EP1405097B1 - Procede et dispositif pour supprimer le rayonnement electromagnetique de fond d'une image - Google Patents

Procede et dispositif pour supprimer le rayonnement electromagnetique de fond d'une image Download PDF

Info

Publication number
EP1405097B1
EP1405097B1 EP02748742A EP02748742A EP1405097B1 EP 1405097 B1 EP1405097 B1 EP 1405097B1 EP 02748742 A EP02748742 A EP 02748742A EP 02748742 A EP02748742 A EP 02748742A EP 1405097 B1 EP1405097 B1 EP 1405097B1
Authority
EP
European Patent Office
Prior art keywords
image
radiation
signal
spectral
background radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02748742A
Other languages
German (de)
English (en)
Other versions
EP1405097A1 (fr
Inventor
Holger Kirschner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Geosystems AG
Original Assignee
Leica Geosystems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Geosystems AG filed Critical Leica Geosystems AG
Priority to EP02748742A priority Critical patent/EP1405097B1/fr
Publication of EP1405097A1 publication Critical patent/EP1405097A1/fr
Application granted granted Critical
Publication of EP1405097B1 publication Critical patent/EP1405097B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/14Indirect aiming means
    • F41G3/145Indirect aiming means using a target illuminator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Definitions

  • the invention relates to a method for suppressing electromagnetic background radiation in an image according to the preamble of claim 1, an apparatus for performing the method according to the preamble of claim 6, a measuring device according to claim 9, and a use of the device for identifying a laser signal as a marker for subsequent Measuring processes as well as for the identification of a source of a laser signal.
  • a radiation source or its real or virtual image is to be recognized and its position or its direction determined.
  • Areas of application here include, for example, the automatic alignment of measuring instruments or the detection of radiation sources in the military sector (for example, for the detection of enemy target illumination or distance measurement, as part of an active protection system).
  • Other applications include the tracking of laser radiation to control autonomous vehicles or the detection and tracking of astronomical objects.
  • the emitted radiation can basically have a continuous or a line spectrum.
  • the detection of a source requires information about its spectral characteristics, which may be relatively constant, for example for laser, for thermal radiators but due to the temperature-dependent emission of greater uncertainties are subjected.
  • the position of objects should be made recognizable by markings (target illumination), for example with a light spot or a reflector, which is detectable in the case of divergent irradiation due to its high reflectivity.
  • markings for example with a light spot or a reflector, which is detectable in the case of divergent irradiation due to its high reflectivity.
  • the position of reflective points e.g. have prism reflectors, corner cubes or reflector foils, can be precisely determined.
  • a search using a laser spot is used to determine the direction in which a reflector (prism arrangement) is located with a theodolite.
  • a laser signal is emitted by a theodolite. If this signal hits a reflector prism, the laser beam is reflected back and can be received again in the theodolite.
  • a similar field of application is the guidance of automatic robot systems by light markings or reflective markings in the production area.
  • Interference radiation such as the background radiation of the daytime sky, direct sunlight, the interior lighting of rooms or thermal radiators such as metallic melts in industrial applications.
  • Such interference radiation may be stronger than the signal to be measured in the case of unfavorable distance ratios.
  • problems arise because their performance for safety reasons, especially for the protection of the human eye, must not exceed certain values.
  • the influence of the spurious radiation is eliminated in the prior art methods by a light / dark difference image method.
  • a measurement is performed with the signal source switched on (target source or target illuminator) and another measurement with the signal source switched off. From the difference of both measurements, the signal, e.g. a laser spot or the radiation returning from a reflective marker.
  • a corresponding device is as a camera system with light-controlled distance measurement for tele-robotic applications from the patents US 5,673,082 and 5,684,531 known.
  • the camera system captures images with an on and off laser.
  • the patent US 5,901,236 describes a method and a device for position measurement by image processing.
  • an object to be measured is provided with a light-emitting source, eg a light-emitting diode (LED), which is periodically switched on and off.
  • a light-emitting source eg a light-emitting diode (LED)
  • LED light-emitting diode
  • Four consecutive images are taken from the object with an exposure time of one quarter of the period of the light-emitting source, and differential images are respectively generated from the first and third and the second and fourth images.
  • the difference image with the highest brightness is used for position determination. This procedure is intended to ensure that the switched on and off states are subtracted from one another for at least one of the two difference images.
  • CMOS complementary metal-oxide-semiconductor
  • CCD complementary metal-oxide-semiconductor
  • CCD complementary metal-oxide-semiconductor
  • CMOS complementary metal-oxide-semiconductor
  • a signal to be detected is present in the field of view, it is registered in the image, eg as a bright spot of a laser spot.
  • the sensor array distributes the, if necessary, of the entire Environment, incident interference to a plurality of sub-sensors (pixels) of the array. This division results in a smaller interference signal and thus an improved signal-to-noise ratio. This increases the reliability of the signal detection and increases the spatial resolution of the position determination.
  • the dynamics of the sensor is exceeded in individual sensors by intense interference and thus a measurement impossible. For example, capturing the sun in the image section will quickly lead to oversaturation of the sensor.
  • atmospheric turbulence during the measurement period significantly affects the apparent position of distant objects.
  • moving obstructions e.g. moving vehicles, the image content during the measurement process change greatly.
  • the signal can no longer be extracted without errors from the difference between the two images. This erroneous signal again results in errors in the detection and in the determination of the signal position.
  • the invention thus has the object of providing a method and a device, by which a detection and position determination of an electromagnetic signal is improved in a considered field of view.
  • Another object is to ensure a safe and reliable identification of the signal even with strong or moving background radiation background or with rapid changes of the visual field.
  • the invention is based on the idea of using two images of different spectral ranges recorded at the same time or with a sufficiently short time interval for the extraction of the signal in a differential image method, which are referred to as positive image (P image) or negative image (N image) .
  • the negative image (N picture) generally includes the information needed to extract the signal from the P picture.
  • the negative image is not necessarily mirrored to the subject of the acquisition and not necessarily inverted in terms of the light-dark characteristic.
  • the wavelength selectivity in the acquisition of the images is further described below preferably by the use of spectral filters, but it can also be achieved by a direct, selective response, for example by the use of corresponding semiconductor materials as sensor material.
