet ist und aus einzelnen Segmenten 110a bis 110d aufgebaut ist. Dieser Faltenbalgabschnitt 110 ermöglicht eine vergleichsweise große Volumenänderung des von der Membran 54 und dem Gehäuse 40 eingeschlossenen Gasvolumens 58.The pressure damper 36 shown is in the left half of FIG. 9 differently designed than on the right half. Both devices 36 have in common that they have only a single membrane 54. This is welded in the region of its holding portion 72 in 57 with the upper part 40 of the housing. Unlike the example in the Figures 2 and 3 Membrane has the in FIG. 9 illustrated diaphragm 54 a bellows portion 110 which is disposed between the bead portion 76 and the holding portion 72 and is composed of individual segments 110a to 110d. This bellows portion 110 allows a comparatively large volume change of the gas volume 58 enclosed by the diaphragm 54 and the housing 40.

Das Gasvolumen 58 wird dabei insgesamt dadurch reduziert, dass zwischen der Membran 54 und dem Oberteil 40 des Gehäuses ein Füllkörper 112 am Oberteil 40 des Gehäuses befestigt ist. In der linken Hälfte der Figur 9 erstreckt sich ein Anschlagabschnitt 80a vom Sickenabschnitt 76 der Membran 54 zum Unterteil 38 des Gehäuses hin, wohingegen sich in der rechten Hälfte der Figur 9 der Anschlagabschnitt 80a zum Füllkörper 112 hin erstreckt. Je nachdem wirkt entweder der Füllkörper 112 oder das Unterteil 38 des Gehäuses als Gegenfläche 80b für den Anschlagabschnitt 80a.The gas volume 58 is thereby reduced overall in that between the membrane 54 and the upper part 40 of the housing, a packing 112 is attached to the upper part 40 of the housing. In the left half of the FIG. 9 a stopper portion 80a extends from the bead portion 76 of the diaphragm 54 to the lower portion 38 of the housing, whereas in the right half of the FIG. 9 the stopper portion 80a extends toward the packing 112. Depending on either the filler body 112 or the lower part 38 of the housing acts as a counter surface 80b for the stopper portion 80a.

Das von der Membran 54 eingeschlossene Gasvolumen 58 ist mit Helium gefüllt. Dieses steht unter einem Überdruck, welcher ungefähr der Hälfte des maximalen im Betrieb auftretenden Überdrucks entspricht, abzüglich jenes Druckanstiegs, welcher durch die Kompression der Membran 54 verursacht wird. Dabei wird für die Membran 54 ein magnetisches Metallmaterial verwendet. Hierdurch wirkt der Druckdämpfer 36 ähnlich wie ein "Staubfänger", denn durch sie werden magnetische Schmutzteilchen aus dem Fluid abgefangen und deren Verteilung im Fluidsystem 10 verhindert.The gas volume 58 trapped by the membrane 54 is filled with helium. This is under an overpressure, which corresponds to approximately half of the maximum operating pressure, minus the pressure increase caused by the compression of the diaphragm 54. In this case, a magnetic metal material is used for the membrane 54. As a result, the pressure damper 36 acts like a "dust catcher", because through them magnetic dirt particles from the fluid intercepted and prevented their distribution in the fluid system 10.

Ferner wird für die Herstellung insbesondere des Faltenbalgabschnitts 110 der Membran 54 ein Bandmaterial verwendet, in dem Eigenspannungen vorliegen, welche zu einem flächigen Verzug der einzelnen Segmente 110a, 110b, 110c, und 110d führen. Dies führt dazu, dass während der Herstellung des Faltenbalgabschnitts 110 die einzelnen Segmente 110a bis 110d nie so dicht aneinander liegen, dass eine Evakuierung der Luft und Befüllung mit Helium nicht zuverlässig möglich wird. Eine denkbare Vorgehensweise bei der Herstellung des Faltenbalgabschnitts 110 ist wie folgt:Furthermore, for the production of the bellows portion 110 of the membrane 54 in particular, a strip material is used in which residual stresses are present which lead to a flat distortion of the individual segments 110a, 110b, 110c, and 110d. As a result, during the production of the bellows portion 110, the individual segments 110a to 110d are never so close to each other that evacuation of the air and filling with helium is not reliably possible. A conceivable procedure in the manufacture of the bellows section 110 is as follows:

