EP1409624A1 - Detergents pour lave-vaisselle comportant des tensioactifs a tension superficielle dynamique basse - Google Patents

Detergents pour lave-vaisselle comportant des tensioactifs a tension superficielle dynamique basse

Info

Publication number
EP1409624A1
EP1409624A1 EP02790177A EP02790177A EP1409624A1 EP 1409624 A1 EP1409624 A1 EP 1409624A1 EP 02790177 A EP02790177 A EP 02790177A EP 02790177 A EP02790177 A EP 02790177A EP 1409624 A1 EP1409624 A1 EP 1409624A1
Authority
EP
European Patent Office
Prior art keywords
acid
weight
automatic dishwashing
preferred
surfactants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02790177A
Other languages
German (de)
English (en)
Other versions
EP1409624B1 (fr
Inventor
Arnd Kessler
Christian Nitsch
Rolf Bayersdörfer
Wolfgang Wick
Sven Müller
Peter Schmiedel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1409624A1 publication Critical patent/EP1409624A1/fr
Application granted granted Critical
Publication of EP1409624B1 publication Critical patent/EP1409624B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups

Definitions

  • the present invention relates to automatic dishwashing detergents and methods for using these detergents.
  • the invention relates to machine dishwashing detergents which contain nonionic surfactants which have particularly low viscosities in aqueous solution.
  • Automatic dishwashing in household dishwashers is a process that is fundamentally different from washing clothes in household washing machines. While in a washing machine the goods to be cleaned are permanently moved in the liquor and the cleaning is mechanically supported in this way, the washing liquor is applied to the surfaces to be cleaned in a dishwasher by a spray system. There, the cleaning liquor must automatically counteract stubborn dirt without being supported by mechanical influences. The performance level of machine dishwashing detergents must therefore be much higher than that of conventional textile detergents.
  • the object of the present invention was to provide automatic dishwasher detergents which meet the increased performance requirements.
  • the resources to be provided should be especially greasy soiling be superior to conventional agents even when compared with a lower dosage.
  • the detergents should be able to be provided both as conventional machine dishwashing detergents ("cleaners") in powder or granule form or as tablets or pourable supply form, and also as a combination product ("2in1" products which combine detergents and rinse aid as well as “ 3in1 "products, which combine detergent, rinse aid and salt substitute).
  • automatic dishwashing detergents which meet the above-mentioned requirement profile can be provided if they contain builders and certain nonionic surfactants and optionally further ingredients of detergents.
  • the present invention relates to machine dishwashing detergents containing builders, surfactant (s) and optionally further ingredients which contain 0.1 to 50% by weight of one or more nonionic surfactants which are used at a concentration of 0.1 g / l have a dynamic surface tension of less than 60 mNm "1 in distilled water at a frequency of 1 Hz.
  • the lower dynamic surface tension of the surfactant at high concentrations results in a significantly improved drainage behavior of the overall formulation of surfaces treated with the cleaning agents.
  • the surfactants used according to the invention wet the surfaces quickly and, above all, uniformly, so that the film of the rinse aid solution runs uniformly on the dishes and does not tear open prematurely. In this way, stain-free and streak-free surfaces and thus improved rinse aid results are obtained.
  • the surfactant has an even lower dynamic surface tension in a highly concentrated aqueous solution.
  • Agents according to the invention are preferred here, in which the nonionic surfactant (s) at a concentration of 0.1 g / l in distilled water at a frequency of 1 Hz preferably has a dynamic surface tension of less than 55 mNm '1 of less than 50 mNm "1 .
  • Particularly preferred automatic dishwashing agents according to the invention contain one or more nonionic surfactant (s) which, at a concentration of 0.1 g / l in distilled water at a frequency of 5 Hz, have a dynamic surface tension of less than 65 mNm "1 , preferably of less than 60 mNm "1 .
  • s nonionic surfactant
  • the surfactants are liquid at room temperature.
  • this has the additional advantage that the surfactants do not have to be melted during processing, as a result of which the production costs can be reduced further.
  • Nonionic surfactants which have a dynamic surface tension of less than 60 mNm "1 at a concentration of 0.1 g / l in distilled water at a frequency of 1 Hz, can have different molecular structures. Depending on the type and length of the hydrophobic and the hydrophilic radical in the molecule, the properties of the surfactants can be controlled so that desired properties are available.
  • nonionic surfactants with the properties described above are used in the agents according to the invention in amounts of 0.1 to 50% by weight, in each case based on the total agent.
  • Preferred automatic dishwashing agents according to the invention contain the nonionic surfactant (s) in amounts of 0.5 to 40% by weight, preferably 1 to 30% by weight, particularly preferably 2.5 to 25% by weight. % and in particular from 5 to 20 wt .-%, each based on the total agent.
  • Nonionic surfactants which have alternating ethylene oxide and alkylene oxide units have proven to be particularly preferred nonionic surfactants within the scope of the present invention.
  • surfactants with EO-AO-EO-AO blocks are preferred, one to ten EO or AO groups being bonded to one another before a block follows from the other groups.
  • automatic dishwashing agents according to the invention are preferred which contain surfactants of the general formula I as nonionic surfactant (s) R 1 -O- (CH 2 -CH 2 -O) w - (CH 2 -CH-O) x - (CH 2 -CH 2 -O) y - (CH 2 -CH-O) z -H (I )
  • R 1 represents a straight-chain or branched, saturated or mono- or polyunsaturated C 6-2 alkyl or alkenyl radical
  • each group R 2 or R 3 is independently selected from -CH 3 ; -CH 2 CH 3 , -CH 2 CH 2 -CH3, CH (CH 3 ) 2 and the indices w, x, y, z independently represent integers from 1 to 6.
  • the preferred nonionic surfactants of the formula I can be prepared by known methods from the corresponding alcohols R 1 -OH and ethyl or alkylene oxide.
  • the radical R 1 in formula I above can vary depending on the origin of the alcohol. If native sources are used, the radical R 1 has an even number of carbon atoms and is generally not shown, the linear radicals being from alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow or Oleyl alcohol are preferred.
  • Alcohols accessible from synthetic sources are, for example, the Guerbet alcohols or, in the mixture, methyl-branched or linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • preferred dishwasher detergents according to the invention are those in which R 1 in formula I for an alkyl radical having 6 to 24, preferably 8 to 20, particularly preferably 9 to 15 and in particular 9 is up to 11 carbon atoms.
  • butylene oxide is particularly suitable as the alkylene oxide unit which is present in the preferred nonionic surfactants in alternation with the ethylene oxide unit.
  • R 2 or R 3 are selected independently of one another from -CH 2 CH 2 -CH 3 or CH (CH 3 ) 2 are also suitable.
  • Preferred automatic dishwashing agents are characterized in that R 2 and R 3 for a radical -CH 3 , w and x independently of one another stand for values of 3 or 4 and y and z independently of one another for values of 1 or 2.
  • nonionic surfactants which have a Cg-is alkyl radical with 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units, followed by 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units, are particularly preferred for use in the agents according to the invention.
  • These surfactants have the required low dynamic surface tension in aqueous solution and can be used with particular preference according to the invention.
  • the specified C chain lengths and degrees of ethoxylation or degrees of alkoxylation represent statistical mean values which can be an integer or a fraction for a specific product. Due to the manufacturing process, commercial products of the formulas mentioned usually do not consist of an individual representative, but rather of mixtures, which can result in mean values and broken numbers both for the C chain lengths and for the degrees of ethoxylation or degrees of alkoxylation.
  • the table below particularly preferably contains nonionic surfactants present in the agents according to the invention with respect to the radical R 1 , the radicals R 2 and R 3 and the indices w, x, y and z. Preferred agents according to the invention contain one or more surfactants from the table below or mixtures thereof.
  • the agents according to the invention can contain further surfactants from the groups of nonionic, anionic, cationic or amphoteric surfactants.
  • the additional nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical is branched linearly or preferably in the 2-position methyl may or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms for example from coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, Ci 2 - H alcohols with 3 EO or 4 EO, C 9-11 alcohol with 7 EO, C 13 .i 5 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 - ⁇ 8 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C ⁇ 2 - ⁇ 4 alcohol with 3 EO and Ci 2 -i 8 alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of this are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • alkyl glycosides of the general formula RO (G) x can also be used as further nonionic surfactants, in which R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the Degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • surfactants are polyhydroxy fatty acid amides of the formula (II),