  • sensor arrays are included, in which each individual sensor is capable of simultaneously making separate statements about different spectral ranges.
  • a laser spot target laser is described purely by way of example as a signal to be detected.
  • a first image which will be referred to as a P-picture in the following, is recorded with a spectral filter, which above all allows the target laser wavelength to pass. Background radiation from foreign sources is indeed attenuated by the filter, but can not be completely eliminated as a rule become. This applies in particular to broadband, thermal radiators, such as the sun or incandescent lamps, but also to interfering radiators with line spectrum, which have spectral lines in the vicinity of the wavelength of the target laser.
  • line-type interfering radiators are the gas discharge and fluorescent tubes used for illumination or the presence of laser sources in addition to the targeting laser.
  • the wavelength of the laser light is excluded from the image.
  • a spectral filter used for this purpose, there are several possibilities that are associated with the respectively to be selected method of a background determination and are detailed below. In all cases, however, the principle is used that the spectrally narrow-band laser radiation only in the P-picture results in an image of the laser spot, i. the spectral transmission for the laser light is given only for the filter belonging to the P-picture. From the difference between P-picture and N-picture, similar to the bright / dark difference picture, the laser spot can be distinguished from the background radiation.
  • the following representation takes into account the simultaneous recording of two images, but the method can also be used with a larger number of images, i. both P- and N-pictures, which are recorded simultaneously or sufficiently close to each other.
  • the sensor array converts the intensity distribution into a signal, which for better distinctness (for example, the target laser signal) is referred to as an image.
  • a signal which for better distinctness (for example, the target laser signal) is referred to as an image.
  • one-dimensional images line sensor
  • multi-dimensional images for example area sensors
  • the method can generally also be applied to other sensor geometries, such as e.g. linear arrays of detector components.
  • the position of a light spot can be determined by mapping the two-dimensional image to a one-dimensional array via a cylindrical lens. In combination with a 90 ° rotated image, the coordinates of the light spot can then be extracted with linear arrays.
  • recording of an image should also include a processing of the image prior to the use of the image according to the method.
  • the P-picture is recorded spectrally narrowband for a range covering the range around the laser frequency.
  • the width of the bandpass filter used in the process further referred to as a positive filter is limited by the Devicestreuung and the temperature drift of the laser radiation. If light points of broadband sources are to be detected, the most accurate possible knowledge of the spectral course of the emission will be required in order to be able to derive the best possible signal-to-background ratio.
  • the target laser radiation is excluded from the image by a spectral filter, which is referred to below as a negative filter, so that the intensity or image brightness of a section of the background without target laser radiation is measured.
  • the image brightness is detected, which is the integral of the spectral intensity distribution over the detected wavelength range in (often approximately linear) context. This physical relationship between intensity and image brightness is assumed below in the description of the method and in particular in the derivation or estimation of the image brightness of the background in the P-picture. If the spectral intensity of the detected section is approximated by the sensor signal, then the image brightness can also be replaced by the term intensity in the following.
  • the brightness or intensity of the background in the P-image can be deduced from the image brightness or intensity or intensity distribution measured in the N-image.
  • different courses of the spectral intensity distribution of the interfering radiation are assumed as a basis.
  • Such spectra of the spurious radiation may be based either on physical models, e.g. for a Planckian radiator or a laser radiation, can be calculated or even measured directly under constant conditions. If the conditions are always the same, a stored spectrum can then be used and, if necessary, continuously adjusted or updated.
  • the thus derived image brightness of the background radiation acting as interfering radiation serves as the basis for a subtraction of the background from the P-picture and thus the separation of the target signal from the disturbing radiation background.
  • the method according to the invention and the device according to the invention have no problems with rapidly changing visual field contents, e.g. fast moving interfering objects or movement of the sensors.
  • the interference suppression is also possible with sensor arrays in the lower price segment. Given in these sensors, comparatively low measurement frequencies are no problem when evaluated with this method. Thus, a reliable, low-cost position determination for laser spots with high spatial resolution is possible.
  • the method has particular advantages when sensor arrays are used to increase the spatial resolution of a laser spot search.
  • the separate, spectral curves of the laser radiation 1 as a signal to be extracted and a background radiation 2 are shown.
  • the laser radiation 1 has a line character
  • the background radiation or interfering radiation example the continuous spectral profile of a thermal radiator or an approximate thermal radiator, such as solar radiation has.
  • the background radiation can also originate, for example, from a further laser, which is used for example for parallel distance measurement, and thus also have a line character.
  • the images A, B and C show the same image detail, however with differences in the spectral ranges and image brightnesses or intensities.
  • a P-picture A and an N-picture B are recorded simultaneously or at least in real time for two wavelength ranges P for the P-picture A and N1 for the N-picture B restricted by spectral filters with the filter characteristics F1 and F2.
  • the wavelength range P is chosen so that the laser radiation 1 is detected.
  • the P-image A still contains the portion of the background radiation 2 which is present in the wavelength range P.
  • the wavelength range N1 may be on the short or long wavelength side of the wavelength range P.
  • the N-image B now contains practically only background radiation, but possibly also portions of the laser radiation 1, for example with a broad filter characteristic F2 or a small distance of the filter to the wavelength of the laser radiation 1.
  • the proportion of background radiation 2 in the section captured by the filter characteristic F1 is derived or estimated on the basis of a model for its spectral profile. This proportion corresponds to the image C, which should now ideally have the same image content as the P image A except for the laser spot 3.
  • Fig.2 the use of the obtained images A and C for deriving the position of the laser spot 3 is shown schematically. From the P-picture A, which contains the laser spot 3 in addition to a portion of the background radiation 2, the image C derived from the N-picture becomes only background radiation 2, deducted. The difference follows the image D, which now only contains the laser spot 3. The outline of the same image content for both images is shown in dashed lines.
  • the use of a pure subtraction of the image content is only one possibility of extraction of the laser spot 3.
  • the difference in the image contents can also be quantified by quotient formation or by using further information, e.g. for special image areas as well as with other methods e.g. done by neural networks.