Zunächst werden die einzelnen Segmente 110a bis 110d des Faltenbalgabschnitts 110 in einer Schweißvorrichtung (nicht dargestellt) gestapelt. Dann wird die Schweißvorrichtung verschlossen und deren Innenraum evakuiert. Dann wird der Innenraum der Schweißvorrichtung mit Helium befüllt bis zu einem gewünschten Innendruck. Durch die einen Verzug aufweisenden Abschnitte 110a bis 110d des Faltenbalgabschnitts 110 wird sichergestellt, dass auch in die entsprechenenden Hohlräume das Helium zuverlässig einströmen kann. Nun werden die einzelnen Segmente 110a bis 110d zusammengepresst und in 114 miteinander verschweißt (aus Gründen der Übersichtlichkeit ist dieses Bezugszeichen nur an einer Stelle auf der linken Seite der Figur 9 eingetragen).First, the individual segments 110a to 110d of the bellows portion 110 are stacked in a welding apparatus (not shown). Then the welding device is closed and the interior evacuated. Then, the interior of the welding device is filled with helium to a desired internal pressure. By having a delay portions 110a to 110d of the bellows 110 ensures that helium can flow reliably into the corresponding cavities. The individual segments 110a to 110d are then pressed together and welded together in FIG. 114 (for reasons of clarity, this reference symbol is only located at one point on the left side of FIG FIG. 9 entered).

Eine Alternative hierzu ist in Figur 10 gezeigt. Der in Figur 10 gezeigte Druckdämpfer 36 unterscheidet sich von dem in Figur 9 gezeigten dadurch, dass anstelle eines separaten Füllkörpers 112 im Oberteil 40 des Gehäuses ein durch Tiefziehen hergestellter Abschnitt 112 vorhanden ist, welcher zum einen das eingeschlossene Gasvolumen 58 reduziert und zum anderen die Gegenfläche 80b aufweist, die mit dem Anschlagabschnitt 80a der Membran 54 zusammen wirkt.An alternative to this is in FIG. 10 shown. The in FIG. 10 shown pressure damper 36 differs from that in FIG. 9 shown by the fact that instead of a separate packing 112 in the upper part 40 of the housing, a deep-drawn section 112 is present, which on the one hand the trapped gas volume 58th reduced and on the other hand has the counter surface 80b, which cooperates with the stopper portion 80a of the diaphragm 54.

Figur 11 zeigt wiederum eine Ausführungsform, bei welcher ein separater Füllkörper 112 vorhanden ist, welcher jedoch nicht hohl, sondern massiv aufgebaut ist und darüber hinaus in einem dem Anschlagabschnitt 80a der Membran 54 zugewandten Bereich 116 einen kleineren Durchmesser aufweist. Somit ist die Kontur des Füllkörper 112 von Figur 11 etwas an die Kontur der Membran 54 angepasst, so dass das entsprechende Gasvolumen 58 besonders niedrig ist. FIG. 11 again shows an embodiment in which a separate filler body 112 is present, which is not hollow, but solid and, moreover, in a the stopper portion 80a of the diaphragm 54 facing portion 116 has a smaller diameter. Thus, the contour of the filling body 112 of FIG. 11 something adapted to the contour of the membrane 54, so that the corresponding gas volume 58 is particularly low.

In Figur 12 ist eine Ausführungsform gezeigt, bei welcher zwei Membranen 54a und 54b vorhanden sind, entsprechend bspw. der in Figur 4 gezeigten Ausführungsform eines Druckdämpfers 36. Im Gegensatz zu Figur 4 ist bei der in Figur 12 gezeigten Ausführungsform bei jeder Membran 54a und 54b ein Faltenbalgabschnitt 110 vorhanden, welcher allerdings einfacher ausgeführt ist als jener der Figuren 9 bis 11. Der in Figur 12 gezeigte Druckdämpfer weist - analog zu dem in den Figuren 4 und 5 gezeigten - obere und untere Klemmringe 82 und 84 auf, welche allerdings in Figur 12 nur schematisch dargestellt sind. Durch diese wird die hydraulisch wirksame Fläche der Membranen 54a und 54b maximiert, was zu einer Verkleinerung der Gesamt-Baugröße des Druckdämpfers 36 genutzt werden kann. Die Klemmringe 82 und 84 sind jedoch über Federabschnitte 118 und 120 am Oberteil 40 bzw. am Unterteil 38 des Gehäuses abgestützt. Auf diese Weise können Fertigungstoleranzen der Membranen 54a und 54b ausgeglichen werden.In FIG. 12 an embodiment is shown in which two membranes 54a and 54b are present, corresponding to, for example, the in FIG. 4 shown embodiment of a pressure damper 36. In contrast to FIG. 4 is at the in FIG. 12 In the embodiment shown, in each membrane 54a and 54b, there is a bellows portion 110 which, however, is simpler than that of FIGS FIGS. 9 to 11 , The in FIG. 12 shown pressure damper has - analogous to that in the FIGS. 4 and 5 shown - upper and lower clamping rings 82 and 84, which, however, in FIG. 12 are shown only schematically. By this, the hydraulically effective area of the membranes 54a and 54b is maximized, which can be used to reduce the overall size of the pressure damper 36. However, the clamping rings 82 and 84 are supported by spring portions 118 and 120 on the upper part 40 and on the lower part 38 of the housing. In this way, manufacturing tolerances of the membranes 54a and 54b can be compensated.

