EP1404973B2 - Procede de fabrication de stator de pompe moineau et stator ainsi obtenu - Google Patents
Procede de fabrication de stator de pompe moineau et stator ainsi obtenu Download PDFInfo
- Publication number
- EP1404973B2 EP1404973B2 EP02787097A EP02787097A EP1404973B2 EP 1404973 B2 EP1404973 B2 EP 1404973B2 EP 02787097 A EP02787097 A EP 02787097A EP 02787097 A EP02787097 A EP 02787097A EP 1404973 B2 EP1404973 B2 EP 1404973B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- stator
- stator cavity
- cavity
- forming
- tubular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/10—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
- F04C2/107—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
- F04C2/1071—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
- F04C2/1073—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
- F04C2/1075—Construction of the stationary member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2230/00—Manufacture
- F04C2230/20—Manufacture essentially without removing material
- F04C2230/27—Manufacture essentially without removing material by hydroforming
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49229—Prime mover or fluid pump making
- Y10T29/49236—Fluid pump or compressor making
Definitions
- the present invention is in the field of gear pumps of the Moineau pump type, also called progressive cavity pumps, and more particularly relates to improvements in the manufacture and structure of the stators of such pumps, these stators comprising a stator cavity. of helicoidal shape and general axial extent within an elongated body.
- the stator is usually made of molded elastomer enclosed in a rigid casing.
- Such an arrangement is satisfactory in many applications for which the temperature of the product to be moved remains below 140 ° C, maximum acceptable temperature without damage by the elastomer, and for which also the product to be moved is chemically compatible with the elastomer.
- metal stator cavities can overcome the aforementioned drawbacks in various fields of industry, provided however that the cost of such metal cavity stators is not prohibitive.
- a structure and a method of manufacturing a Moineau pump stator in which the stator cavity is constituted by a tubular element which may be metallic.
- this known stator is of composite type: the metal tubular element defining the stator cavity is secured to an outer casing via an elastic material (such as an elastomer) filling the gap annular between the tubular metal element and the housing; in addition, the tubular element is dimensioned so that, under the action of the elastic filling material, it applies and / or maintains a stress on the rotor of the pump.
- an elastic material such as an elastomer
- a stator thus arranged restricts the range of use of the pump, on the one hand, because of the rotor clamping by the stator (which excludes pumps for abrasive or highly viscous products - such as heavy oils -) and, on the other hand, because of the presence of the filler material such as an elastomer (which excludes pumps intended to operate in high temperature environments - such as deep well oil extraction pumps -).
- tubular element forming a stator cavity, housing, filling material
- this known stator consists in arranging a metal tubular section, with a core inserted inside the latter, in a housing; then to apply a pressure on the outside of the tubular metal section so as to deform to make it fit the shape of the core, said pressure may come from a pressurized fluid introduced into the annular space between the tubular section and the casing ; and finally removing the mandrel and filling the annular space between the tubular element forming a stator cavity and the housing with an elastic material adapted for said tubular member to apply and / or maintain a stress on the rotor.
- a first drawback lies in the fact that the process of deformation, in particular by hydraulic flight, of the initial tubular section is conducted inside the stator housing which thus serves as a pressure chamber. It is then necessary to oversize the housing so that it can mechanically withstand the forming pressures, then after this oversizing becomes useless during operation of the pump.
- the purpose of the invention is therefore to simultaneously remedy the various drawbacks mentioned above and to propose improvements in the manufacture and structure of Moineau pump stators which are of a nature to satisfy the various requirements of the practice, in particular with regard to relates to the stiffness of the stator cavity, the structural simplicity of the stator and the conduct of the manufacturing process.
- the preliminary mechanical forming makes it possible to cause significant local radial deformations despite the substantial thickness of the wall to be deformed, but without it being possible to achieve a high precision of shape; on the contrary, the process of hydroforming under very high pressure (for example of the order of 4000 x 10 5 Pa) makes it possible to achieve a precise forming on a core, but provided that the amplitude of the localized radial deformation is relatively small.
- the preforming step leading to the roughing is carried out, in successive passes, by successive external crushing of the metal tube between jaws facing each other, the metal tube and the jaws being relatively displaced in successive steps, axially and in rotation.
- the preforming step leading to the roughing is carried out by relatively moving the metal tube and at least two pressure rollers, said metal tube in particular being able to rotate about its axis while the two rollers, supported on the tube diametrically opposed, are moved parallel to the axis of said tube.
- the basic terminal step implementing a hydroforming process can be performed by compressing the blank on a core disposed inside thereof, which leads to transfer, by direct contact with the outer surface of the core and the inner surface of the blank, the exact shape and the precise dimensions of the core to the stator cavity; or it can be carried out by dilating the blank inside a mold, which implies a good control of the deformation of the metal and a good control of its thickness so that the conformation of the outer face of the mold tubular element in contact with the mold is reflected on its inner face by an exact conformation and a precise dimensioning of the stator cavity.
- the metal tubular element forming a stator cavity is introduced inside a cylindrical tubular envelope, and the ends of the tubular stator cavity are secured to said envelope; then optionally filling the annular space between the stator cavity and the envelope with a rigid filler material to relieve the fasteners in the presence of vibration.
- stator sections are individually manufactured as described above and are secured end to end, in particular by screwing or welding.
- the invention proposes a pump pump stator of the Moineau pump type, comprising a stator cavity of axial general extent inside an elongate body, characterized in that the stator cavity is defined. by a rigid walled metal tubular element internally having the shape and the dimensions of the stator cavity such that, after assembly of the stator with a rotor, a positive clearance with the rotor and obtained by implementing the method and this tubular element is defined is secured to an outer casing by means of rigid rings forming wedging spacers which are interposed between the ends of said metal tubular element forming a stator cavity and the outer casing.
- These rings form flanges for fixing the stator to the adjacent elements upstream and downstream; moreover, in the case of the presence of an outer casing, these rigid rings form wedge spacers interposed between the ends of said metal tubular element forming the stator cavity and the outer casing.