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (III)
  • R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 represents a linear, branched or cyclic alkyl radical or an aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, C 1 -C 8 -alkyl or phenyl radicals being preferred
  • [Z] being a linear polyhydroxyalkyl radical, the alkyl chain of which is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propylated, derivatives thereof residue.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • the automatic dishwashing agents according to the invention particularly preferably contain a nonionic surfactant which has a melting point above room temperature. Accordingly, preferred agents are characterized in that they contain nonionic surfactant (s) with a melting point above 20 ° C., preferably above 25 ° C., particularly preferably between 25 and 60 ° C. and in particular between 26.6 and 43, 3 ° C.
  • Suitable non-ionic surfactants which have melting or softening points in the temperature range mentioned, in addition to the niite surfactants contained in the compositions according to the invention, are, for example, low-foaming non-ionic surfactants, which can be solid or highly viscous at room temperature. If highly viscous nonionic surfactants are used at room temperature, it is preferred that they have a viscosity above 20 Pas, preferably above 35 Pas and in particular above 40 Pas. Nonionic surfactants that have a waxy consistency at room temperature are also preferred.
  • Preferred nonionic surfactants to be used at room temperature originate from the groups of alkoxylated nonionic surfactants, in particular ethoxylated primary alcohols, and mixtures of these surfactants with structurally more complex surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene (PO / EO / PO) surfactants.
  • Such (PO / EO / PO) nonionic surfactants are also characterized by good foam control.
  • the nonionic surfactant with a melting point above room temperature is an ethoxylated nonionic surfactant which results from the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 carbon atoms with preferably at least 12 mol, particularly preferably at least 15 mol, in particular at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol has resulted.
  • a particularly preferred solid at room temperature, non-ionic surfactant is selected from a straight chain fatty alcohol having 16 to 20 carbon atoms, (C ⁇ 6 - 2 o-alcohol), preferably a C ⁇ 8 alcohol and at least 12 mole, preferably at least 15 mol and in particular at least 20 moles of ethylene oxide won.
  • a straight chain fatty alcohol having 16 to 20 carbon atoms C ⁇ 6 - 2 o-alcohol
  • C ⁇ 8 alcohol preferably a C ⁇ 8 alcohol and at least 12 mole, preferably at least 15 mol and in particular at least 20 moles of ethylene oxide won.
  • the so-called “narrow rank ethoxylates" are particularly preferred.
  • particularly preferred agents include ethoxylated (s) nonionic surfactant (s), which / from C 6 - 2 o-monohydroxy alkanols or C 6-2 o-alkyl phenols or C 16- 20 fatty alcohols and more than 12 mol, preferably more than 15 moles and in particular more than 20 moles of ethylene oxide per mole of alcohol was obtained.
  • s ethoxylated
  • nonionic surfactant s
  • the nonionic surfactant preferably additionally has propylene oxide units in the molecule.
  • Such PO units preferably make up up to 25% by weight, particularly preferably up to 20% by weight and in particular up to 15% by weight of the total molar mass of the nonionic surfactant.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols, which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol portion of such nonionic surfactant molecules preferably makes up more than 30% by weight, particularly preferably more than 50% by weight and in particular more than 70% by weight of the total molecular weight of such nonionic surfactants.
  • Preferred rinse aids are characterized in that they contain ethoxylated and propoxylated nonionic surfactants, in which the propylene oxide units in the molecule up to 25% by weight, preferably up to 20% by weight and in particular. make up up to 15 wt .-% of the total molecular weight of the nonionic surfactant.
  • nonionic surfactants with melting points above room temperature contain 40 to 70% of one
  • Nonionic surfactants that may be used with particular preference are bbeeiissppiieellsswweise available under the name Poly Tergent ® SLF-18 from Olin Chemicals.
  • a further preferred rinse aid according to the invention contains nonionic surfactants of the formula
  • R 1 represents a linear or branched aliphatic hydrocarbon radical with 4 to 18 carbon atoms or mixtures thereof
  • R 2 denotes a linear or branched hydrocarbon radical with 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1, 5 and y stands for a value of at least 15.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl or 2-methyl-2-butyl radical
  • x for values between 1 and 30, k and j for values are between 1 and 12, preferably between 1 and 5. If the value x ⁇ 2, each R 3 in the above formula can be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, radicals having 8 to 18 carbon atoms being particularly preferred.
  • H, -CH 3 or -CH 2 CH 3 are particularly preferred for the radical R 3 .
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula can be different if x ⁇ 2.
  • the value 3 for x has been chosen here by way of example and may well be larger, the range of variation increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1 , R 2 and R 3 are as defined above and x stands for numbers from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18. Particularly preferred are surfactants in which the radicals R 1 and R 2 have 9 to 14 carbon atoms, R 3 represents H and x assumes values from 6 to 15. If the latter statements are summarized, rinse aids according to the invention are preferred, the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 1 and R 2 represent linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 3 represents H or a methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl or 2-methyl-2-butyl radical
  • x stands for values between 1 and 30
  • k and j stand for values between 1 and 12, preferably between 1 and 5, with surfactants of the type
  • x represents numbers from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18, are particularly preferred.
  • anionic, cationic and / or amphoteric surfactants can also be used, these being of only minor importance because of their foaming behavior in automatic dishwashing detergents and mostly only in amounts below 10% by weight, mostly even below 5% by weight .-%, for example from 0.01 to 2.5 wt .-%, each based on the agent.
  • the agents according to the invention can thus also contain anionic, cationic and / or amphoteric surfactants as the surfactant component.
  • Anionic surfactants used are, for example, those of the sulfonate and sulfate type.
  • the surfactants of the sulfonate type are preferably C g . 13 - Alkylbenzenesulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, as obtained, for example, from C 12 . ⁇ 8 monoolefins with terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation products , into consideration.
  • alkanesulfonates which are for example obtained from 2- C ⁇ ⁇ 8 alkanes by sulfochlorination or sulfoxidation and subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids (Ester sulfonates), for example the -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters.
  • Fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and their mixtures as obtained in the production by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol.
  • Preferred sulfonated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • alk (en) yl sulfates are the alkali and in particular the sodium salts of the sulfuric acid half esters of C 12 -C 8 fatty alcohols, for example from coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of this chain length are preferred. Also preferred are alk (en) yl sulfates of the chain length mentioned, which contain a synthetic, petrochemical-based straight-chain alkyl radical which have a degradation behavior similar to that of the adequate compounds based on oleochemical raw materials.
  • Ci 2 -C 16 alkyl sulfates and C 12 -C 5 alkyl sulfates and C 4 -C 15 alkyl sulfates are preferred for washing technology reasons.
  • 2,3-Alkyl sulfates which can be obtained as commercial products from Shell Oil Company under the name DAN ® , are also suitable anionic surfactants.
  • ⁇ r alcohols containing on average 3.5 mol ethylene oxide (EO) or C 12- ⁇ 8 fatty alcohols containing 1 to 4 EO are also suitable. Because of their high foaming behavior, they are used in cleaning agents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters, and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably Represent fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C ⁇ -i ⁇ fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Soaps are particularly suitable as further anionic surfactants.
  • Saturated fatty acid soaps are suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular from natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants can be in the form of their sodium, potassium or ammonium salts and also as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • the agents according to the invention can contain, for example, cationic compounds of the formulas IV, V or VI as cationic active substances:
  • the agents according to the invention contain one or more builders as a further ingredient.