Zwischen den beiden Membranen 54a und 54b ist ein scheibenförmiger Haltering 122 verklemmt, der eine mittige Öffnung 124 aufweist. In diese ist ein zweiteiliger Füllkörper 112 eingesetzt, und der Haltering 122 ist zwischen den beiden Hälften 112a und 112b des Füllkörpers 112 verklemmt. Alternativ ist es auch möglich, dass in dem Füllkörper 112 eine umlaufende Nut vorhanden ist, in die der Rand der Öffnung 124 des Halterings 122 eingreift. Auch eine einstückige Ausführung des Halterings 122 mit dem Füllkörper 112 ist denkbar.Between the two membranes 54a and 54b, a disc-shaped retaining ring 122 is clamped, which has a central opening 124. In this is a two-piece Packing 112 inserted, and the retaining ring 122 is clamped between the two halves 112a and 112b of the filling body 112. Alternatively, it is also possible that in the filling body 112, a circumferential groove is present, into which the edge of the opening 124 of the retaining ring 122 engages. Also, a one-piece design of the retaining ring 122 with the packing 112 is conceivable.

Eine nochmals andere Variante eines Druckdämpfers 36 ist in Figur 13 gezeigt. Bei diesem Druckdämpfer 36 ist kein Füllkörper vorhanden, so dass diese Vorrichtung ähnlich wie jene aufgebaut ist, die in den Figuren 4 und 5 gezeigt ist. Die Unterschiede betreffen insbesondere die Klemmringe 82 und 84, mit denen die Membranen 54a und 54b am Gehäuse 40 und 38 gehalten sind: Die Klemmringe 82 und 84 weisen auskragende Federabschnitte auf, wobei ein Federabschnitt 118a bzw. 120a die Membranen 54a und 54b in Figur 13 in vertikaler Richtung positioniert, wohingegen ein Federabschnitt 118b bzw. 120b die beiden Membranen 54 und 56 in Figur 13 in horizontaler Richtung positioniert bzw. zentriert.Yet another variant of a pressure damper 36 is in FIG. 13 shown. In this pressure damper 36, no filler is present, so that this device is constructed similar to those in the FIGS. 4 and 5 is shown. The differences relate in particular to the clamping rings 82 and 84, with which the membranes 54a and 54b are held on the housing 40 and 38: The clamping rings 82 and 84 have cantilevered spring portions, wherein a spring portion 118a and 120a, the membranes 54a and 54b in FIG. 13 positioned in the vertical direction, whereas a spring portion 118b and 120b, the two membranes 54 and 56 in FIG. 13 positioned or centered in the horizontal direction.

Die Federabschnitte 118a und 120a werden durch einzelne nach radial innen weisende Bügel der beiden Klemmringe 82 und 84 gebildet, die in der in Figur 13 gezeigter Einbaulage gegen das Oberteil 40 bzw. das Unterteil 38 des Gehäuses vorgespannt sind. Die Federabschnitte 118b bzw. 120b wiederum werden durch einzelne nach radial außen wirkende Bügel gebildet, die an der inneren Mantelfläche des Oberteils 40 des Gehäuses 40 anliegen bzw. gegen diese vorgespannt sind.The spring sections 118a and 120a are formed by individual radially inwardly facing brackets of the two clamping rings 82 and 84, which in the in FIG. 13 shown mounting position against the upper part 40 and the lower part 38 of the housing are biased. The spring sections 118b and 120b, in turn, are formed by individual radially outwardly acting brackets which abut against the inner circumferential surface of the upper part 40 of the housing 40 and are biased against it.

In Figur 14 ist ein nochmals abgeändertes Ausführungsbeispiel eines Druckdämpfers 36 gezeigt. Bei diesem ist am radial äußeren Rand des Sickenabschnitts 76 ein rohrartiger Befestigungsabschnitt 122 vorhanden, welcher sich in etwa parallel zur Mittelachse 41 des Druckdämpfers 36 erstreckt und in 57 mit seinem Rand mit dem Gehäuse 40 verschweißt ist. Letztlich ist also die Membran 54 direkt am Gehäuse 40 befestigt, was sonst erforderliche Zusatzkonstruktionen erspart. Zusätzlich weist der Druckdämpfer 36 in Figur 14 einen Spannring 124 auf, welcher den Befestigungsabschnitt 122 von radial innen her gegen das Gehäuse 40 drückt. Hierdurch wird die Schweißnaht 57 mechanisch entlastet. Die radial maximal außenliegende Schweißnaht 57 gestattet die Nutzung des gesamten Innendurchmessers des Gehäuses 40 als hydraulisch wirksamer Durchmesser. Dies senkt die Herstellkosten.In FIG. 14 a further modified embodiment of a pressure damper 36 is shown. This is at the radially outer edge of the bead portion 76th a tubular attachment portion 122 is provided which extends approximately parallel to the central axis 41 of the pressure damper 36 and is welded in its edge to the housing 40 in FIG. 57. Ultimately, therefore, the membrane 54 is attached directly to the housing 40, which saves otherwise required additional designs. In addition, the pressure damper 36 in FIG. 14 a clamping ring 124, which presses the mounting portion 122 from radially inwardly against the housing 40. As a result, the weld 57 is mechanically relieved. The radially maximum outer weld 57 allows the use of the entire inner diameter of the housing 40 as a hydraulically effective diameter. This lowers the manufacturing costs.