- the assembly of the rings with the metal tubular element forming a stator cavity and, when this is the case, with the outer casing can be carried out in any appropriate manner, in particular by welding and / or screwing.
- the annular gap defined between the metal tubular element forming the stator cavity and the casing can be filled with a rigid filling material, for example a thermosetting resin or a cement, capable of reinforcing the vibration resistance of the securing means between the tubular element and the housing.
- a rigid filling material for example a thermosetting resin or a cement
- the stator is formed with a stator cavity with a rigid metal wall which is therefore able to meet the specific requirements of various users while the stator cavity is no longer hollowed out in a solid metal body, It is no longer necessary to use, for its manufacture, expensive means and much simpler and less expensive technological solutions can be implemented for this purpose, a particularly effective example will be indicated later.
- stator of great length high-pressure pump
- stators of Moineau pumps with a metal stator cavity (for example bronze type UE9 or the like or stainless steel type 316L or the like) that meet the aspirations at least some users, such stators can be manufactured in large series under attractive economic conditions.
- a metal stator cavity for example bronze type UE9 or the like or stainless steel type 316L or the like
- stator for Sparrow pump generally designated by the reference 1
- a possible embodiment of stator for Sparrow pump comprises a casing or external rigid casing 2, of elongated shape and generally tubular conformation, inside which is fixed a metallic tubular element 3 with a rigid wall which internally has the shape and dimensions of the desired stator cavity.
- FIG. 6 An enlarged perspective view of element 3 is given to the figure 6 , which gives a more accurate representation of the Moineau profile, namely a helical gear with an almost elliptical cross section.
- the element 3 is illustrated on a length limited to a pitch P of helical winding; D denotes the nominal diameter of the tubular element 3, and E denotes the eccentricity.
- the tubular element 3 forming a stator cavity is made of any suitable metal for its mechanical constitution and for the application for which the pump is intended; the choice of material must be such that the metal stator cavity and the metal rotor enclosed therein are made of respective metallic materials which have compatible thermal expansion coefficients so that any dimensional variation of one is accompanied by a substantially identical dimensional variation, in amplitude and direction, of the other in order to maintain an approximately constant positive clearance over a wide temperature range of up to 300 ° C for deep well oil extraction pumps (see below) point the document FR-A-2,756,018 ); likewise, for food applications, the metal material of the stator cavity must be inert with respect to the product; It is the same for example for the pumping of acidic or basic products.
- tubular element 3 forming a bronze stator cavity of the UE9 type or equivalent; or stainless steel type 316L or equivalent.
- the tubular element 3 is relatively thick walled, that is to say that the thickness of its wall is a few percent (for example 6%) of its nominal diameter: the essential is that the thickness of this wall must be sufficient to impart excellent rigidity to the tubular element 3.
- the tubular element 3 is secured to the outer casing in any appropriate manner suitable for obtaining a rigid assembly and indeformable axis.
- wedging rings 4 are interposed between the respective ends of the tubular element 3 and the housing and mechanically fixed thereto, in particular by screwing or preferably by welding.
- Such a welded joint is shown on the enlarged partial view of the figure 4 , on which is schematized in 5 the weld bead of the ring 4 on the front end of the tubular element 3 and 6 the weld bead of the ring 4 with the end of the housing 2 in which it is partially engaged.
- tubular element 3 thus arranged does not have sufficient longitudinal rigidity, it is necessary to provide one or more intermediate support by setting intermediate ring (s) lntermediaire (s).
- FIG. figure 2 which consists in filling the annular gap 7 between the tubular element 3 and the casing 2 with a rigid filling material 8 (for example a thermosetting resin, a cement, a cement ceramic, etc.): this results elimination, or at least attenuation, of the vibrations of this element 3.
- a rigid filling material 8 for example a thermosetting resin, a cement, a cement ceramic, etc.
- stator sections individually constituted as indicated above.
- a long stator formed by the end-to-end joining of two stators 1 such as the one of FIG. figure 1 .
- the mechanical assembly of the two stators 1 can be carried out in any appropriate way, in particular by screwing or preferably by welding.
- the weld bead of the two end-to-end stators has been designated by 9: for this purpose, the end faces of the abutting rings 4 are chamfered and the weld bead 9 is deposited in the annular groove. thus constituted.
- the tubular metal element 3 forming the stator cavity may, on its own, have sufficient rigidity and the presence of a housing 2 becomes superfluous. As illustrated in figure 5 , the stator 1 then consists only of the tubular element 3.
- the metallic tubular element 3 can be manufactured by any appropriate means. However, its complex general shape as well as the dimensional accuracy and the quality of the surface state required for its internal face which is, strictly speaking, the stator surface make the usual means too expensive and / or difficult to implement. too long to allow industrial mass production.
- a preliminary preforming step is first carried out during which the initial metal tube is mechanically deformed so as to preform a tubular blank having, internally, approximately the shape and dimensions of the desired stator cavity.
- the formal and dimensional approximation may, for example, be of the order of 5%.
- One solution for implementing this preforming step consists in hammering the initial tube, as illustrated in FIG. Figure 7A by exerting a diametrical pressure (arrows 11) on the tube 12 taken between two jaws 10 integral with a press.
- the jaws 10 are shaped and mutually arranged (for example offset angularly relative to one another) so as to indent the tube to form the valleys or "valleys" of the helical windings.
- the jaws 10 providing localized deformations, It is necessary to proceed in successive passes along the tube which is moved, not by step, simultaneously axially (arrow 13) and in rotation (arrow 14) to follow the profile of the Moineau propeller .
- FIG. Figure 7B Another solution, currently preferred, is to deform the tube between at least two rotary rollers, as shown in FIG. Figure 7B .
- the tube 12 is rotated about its axis (arrow 14).