  • Builders are mainly used in the compositions according to the invention for binding calcium and magnesium.
  • Common builders are the low molecular weight polycarboxylic acids and their salts, the homopolymeric and copolymeric polycarboxylic acids and their salts, the carbonates, phosphates and sodium and potassium silicates.
  • Trisodium citrate and / or pentasodium tripolyphosphate and silicate builders from the class of alkali disilicates are preferably used for the cleaning agents according to the invention.
  • the potassium salts are preferable to the sodium salts, since they often have a higher solubility in water.
  • Preferred water-soluble builders are, for example, tripotassium citrate, potassium carbonate and the potassium water glasses.
  • Particularly preferred automatic dishwashing detergents contain phosphates, preferably alkali metal phosphates, with particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate).
  • phosphates preferably alkali metal phosphates, with particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate).
  • Alkali metal phosphates is the general term for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids which one can distinguish between metaphosphoric acids (HPO 3 ) n and orthophosphoric acid H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: They act as alkali carriers, prevent limescale deposits and also contribute to cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 PO 4 exists as a dihydrate (density 1.91, preferably “3 , melting point 60 °) and as a monohydrate (density 2.04, preferably " 3 ). Both salts are white, water-soluble powders, which lose water of crystallization when heated and at 200 ° C into the weakly acidic diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 O 7 ), at higher temperature in sodium trimetaphosphate (Na 3 P 3 O 9 ) and Maddrell's salt (see below).
  • NaH 2 PO 4 is acidic; it occurs when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate (primary or monobasic potassium phosphate, potassium biphosphate, KDP), KH 2 PO 4 , is a white salt with a density of 2.33 "3 , has a melting point of 253 ° [decomposition to form potassium polyphosphate (KPO 3 ) x ] and is light soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 , is a colorless, very easily water-soluble crystalline salt. It exists anhydrous and with 2 mol. (Density 2.066 gladly “3 , water loss at 95 °), 7 mol. (Density 1, 68 gladly “ 3 , melting point 48 ° with loss of 5 H 2 O) and 12 mol. Water ( Density 1, 52 like “3 , melting point 35 ° with loss of 5 H 2 O), becomes anhydrous at 100 ° and changes to diphosphate Na 4 P 2 O 7 when heated more.
  • Disodium hydrogen phosphate is lost by neutralizing phosphoric acid with soda solution Manufactured using phenolphthalein as an indicator
  • Dipotassium hydrogen phosphate (secondary or dibasic potassium phosphate), K 2 HPO, is an amorphous, white salt that is easily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 PO are colorless crystals which like dodecahydrate have a density of 1.62 "3 and a melting point of 73-76 ° C (decomposition), as decahydrate (corresponding to 19-20% P 2 O 5 ) have a melting point of 100 ° C. and, in anhydrous form (corresponding to 39-40% P 2 O 5 ), a density of 2.536 ′′ 3 .
  • Trisodium phosphate is readily soluble in water with an alkaline reaction and is produced by evaporating a solution of exactly 1 mol of disodium phosphate and 1 mol of NaOH.
  • Tripotassium phosphate (tertiary or tri-base Potassium phosphate), 3 PO 4 , is a white, deliquescent, granular powder with a density of 2.56 "3" , has a melting point of 1340 ° and is easily soluble in water with an alkaline reaction. It occurs, for example, when heating Thomas slag with coal and Despite the higher price, the more easily soluble, therefore highly effective, potassium phosphates are often preferred over corresponding sodium compounds in the cleaning agent industry.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 PO 7 , exists in anhydrous form (density 2.534 like “3 , melting point 988 °, also given 880 °) and as decahydrate (density 1, 815-1, 836 like " 3 , melting point 94 ° below loss of water). Substances are colorless crystals that are soluble in water with an alkaline reaction. Na 4 P 2 O 7 is formed by heating disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying. The decahydrate complexes heavy metal salts and hardness formers and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), K 4 P 2 O 7 , exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33 "3 , which is soluble in water, the pH value being 1% Solution at 25 ° is 10.4.
  • Sodium and potassium phosphates in which one can differentiate cyclic representatives, the sodium or potassium metaphosphates and chain-like types, the sodium or potassium polyphosphates. A large number of terms are used in particular for the latter: melt or glow phosphates, Graham's salt, Kurrol's and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • pentasodium triphosphate Na 5 P 3 O ⁇ 0 (sodium tripolyphosphate)
  • sodium tripolyphosphate sodium tripolyphosphate
  • n 3
  • Approx. 17 g of the salt free from water of crystallization dissolve in 100 g of water at room temperature, approx. 20 g at 60 ° and around 32 g at 100 °; After heating the solution at 100 ° for two hours, hydrolysis produces about 8% orthophosphate and 15% diphosphate.
  • pentasodium triphosphate In the manufacture of pentasodium triphosphate, phosphoric acid is mixed with soda solution or Sodium hydroxide solution reacted in a stoichiometric ratio and the solution was dewatered by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.). Pentapotassium triphosphate, K 5 P 3 O ⁇ 0 (potassium tripolyphosphate), for example in the form of a 50 wt .-% solution (> 23% P 2 O 5 , 25% K 2 O) on the market. The potassium polyphosphates are widely used in the detergent and cleaning agent industry.
  • Trisodium citrate and / or pentasodium tripolyphosphate and / or sodium carbonate and / or sodium bicarbonate and / or gluconates and / or silicate builders from the class of disilicates and / or metasilicates are preferably used.
  • Alkali carriers can be present as further constituents.
  • Alkali metal sesquicarbonates alkali silicates, alkali metasilicates, and mixtures of the abovementioned substances, the alkali metal carbonates, in particular sodium carbonate, sodium hydrogen carbonate or sodium sesquicarbonate, preferably being used for the purposes of this invention.
  • a builder system containing a mixture of tripolyphosphate and sodium carbonate is particularly preferred.
  • a builder system containing a mixture of tripolyphosphate and sodium carbonate and sodium disilicate is also particularly preferred.
  • the agents according to the invention can contain the builders in different amounts, depending on the application.
  • automatic dishwashing agents according to the invention are preferred, each of which contains the builder (s) in amounts of 5 to 90% by weight, preferably 7.5 to 85% by weight and in particular 10 to 80% by weight on the entire average.
  • bleaches In addition to the builders, bleaches, bleach activators, enzymes, silver preservatives, colorants and fragrances, etc. are preferred ingredients of automatic dishwashing detergents. In addition, other ingredients may be present, machine dishwashing detergents according to the invention being preferred, which additionally contain one or contain several substances from the group of acidifying agents, chelating agents or deposit-inhibiting polymers.
  • Both inorganic acids and organic acids are suitable as acidifiers, provided they are compatible with the other ingredients.
  • the solid mono-, oligo- and polycarboxylic acids in particular can be used. From this group, preference is again given to citric acid, tartaric acid, succinic acid, malonic acid, adipic acid, maleic acid, fumaric acid, oxalic acid and polyacrylic acid.
  • the anhydrides of these acids can also be used as acidifying agents, maleic anhydride and succinic anhydride in particular being commercially available.
  • Organic sulfonic acids such as amidosulfonic acid can also be used.
  • a commercially available as an acidifier in the context of the present invention also preferably be used is Sokalan ® DCS (trademark of BASF), a mixture of succinic acid (max. 31 wt .-%), Giutar Textre (max. 50 wt .-%) and adipic acid ( max. 33% by weight).
  • Chelating agents are substances which form cyclic compounds with metal ions, with a single ligand occupying more than one coordination point on a central atom, i. H. is at least "bidentate". In this case, normally elongated connections are closed to form rings by complex formation via an ion. The number of ligands bound depends on the coordination number of the central ion.
  • Common chelate complexing agents preferred within the scope of the present invention are, for example, polyoxycarboxylic acids, polyamines, ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA).
  • Complex-forming polymers that is to say polymers which carry functional groups either in the main chain themselves or laterally to this, which can act as ligands and which generally react with suitable metal atoms to form chelate complexes, can be used according to the invention.
  • the polymer-bound ligands of the resulting metal complexes can originate from only one macromolecule or can belong to different polymer chains. The latter leads to the networking of the Material, provided the complex-forming polymers were not previously cross-linked via covalent bonds.
  • Complexing groups (ligands) of conventional complex-forming polymers are iminodiacetic acid, hydroxyquinoline, thiourea, guanidine, dithiocarbamate, hydroxamic acid, amidoxime, aminophosphoric acid, (cyclic) polyamino, mercapto, 1,3-dicarbonyl - And crown ether residues with z. T. very specific Activities against ions of different metals.