Das Gasvolumen 58 kann entweder beim Herstellen der Schweißnaht 57 eingerichtet werden (Schweißen in einer Druckkammer). Oder der Arbeitsraum 66 wird nachträglich über die Öffnung 60 befüllt, welche dann durch das Element 62 verschlossen wird. Letzteres kann beispielsweise mit dem Gehäuse 40 verschweißt werden. Wie schon bei den Ausführungsbeispielen der Figuren 9 bis 11 ist auch bei dem in Figur 14 gezeigten Druckdämpfer 36 das Gasvolumen 58 zwischen der Membran 54 und dem Gehäuse 40 ausgebildet. Dies führt zu einer Minimierung des erforderlichen Bauraums.The gas volume 58 can be established either during the production of the weld seam 57 (welding in a pressure chamber). Or the working space 66 is subsequently filled via the opening 60, which is then closed by the element 62. The latter can be welded to the housing 40, for example. As in the embodiments of the FIGS. 9 to 11 is also at the in FIG. 14 shown pressure damper 36, the gas volume 58 between the diaphragm 54 and the housing 40 is formed. This leads to a minimization of the required installation space.

Claims (30)

  1. Device (36) for damping pressure pulsations in a fluid system (16), in particular in a fuel system of an internal combustion engine, having a housing (38, 40) and having at least one working chamber (66) which communicates at least in regions with the fluid system (16), wherein within the working chamber (66) there is provided at least one gas volume (58) which is sealingly closed off by a diaphragm (54), characterized in that the gas volume (58) is delimited by at least two diaphragms (54a, 54b) which are clamped (82, 84) in the region of their edges, and one diaphragm (54a) has at least one abutment portion (80a) which, when the diaphragm (54) is at a maximum deflection, comes into contact with a counterpart surface (80b) formed on the other diaphragm (54b).
  2. Device (36) according to one of the preceding claims, characterized in that the diaphragm (54) is composed of metal.
  3. Device (36) according to Claim 2, characterized in that the diaphragm is delimited by a thin-walled metal tube (54) which is closed off in a gas-tight fashion at its ends.
  4. Device (36) according to one of the preceding claims, characterized in that at least one outer wall of the working chamber is likewise in the form of a diaphragm.
  5. Device (36) according to one of the preceding claims, characterized in that the enclosed gas volume (58) has a defined pressure, preferably a positive pressure, when a standard outside pressure prevails.
  6. Device (36) according to Claim 5, characterized in that the gas volume (58) has a closable opening (60) by means of which the pressure can be adjusted.
  7. Device (36) according to one of the preceding claims, characterized in that the diaphragm (54) has at least one bead (78).
  8. Device (36) according to Claim 7, characterized in that the diaphragm (54) has a plurality of beads (78) which have different heights and/or different profiles and/or different cross sections.
  9. Device (36) according to one of the preceding claims, characterized in that the enclosed gas volume (58) is reduced by a filled region (112).
  10. Device (36) according to one of the preceding claims, characterized in that the diaphragms (54a, 54b) are, on the whole, substantially parallel.
  11. Device (36) according to Claim 10 in conjunction with Claim 10, characterized in that the gas volume (58) is formed between the two diaphragms (54a, 54b) and the two diaphragms (54a, 54b) have in each case at least one abutment surface (80a) and a counterpart surface (80b) respectively which make contact when the two diaphragms (54a, 54b) are at a maximum deflection.
  12. Device (36) according to one of the preceding claims, characterized in that the edges of the two diaphragms (54a, 54b) are sealingly connected to one another and are clamped (82, 84) radially inward of the sealing line (57).
  13. Device (36) according to Claim 12, characterized in that the clamping (82, 84) has structural elasticity (118, 120).
  14. Device (36) according to one of the preceding claims, characterized in that the two diaphragms (54a, 54b) are identical.
  15. Device (36) according to one of the preceding claims, characterized in that the working chamber (66) is divided by the two diaphragms (54a, 54b) into two regions (64, 68) which communicate with one another by means of a fluid connection (70).
  16. Device (36) according to one of the preceding claims, characterized in that an annular spacer (46) is provided between the two diaphragms (54a, 54b).
  17. Device (36) according to Claims 15 and 16, characterized in that the fluid connection (70) is formed in the spacer.
  18. Device (36) according to one of the preceding claims, characterized in that it is integrated into a housing (92) of a fuel pump (18).
  19. Device (36) according to one of the preceding claims, characterized in that the working chamber comprises an annular chamber (66), and the gas volume (58) is annular.
  20. Device (36) according to Claims 18 and 19, characterized in that the working chamber (66) and the gas volume (58) are arranged in or on a cylinder (92) of a fuel pump (18), at least approximately coaxially with respect to the cylinder axis (90).
  21. Device (36) according to either of Claims 19 and 20, characterized in that the gas volume (58) is arranged in the manner of a spiral within the annular chamber (66), wherein the spiral (58) and the annular chamber (66) are at least approximately coaxial.
  22. Device (36) according to Claim 21, characterized in that the spiral-shaped gas volume (58) is preloaded against the outer wall of the working chamber (66).
  23. Device (36) according to either of Claims 21 and 22, characterized in that the spiral-shaped gas volume (58) runs in helical form in the axial direction of the working chamber (66).
  24. Device (36) according to Claim 23, characterized in that the spiral-shaped and helical gas volume (58) is preloaded in the axial direction against the face ends of the working chamber (66).
  25. Device (36) according to one of the preceding claims, characterized in that the gas volume (58) is filled with helium.
  26. Device (36) according to one of the preceding claims, characterized in that the diaphragm (54) and/or the housing are magnetic at least in regions.
  27. Device (36) according to one of the preceding claims, characterized in that the diaphragm (54) is produced at least partially from a material strip which has internal stresses.
  28. Device (36) according to one of the preceding claims, characterized in that the diaphragm (54) comprises at least one bead portion (76) and at least one bellows portion (110).
  29. Device (36) according to one of the preceding claims, characterized in that the diaphragm (54) has, at its radially outer edge, a fastening portion (122) which extends approximately parallel to the central axis (41) and which is fixed to the housing (40).
  30. Device (36) according to Claim 29, characterized in that it comprises a clamping device (124) which loads the fastening portion (122) radially against the housing (40).
EP03015623A 2002-10-19 2003-07-16 Device for damping of pressure pulsations in a fluid system, especially in a fuel system of an internal combustion engine Expired - Lifetime EP1411236B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10180727A EP2284384B1 (en) 2002-10-19 2003-07-16 Device for damping pressure pulses in a fluid system, in particular a fuel system of a combustion engine
EP10180722A EP2278150B1 (en) 2002-10-19 2003-07-16 Device for damping of pressure pulsations in a fluid system, especially in a fuel system of an internal combustion engine
EP10180742.8A EP2278151B1 (en) 2002-10-19 2003-07-16 Device for damping of pressure pulsations in a fluid system, especially in a fuel system of an internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10248822 2002-10-19
DE10248822 2002-10-19
DE10327408.1A DE10327408B4 (en) 2002-10-19 2003-06-18 Device for damping pressure pulsations in a fuel system of an internal combustion engine
DE10327408 2003-06-18