- several rollers 21 in practice two rollers 21 diametrically opposed are pressed towards each other so as to locally crush the tube between them: at the same time as the tube turns on itself, the two rollers 21 turn around their respective axes 22 (arrows 23) and a relative axial displacement is generated between the tube 12 and the set of rollers 21.
- the rotating tube is not moved axially, while it is the set of rotating rollers 21 which is moved (arrows 24) parallel to the axis of the tube.
- the final step of final shaping of the blank 12 is carried out in order to obtain the tubular element 3 forming a stator cavity.
- this final shaping is carried out by a hydroforming process, that is to say that one of the faces (inner or outer) of the blank 12 is subjected to a hydraulic pressure, which, considering the rigidity of the metal wall, must be high and which is exerted uniformly at each point of the surface, so that the wall of the blank, in spite of its rigidity, is pressed on a reference footprint that she marries closely and of which she keeps the exact shape and dimensions.
- the blank 12 is threaded onto a core 15 having, externally, the exact desired conformation for the stator cavity.
- the blank / core assembly is placed in a closed chamber 16 (hydroforming chamber) which is filled with a liquid 17.
- a liquid 17 By putting this liquid under pressure, the blank 12 (arrows 18) is crushed on the core 15
- the metallic tubular element 3 is thus formed, the inner face of which is exactly shaped according to the external shape of the core 15 (hydroforming by compression on an inner core).
- the blank 12 is introduced into a mold 19 having a cavity 20 shaped to the exact shape to be given to the tubular element 3 to form a stator cavity.
- the ends of the blank 12 are sealed and the internal volume of the blank is filled with liquid 17.
- the blank 12 is crushed (arrows 18) the blank 12 against the wall of the mold cavity 20
- the tubular element 3 is thus formed (hydroforming by expansion against an external mold).
- the hydroforming process is carried out using, as a liquid medium, water brought to a pressure of the order of 4 ⁇ 10 8 Pa for a duration of about 10 minutes.
- the assembly of the stator is completed by joining this element 3 to the casing 2, for example by means of rings 4, in particular welded, and optionally with filling of the gap 7 between the element 3 and the casing 2, according to the indications given above in relation to the Figures 1 to 4 .
- the manufacturing method of the element 3 according to the invention is capable of being used industrially and allows industrial mass production of the metal tubular element 3 forming a stator cavity.
- the provisions of the invention therefore make it possible to envisage serial production and acceptable costs of Moineau pumps equipped with metal cavity stator adapted to meet the needs in at least some areas of the industry, and in particular the pumps in which positive play must be maintained between stator and rotor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
- La présente invention se situe dans le domaine des pompes à engrenage du type pompe Moineau, dites aussi pompes à cavités progressives, et elle concerne plus particulièrement des perfectionnements apportés dans la fabrication et la structure des stators de telles pompes, ces stators comportant une cavité statorique de forme hélicoïdale et d'étendue générale axiale à l'intérieur d'un corps allongé.
- Compte tenu de la forme très complexe de la cavité statorique de ce type de pompe, le stator est habituellement constitué en élastomère moulé enfermé dans un carter rigide. Un tel agencement donne satisfaction dans de nombreuses applications pour lesquelles la température du produit à déplacer reste inférieure à 140°C, température maximale acceptable sans endommagement par l'élastomère, et pour lesquelles aussi le produit à déplacer est chimiquement compatible avec l'élastomère.
- Par contre, des stators ainsi constitués ne peuvent pas convenir notamment
- si la température du produit à déplacer est supérieure à 140°C, ce qui est le cas par exemple dans les exploitations pétrolières où l'extraction des produits épais nécessite leur ramollissement préalable par injection de vapeur à des températures de l'ordre de 200 à 250°C,
- si le produit à déplacer n'est pas chimiquement inerte vis à vis de l'élastomère (produits acides ou solvants par exemple),
- dans les installations alimentaires où les pièces au contact du produit doivent être en métal inerte (par exemple acier inoxydable),
- si des produits circulant dans la pompe successivement présentent des températures respectives très différentes (fonctionnements de très basse à très haute température avec la même hydraulique de pompe ; phase de nettoyage en place dans les Installations alimentaires ; sanitation à la vapeur).
- On a certes déjà tenté de fabriquer des stators métalliques afin de remédier aux inconvénients précités. Toutefois, il s'est alors agit de stators métalliques massifs dont la cavité de forme complexe a été excavée dans un bloc en métal avec mise en oeuvre de moyens d'usinage très complexes et lents. Ces fabrications se sont révélées très onéreuses de sorte que les stators métalliques massifs n'ont jamais fait l'objet d'une mise en oeuvre industrielle étendue et sont demeurés à un stade de quasi-prototypes (dans l'industrie alimentaire notamment).
- Or seule la mise en oeuvre de cavités statoriques métalliques peut permettre de surmonter les inconvénients précités dans divers domaines de l'industrie, à condition toutefois que le coût de tels stators à cavité métallique ne soit pas prohibitif.
- C'est en particulier le cas pour des pompes Moineau agencées conformément aux enseignements du document
FR 2 756 018 - Certes, on connaît déjà, d'après le document
FR-A-2 794 498 - Un stator ainsi agencé restreint le domaine d'utilisation de la pompe, d'une part, en raison du serrage du rotor par le stator (qui exclut les pompes pour produits abrasifs ou très visqueux - tels que les pétroles lourds -) et, d'autre part, en raison de la présence du matériau de remplissage tel qu'un élastomère (qui exclut les pompes destinées à fonctionner dans des ambiances à températures élevées - telles que les pompes d'extraction de pétrole en puits profonds -).
- Au surplus, la présence de trois parties constitutives principales (élément tubulaire formant cavité statorique, carter, matériau de remplissage) conduit à un coût relativement élevé.