  • the base polymers of many commercially important complex-forming polymers are polystyrene, polyacrylates, polyacrylonitriles, polyvinyl alcohols, polyvinyl pyridines and polyethyleneimines. Natural polymers such as cellulose, starch or chitin are also complex-forming polymers. In addition, these can be provided with further ligand functionalities by polymer-analogous conversions.
  • machine dishwashing detergents which contain one or more chelating complexing agents from the groups of
  • Hydroxyl groups is at least 5,
  • Dishwashing detergent in amounts above 0.1% by weight, preferably above 0.5% by weight, particularly preferably above 1% by weight and in particular above 2.5% by weight, in each case based on the weight of the Dishwashing detergent included.
  • All complexing agents of the prior art can be used in the context of the present invention. These can belong to different chemical groups.
  • the following are preferably used individually or in a mixture: a) polycarboxylic acids in which the sum of the carboxyl and optionally hydroxyl groups is at least 5, such as gluconic acid, b) nitrogen-containing mono- or polycarboxylic acids, such as ethylenediaminetetraacetic acid (EDTA), N-hydroxyethylethylenediamine triacetic acid, diethylenetriaminepentaacetic acid, hydroxyethyliminodiacetic acid, isopropynedioic acid, nitrosedioic diacetic acid, nitrosedioic diacetic acid, and nitro-dio-diacetic acid, and nitro-dio-diacetic acid, nitro-3-dio-diacetic acid, nitro-3-dio-diacetic acid, and 3-nitro-dio-diacetic acid
  • polycarboxylic acids a) are understood to mean carboxylic acids - also monocarboxylic acids - in which the sum of carboxyl and the hydroxyl groups contained in the molecule is at least 5.
  • Complexing agents from the group of nitrogen-containing polycarboxylic acids, in particular EDTA, are preferred. At the alkaline pH values of the treatment solutions required according to the invention, these complexing agents are at least partially present as anions. It is immaterial whether they are introduced in the form of acids or in the form of salts. In the case of use as salts, alkali metal, ammonium or alkylammonium salts, in particular sodium salts, are preferred.
  • Deposit-inhibiting polymers can also be contained in the agents according to the invention. These substances, which can have different chemical structures, originate, for example, from the groups of low molecular weight polyacrylates with molecular weights between 1000 and 20,000 daltons, polymers with molecular weights below 15,000 daltons being preferred. Deposit-inhibiting polymers can also have cobuilder properties.
  • Organic cobuilders which can be used in the dishwasher detergents according to the invention are, in particular, polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates. These classes of substances are described below.
  • Usable organic builders are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids being understood to mean those carboxylic acids which carry more than one acid function.
  • these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), as long as such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH value of detergents or cleaning agents.
  • Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures thereof can be mentioned in particular.
  • Polymeric polycarboxylates are also suitable as builders or scale inhibitors, for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 500 to 70,000 g / mol.
  • the molecular weights given for polymeric polycarboxylates are weight-average molecular weights M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), using a UV detector. The measurement was carried out against an external polyacrylic acid standard, which due to its structural relationship with the investigated polymers provides realistic molecular weight values. This information differs significantly from the molecular weight information for which polystyrene sulfonic acids are used as standard. The molecular weights measured against polystyrene sulfonic acids are generally significantly higher than the molecular weights given in this document.
  • Suitable polymers are in particular polyacrylates, which preferably have a molecular weight of 500 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates with molecular weights from 1000 to 10000 g / mol, and particularly preferably from 1000 to 4000 g / mol, can in turn be preferred from this group.
  • Both polyacrylates and copolymers of unsaturated carboxylic acids, monomers containing sulfonic acid groups and optionally other ionic or nonionic monomers are particularly preferably used in the agents according to the invention.
  • the copolymers containing sulfonic acid groups are described in detail below.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids, is generally 2,000 to 70,000 g / mol, preferably 20,000 to 50,000 g / mol and in particular 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of (co) polymeric polycarboxylates in the agents is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • Biodegradable polymers of more than two different monomer units are also particularly preferred, for example those which contain salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives as monomers or those which contain salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives as monomers ,
  • Other preferred copolymers are those used as monomers preferably have acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursor substances.
  • Polyaspartic acids or their salts and derivatives are particularly preferred which, in addition to cobuilder properties, also have a bleach-stabilizing effect.
  • polyacetals which can be obtained by reacting diaidehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from diaidehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • Suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary processes, for example acid-catalyzed or enzyme-catalyzed. They are preferably hydrolysis products with average molar masses in the range from 400 to 500,000 g / mol.
  • DE dextrose equivalent
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • a product oxidized to C ⁇ of the saccharide ring can be particularly advantageous.
  • Oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate, are further suitable cobuilders.
  • Ethylene diamine N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • Glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts for use in formulations containing zeolite and / or silicate are 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • phosphonates are, in particular, hydroxyalkane or aminoalkane phosphonates.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a cobuilder. It is preferably used as the sodium salt, the disodium salt reacting neutrally and the tetrasodium salt in an alkaline manner (pH 9).
  • Preferred aminoalkane phosphonates are ethylenediamine tetramethylene phosphonate (EDTMP), diethylene triamine pentamethylene phosphonate (DTPMP) and their higher homologs.
  • HEDP is preferably used as the builder from the class of the phosphonates.
  • the aminoalkanephosphonates also have a pronounced ability to bind heavy metals. Accordingly, it may be preferred, particularly if the agents also contain bleach, to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • the agents according to the invention can contain further usual ingredients of cleaning agents, bleaching agents, bleach activators, enzymes, silver protection agents, colorants and fragrances being particularly important. These substances are described below.
  • cleaning agents for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracid salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • Cleaning agents according to the invention can also contain bleaching agents from the group of organic bleaching agents.
  • Typical organic bleaching agents are the diacyl peroxides, such as dibenzoyl peroxide.
  • Other typical organic bleaching agents are peroxy acids, examples of which include alkyl peroxy acids and aryl peroxy acids.
  • Preferred representatives are (a) peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidanoic acid paproacidaproacid )], o-carboxybenzamidoperoxycaproic acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinate, and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1, 12-diperoxycarboxylic acid, 1, 9-diperoxyazelaic acid,
  • Diperocysebacic acid, diperoxybrassylic acid, the diperoxyphthalic acids, 2-decyldiperoxybutane-1,4-diacid, N, N-terephthaloyl-di (6-aminopercaproic acid) can be used.
  • Chlorine or bromine-releasing substances can also be used as bleaching agents in the cleaning agents according to the invention for machine dishwashing.
  • Suitable materials which release chlorine or bromine include, for example, heterocyclic N-bromo- and N-chloramides, for example trichloroisocyanuric acid, tribromoisocyanuric acid, dibromoisocyanuric acid and / or dichloroisocyanuric acid (DICA) and / or their salts with cations such as potassium and sodium.
  • DICA dichloroisocyanuric acid
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydanthoin are also suitable.
  • Preferred automatic dishwashing detergents according to the invention additionally contain bleaching agents in amounts of 1 to 40% by weight, preferably 2.5 to 30% by weight and in particular 5 to 20% by weight, in each case based on the total agent.
  • Bleach activators that support the effect of the bleaching agents have already been mentioned above as a possible ingredient of the rinse aid particles.
  • Known bleach activators are compounds which contain one or more N- or O-acyl groups, such as substances from the class of anhydrides, esters, imides and acylated imidazoles or oximes.