Related Child Applications (6)

Application Number Title Priority Date Filing Date
EP10180742.8A Division EP2278151B1 (en) 2002-10-19 2003-07-16 Device for damping of pressure pulsations in a fluid system, especially in a fuel system of an internal combustion engine
EP10180742.8A Division-Into EP2278151B1 (en) 2002-10-19 2003-07-16 Device for damping of pressure pulsations in a fluid system, especially in a fuel system of an internal combustion engine
EP10180722A Division-Into EP2278150B1 (en) 2002-10-19 2003-07-16 Device for damping of pressure pulsations in a fluid system, especially in a fuel system of an internal combustion engine
EP10180722A Division EP2278150B1 (en) 2002-10-19 2003-07-16 Device for damping of pressure pulsations in a fluid system, especially in a fuel system of an internal combustion engine
EP10180727A Division EP2284384B1 (en) 2002-10-19 2003-07-16 Device for damping pressure pulses in a fluid system, in particular a fuel system of a combustion engine
EP10180727A Division-Into EP2284384B1 (en) 2002-10-19 2003-07-16 Device for damping pressure pulses in a fluid system, in particular a fuel system of a combustion engine

Publications (3)

Publication Number Publication Date
EP1411236A2 EP1411236A2 (en) 2004-04-21
EP1411236A3 EP1411236A3 (en) 2007-04-11
EP1411236B1 true EP1411236B1 (en) 2012-10-10

Family

ID=32043977

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03015623A Expired - Lifetime EP1411236B1 (en) 2002-10-19 2003-07-16 Device for damping of pressure pulsations in a fluid system, especially in a fuel system of an internal combustion engine

Country Status (2)

Country Link
EP (1) EP1411236B1 (en)
JP (1) JP4478431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8876502B2 (en) 2008-04-25 2014-11-04 Hitachi, Ltd. Mechanism for restraining fuel pressure pulsation and high pressure fuel supply pump of internal combustion engine with such mechanism