  • Figure 3 shows schematically the suppression of the influence of spectrally broad interfering radiation by means of a two-band neighborhood method with exemplary derivation of the portion of background radiation in the P-picture.
  • the method is the same as in Fig.1 and Fig.2 principle and generally presented procedure, but uses a concrete method for derivation.
  • a bandpass filter of similar spectral width as for the P picture is used.
  • the central wavelength is to be selected in the vicinity of the laser radiation 1, wherein the wavelength range N1 of the N-image, however, must be far enough away from the wavelength range P of the P-image that the proportion of the laser signal in the N-image remains low.
  • the wavelength range N1 of the N-picture can be selected either short-wave or longer-wave than the wavelength range of the P-picture.
  • the suppression of interference by sunlight (approximation as a Planckian radiator with a temperature of 6000K) is selected.
  • the 3a shows the spectral transmission characteristic of the filters F1 and F2 used together with the spectral intensity distributions of the laser radiation 1 (target laser) and the background radiation 2.
  • the spectral intensity distribution of the registered radiation 4 is shown, which includes both the portion of the laser radiation 1 as the peak 1a and the background radiation 2 in the spectral range of the P-image.
  • an image brightness value S SN which is (approximately) linearly related to the intensity of the interference radiation I SN .
  • the image brightness value S SN is converted by a linear brightness adaptation (parameters a, b) into an estimation of the image brightness generated by the interference radiation in the P-image S SP : S SP ⁇ a ⁇ S SN + b
  • the quantities S SP and S SN are in 3b shown, the parameters (a, b) are determined on the basis of an approximation selected from the viewpoint of sufficient accuracy, for example, as a piecewise linear approximation of the spectrum of the interference radiation 2 can be achieved.
  • the difference is calculated from the image brightness S P measured in the P-picture and the estimate for S SP : S L ⁇ S P - a ⁇ S SN + b
  • the conversion of the image brightness from the N image to the image brightness generated by the background radiation in the P image is achieved numerically by multiplication with the constant factor a and addition of a constant b.
  • the same effect can be achieved by appropriate amplification or attenuation of an analog image signal (brightness adjustment by analog electronics).
  • the adaptation can also be non-linear, where a and b are then functions of the image brightness.
  • nonlinear brightness adjustment may be necessary in particular when the interfering radiation is narrow band and high intensity (e.g., laser sources present in addition to the target laser) or when saturation effects occur in the sensors.
  • a linear brightness adjustment of the N-picture can also be achieved by a suitable choice of the transmissivities of positive filter and negative filter. This corresponds to a brightness adjustment by physical means.
  • a prerequisite for the use of this method is that the spectral characteristic of the interference does not change greatly in the considered field of view, otherwise the exact course is difficult to estimate by a measurement with a filter.
  • An example of low-level spurious radiation is, for example, a purely thermal emission such as e.g.
  • problems with spectrally selective reflectors in a measurement in the visible range of the electromagnetic spectrum: colored objects) can occur. Such problems can be counteracted by an appropriate choice of P-picture and N-picture filter characteristics (preferably both with infrared wavelength windows).
  • Figure 4 describes the physical conditions in the suppression of the influence of interfering radiation with varying spectrum or with objects of spectrally selective reflection by a three-band neighborhood method.
  • the target laser wavelength can not be chosen freely or if a spatially dependent and / or time-dependent strongly different spectral distribution of the illumination prevails.
  • Two N-pictures are used in a first execution.
  • Spectral bandpass filters are used for both N-pictures.
  • the filter characteristics F3 and F4 for the two N-pictures, with an unchanged P-picture, ie an image recording with a filter having the same filter characteristic as in the preceding figures, are shown in FIG 4a outlined.
  • the central wavelengths of both bandpass filters are to be chosen in the vicinity of the wavelength of the laser radiation 1 of the target laser.
  • an N-picture (N1 picture) is recorded with a longer wavelength and the second N picture (N2 picture) with a shorter wavelength than the P picture.
  • the central wavelengths of both bandpass filters should be far enough away from the wavelength range of the P-picture that the proportion of laser radiation 1 of the target laser remains low in both the N1 picture and the N2 picture.
  • the spectral intensity of the registered radiation 4 is shown schematically, which is recorded by a section of the visual field of the sensor (eg pixels), which contains both radiation intensity of the laser radiation 1 as a peak 1a and the background radiation 2 in the spectral range of the P image.
  • the image brightness values are measured in both N-pictures: S SN1 , S SN2 .
  • the image brightness S L generated by the target laser signal in the P-frame is extracted.
  • the difference between the image brightness S P measured in the P-picture and the estimate for S SP is calculated.
  • the linear estimation of S SP shown here can also be performed nonlinearly.
  • functions of the local image brightness a 1 ( S ), a 2 ( S ), b ( S ) are used .
  • the calculation of the estimate S S can be adapted to the sensitivity characteristic of the sensor and to the transmission behavior of the filters N1 and N2. Additional knowledge about the spectral distribution of the background radiation can also be taken into account in the calculation of the estimate S S. In the example given here, the calculation of the estimate S S is carried out numerically. Alternatively, S S can also be determined by appropriate amplification or attenuation by analog electronics. Finally, by appropriate choice of Filter characteristics N1 and N2, the estimate S s also be achieved physically.
  • the three-band neighborhood method can also be performed for spectrally broadband interference by taking only one N-picture.
  • a bandpass filter one uses a filter with two passbands.
  • the overall filter characteristic with the two partial filter characteristics F5a and F5b for the N-picture, with unchanged P-picture, is in 4c outlined.
  • a filter with two wavelength ranges N1 and N2 is used as passbands. These two wavelength ranges N1, N2 are to be selected on the short- and long-wavelength side of the wavelength range P of the P-image, wherein an entry by the laser radiation 1 into the N-image or its wavelength ranges N1, N2 must not be too large.
  • Fig.4d is the spectral intensity distribution of the registered radiation 4 shown schematically, which is taken from a section of the visual field of the sensor (eg pixels), which contains both radiation intensity of the laser radiation 1 as a peak 1a and the background radiation 2 in the spectral range of the P image.
  • the spectral filter of the N-picture has two passbands in the wavelength ranges N1 and N2. These two passbands correspond to two intensities ( I SN1 and I SN2 ) which contribute to the imaging in the N picture.
  • the measured image brightness values in the N image S SN result from the linear superimposition of these two intensities.
  • the image brightness S L generated in the P-picture is extracted.
  • the difference is calculated from the image brightness values S P measured in the P-picture and the estimate for S SP :
  • S L S P - a ⁇ S SN + b