  • Examples are tetraacetylethylenediamine TAED, tetraacetylmethylenediamine TAMD and tetraacetylhexylenediamine TAHD, but also pentaacetylglucose PAG, 1, 5-diacetyl-2,2-dioxo-hexahydro-1, 3,5-triazine DADHT and isatoic anhydride ISA.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid. Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • TAED tetraacetylethylene diamine
  • DADHT 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine
  • TAGU tetraacetylglycoluril
  • Acylimides in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetyloxy-, 2,5-acetiacetyl, ethylene glycol 2,5-dihydrofuran, n-methyl-morpholinium-acetonitrile-methyl sulfate (MMA), and enol esters as well as acetylated sorbitol and mannitol or their mixtures (SORMAN), acylated sugar derivatives, in particular pentaacetylglucose (PAG), pentaacetylfructose, tetraacetylxylose and octaacet
  • bleach catalysts can also be incorporated into the rinse aid particles.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu Complexes with N-containing tripod ligands as well as Co, Fe, Cu and Ru amine complexes can be used as bleaching catalysts.
  • Bleach activators from the group of multiply acylated alkylenediamines in particular tetraacetylethylene diamine (TAED), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl- or isononanoyloxybenzenesulfonate (N-) or iso-NOBs iso , n-methyl-morpholinium-acetonitrile-methyl sulfate (MMA), preferably in amounts of up to 10% by weight, in particular 0.1% by weight to 8% by weight, particularly 2 to 8% by weight and particularly preferably 2 to 6 wt .-% based on the total agent used.
  • TAED tetraacetylethylene diamine
  • NOSI N-nonanoylsuccinimide
  • acylated phenolsulfonates in particular n-nonanoyl-
  • Bleach-enhancing transition metal complexes in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, preferably selected from the group consisting of manganese and / or cobalt salts and / or complexes, particularly preferably cobalt (ammin) - Complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes, the chlorides of cobalt or manganese, of manganese sulfate are used in conventional amounts, preferably in an amount of up to 5% by weight, in particular 0.0025% by weight .-% to 1 wt .-% and particularly preferably from 0.01 wt .-% to 0.25 wt .-%, each based on the total agent used. But in special cases, more bleach activator can be used.
  • Suitable enzymes in the cleaning agents according to the invention are, in particular, those from the classes of hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases contribute to the removal of stains such as stains containing protein, fat or starch. Oxidoreductases can also be used for bleaching. Particularly suitable are bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus and Humicola insolens as well as enzymatic active ingredients obtained from their genetically modified variants.
  • hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases contribute to the removal of stains such as stains containing protein, fat or starch
  • protease and amylase or protease and lipase or lipolytically active enzymes for example of protease, amylase and lipase or lipolytically active enzymes or protease, lipase or lipolytically active enzymes, but especially protease and / or lipase-containing mixtures respectively.
  • cutinases are examples of such lipolytically active enzymes.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • Suitable amylases include in particular alpha-amylases, iso-amylases, pullulanases and pectinases.
  • the enzymes can be adsorbed on carriers or embedded in coating substances to protect them against premature decomposition.
  • the proportion of the enzymes, enzyme mixtures or enzyme granules can be, for example, about 0.1 to 5% by weight, preferably 0.5 to about 4.5% by weight.
  • liquid enzyme formulations are particularly preferred.
  • automatic dishwashing detergents according to the invention which additionally contain enzyme (s) in amounts of from 0.01 to 15% by weight, preferably from 0.1 to 10% by weight and in particular from 0.5 to 6% by weight, in each case based on the total composition.
  • Dyes and fragrances can be added to the automatic dishwashing agents according to the invention in order to improve the aesthetic impression of the resulting products and, in addition to the performance, to provide the consumer with a visually and sensorially "typical and unmistakable" product.
  • perfume oils or fragrances individual fragrance compounds, e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used. Fragrance compounds of the ester type are e.g. Benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate,
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the jonones, ⁇ -isomethylionone and methyl cedryl ketone the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol
  • the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • perfume oils of this type can also contain natural fragrance mixtures such as are obtainable from plant sources, for example pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, blossoms oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • the fragrances can be incorporated directly into the cleaning agents according to the invention, but it can also be advantageous to apply the fragrances to carriers which increase the adhesion of the perfume to the laundry and ensure a long-lasting fragrance of the textiles due to a slower fragrance release.
  • Cyclodextrins for example, have proven useful as such carrier materials, and the cyclodextrin-perfume complexes can additionally be coated with further auxiliaries.
  • the agents produced according to the invention can be colored with suitable dyes.
  • Preferred dyes the selection of which is not difficult for the person skilled in the art, have a high storage stability and insensitivity to the other ingredients of the compositions and to light, and no pronounced substantivity to the substrates to be treated with the compositions, such as glass, ceramics or plastic dishes, so as not to stain them.
  • the cleaning agents according to the invention can contain corrosion inhibitors to protect the items to be washed or the machine, silver protection agents in particular being of particular importance in the field of automatic dishwashing.
  • the known substances of the prior art can be used.
  • silver protection agents selected from the group of the triazoles, the benzotriazoles, the bisbenzotriazoles, the aminotriazoles, the alkylaminotriazoles and the transition metal salts or complexes can be used in particular.
  • Benzotriazole and / or alkylaminotriazole are particularly preferably to be used.
  • active chlorine-containing agents are often found in cleaner formulations, which can significantly reduce the corroding of the silver surface.
  • oxygen and nitrogen-containing organic redox-active ones Compounds such as di- and trihydric phenols, e.g. As hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucin, pyrogallol or derivatives of these classes of compounds. Salt-like and complex-like inorganic compounds, such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce, are also frequently used.
  • transition metal salts which are selected from the group of the manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammine) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes , the chlorides of cobalt or manganese and manganese sulfate.
  • Zinc compounds can also be used to prevent corrosion on the wash ware.
  • the automatic cleaning of dishes in domestic dishwashers usually comprises a pre-wash, a main wash and a rinse cycle, which are interrupted by intermediate wash cycles.
  • the pre-wash cycle for heavily soiled dishes can be activated, but is only selected by the consumer in exceptional cases, so that in most machines a main wash cycle, an intermediate rinse cycle with pure water and a rinse cycle are carried out.
  • the temperature of the main wash cycle varies between 40 and 65 ° C depending on the machine type and program level selection.
  • rinse aids are added from a dosing tank in the machine, which usually contain non-ionic surfactants as the main component. Such rinse aids are in liquid form and are widely described in the prior art. Your main task is to prevent limescale and deposits on the dishes.
  • the agents according to the invention can be formulated as "normal" cleaners, which are used together with commercially available supplements (rinse aid, regeneration salt). It is particularly advantageous to dispense with the additional dosage of rinse aid with the products according to the invention, since the surfactants contained in the compositions according to the invention with low dynamic surface tension cause excellent drainage properties of the washing liquor and significantly reduce deposits on the dishes in comparison to conventional surfactants. These so-called “2-in-1” products simplify handling and relieve the consumer of the additional dosage of two different products (detergent and rinse aid).
  • automatic dishwashing agents according to the invention which additionally contain 0.1 to 70% by weight of copolymers of i) unsaturated carboxylic acids ii) sulfonic acid group-containing monomers iii) optionally further ionic or nonionic monomers.
  • copolymers have the effect that the items of crockery treated with such agents become significantly cleaner in subsequent cleaning operations than items of crockery that have been washed with conventional agents.
  • the invention is characterized by an improved “cleanability” of the treated substrates in later cleaning processes and by a considerable reduction in the drying time compared to comparable agents without the use of polymers containing sulfonic acid groups.