- Pour ce qui est maintenant du procédé de fabrication de ce stator connu, il consiste à disposer un tronçon tubulaire métallique, avec un noyau introduit à l'intérieur de celui-ci, dans un carter ; puis à appliquer une pression sur l'extérieur du tronçon tubulaire métallique de manière à le déformer pour lui faire épouser la forme du noyau, ladite pression pouvant provenir d'un fluide sous pression introduit dans l'espace annulaire entre le tronçon tubulaire et le carter ; et enfin à retirer le mandrin et à remplir l'espace annulaire entre l'élément tubulaire formant cavité statorique et le carter avec un matériau élastique adapté pour que ledit élément tubulaire applique et/ou conserve une contrainte sur le rotor.
- Un tel procédé présente ou induit plusieurs inconvénients qui, là encore, limitent le domaine d'emploi des pompes équipées des stators obtenus.
- Un premier Inconvénient réside dans le fait que le processus de déformation, notamment par vole hydraulique, du tronçon tubulaire initial est mené à l'intérieur du carter du stator qui sert ainsi de chambre de pression. Il est alors nécessaire de surdimensionner le carter afin qu'il puisse résister mécaniquement aux pressions de formage, alors qu'ensuite ce surdimensionnement devient Inutile lors du fonctionnement de la pompe.
- inversement, si l'on souhaite éviter un surdimensionnement excessif (et ensuite inutile) du carter, Il est nécessaire de limiter les pressions de formage. Ceci implique que le processus connu doit être limité à la déformation de tronçons tubulaires ayant des épaisseurs de paroi assez faibles, conduisant à des éléments tubulaires formant cavité statorique qui présentent une relative déformabilité. Cette déformabilité est exploitée dans le type de pompe visé dans le document considéré puisque le stator enserre élastiquement le rotor. Mais dans d'autres types de pompes où Il est requis, entre stator et rotor, un jeu que l'on souhaite maintenir aussi constant que possible, une telle déformabilité constituerait un handicap rédhibitoire.
- C'est également, en partie, pour réguler cette déformabilité-de l'élément tubulaire métallique qu'il est nécessaire de prévoir l'ajout d'un matériau élastique de remplissage procurant un support continu, sur toute sa longueur, de l'élément tubulaire.
- Enfin, eu égard à la forme complexe de l'élément tubulaire métallique finalement obtenu par ce processus de formage sous pression notamment hydraulique, Il faut souligner que la déformation radiale du tronçon tubulaire initial n'est pas homogène et varie considérablement selon les emplacements. De ce fait, le formage de l'élément tubulaire métallique formant cavité statorique directement et en une seule passe à partir du tronçon tubulaire initialement cylindrique de révolution limite, là encore, ce processus au traitement des pièces ayant des parois d'assez faibles épaisseurs.
- L'invention a donc pour but de remédier simultanément aux divers inconvénients énoncés plus haut et de proposer des perfectionnements dans la fabrication et la structure des stators de pompe Moineau qui soient de nature à donner satisfaction aux diverses exigences de la pratique, notamment pour ce qui concerne la rigidité de la cavité statorique, la simplicité structurelle du stator et la conduite du processus de fabrication.
- A ces fins, selon un premier de ses aspects, l'invention propose un procédé original de fabrication d'un stator de pompe à engrenage du type pompe Moineau, comportant une cavité statorique d'étendue générale axiale à l'intérieur d'un corps allongé, consistant à fabriquer ladite cavité statorique à partir d'un tube métallique cylindrique de révolution à paroi rigide, procédé qui, étant conforme à l'invention, se caractérise en ce qu'il comprend les étapes qui suivent :
- une étape préliminaire de formage mécanique au cours de laquelle ledit tube métallique cylindrique de révolution est déformé de manière à préformer une ébauche approchant, intérieurement, la forme et les dimensions de la cavité statorique souhaitée,
- puis une étape de formage définitif au cours de laquelle on soumet ladite ébauche à un processus d'hydroformage, menée à l'intérieur d'une enceinte d'hydroformage, sur une forme de moulage pour obtenir un élément tubulaire métallique rigide formant cavité statorique ayant sa forme et ses dimensions intérieures exactes telles que soit défini, après assemblage du stator avec un rotor, un jeu positif avec le rotor,
- et enfin une étape de montage de l'élément tubulaire métallique formant cavité statorique à l'intérieur d'une enveloppe externe formant carter, avec la so-Ildadsatlon d'au moins les extrémités de l'élément tubulaire métallique à ladite enveloppe.
- Grâce à la mise en oeuvre du procédé conforme à l'invention, Il est possible de réaliser un élément tubulaire métallique formant cavité statorique qui possède une paroi d'épaisseur relativement importante et qui, de ce fait, est parfaitement rigide et autoportant : cet élément tubulaire peut n'être solidarisé au carter que par ses extrémités, d'où une grande simplicité de montage et un moindre coût et on est assuré du maintien du jeu entre rotor et stator sur toute la longueur de la pompe.
- Malgré l'épaisseur relative du tube initial (par exemple de l'ordre de 3,5 mm pour un diamètre de l'ordre de 65 mm), on est en mesure d'obtenir un élément tubulaire satisfaisant à toutes les exigences requises, malgré les insuffisances individuelles des processus mis en oeuvre : le formage mécanique préliminaire permet de provoquer des déformations radiales locales importantes malgré l'épaisseur notable de la paroi à déformer, mais sans qu'il soit possible de parvenir à une grande précision de forme ; au contraire, le processus d'hydroformage sous très haute pression (par exemple de l'ordre de 4000 x 105 Pa) permet d'aboutir à un formage précis sur noyau, mais à condition que l'amplitude de la déformation radiale localisée soit relativement réduite.
- La combinaison des deux processus de déformation mécanique et d'hydroformage, menées en deux étapes successives, permet de recueillir leurs avantages individuels et d'écarter leurs inconvénients, et donc de parvenir à fabriquer, dans des conditions économiques, un stator à cavité métallique qui puisse entrer dans la constitution de pompes Moineau aptes à fonctionner dans des conditions difficiles.
- Dans un mode de mise en oeuvre possible, l'étape de préformage conduisant à l'ébauche s'effectue, par passes successives, par des écrasements externes successifs du tube métallique entre des mors en vis à vis, le tube métallique et les mors étant déplacés de façon relative par pas successifs, axialement et en rotation.