  • the conversion of the image brightness values from the N image to the image brightness generated by the interference radiation in the P image is achieved numerically by multiplication with the constant factor a and addition of a constant b.
  • the same effect can be achieved by appropriate amplification or attenuation of an analog image signal (brightness adjustment by analog electronics).
  • a nonlinear brightness adjustment allows the image brightness caused by interfering radiation in the positive image to be estimated more accurately. This occurs in particular with narrow-band interfering radiation or when saturation effects occur in the sensors.
  • the relative height of the two transmission maxima of the negative filter is adapted to the sensitivity characteristic of the sensor.
  • the heights of the two maxima are chosen so that a smaller sensor sensitivity in the long-wave range, which when measured in the infrared Is given, is counteracted. Additional knowledge about the spectral distribution of the background radiation can also be taken into account in the relative heights of the two transmission maxima of the negative filter.
  • the Figure 5 schematically shows the physical conditions in the suppression of the influence of interfering radiation with spectral line characteristic.
  • interference radiation or background spectrum has a line characteristic
  • An example of interference radiation with spectral line characteristics is the widespread illumination of the measuring environment in the industrial sector with gas discharge lamps or fluorescent tubes.
  • 5a represents, with unchanged positive filter, ie a filter with the same filter characteristic as in the previous figures, the spectral filter characteristic F6 for the negative filter.
  • the pass band of the negative filter F6 becomes at the wavelength of a spectral line of the background radiation, but outside of the peak of the laser radiation 1, selected.
  • An image detail is considered, which as detected radiation receives intensities from both the background radiation (lines 5a and 5b) and from the laser radiation 1.
  • 5 b represents the spectral intensity distribution of the registered radiation for this image section.
  • An estimation for the image brightness due to interference radiation in the P-image S SP can be calculated in turn by linearly calculating the image brightness values of the interference or background radiation in the N image S SN (linear brightness adaptation with parameters a, b): S SP ⁇ a ⁇ S SN + b
  • the brightness adjustment of the N-picture can, as under Figure 3 Shown to be linear, but also carried out non-linear, the brightness adjustment can be performed numerically, by analog electronics or physically.
  • both the different intensity in both spectral lines and the different sensitivity of the sensor in both wavelength ranges can be taken into account.
  • Fig. 6 an example for the realization of an inventive device is shown schematically.
  • the image detail to be analyzed with a laser spot 3 to be detected is detected by the means for receiving electromagnetic radiation 6 and passed through a beam splitter 6c and onto two detectors 6a and 6b, each with an upstream filter 6d and 6e.
  • the detectors 6a and 6b consist of a plurality of detector components.
  • the two filters 6d and 6e have different spectral characteristics, so that a P-picture A with laser spot 3 and the detector 6b an N-picture B are recorded in a spectral range without laser radiation by the detector 6a.
  • At least one image is recorded by two separate detectors with differing spectral recording capacities.
  • the spectrally selective restriction of the recording can hereby be effected by bandpass filters which are inserted or rotated in the beam path in front of the detector, e.g. with a drum or revolver mount.
  • Another possibility for recording at least two spectrally selective images is the subdivision of a Sen Sorarrays into individual sensors of different spectral reception characteristics, for example by a location-dependent variable application of filters of various types.
  • spectrally selective filters can also be replaced by the use of spectrally selective detectors, e.g. by changing the spectral response of the detector directly by the choice of detector material or by controlling the physical behavior of the detector.
  • the at least two spectrally selective images can be recorded by using a sensor array if each individual sensor of the sensor array is able to perform measurements in several spectral regions.
  • Both images A, B are transmitted to the means for signal and information processing and stored there after alignment by rotational and translational positioning via an alignment unit 7a in two image memories 7b and 7c.
  • the highly accurate alignment of the images to one another or to a reference size can already take place during the recording or during later steps of the image processing.
  • An example of the close-up orientation is the high-precision adjustment of the detectors to one another.
  • the positioning can take place by means of digital signal processing during later processing steps.
  • An image C which corresponds to the background radiation of the P image A, is stored by an arithmetic unit 7d from the N image B and stored in the image memory 7e.
  • the derivation of the intensity of the background radiation takes place for example, by digital or analog electronics or also, as described above, purely physical way.
  • the number of image memory can be varied depending on the design of the device.
  • a plurality of P- and N-pictures A, B can also be recorded and in pairs or after aggregation, e.g. after each superimposition of all P and N images into an aggregate.
  • the image contents of the images A and C stored in the image memories 7b and 7e are compared by an evaluation and comparison unit 7f, and the image D is derived, from which the position of the laser spot 3 follows.
  • a pure difference formation of the two image contents takes place, in which in each case position-identical pixels with the same image brightness value or the same content are completely eliminated from the image. If pixels of the same position differ in their content, the net brightness values remain, which can result in a further intermediate image and, if appropriate, can be further analyzed.
  • further image processing steps can be used in connection with the comparison of the image contents, which process, for example, further information, e.g. for suppressing a detector noise.
  • the individual in 3 to Fig.5 be used to estimate each portions of the interference radiation intensity in the P-picture. From these proportions, the total intensity of the interference or background radiation in the P-picture can be estimated more accurately than is possible with the individual methods.
  • Fig.1 - Fig.5 represented images as well as courses and profiles of the models of a spectral intensity and the used filters are to be understood purely qualitatively. Illustrated gray levels and differences to be derived qualitatively explain occurring effects and can not serve as a basis for quantitatively exact considerations.
  • image features are extracted from a plurality of image regions and averaged in each case with the reciprocal value of the estimation of the interference radiation intensity in the evaluated region after a weighting.
  • the image memories 7b-7c can be reduced in number or increased or also assigned to the means for receiving electromagnetic radiation.
  • the use of a single detector for example with a sequential recording of two or more images or with a simultaneous recording of images by spectrally different selective detector components possible.
  • the method and in particular the derivation of the image brightnesses of the background, can be applied both at the level of the overall image, i. be performed separately for all image pixels together, as well as on the level of image sections or image parts or down to the level of individual pixels. In this case, additional knowledge, e.g. to individual parts of the image, be used.