  • drying time is generally understood to mean the meaning, i.e. the time which elapses until a dish surface treated in a dishwasher is dried, but in particular the time which elapses, up to 90% of one with a cleaning or Rinse aid is dried in a concentrated or diluted form treated surface.
  • unsaturated carboxylic acids of the formula VII are preferred as the monomer
  • R 1 to R 3 independently of one another are -H -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or -COOH substituted alkyl or alkenyl radicals as defined above or represents -COOH or -COOR 4 , where R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • Preferred among these monomers are those of the formulas Villa, Vlllb and / or Vlllc,
  • H 2 C C (CH 3 ) -X-S0 3 H (VIIIb),
  • ionic or nonionic monomers that can be used are, in particular, ethylenically unsaturated compounds.
  • the content of monomers of group iii.) In the polymers used according to the invention is preferably less than 20% by weight, based on the polymer.
  • Polymers to be used with particular preference consist only of monomers of groups i) and ii).
  • copolymers are made of
  • R 1 to R 3 independently of one another are -H -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or -COOH substituted alkyl or alkenyl radicals as defined above or represents -COOH or -COOR 4 , where R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms,
  • Particularly preferred copolymers consist of
  • H 2 C C (CH 3 ) -X-S0 3 H (VIIIb),
  • copolymers which are contained in the compositions according to the invention can contain the monomers from groups i) and ii) and optionally iii) in varying amounts, all representatives from group i) with all representatives from group ii) and all representatives from group iii ) can be combined.
  • Particularly preferred polymers have certain structural units, which are described below.
  • agents according to the invention are preferred which are characterized in that they contain one or more copolymers which have structural units of the formula IX
  • n and p each represent an integer between 1 and 2000 and Y represents a spacer group which is selected from substituted or unsubstituted aliphatic, aromatic or araliphatic
  • These polymers are produced by copolymerization of acrylic acid with an acrylic acid derivative containing sulfonic acid groups. If the acrylic acid derivative containing sulfonic acid groups is copolymerized with methacrylic acid, another polymer is obtained, the use of which in the agents according to the invention is also preferred and is characterized in that the agents contain one or more copolymers which have structural units of the formula X.
  • n and p each represent an integer between 1 and 2000 and Y represents a spacer group which is selected from substituted or unsubstituted aliphatic, aromatic or araliphatic
  • acrylic acid and / or methacrylic acid can also be copolymerized with methacrylic acid derivatives containing sulfonic acid groups, as a result of which the structural units in the molecule are changed.
  • Agents according to the invention which contain one or more copolymers are structural units of the formula XI - [CH 2 -CHCOOH] m - [CH 2 -C (CH 3 ) C (0) -Y-S0 3 Hip- (XI),
  • n and p each represent an integer between 1 and 2000 and Y represents a spacer group which is selected from substituted or unsubstituted aliphatic, aromatic or araliphatic
  • n and p each represent an integer between 1 and 2000 and Y represents a spacer group which is selected from substituted or unsubstituted aliphatic, aromatic or araliphatic
  • maleic acid can also be used as a particularly preferred monomer from group i).
  • preferred agents according to the invention are obtained which are characterized in that they contain one or more copolymers, the structural units of the formula XIII
  • n and p each represent an integer between 1 and 2000 and Y represents a spacer group which is selected from substituted or unsubstituted aliphatic, aromatic or araliphatic
  • n and p each represent an integer between 1 and 2000 and Y represents a spacer group which is selected from substituted or unsubstituted aliphatic, aromatic or araliphatic
  • automatic dishwashing agents which contain, as ingredient b), one or more copolymers which have structural units of the formulas IX and / or X and / or XI and / or XII and / or XIII and / or XIV
  • n and p each represent an integer between 1 and 2000 and Y represents a spacer group which is selected from substituted or unsubstituted aliphatic, aromatic or araliphatic
  • the sulfonic acid groups in the polymers can be wholly or partly in neutralized form, ie the acidic hydrogen atom of the sulfonic acid group in some or all of the sulfonic acid groups can be replaced by metal ions, preferably alkali metal ions and in particular by sodium ions.
  • Corresponding agents which are characterized in that the sulfonic acid groups in the copolymer are partially or fully neutralized are preferred according to the invention.
  • the monomer distribution of the copolymers used in the agents according to the invention is preferably 5 to 95% by weight i) or ii), particularly preferably 50 to 90% by weight, in the case of copolymers which contain only monomers from groups i) and ii). % Of monomer from group i) and from 10 to 50% by weight of monomer from group t ii), in each case based on the polymer.
  • terpolymers those which contain 20 to 85% by weight of monomer from group i), 10 to 60% by weight of monomer from group ii) and 5 to 30% by weight of monomer from group iii) are particularly preferred ,
  • the molar mass of the polymers used in the agents according to the invention can be varied in order to adapt the properties of the polymers to the desired intended use.
  • Preferred automatic dishwashing detergents are characterized in that the copolymers have molar masses from 2000 to 200,000 gmol "1 , preferably from 4000 to 25,000 gmol " 1 and in particular from 5000 to 15,000 gmol "1 .
  • the content of one or more copolymers in the agents according to the invention can vary depending on the intended use and the desired product performance, preferred dishwasher detergents according to the invention being characterized in that they contain the copolymer (s) in amounts of 0.25 to 50% by weight. %, preferably from 0.5 to 35% by weight, particularly preferably from 0.75 to 20% by weight and in particular from 1 to 15% by weight.
  • both polyacrylates and the above-described copolymers of unsaturated carboxylic acids, monomers containing sulfonic acid groups and optionally further ionic or nonionic monomers are used.
  • the polyacrylates were described in detail above. Combinations of the above-described copolymers containing sulfonic acid groups with low molecular weight polyacrylates, for example in the range between 1000 and 4000 daltons, are particularly preferred.
  • Such polyacrylates are commercially available under the trade names Sokalan ® PA15 or Sokalan ® PA25 (BASF).
  • a mixture of the surfactants 575 and 673 from the table in the description text was prepared by ethoxylating an unbranched and saturated C.sub.14 alcohol in the presence of KOH as catalyst in an autoclave at 150.degree. C. with ethylene oxide. After the ethylene oxide had reacted, propylene oxide was fed into the autoclave and after its reaction the procedure was repeated with ethylene oxide and then with propylene oxide.
  • the resulting surfactant mixture can be represented by the formula
  • the surfactant mixture has a dynamic surface tension of 47 mNm "1 at a concentration of 0.1 g / l in distilled water at a frequency of 1 Hz.
  • Granular machine dishwashing detergents of the composition given in Table 1 were produced by granulation in a 130 liter ploughshare mixer from Lödige.
  • Table 1 Granular automatic dishwashing detergents [% by weight]
  • example E1 the nonionic surfactant described above was used;
  • comparative example V1 Poly Tergent® SLF 18 B-45 from Olin was used, which has a dynamic surface tension of> 60 mNm "1 at a concentration of 0.1 g / l in distilled water at a frequency of 1 Hz.
  • Detergent 45g dosed in the main wash cycle
  • Dirt load 50g liquid dirt dosed in the main wash cycle Composition: 30% protein / protein 30% starch 30% fat 10% water / emulsifier
  • the evaluation of the covering test is carried out by visual inspection of the objects in a box, the walls of which are lined with black velvet, with grades 0-6 being assigned. Higher values indicate surfaces free of deposits.
  • Two-layer detergent tablets for automatic dishwashing of the composition given in Table 2 were produced by producing two particulate premixes and then compressing them.
  • Table 2 two-phase detergent tablets for automatic dishwashing [% by weight]
  • Example E2 the nonionic surfactant described above was used;
  • Comparative Example V2 Poly Tergent® SLF 18 B-45 from Olin was used, which has a dynamic surface tension of> 60 mNm "1 at a concentration of 0.1 g / l in distilled water at a frequency of 1 Hz.
  • compositions E2 and V2 were used in a universal cleaning program. The program was carried out without a commercial rinse aid (the dishwasher's storage tank was emptied) and with water that had been hardened to 21 ° d (bypassing the ion exchanger).
  • the rinse aid effect is assessed by visual inspection in a box, the walls of which are lined with black velvet, with grades 0-4 being assigned separately for the formation of drops and deposits (spotting / filming).
  • the evaluation follows the following scheme:
  • recipe E2 is in some cases clearly superior to recipe V2 in filming and is at least equivalent in spotting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Filters For Electric Vacuum Cleaners (AREA)
  • Table Devices Or Equipment (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