- Dans un autre mode de mise en oeuvre qui est préféré, l'étape de préformage conduisant à l'ébauche s'effectue en déplaçant de façon relative le tube métallique et au moins deux galets de pression, ledit tube métallique pouvant notamment être mis en rotation autour de son axe tandis que les deux galets, appuyés sur le tube de façon diamétralement opposés, sont déplacés parallèlement à l'axe dudit tube.
- Quant à l'étape fondamentale terminale mettant en oeuvre un processus d'hydroformage, elle peut être effectuée par compression de l'ébauche sur un noyau disposé à l'intérieur de celle-ci, ce qui conduit à transférer, par contact direct de la surface externe du noyau et de la surface interne de l'ébauche, la forme exacte et les dimensions précises du noyau à la cavité statorique ; ou bien elle peut être effectuée par dilatation de l'ébauche à l'intérieur d'un moule, ce qui implique une bonne maîtrise de la déformation du métal et un bon contrôle de son épaisseur de manière que la conformation de la face externe de l'élément tubulaire au contact du moule se traduise, sur sa face interne, par une conformation exacte et un dimensionnement précis de la cavité statorique.
- Une fois fabriqué l'élément tubulaire métallique formant cavité statorique, on introduit celui-ci à l'intérieur d'une enveloppe tubulaire cylindrique, et on solidarise les extrémités de la cavité statorique tubulaire à ladite enveloppe ; puis éventuellement on remplit l'espace annulaire entre la cavité statorique et l'enveloppe avec un matériau de remplissage rigide propre à soulager les organes de fixation en présence de vibrations.
- Pour des applications à des pompes à haute pression qui nécessitent des stators longs, on fabrique individuellement au moins deux tronçons de stator comme exposé plus haut et on les solidarise bout à bout, notamment par vissage ou soudure.
- Selon un second de ses aspects, l'invention propose un stator de pompe à engrenage du type pompe Moineau, comportant une cavité statorique d'étendue générale axiale à l'intérieur d'un corps allongé, caractérisé en ce que la cavité statorique est définie par un élément tubulaire métallique à paroi rigide présentant intérieurement la forme et les dimensions de la cavité statorique telles que, après assemblage du stator avec un rotor, soit défini un jeu positif avec le rotor et obtenu par mise en oeuvre du procédé et cet élément tubulaire est solidarisé à un carter extérieur à l'aide de bagues rigides formant des entretoises de calage qui sont interposées entre les extrémités dudit élément tubulaire métallique formant cavité statorique et du carter externe.
- Ces bagues forment des flasques de fixation du stator aux éléments adjacents en amont et en aval ; de plus dans le cas de la présence d'un carter extérieur, ces bagues rigides forment des entretoises de calage interposées entre les extrémités dudit élément tubulaire métallique formant la cavité statorique et du carter externe. L'assemblage des bagues avec l'élément tubulaire métallique formant cavité statorique et, lorsque cela est le cas, avec le carter externe peut être effectué de toute façon appropriée, notamment par soudure et/ou vissage.
- Selon les applications prévues pour la pompe, l'intervalle annulaire défini entre l'élément tubulaire métallique formant la cavité statorique et le carter peut être rempli d'un matériau de remplissage rigide, par exemple une résine thermodurcissable ou un ciment, propre à renforcer la résistance aux vibrations des moyens de solidarisation entre l'élément tubulaire et le carter.
- Grâce aux dispositions de l'invention, on constitue le stator avec une cavité statorique à paroi métallique rigide qui est donc apte à répondre aux exigences spécifiques d'utilisateurs divers tandis que, la cavité statorique n'étant plus évidée dans un corps métallique massif, Il n'est plus besoin de faire appel, pour sa fabrication, à des moyens onéreux et des solutions technologiques beaucoup plus simples et moins coûteuses peuvent être mises en oeuvre à cette fin, dont un exemple particulièrement efficace sera indiqué plus loin.
- Dans le cas où l'on souhaite disposer d'un stator de grande longueur (pompe à haute pression), on peut constituer un tel stator par assemblage bout à bout d'au moins deux tronçons de stator individuellement constitués comme indiqué plus haut.
- Grâce à l'ensemble des dispositions de l'invention, il est possible de disposer de stators de pompes Moineau à cavité statorique métallique (par exemple en bronze de type UE9 ou analogue ou en acier inoxydable du type 316L ou analogue) qui répondent aux aspirations d'au moins certains utilisateurs, de tels stators pouvant être fabriqués en grande série dans des conditions économiques intéressantes.
- L'invention sera mieux comprise à la lecture de la description détaillée qui suit de certains modes de réalisation donnés uniquement à titre d'exemples non limitatifs.