Claims (11)

  1. Procédé pour supprimer le rayonnement électromagnétique de fond (2) dans une plage spectrale (P) définie par rapport à un signal à détecter, pour la détermination de position d'un point laser (3),
    • avec des moyens, pour enregistrer un rayonnement électromagnétique (6), de préférence avec au moins un détecteur (6a, 6b) composé de plusieurs composants,
    • avec des moyens pour le traitement de signal et d'information (7),
    - au moins une image en positif (A) monodimensionnelle ou pluridimensionnelle, pour la plage spectrale (P) définie, et
    - au moins une image en négatif (B) monodimensionnelle ou pluridimensionnelle, pour au moins une autre plage spectrale (N1, N2), définie et différente de celle de l'image en positif (A),
    sont enregistrées à l'aide des moyens pour enregistrer un rayonnement électromagnétique (6),
    caractérisé en ce que
    • à l'aide des moyens pour le traitement de signal et d'information (7), à partir de la au moins une image en négatif (B), sur la base de l'allure,
    o directement mesurée et mémorisée pour utilisation dans des conditions répétitives identiques, dans des conditions constantes, ou
    o calculée sur la base de modèles physiques,
    de la distribution spectrale du rayonnement de fond (2), on tire des conclusions sur la luminosité d'image SSP du rayonnement de fond (2) dans au moins une image en positif (A), et l'on extrait le signal à détecter, en tant que position du point laser (3) dans l'image en positif (A),
    • les plages spectrales (P, N1, N2) de la au moins une image en positif (A) et de la au moins une image en négatif (B) sont fixées par sélection d'une bande de longueurs d'ondes chaque fois pour la au moins une image en positif (A) et la au moins une image en négatif (B), et où
    • la bande de longueurs d'ondes de la au moins une image en négatif (B) est située, soit sur le côté ondes courtes, soit sur le côté ondes longues, de la bande de longueurs d'ondes de la au moins une image en positif (A) et, de préférence, un recouvrement des deux bandes de longueurs d'ondes est minimisé.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    • pour supprimer le rayonnement de fond à caractéristique linéaire, plages spectrales (P, N1, N2) de la au moins une image en positif (A) et de la au moins une image en négatif (B) sont fixées par sélection d'au moins une bande de longueurs d'ondes chaque fois pour la au moins une image en positif (A) et la au moins une image en négatif (B), où
    • les bandes de longueurs d'ondes appréhendent chaque fois des lignes (1, 5a, 5b) différentes.
  3. Procédé selon la revendication 1,
    caractérisé en ce que
    la plage spectrale (P, N1, N2) de la au moins une image en négatif (B) est fixée par sélection de deux bandes de longueurs d'ondes, les bandes de longueurs d'ondes de la au moins une image en négatif (B) étant chaque fois situées sur le côté ondes courtes et/ou sur le côté ondes longues de la bande de longueurs d'ondes (P) de la au moins une image en positif (A).
  4. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    la luminosité d'image SSP du rayonnement de fond (2) est dérivée, aux fins d'estimation et d'élimination de parties de sources de rayonnement parasite différentes pour différentes plages spectrales.
  5. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    la dérivation de la luminosité d'image SSP du rayonnement de fond (2) dans au moins une image en positif (A) s'effectue en utilisant au moins l'une des deux méthodes suivantes :
    - extrapolation d'au moins une luminosité d'image SSN enregistrée dans au moins une image en négatif (B),
    - formation de la valeur moyenne pondérée d'au moins deux luminosités d'image SSNi enregistrées dans au moins une image en négatif (B).
  6. Dispositif pour supprimer le rayonnement électromagnétique de fond (2) dans une plage spectrale (P) définie par rapport à un signal à détecter, pour la détermination de position d'un point laser (3),
    • avec des moyens, pour enregistrer un rayonnement électromagnétique (6), et
    • avec des moyens pour le traitement de signal et d'information (7),
    les moyens pour enregistrer un rayonnement électromagnétique (6) étant conçus pour enregistrer, de préférence simultanément, au moins une image en positif (A) et au moins une image en négatif (B),
    et les moyens pour le traitement de signal et d'information (7) sont conçus de manière que, à partir du contenu différent d'au moins une image en positif (A) et d'au moins une image en négatif (B), adaptée à l'aide des moyens pour le traitement de signal et d'information (7), le rayonnement électromagnétique de fond (2) est supprimé,
    caractérisé en ce que
    - au moins une image en positif (A) monodimensionnelle ou pluridimensionnelle, pour la plage spectrale (P) définie, et
    - au moins une image en négatif (B) monodimensionnelle ou pluridimensionnelle, pour au moins une autre plage spectrale (N1, N2), définie et différente de celle de l'image en positif (A),
    sont enregistrées à l'aide des moyens pour enregistrer un rayonnement électromagnétique (6),
    caractérisé en ce que
    • les moyens pour enregistrer un rayonnement électromagnétique (6) présentent au moins deux détecteurs pour enregistrer des images (A, B) dans au moins deux plages spectrales (P, N1, N2) définies, et
    • les moyens pour le traitement de signal et d'information (7) sont conçus de manière que le rayonnement électromagnétique de fond (2) soit supprimé, sur la base de l'allure,
    o directement mesurée et mémorisée pour utilisation dans des conditions répétitives identiques, dans des conditions constantes, ou
    o calculée sur la base de modèles physiques,
    de la distribution spectrale du rayonnement de fond (2), et la position du point laser (3) dans l'image en positif (A) est extraite en tant que signal à détecter.
  7. Dispositif selon la revendication 6,
    caractérisé en ce que
    o la plage spectrale des moyens pour enregistrer un rayonnement électromagnétique (6) est limitée à l'aide d'au ions un filtre spectral (6d, 6e) et/ou
    o les moyens pour enregistrer un rayonnement électromagnétique (6) présentent au moins un détecteur (6a, 6b), composé de deux matériaux semi-conducteurs ou plus, provoquant un comportement en réaction spectralement sélectif du détecteur (6a, 6b).
  8. Dispositif selon la revendication 6 ou 7,
    caractérisé en ce que
    les moyens pour le traitement de signal et d'information (7) sont conçus de manière que la au moins une image en positif (A) et la au moins une image en négatif (B) soient susceptibles d'être mutuellement déplacées en translation et/ou déplacées en rotation et/ou modifiables à une échelle de représentation relative, à l'aide d'un traitement numérique de signal.
  9. Appareil de mesure, en particulier pour l'arpentage géodésique,
    caractérisé en ce que
    celui-ci présente un dispositif pour supprimer, de manière spectralement sélective, un rayonnement électromagnétique de fond (2), en particulier pour la détermination de position d'un signal laser (3) à détecter selon l'une des revendications 6 à 8.
  10. Utilisation d'un dispositif selon l'une des revendications 6 à 8, pour l'identification d'un point laser (3) en tant que marquage pour des processus de mesure subséquents, en particulier pour des mesures de distance par rapport au point marqué.
  11. Utilisation d'un dispositif selon l'une des revendications 6 à 8, pour l'identification dune source d'un point laser, en particulier pour l'identification d'un laser éclairant une cible (Target Designation).
EP02748742A 2001-07-06 2002-06-07 Procede et dispositif pour supprimer le rayonnement electromagnetique de fond d'une image Expired - Lifetime EP1405097B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02748742A EP1405097B1 (fr) 2001-07-06 2002-06-07 Procede et dispositif pour supprimer le rayonnement electromagnetique de fond d'une image