L'invention concerne des détergents pour lave-vaisselle, à rendement renforcé, qui atteignent des niveaux de nettoyage élevés, même à de basses températures et avec des temps de lavage courts et qui peuvent être produits aussi bien comme des détergents pour lave-vaisselle traditionnels ( </= nettoyants >/= ) sous forme de poudre ou de granulés, que sous forme de comprimés ou sous forme déversable, que sous forme de produit combiné (produits </= 2 en 1 >/= , qui regroupent détergents et liquides de rinçage, ainsi que produits </= 3 en 1 >/= , qui regroupent détergents, liquides de rinçage et sels régénérants). Lesdits détergents pour lave-vaisselle contiennent entre 0,1 et 50 % en poids d'un ou de plusieurs tensioactifs non ioniques, qui présentent une tension superficielle dynamique inférieure à 60 mNm<-1>, pour une concentration de 0,1 g/l dans de l'eau distillée, à une fréquence de 1 Hz.
EP02790177A 2001-07-24 2002-07-13 Detergents pour lave-vaisselle comportant des tensioactifs a tension superficielle dynamique basse Expired - Lifetime EP1409624B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10136000A DE10136000A1 (de) 2001-07-24 2001-07-24 Maschinelles Geschirrspülmittel mit Tensiden niederer dynamischer Oberflächenspannung
DE10136000 2001-07-24
PCT/EP2002/007821 WO2003010261A1 (fr) 2001-07-24 2002-07-13 Detergents pour lave-vaisselle comportant des tensioactifs a tension superficielle dynamique basse