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4036153B2 (en) * 2003-07-22 2008-01-23 株式会社日立製作所 Damper mechanism and high-pressure fuel supply pump
DE10345725B4 (en) * 2003-10-01 2017-01-05 Robert Bosch Gmbh High-pressure fuel pump
DE102004034672A1 (en) * 2004-07-17 2006-02-16 Robert Bosch Gmbh Fuel injection device for an internal combustion engine
CH698080B1 (en) * 2004-08-04 2009-05-15 Luca Frediani Pulsation.
JP4650793B2 (en) * 2006-05-16 2011-03-16 株式会社デンソー Pulsation damper
DE102006027780A1 (en) * 2006-06-16 2007-12-20 Robert Bosch Gmbh fuel injector
JP4487265B2 (en) * 2006-07-11 2010-06-23 株式会社デンソー High pressure fuel pump
JP4686501B2 (en) * 2007-05-21 2011-05-25 日立オートモティブシステムズ株式会社 Liquid pulsation damper mechanism and high-pressure fuel supply pump having liquid pulsation damper mechanism
DE102008047303A1 (en) * 2008-02-18 2009-08-20 Continental Teves Ag & Co. Ohg Pulsationsdämpfungskapsel
JP5146825B2 (en) * 2008-06-24 2013-02-20 株式会社デンソー Pulsation damper
DE102008043217A1 (en) * 2008-10-28 2010-04-29 Robert Bosch Gmbh High-pressure fuel pump for an internal combustion engine
JP5402004B2 (en) * 2009-01-14 2014-01-29 トヨタ自動車株式会社 Pulsation damper
JP4726262B2 (en) * 2009-02-13 2011-07-20 株式会社デンソー Damper device and high-pressure pump using the same
JP2010185410A (en) * 2009-02-13 2010-08-26 Denso Corp Damper device and high pressure pump using the same
JP4736142B2 (en) 2009-02-18 2011-07-27 株式会社デンソー High pressure pump
JP4678065B2 (en) * 2009-02-25 2011-04-27 株式会社デンソー Damper device, high-pressure pump using the same, and manufacturing method thereof
WO2010106645A1 (en) * 2009-03-17 2010-09-23 トヨタ自動車 株式会社 Pulsation damper
IT1396142B1 (en) * 2009-11-03 2012-11-16 Magneti Marelli Spa FUEL PUMP WITH DAMPENER PERFECTED FOR A DIRECT INJECTION SYSTEM
JP5327071B2 (en) * 2009-11-09 2013-10-30 株式会社デンソー High pressure pump
JP5231380B2 (en) * 2009-11-09 2013-07-10 株式会社デンソー Damper assembly, high-pressure pump using the same, and method for manufacturing high-pressure pump
DE102010030626A1 (en) * 2010-06-29 2011-12-29 Robert Bosch Gmbh Pulsation damper element for a fluid pump and associated fluid pump
JP5445441B2 (en) * 2010-12-23 2014-03-19 株式会社デンソー High pressure pump
CN102619660B (en) 2011-01-28 2015-06-24 株式会社电装 High pressure pump
JP5682335B2 (en) * 2011-01-28 2015-03-11 株式会社デンソー High pressure pump
JP2012184757A (en) * 2011-03-08 2012-09-27 Denso Corp Damper device and high-pressure pump having the same
JP5644615B2 (en) * 2011-03-22 2014-12-24 株式会社デンソー Pulsation damper and high-pressure pump equipped with the same
JP5382551B2 (en) 2011-03-31 2014-01-08 株式会社デンソー High pressure pump
JP5628121B2 (en) * 2011-09-20 2014-11-19 日立オートモティブシステムズ株式会社 High pressure fuel supply pump
JP5821769B2 (en) 2012-04-24 2015-11-24 株式会社デンソー Damper device
JP5979606B2 (en) 2012-10-04 2016-08-24 イーグル工業株式会社 Diaphragm damper
DE102013218878A1 (en) * 2013-09-19 2015-03-19 Robert Bosch Gmbh Fluid delivery system
DE102013219428A1 (en) 2013-09-26 2015-03-26 Continental Automotive Gmbh Damper for a high-pressure pump
DE102014219997A1 (en) 2014-10-02 2016-04-07 Robert Bosch Gmbh Diaphragm can for damping pressure pulsations in a low-pressure region of a piston pump
JP2015017619A (en) * 2014-10-27 2015-01-29 株式会社デンソー High pressure pump
JP5892397B2 (en) * 2014-10-30 2016-03-23 株式会社デンソー Pulsation damper
JP6432441B2 (en) * 2014-11-20 2018-12-05 株式会社デンソー High pressure pump
JP6527689B2 (en) * 2014-12-12 2019-06-05 株式会社不二工機 Diaphragm and pulsation damper using the same
JP6012785B2 (en) * 2015-01-30 2016-10-25 日立オートモティブシステムズ株式会社 Fuel pressure pulsation reduction mechanism and high-pressure fuel supply pump for internal combustion engine equipped with the same
JP6534832B2 (en) * 2015-03-06 2019-06-26 株式会社ケーヒン Fuel supply device and bellows type damper
JP6518120B2 (en) * 2015-04-22 2019-05-22 イーグル ジムラックス ベー.フェー. Fuel injection system and damper used therein
DE102015215477A1 (en) * 2015-08-13 2017-02-16 Mahle International Gmbh Pumping device, in particular axial piston pump, for a waste heat utilization device of a motor vehicle
DE102015219537A1 (en) 2015-10-08 2017-04-27 Robert Bosch Gmbh Diaphragm can for damping pressure pulsations in a low-pressure region of a piston pump
DE102016201082B4 (en) 2016-01-26 2017-10-05 Continental Automotive Gmbh High-pressure fuel pump
DE102016204128A1 (en) * 2016-03-14 2017-09-14 Robert Bosch Gmbh high pressure pump