- Dans cette description, on se réfère aux dessins annexés sur lesquels :
- la
figure 1 est une vue simplifiée en coupe longitudinale d'un mode de réalisation possible d'un stator constitué conformément à l'invention ; - la
figure 2 est une vue simplifiée en coupe longitudinale d'un autre mode de réalisation du stator de lafigure 1 . - la
figure 3 est une vue simplifiée en coupe longitudinale d'un stator long, pour pompe à haute pression, agencé selon l'invention ; - la
figure 4 est une vue agrandie d'une partie du dispositif de lafigure 3 ; - la
figure 5 est une vue simplifiée en coupe longitudinale d'encore un autre mode de réalisation d'un stator constitué conformément à l'invention ; - la
figure 6 est une vue en perspective d'un élément tubulaire métallique formant cavité statorique conforme à l'invention ; - les
figures 7A et7B sont des vues schématiques illustrant respectivement deux modes de mise en oeuvre de l'étape de préformage d'une ébauche tubulaire métallique conformément à l'invention ; - la
figure 8 est une vue schématique illustrant un premier mode de mise en oeuvre de retape d'hydroformage de l'élément tubulaire métallique formant cavité statorique à partir de l'ébauche préformée à l'étape Illustrée auxfigures 7A ou7B ; et - la
figure 9 est une vue schématique Illustrant un second mode de mise en oeuvre de l'étape d'hydroformage de l'élément tubulaire métallique formant cavité statorique à partir de l'ébauche préformée à l'étape Illustrée auxfigures 7A ou7B . - En se reportant tout d'abord à la
figure 1 , un mode de réalisation possible de stator pour pompe Moineau, désigné dans son ensemble par la référence 1, comprend un carter ou enveloppe rigide externe 2, de forme allongée et de conformation générale tubulaire, à l'intérieur duquel est fixé un élément tubulaire métallique 3 à paroi rigide qui présente intérieurement la forme et les dimensions de la cavité statorique recherchée. - Une vue agrandie en perspective de l'élément 3 est donnée à la
figure 6 , qui donne une représentation plus précise du profil Moineau, à savoir un engrenage hélicoïdal à section transversale quasi-elliptique. A lafigure 6 , l'élément 3 est illustré sur une longueur limitée à un pas P d'enroulement hélicoïdal ; D désigne le diamètre nominal de l'élément tubulaire 3, et E désigne l'excentricité. - L'élément tubulaire 3 formant cavité statorique est constitué en tout métal approprié pour sa constitution mécanique et pour l'application à laquelle la pompe est destinée ; le choix du matériau doit être notamment tel que la cavité statorique métallique et le rotor métallique qui y est enfermé soient constitués en des matériaux métalliques respectifs qui présentent des coefficients de dilatation thermique compatibles afin que toute variation dimensionnelle de l'un soit accompagnée d'une variation dimensionnelle sensiblement identique, en amplitude et en sens, de l'autre afin que soit conservé un jeu positif approximativement constant sur une grande plage de températures pouvant aller jusqu'à 300°C pour les pompes d'extraction pétrolière en puits profond (voirsurce point le document
FR-A-2 756 018 - On pourra, par exemple, constituer l'élément tubulaire 3 formant cavité statorique en bronze de type UE9 ou équivalent; ou bien en acier inoxydable de type 316L ou équivalent.
- Comme Illustré à la
figure 1 ou à lafigure 6 , l'élément tubulaire 3 est à paroi relativement épaisse, c'est-à-dire que l'épaisseur de sa paroi représente quelques pourcents (par exemple 6 %) de son diamètre nominal : l'essentiel est que l'épaisseur de cette paroi doit être suffisante pour conférer une excellente rigidité à l'élément tubulaire 3. - L'élément tubulaire 3 est solidarisé au carter externe de toute façon appropriée propre à l'obtention d'un ensemble rigide et d'axe Indéformable. Dans l'exemple de réalisation représenté à la
figure 1 , des bagues de calage 4 sont interposées entre les extrémités respectives de l'élément tubulaire 3 et du carter et fixées mécaniquement à ceux-ci, notamment par vissage ou préférentiellement par soudure. Un tel assemblage par soudure est montré sur la vue partielle agrandie de lafigure 4 , sur laquelle on a schématisé en 5 le cordon de soudure de la bague 4 sur l'extrémité frontale de l'élément tubulaire 3 et par 6 le cordon de soudure de la bague 4 avec l'extrémité du carter 2 dans laquelle elle est partiellement engagée. - Si l'élément tubulaire 3 ainsi agencé ne présente pas une rigidité longitudinale suffisante, il est nécessaire de prévoir un ou plusieurs support intermédiaire par mise en place de bague(s) de calage lntermédiaire(s).
- Il peut s'avérer intéressant, dans certaines applications d'utilisation des pompes équipées d'un stator conforme à l'invention, de profiter de la présence de l'intervalle libre entre carter et élément tubulaire pour y faire circuler un fluide à des fins spécifiques. Notamment on peut prévoir d'y faire circuler un fluide chaud (vapeur d'eau, eau chaude, par exemple) pour réchauffer - et donc fluidifier - un produit épais/pâteux déplacé par le rotor afin de faciliter ce déplacement (cas d'un pétrole épais pompé en puits profond par exemple). Il convient alors d'équiper le carter avec des orifices, distants axialement, d'entrée 25a et de sortie 25b pour ce fluide, comme illustré à la
figure 1 en tirets. - Il peut également s'avérer nécessaire de renforcer la résistance aux vibrations des organes d'assemblage et à cet effet, on peut avoir recours à la solution illustrée à la
figure 2 , qui consiste à remplir l'intervalle annulaire 7 entre l'élément tubulaire 3 et le carter 2 avec un matériau rigide de remplissage 8 (par exemple une résine thermodurcissable, un ciment, une céramique de ciment, ...) : il en résulte une élimination, ou au moins une atténuation, des vibrations de cet élément 3. - Pour constituer des stators longs (la pression de refoulement d'une pompe Moineau est d'autant plus élevée que le nombre des cavités progressives est élevé, et donc que la pompe est longue), on peut assembler mécaniquement bout à bout plusieurs tronçons de stator individuellement constitués comme indiqué plus haut. A la
figure 3 , on a représenté à titre d'exemple un stator long formé par la solidarisation bout à bout de deux stators 1 tels que celui de lafigure 1 . L'assemblage mécanique des deux stators 1 peut être effectué de toute façon appropriée, notamment par vissage ou de préférence par soudure. Sur la vue agrandie de la zone d'assemblage des deux stators 1 donnée à lafigure 4 , on a désigné par 9 le cordon de soudure de solidarisation des deux stators bout à bout : à cet effet, les faces extrêmes des bagues 4 aboutées sont chanfreinées et le cordon de soudure 9 est déposé dans la gorge annulaire ainsi constituée. - Les dispositions qui viennent d'être exposées en regard des
figures 2 et 3 peuvent avantageusement être combinées pour constituer des stators longs, par exemple tels que ceux utilisés dans les pompes d'extraction du pétrole (qui peuvent, par exemple, présenter des longueurs de l'ordre de 9 mètres). - Pour des stators courts, l'élément métallique tubulaire 3 formant la cavité statorique peut présenter, à lui seul, une rigidité suffisante et la présence d'un carter 2 devient superflue. Comme illustré à la
figure 5 , le stator 1 se compose alors uniquement de l'élément tubulaire 3. - Dans ce cas, pour faciliter l'assemblage dudit élément tubulaire 3 à des éléments adjacents amont et aval, il est souhaitable de prévoir la présence des bagues 4 précitées, solidarisées (soudées ou vissées notamment) aux extrémités de l'élément tubulaire 3 et à l'extérieur de celles-ci, lesdites bagues constituant alors des flasques d'assemblage.