Publications (2)

Publication Number Publication Date
EP1409624A1 true EP1409624A1 (fr) 2004-04-21
EP1409624B1 EP1409624B1 (fr) 2008-09-10

Family

ID=7692894

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02790177A Expired - Lifetime EP1409624B1 (fr) 2001-07-24 2002-07-13 Detergents pour lave-vaisselle comportant des tensioactifs a tension superficielle dynamique basse

Country Status (8)

Country Link
US (1) US7026276B2 (fr)
EP (1) EP1409624B1 (fr)
AT (1) ATE407995T1 (fr)
DE (2) DE10136000A1 (fr)
ES (1) ES2309218T3 (fr)
HU (1) HUP0401483A3 (fr)
PL (1) PL198601B1 (fr)
WO (1) WO2003010261A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7899467B2 (en) 1998-09-22 2011-03-01 Polaris Wireless, Inc. Estimating the location of a wireless terminal based on the traits of the multipath components of a signal
US7734298B2 (en) 1998-09-22 2010-06-08 Polaris Wireless, Inc. Estimating the location of a wireless terminal based on signal path impairment
DE10136000A1 (de) * 2001-07-24 2003-02-13 Henkel Kgaa Maschinelles Geschirrspülmittel mit Tensiden niederer dynamischer Oberflächenspannung
DE10136001A1 (de) * 2001-07-24 2003-02-13 Henkel Kgaa Maschinelle Geschirrspülmittel mit niederviskosen Tensiden
DE10136002A1 (de) * 2001-07-24 2003-02-13 Henkel Kgaa Maschinelle Geschirrspülmittel mit Tensiden bestimmten Diffusionskoeffizientens
DE102004048591A1 (de) * 2004-04-27 2005-11-24 Henkel Kgaa Reinigungsmittel mit Klarspültensid und einer speziellen α-Amylase
DE102006003034A1 (de) * 2006-01-20 2007-07-26 Henkel Kgaa Demulgierender Reiniger für technische Oberflächen
US8852353B2 (en) * 2008-12-10 2014-10-07 Michael Oberlander Solid dishmachine detergent not requiring a separate rinse additive
DE102009027158A1 (de) * 2009-06-24 2010-12-30 Henkel Ag & Co. Kgaa Maschinelles Geschirrspülmittel
GB0916318D0 (en) 2009-09-17 2009-10-28 Samson Ilan Z Spout for a spill-proof beverage container

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504041A (en) 1966-02-14 1970-03-31 Wyandotte Chemicals Corp Nonionic condensation products having enhanced activity
US3625901A (en) 1969-12-02 1971-12-07 Economics Lab Surface active dishwashing rinse aids
JPS5925838B2 (ja) * 1977-12-19 1984-06-21 ライオン株式会社 自動食器洗い機用洗浄剤組成物
US4836951A (en) * 1986-02-19 1989-06-06 Union Carbide Corporation Random polyether foam control agents
US5110503A (en) 1990-05-15 1992-05-05 Elliot Cohen Demulsifying
EP0724013A1 (fr) 1995-01-30 1996-07-31 Colgate-Palmolive Company Concentrés de détergents versables qui maintiennent ou augmentent leur viscosité après dilution dans l'eau
US5698507A (en) * 1996-09-10 1997-12-16 Colgate-Palmolive Co. Nonaqueous gelled automatic dishwashing composition
US6013613A (en) * 1996-09-11 2000-01-11 The Procter & Gamble Company Low foaming automatic dishwashing compositions
CA2363097C (fr) * 1999-02-22 2004-04-06 The Procter & Gamble Company Procede d'elimination de taches sur une surface
IT1312557B1 (it) 1999-05-04 2002-04-22 Condea Augusta Spa Tensioattivo nonionico a basso potere schiumogeno
MXPA03000487A (es) * 2000-07-19 2003-06-24 Procter & Gamble Composiciones de limpieza..
US6680286B1 (en) * 2000-11-14 2004-01-20 Sanyo Chemical Industries, Ltd. Detergent composition comprising a quaternary ammonium salt of a carboxyl containing polymer
DE10136001A1 (de) * 2001-07-24 2003-02-13 Henkel Kgaa Maschinelle Geschirrspülmittel mit niederviskosen Tensiden
DE10136002A1 (de) * 2001-07-24 2003-02-13 Henkel Kgaa Maschinelle Geschirrspülmittel mit Tensiden bestimmten Diffusionskoeffizientens
DE10136000A1 (de) * 2001-07-24 2003-02-13 Henkel Kgaa Maschinelles Geschirrspülmittel mit Tensiden niederer dynamischer Oberflächenspannung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03010261A1 *

Also Published As

Publication number Publication date
PL198601B1 (pl) 2008-07-31
HUP0401483A3 (en) 2012-10-29
EP1409624B1 (fr) 2008-09-10
US20040167050A1 (en) 2004-08-26
DE50212767D1 (de) 2008-10-23
US7026276B2 (en) 2006-04-11
ATE407995T1 (de) 2008-09-15
PL366989A1 (en) 2005-02-07
HUP0401483A2 (hu) 2004-12-28
WO2003010261A1 (fr) 2003-02-06
ES2309218T3 (es) 2008-12-16
DE10136000A1 (de) 2003-02-13

Similar Documents

Publication Publication Date Title
EP1299513B1 (fr) Produit de nettoyage pour lave-vaisselle
EP1417291B1 (fr) Produits de lavage pour lave-vaisselle garantissant une protection amelioree contre la corrosion du verre
EP2487232B1 (fr) Produit de nettoyage
EP2115112B1 (fr) Détergents
EP2118255B2 (fr) Composition detergente
EP1409623B1 (fr) Detergents pour lave-vaisselle comportant des tensioactifs faiblement visqueux
EP1740683A1 (fr) DETERGENT CONTENANT UN TENSIO-ACTIF DE RINÇAGE ET UNE alpha-AMYLASE SPECIALE
EP1409625B1 (fr) Detergents pour lave-vaisselle comportant des tensioactifs a coefficients de diffusion determines
EP1409624B1 (fr) Detergents pour lave-vaisselle comportant des tensioactifs a tension superficielle dynamique basse
EP1664257B1 (fr) Detergents pour lave-vaisselle contenant un melange polymere special
DE102007044418A1 (de) Reinigungsmittel
EP1103599B1 (fr) Agent de rinçage particulaire et composition pour lavage de la vaiselle en machine
DE10140535B4 (de) Maschinelles Geschirrspülmittel mit verbessertem Glaskorrosionsschutz
EP1664256B1 (fr) Compostions detergentes pour lave-vaisselle conprenant des polym res speciaux
DE4316746A1 (de) Phosphatfreie Maschinengeschirreinigungsmittel
DE10133136B4 (de) Nichtwäßrige&#34;3in1&#34;-Geschirrspülmittel
DE10133137A1 (de) Wäßrige&#34;3in1&#34;-Geschirrspülmittel
WO2001023507A1 (fr) Produits pour le nettoyage d&#39;articles en argent en lave-vaisselle
DE102007023875A1 (de) Reinigungsmittel
DE102007038482A1 (de) Reinigungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: RO SI

17Q First examination report despatched

Effective date: 20050401

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APBV Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNIRAPE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL AG & CO. KGAA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: RO SI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50212767

Country of ref document: DE

Date of ref document: 20081023

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2309218

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090210

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

26N No opposition filed

Effective date: 20090611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

BERE Be: lapsed

Owner name: HENKEL A.G. & CO. KGAA

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20160726

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160721

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 407995

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20190703

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210727

Year of fee payment: 20

Ref country code: FR

Payment date: 20210727

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210721

Year of fee payment: 20

Ref country code: GB

Payment date: 20210721

Year of fee payment: 20

Ref country code: ES

Payment date: 20210927

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50212767

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220712

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220712

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220714