JPWO2017169960A1 (en) * 2016-03-28 2019-02-28 イーグル工業株式会社 Metal diaphragm damper
JP6111358B2 (en) * 2016-03-28 2017-04-05 日立オートモティブシステムズ株式会社 High pressure fuel supply pump
JP6569589B2 (en) * 2016-04-28 2019-09-04 株式会社デンソー High pressure pump
JP6600410B2 (en) * 2016-05-13 2019-10-30 日立オートモティブシステムズ株式会社 Pressure pulsation reducing device and pulsation damping member for hydraulic system
DE102016212458A1 (en) 2016-07-08 2018-01-11 Robert Bosch Gmbh High-pressure fuel pump
JP6310026B2 (en) * 2016-09-20 2018-04-11 日立オートモティブシステムズ株式会社 Fuel pressure pulsation reduction mechanism and high-pressure fuel supply pump for internal combustion engine equipped with the same
JP6888408B2 (en) * 2017-05-11 2021-06-16 株式会社デンソー Pulsation damper and fuel pump device
EP3715617A4 (en) * 2017-11-24 2021-07-14 Eagle Industry Co., Ltd. Metal diaphragm damper and manufacturing method for same
JP6511559B2 (en) * 2018-03-13 2019-05-15 日立オートモティブシステムズ株式会社 Fuel pressure pulsation reducing mechanism, and high pressure fuel supply pump for internal combustion engine having the same
KR20200140902A (en) 2018-05-25 2020-12-16 이구루코교 가부시기가이샤 Damper device
DE102018209994A1 (en) * 2018-06-20 2019-12-24 Robert Bosch Gmbh Cooling system for an internal combustion engine
JP2019105273A (en) * 2019-04-05 2019-06-27 日立オートモティブシステムズ株式会社 Pressure pulsation reduction mechanism for fuel and high pressure fuel supply pump of internal combustion engine including the same
DE102019212005A1 (en) * 2019-08-09 2021-02-11 Robert Bosch Gmbh High pressure fuel pump
CN114585807B (en) * 2019-11-15 2023-11-10 日立安斯泰莫株式会社 Metal diaphragm, metal buffer and fuel pump
CN111204598A (en) * 2019-12-30 2020-05-29 北京速力科技有限公司 Top-mounted loading station
IT202000017773A1 (en) 2020-07-22 2022-01-22 Marelli Europe Spa FUEL PUMP WITH IMPROVED DAMPER DEVICE FOR A DIRECT INJECTION SYSTEM
CN117684930A (en) * 2023-12-26 2024-03-12 阜宁县宏达石化机械有限公司 Underground intelligent water distributor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3366144A (en) * 1965-10-18 1968-01-30 Diatemp Inc High pressure control diaphragm
US3948288A (en) * 1974-12-13 1976-04-06 Gardner-Denver Company Hydraulic accumulator
JPH07167299A (en) * 1993-12-16 1995-07-04 Kazuo Sugimura Vessel for wave pattern type diaphragm
EP0950809A2 (en) * 1998-04-15 1999-10-20 Mitsubishi Denki Kabushiki Kaisha High-pressure accumulator
US6062830A (en) * 1996-09-03 2000-05-16 Zexel Corporation Diaphragm type damper
US6079450A (en) * 1999-02-26 2000-06-27 Mitsubishi Denki Kabushiki Kaisha Metal diaphragm type pulsation absorber for high-pressure fuel pump
EP1342911A2 (en) * 2002-03-04 2003-09-10 Hitachi, Ltd. Fuel feed system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3152861C2 (en) * 1981-05-14 1983-12-01 Robert Bosch Gmbh, 7000 Stuttgart Damper element
JP2604598B2 (en) 1987-09-07 1997-04-30 大樹 中山 How to remove heavy metals from sludge
DE19539885A1 (en) * 1995-05-26 1996-11-28 Bosch Gmbh Robert Fuel supply system for IC engine
NL1016384C2 (en) 2000-10-11 2002-04-12 Helvoet B V Device for damping pressure fluctuations in fuel flow through conduit comprises housing with space divided by membrane into at least first and second chambers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3366144A (en) * 1965-10-18 1968-01-30 Diatemp Inc High pressure control diaphragm
US3948288A (en) * 1974-12-13 1976-04-06 Gardner-Denver Company Hydraulic accumulator
JPH07167299A (en) * 1993-12-16 1995-07-04 Kazuo Sugimura Vessel for wave pattern type diaphragm
US6062830A (en) * 1996-09-03 2000-05-16 Zexel Corporation Diaphragm type damper
EP0950809A2 (en) * 1998-04-15 1999-10-20 Mitsubishi Denki Kabushiki Kaisha High-pressure accumulator
US6079450A (en) * 1999-02-26 2000-06-27 Mitsubishi Denki Kabushiki Kaisha Metal diaphragm type pulsation absorber for high-pressure fuel pump
EP1342911A2 (en) * 2002-03-04 2003-09-10 Hitachi, Ltd. Fuel feed system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8876502B2 (en) 2008-04-25 2014-11-04 Hitachi, Ltd. Mechanism for restraining fuel pressure pulsation and high pressure fuel supply pump of internal combustion engine with such mechanism
US9709055B2 (en) 2008-04-25 2017-07-18 Hitachi Automotive Systems, Ltd. Mechanism for restraining fuel pressure pulsation and high pressure fuel supply pump of internal combustion engine with such mechanism