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01116378A EP1273928A1 (fr) 2001-07-06 2001-07-06 Procédé et dispositif pour la suppression de rayonnement d'arrière-plan électromagnétique dans une image
EP01116378 2001-07-06
PCT/EP2002/006239 WO2003005057A1 (fr) 2001-07-06 2002-06-07 Procede et dispositif pour supprimer le rayonnement electromagnetique de fond d'une image
EP02748742A EP1405097B1 (fr) 2001-07-06 2002-06-07 Procede et dispositif pour supprimer le rayonnement electromagnetique de fond d'une image

Publications (2)

Publication Number Publication Date
EP1405097A1 EP1405097A1 (fr) 2004-04-07
EP1405097B1 true EP1405097B1 (fr) 2011-08-17

Family

ID=8177956

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01116378A Withdrawn EP1273928A1 (fr) 2001-07-06 2001-07-06 Procédé et dispositif pour la suppression de rayonnement d'arrière-plan électromagnétique dans une image
EP02748742A Expired - Lifetime EP1405097B1 (fr) 2001-07-06 2002-06-07 Procede et dispositif pour supprimer le rayonnement electromagnetique de fond d'une image

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01116378A Withdrawn EP1273928A1 (fr) 2001-07-06 2001-07-06 Procédé et dispositif pour la suppression de rayonnement d'arrière-plan électromagnétique dans une image

Country Status (9)