- L'élément tubulaire métallique 3 peut être fabriqué par tous moyens appropriés. Toutefois, sa forme générale complexe ainsi que la précision dimensionnelle et la qualité de l'état de surface requise pour sa face interne qui constitue, à proprement parler, la surface statorique font que les moyens habituels sont trop coûteux et/ou de mise en oeuvre trop longue pour autoriser une fabrication industrielle en série.
- C'est pour surmonter cette difficulté que l'invention préconise un procédé original qui va maintenant être exposé.
- On part d'un tronçon tubulaire métallique cylindrique de révolution, constitué dans le métal souhaité, à paroi rigide (par exemple dont l'épaisseur de paroi peut aller jusqu'à environ 6 % du diamètre extérieur du tube).
- On met tout d'abord en oeuvre une étape préliminaire de préformage au cours de laquelle le tube métallique initial est déformé mécaniquement de manière à préformer une ébauche tubulaire ayant, intérieurement, approximativement la forme et les dimensions de la cavité statorique souhaitée. L'approximation formelle et dimensionnelle peut, par exemple, être de l'ordre de 5%.
- Une solution pour la mise en oeuvre de cette étape de préformage consiste à effectuer un martelage du tube initial, comme Illustré à la
figure 7A , en exerçant une pression diamétrale (flèches 11) sur le tube 12 pris entre deux mâchoires 10 solidaires d'une presse. Les mâchoires 10 sont conformées et mutuellement disposées (par exemple décalées angulairement l'une par rapport à l'autre) de manière à imprimer en creux le tube pour former les creux ou "vallées" des enroulements hélicoïdaux. Les mâchoires 10 procurant des déformations localisées, Il est nécessaire de procéder par passes successives le long du tube qui est déplacé, pas par pas, simultanément axialement (flèche 13) et en rotation (flèche 14) pour suivre le profil de l'hélice Moineau. - Une autre solution, actuellement préférée, consiste à déformer le tube entre au moins deux galets rotatifs, comme illustré à la
figure 7B . Comme dans la solution précédente, le tube 12 est mis en rotation autour de son axe (flèche 14). Simultanément, plusieurs galets 21 (en pratique deux galets 21 diamétralement opposés) sont pressés l'un vers l'autre de manière à écraser localement le tube entre eux : en même temps que le tube tourne sur lui-même, les deux galets 21 tournent autour de leurs axes respectifs 22 (flèches 23) et un déplacement axial relatif est généré entre le tube 12 et le Jeu de galets 21. Dans l'exemple Illustré à lafigure 7B , le tube en rotation n'est pas déplacé axialement, tandis que c'est le jeu de galets tournants 21 qui est déplacé (flèches 24) parallèlement à l'axe du tube. - Une fois l'ébauche préparée, on procède à l'étape finale de mise en forme définitive de l'ébauche 12 pour l'obtention de l'élément tubulaire 3 formant cavité statorique. Conformément à l'invention, cette mise en forme définitive est effectuée par un processus d'hydroformage, c'est-à-dire qu'on soumet une des faces, (intérieure ou extérieure) de l'ébauche 12 à une pression hydraulique, qui, compte tenu de la rigidité de la paroi métallique, doit être élevée et qui s'exerce uniformément en chaque point de la surface, afin que la paroi de l'ébauche, malgré sa rigidité, soit plaquée sur une empreinte de référence qu'elle épouse étroitement et dont elle conserve la forme et les dimensions exactes.
- Selon un premier mode de mise en oeuvre illustré à la
figure 8 , l'ébauche 12 est enfilée sur un noyau 15 ayant, extérieurement, la conformation exacte souhaitée pour la cavité statorique. L'ensemble ébauche/noyau est placé dans une enceinte fermée 16 (enceinte d'hydroformage) qu'on remplit d'un liquide 17. En mettant ce liquide sous pression, on écrase (flèches 18) l'ébauche 12 sur le noyau 15 : on constitue ainsi l'élément tubulaire métallique 3 dont la face intérieure est conformée exactement selon la forme externe du noyau 15 (hydroformage par compression sur un noyau intérieur). - Selon un second mode de mise en oeuvre illustré à la
figure 9 , l'ébauche 12 est introduite dans un moule 19 ayant une cavité 20 conformée selon la forme exacte à donner à l'élément tubulaire 3 devant former cavité statorique. Les extrémités de l'ébauche 12 sont obturées hermétiquement et le volume intérieur de l'ébauche est rempli de liquide 17. En mettant ce liquide sous pression, on écrase (flèches 18) l'ébauche 12 contre la paroi de la cavité de moulage 20 : on constitue ainsi l'élément tubulaire 3 (hydroformage par dilatation contre un moule extérieur). - On notera que, dans le processus d'hydroformage par compression sur un noyau intérieur, c'est la face intérieure de l'élément tubulaire 3 (c'est-à-dire à proprement parler la face définissant la cavité statorique elle-même) qui est mise au contact du noyau et qui épouse directement et étroitement la forme de ce dernier. Par contre, dans le processus d'hydroformage par dilatation contre la paroi d'une cavité de moulage, c'est la face externe de l'élément tubulaire 3 qui est mise au contact direct et étroit de la paroi de moulage dont elle épouse la forme : la face interne de l'élément tubulaire 3 ne reproduit fidèlement cette forme que si l'épaisseur de la paroi de l'élément 3 est parfaitement contrôlée, notamment parfaitement uniforme.