Also Published As

Publication number Publication date
EP1411236A3 (en) 2007-04-11
JP2004138071A (en) 2004-05-13
JP4478431B2 (en) 2010-06-09
EP1411236A2 (en) 2004-04-21

Similar Documents

Publication Publication Date Title
EP1411236B1 (en) Device for damping of pressure pulsations in a fluid system, especially in a fuel system of an internal combustion engine
EP2278150B1 (en) Device for damping of pressure pulsations in a fluid system, especially in a fuel system of an internal combustion engine
EP1834089B1 (en) Piston pump, particularly a high-pressure fuel pump for an internal combustion engine
EP2273115B1 (en) Fluid pump, particularly high-pressure fuel pump, having pressure damper
EP1411238B1 (en) Pressure regulating valve for an injection system
EP2519744B1 (en) Pump having a valve with a damping arrangement
DE102016203217B4 (en) Damper capsule, pressure pulsation damper and high-pressure fuel pump
DE102004013307A1 (en) High-pressure fuel pump with a pressure relief valve
DE102004002489B4 (en) Fluid pump, in particular high-pressure fuel pump
DE102004047601A1 (en) Fluid pump e.g. high-pressure fluid pump, for internal combustion engine, has extension in flow path leading from inlet to chamber and multifunction unit arranged in extension and including retaining section for retaining filter device
WO2017102151A1 (en) Fluid pump, in particular high-pressure fuel pump
EP1403509A2 (en) Pressure limiting device and fuel system with such a pressure limiting device
WO2010102850A1 (en) Suction valve for a high pressure fuel pump
EP2007979A1 (en) Radial piston pump for supplying fuel at high pressure to an internal combustion engine
EP0641935B1 (en) Hydraulically actuated membrane pump with limitation of the membrane stroke
WO2011079983A1 (en) Piston pump having an inlet valve
EP1022460B1 (en) Mounting method
WO2017157554A1 (en) High-pressure pump having a fluid damper
WO2019134990A1 (en) High-pressure fuel pump for a fuel injection system
DE102004064240B3 (en) Fluid pump with integrated pressure damper
DE102006038533A1 (en) Fuel overflow valve, particularly for pressure limitation in low pressure area of fuel system, has valve support, inlet, outlet, valve element and valve spring, where valve element is formed as valve disc
WO2023036646A1 (en) Cyclically operating pump, in particular high-pressure fuel piston pump
DE102009045230A1 (en) Pressure control unit for conveyer system, particular lifting piston pump, has stroke element propelled by drive component, which is guided in hole and forms chamber
DE29823990U1 (en) compressor
WO2007071661A1 (en) High pressure pump with several pistons per cylinder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20071011

AKX Designation fees paid

Designated state(s): DE ES FR IT

17Q First examination report despatched

Effective date: 20080116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314528

Country of ref document: DE

Effective date: 20121206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2393308

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20121220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314528

Country of ref document: DE

Effective date: 20130711

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220729

Year of fee payment: 20

Ref country code: ES

Payment date: 20220819

Year of fee payment: 20

Ref country code: DE

Payment date: 20220927

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220725

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50314528

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230717