Country Link
US (1) US7809182B2 (fr)
EP (2) EP1273928A1 (fr)
JP (1) JP4217609B2 (fr)
CN (1) CN1332221C (fr)
AT (1) ATE520992T1 (fr)
AU (1) AU2002319202B2 (fr)
CA (1) CA2451782C (fr)
NO (1) NO336723B1 (fr)
WO (1) WO2003005057A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273928A1 (fr) * 2001-07-06 2003-01-08 Leica Geosystems AG Procédé et dispositif pour la suppression de rayonnement d'arrière-plan électromagnétique dans une image
JP4367264B2 (ja) * 2004-07-12 2009-11-18 セイコーエプソン株式会社 画像処理装置、画像処理方法、および、画像処理プログラム
AU2007204543B2 (en) * 2006-01-13 2011-05-26 Leica Geosystems Ag Tracking method and measuring system comprising a laser tracker
JP2008128792A (ja) * 2006-11-20 2008-06-05 Fujifilm Corp 距離画像作成装置及び方法
FR2909182B1 (fr) * 2006-11-28 2011-06-24 Compagnie Ind Des Lasers Cilas Procede et dispositif pour la detection d'un objet apte a retroreflechir la lumiere
JP2009300386A (ja) * 2008-06-17 2009-12-24 Sokkia Topcon Co Ltd 測量機
US8946647B2 (en) 2011-02-17 2015-02-03 Drs Rsta, Inc. System and method for identifying non-cooperative pulsed radiation sources in a field-of-view of an imaging sensor
US8497924B2 (en) * 2011-04-27 2013-07-30 Eastman Kodak Company Apparatus for eliminating background noise
US8493479B2 (en) * 2011-04-27 2013-07-23 Eastman Kodak Company Method of eliminating background noise
EP2523017A1 (fr) * 2011-05-13 2012-11-14 Hexagon Technology Center GmbH Procédé de calibrage pour un appareil doté d'une fonctionnalité de balayage
JP6020547B2 (ja) * 2014-12-26 2016-11-02 トヨタ自動車株式会社 画像取得装置及び方法
DE102015010919A1 (de) 2015-08-20 2017-02-23 Diehl Bgt Defence Gmbh & Co. Kg Verfahren zum Bestimmen einer Ausrichtung eines Objekts
JP7152842B2 (ja) 2015-10-21 2022-10-13 株式会社 Mtg パック剤用組成物、パック剤及びパック剤キット
US10845470B2 (en) * 2016-11-16 2020-11-24 Waymo Llc Methods and systems for protecting a light detection and ranging (LIDAR) device
CN106597375B (zh) * 2016-12-26 2019-10-01 中国科学院长春光学精密机械与物理研究所 一种成像光谱仪计算目标位置的方法及装置
US10520592B2 (en) * 2016-12-31 2019-12-31 Waymo Llc Light detection and ranging (LIDAR) device with an off-axis receiver
EP3596491A1 (fr) 2017-03-16 2020-01-22 Fastree3D SA Procédé et dispositif d'optimisation de l'utilisation de multiples émetteurs et d'un détecteur dans une application de détection active à distance
WO2018166611A1 (fr) 2017-03-16 2018-09-20 Fastree3D Sa Procédé et dispositif pour optimiser l'utilisation d'un émetteur et d'un détecteur dans une application de détection active à distance
DE102018100414B4 (de) 2018-01-10 2023-04-20 Rheinmetall Waffe Munition Gmbh Verfahren und Vorrichtung zur optischen Zielverfolgung von mit einem Hochenergielaser bestrahlbarem Zielobjekt
DE102018100417B4 (de) * 2018-01-10 2022-12-29 Rheinmetall Waffe Munition Gmbh Verfahren und Vorrichtung zur optischen Zielverfolgung von mit einem Hochenergielaser bestrahlbarem Zielobjekt
EP3640590B1 (fr) 2018-10-17 2021-12-01 Trimble Jena GmbH Appareil d'arpentage pour examiner un objet
EP3640677B1 (fr) * 2018-10-17 2023-08-02 Trimble Jena GmbH Suiveur d'appareil d'étude de suivi pour suivre une cible
EP3696498A1 (fr) 2019-02-15 2020-08-19 Trimble Jena GmbH Instrument de surveillance et procédé d'étalonnage d'un instrument de surveillance
EP3835819A1 (fr) * 2019-12-10 2021-06-16 Melexis Technologies NV Appareil de calcul de plage optique et procédé de calcul de plage
US20220244358A1 (en) * 2021-02-02 2022-08-04 Microvision, Inc. Scanning Laser Devices and Methods With Detectors for Sensing Low Energy Reflections

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273928A1 (fr) * 2001-07-06 2003-01-08 Leica Geosystems AG Procédé et dispositif pour la suppression de rayonnement d'arrière-plan électromagnétique dans une image

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174045A (en) * 1959-08-19 1965-03-16 Bunker Ramo Two channel radiant energy background signal elimination means
SE326308B (fr) * 1966-10-19 1970-07-20 Aga Ab
AT301331B (de) * 1968-11-25 1972-08-25 Eumig Einrichtung zur Entfernungsmessung
US5206699A (en) * 1988-05-06 1993-04-27 Gersan Establishment Sensing a narrow frequency band of radiation and gemstones
US5220614A (en) * 1991-02-22 1993-06-15 Professional Coin Grading Service, Inc. Automated coin grading system
KR970010486B1 (ko) * 1992-07-14 1997-06-26 삼성전자 주식회사 영상신호 재생장치
JP3148437B2 (ja) 1993-02-09 2001-03-19 三菱電機株式会社 レール位置測定装置、レール位置測定方法およびアタック角測定装置
US5334848A (en) * 1993-04-09 1994-08-02 Trw Inc. Spacecraft docking sensor system
US5420682A (en) * 1993-07-02 1995-05-30 Honeywell Inc. Method and apparatus for compensating spectral data with a color sensor
US5684531A (en) * 1995-04-10 1997-11-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ranging apparatus and method implementing stereo vision system
US5673082A (en) * 1995-04-10 1997-09-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Light-directed ranging system implementing single camera system for telerobotics applications
US5760910A (en) * 1995-06-07 1998-06-02 Masimo Corporation Optical filter for spectroscopic measurement and method of producing the optical filter
JPH09210622A (ja) 1996-02-07 1997-08-12 Kobe Steel Ltd 高温物体の距離測定方法及び装置
US6078681A (en) * 1996-03-18 2000-06-20 Marine Biological Laboratory Analytical imaging system and process
US6075905A (en) * 1996-07-17 2000-06-13 Sarnoff Corporation Method and apparatus for mosaic image construction
JPH1096605A (ja) * 1996-09-24 1998-04-14 Komatsu Ltd 画像処理による位置計測方法および装置
US6075883A (en) * 1996-11-12 2000-06-13 Robotic Vision Systems, Inc. Method and system for imaging an object or pattern
JP3909377B2 (ja) * 1997-02-14 2007-04-25 株式会社安川電機 屋外用距離計測装置
US6145784A (en) * 1997-08-27 2000-11-14 Trw Inc. Shared aperture dichroic active tracker with background subtraction
US6232602B1 (en) * 1999-03-05 2001-05-15 Flir Systems, Inc. Enhanced vision system sensitive to infrared radiation
IL145413A (en) * 1999-03-17 2005-11-20 Univ Virginia Passive remote sensor of chemicals
US6473165B1 (en) * 2000-01-21 2002-10-29 Flex Products, Inc. Automated verification systems and methods for use with optical interference devices
US6681057B1 (en) * 2000-02-22 2004-01-20 National Instruments Corporation Image registration system and method implementing PID control techniques
US6810135B1 (en) * 2000-06-29 2004-10-26 Trw Inc. Optimized human presence detection through elimination of background interference
JP2002316363A (ja) * 2001-02-16 2002-10-29 Fuji Photo Film Co Ltd 光造形装置及び露光ユニット
US6711280B2 (en) * 2001-05-25 2004-03-23 Oscar M. Stafsudd Method and apparatus for intelligent ranging via image subtraction
US20030123707A1 (en) * 2001-12-31 2003-07-03 Park Seujeung P. Imaging-based distance measurement and three-dimensional profiling system
US6750442B2 (en) * 2002-03-06 2004-06-15 Xerox Corporation Use of spectral sensors for automatic media identification and improved scanner correction
US6970236B1 (en) * 2002-08-19 2005-11-29 Jds Uniphase Corporation Methods and systems for verification of interference devices
US7356165B2 (en) * 2004-03-09 2008-04-08 Matsushita Electric Industrial Co., Ltd. Imaging apparatus performing a high reliability data analysis
US7298922B1 (en) * 2004-07-07 2007-11-20 Lockheed Martin Corporation Synthetic panchromatic imagery method and system
US8094960B2 (en) * 2008-07-07 2012-01-10 Harris Corporation Spectral calibration of image pairs using atmospheric characterization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273928A1 (fr) * 2001-07-06 2003-01-08 Leica Geosystems AG Procédé et dispositif pour la suppression de rayonnement d'arrière-plan électromagnétique dans une image

Also Published As

Publication number Publication date
AU2002319202B8 (en) 2003-01-21
US20040208340A1 (en) 2004-10-21
NO20040030L (no) 2004-03-02
US7809182B2 (en) 2010-10-05
JP4217609B2 (ja) 2009-02-04
WO2003005057A1 (fr) 2003-01-16
CA2451782A1 (fr) 2003-01-16
JP2004533627A (ja) 2004-11-04
ATE520992T1 (de) 2011-09-15
AU2002319202B2 (en) 2007-05-24
CN1539084A (zh) 2004-10-20
EP1405097A1 (fr) 2004-04-07
CN1332221C (zh) 2007-08-15
CA2451782C (fr) 2013-04-23
NO336723B1 (no) 2015-10-26
EP1273928A1 (fr) 2003-01-08

Similar Documents

Publication Publication Date Title
EP1405097B1 (fr) Procede et dispositif pour supprimer le rayonnement electromagnetique de fond d'une image
EP0842395B1 (fr) Procede et dispositif de detection rapide de la position d'un repere cible
AT412028B (de) Einrichtung zur aufnahme eines objektraumes
EP2002281B1 (fr) Dispositif de mesure optique de distances
EP1722191B1 (fr) Détermination de distance
DE60124647T2 (de) Vorrichtung und Verfahren zur Abstandsmessung
WO2012092911A1 (fr) Détection de gouttes de pluie sur une vitre au moyen d'une caméra et d'un éclairage
EP3479141B1 (fr) Procédé permettant de faire fonctionner un télémètre laser
EP1395852A1 (fr) Procede pour preparer des informations imagees
WO2018185083A2 (fr) Camera temps de vol
EP3627101B1 (fr) Rétroréflecteur à capteur
EP0892929A1 (fr) Dispositif de mesure des coordonnees d'un ou plusieurs retroreflecteurs apposes sur un objet
DE102015201093A1 (de) Verfahren und Gonioradiometer zur richtungsabhängigen Messung mindestens einer lichttechnischen oder radiometrischen Kenngröße einer optischen Strahlungsquelle
DE10154861A1 (de) Verfahren zur Bereitstellung von Bildinformationen
DE102005037094B3 (de) Kalibrierverfahren für einen Sensor zur Abstandsmessung
EP3339803A1 (fr) Appareil de mesure de coordonnées doté d'une reconnaissance d'objet cible automatique
DE60131961T2 (de) Verfahren zur bildgebenden Messung, bildgebende Messeinrichtung und Verwendung gemessener Informationen bei der Verfahrenssteuerung
EP1932017B1 (fr) Procede et dispositif de prise de vue de distances
DE102015217912A1 (de) Verfahren zur Laufzeitkalibrierung eines Lidarsensors
DE102016216842B4 (de) Verfahren und Vorrichtung zum Betreiben eines Spektrometers
DE19851010B4 (de) Einrichtung zur Erkennung und Lokalisierung von Laserstrahlungsquellen
EP2013642A1 (fr) Procede et dispositif de prise de vue a distance
DE102004026090A1 (de) Messsystem zur dreidimensionalen Bilderfassung
DE102013007961B4 (de) Optisches Messsystem für ein Fahrzeug
DE602004003912T2 (de) Vorrichtung und Verfahren zur Messung der Sichtweite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20070530

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KAMINSKI HARMANN PATENTANWAELTE EST.

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215171

Country of ref document: DE

Effective date: 20111027

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111118

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

26N No opposition filed

Effective date: 20120521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215171

Country of ref document: DE

Effective date: 20120521

BERE Be: lapsed

Owner name: LEICA GEOSYSTEMS A.G.

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111128

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 520992

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120607

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180621

Year of fee payment: 17

Ref country code: NL

Payment date: 20180620

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180620

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180620

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180620

Year of fee payment: 17

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190608

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210618

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50215171

Country of ref document: DE