- Le processus d'hydroformage peut, par exemple, être mené dans les conditions qui suivent :
- dimensions intérieures de l'élément tubulaire métallique fini :
- périmètre de la fibre moyenne de l'élément : 204,8 mm
- rétreint lors de la déformation par hydroformage : environ 5 %
- diamètre de la fibre moyenne du tube initial : 68,44 mm
- diamètre intérieur du tube initial ayant une épaisseur de 3,5 mm : 65 mm.
- Le processus d'hydroformage est mené en utilisant, en tant que médium liquide, de l'eau amenée à une pression de l'ordre de 4 x 108 Pa pendant une durée d'environ 10 minutes.
- Une fois l'élément tubulaire 3 achevé, on finit l'assemblage du stator en solidarisant cet élément 3 au carter 2, par exemple au moyen de bagues 4 notamment soudées, et éventuellement avec remplissage de l'intervalle 7 entre l'élément 3 et le carter 2, selon les indications données plus haut en relation avec les
figures 1 à 4 . - Le procédé de fabrication de l'élément 3 conforme à l'invention est apte à être exploité industriellement et permet une fabrication industrielle en série de l'élément tubulaire métallique 3 formant cavité statorique. Les dispositions de l'invention permettent donc d'envisager une fabrication en série et à des coûts acceptables de pompes Moineau équipées de stator à cavité métallique propres à satisfaire les besoins dans au moins certains domaines de l'industrie, et en particulier les pompes dans lesquelles un jeu positif doit être maintenu entre stator et rotor.
Claims (10)
- Procédé de fabrication d'un stator (1) de pompe à engrenage du type pompe Moineau, comportant une cavité statorique d'étendue générale axiale à l'intérieur d'un corps allongé, consistant à fabriquer ladite cavité statorique à partir d'un tube métallique cylindrique de révolution à paroi rigide, caractérisé en ce qu'il comprend les étapes qui suivent :- une étape préliminaire de formage mécanique au cours de laquelle ledit tube métallique cylindrique de révolution est déformé de manière à préformer une ébauche (12) approchant, intérieurement, la forme et les dimensions de la cavité statorique souhaitée,- puis une étape de formage définitif au cours de laquelle on soumet ladite ébauche (12) à un processus d'hydroformage, menée à l'intérieur d'une enceinte d'hydroformage, sur une forme de moulage (15, 19) pour obtenir un élément tubulaire métallique (3) formant cavité statorique ayant sa forme et ses dimensions intérieures exactes telles que soit défini, après assemblage du stator avec un rotor, un jeu positif avec le rotor,- et enfin une étape de montage de l'élément tubulaire métallique (3) formant cavité statorique à l'intérieur d'une enveloppe externe formant carter (2), avec la solidarisation d'au moins les extrémités de l'élément tubulaire métallique (3) à ladite enveloppe (2).
- Procédé selon la revendication 1, caractérisé en ce que l'étape de préformage conduisant à l'ébauche (12) s'effectue par des écrasements externes (11) successifs du tube métallique entre des mors (10) en vis à vis, le tube métallique et les mors étant déplacés de façon relative par pas successifs, axialement (13) et en rotation (14).
- Procédé selon la revendication 1, caractérisé en ce que l'étape de préformage conduisant à l'ébauche (12) s'effectue en déplaçant de façon relative le tube métallique et au moins deux galets de pression disposés symétriquement à son contact.
- Procédé selon la revendication 3, caractérisé en ce que le tube métallique est mis en rotation autour de son axe et les galets sont déplacés parallèlement à l'axe du tube en étant appuyés à force contre le tube.
- Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le processus d'hydroformage est effectué par compression de l'ébauche (12) sur un noyau (15) disposé à l'intérieur de celle-ci.
- Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le processus d'hydroformage est effectué par dilatation de l'ébauche (12) disposée à l'intérieur d'un moule (19).
- Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'on remplit l'espace annulaire (7) entre l'élément tubulaire métallique (3) et l'enveloppe externe (2) avec un matériau de remplissage (8).
- Procédé pour fabriquer un stator de grande longueur, caractérisé en ce qu'on fabrique individuellement au moins deux tronçons de stator (1) selon l'une quelconque des revendications 1 à 7 et en ce qu'on les solidarise (9) bout à bout.
- Stator (1) de pompe à engrenage du type pompe Moineau, comportant une cavité statorique d'étendue générale axiale à l'intérieur d'un corps allongé, caractérisé en ce que la cavité statorique est définie par un élément tubulaire métallique (3) à paroi rigide présentant intérieurement la forme et les dimensions de la cavité statorique telles que, après assemblage du stator avec un rotor, soit défini un jeu positif avec le rotor et obtenu par mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 8, en ce que cet élément tubulaire (3) est solidarisé à un carter extérieur (2) à l'aide de bagues rigides (4) formant des entretoises de calage qui sont interposées entre les extrémités dudit élément tubulaire métallique (3) formant cavité statorique et du carter externe (2) et en ce que l'intervalle annulaire (7) défini entre l'élément tubulaire métallique (3) formant la cavité statorique et le carter (2) est rempli d'un matériau de remplissage (8) propre à renforcer la résistance aux vibrations des moyens de solidarisation entre l'élément tubulaire et le carter.
- Stator selon la revendication 9, caractérisé en ce que le carter est pourvu d'orifices d'entrée (25a) et de sortie (25b) distants axialement pour l'admission et la circulation d'un fluide dans l'intervalle entre le carter (2) et l'élément tubulaire métallique (3).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0108189 | 2001-06-21 | ||
FR0108189A FR2826407B1 (fr) | 2001-06-21 | 2001-06-21 | Stator de pompe moineau et procede pour sa fabrication |
PCT/FR2002/002052 WO2003008807A1 (fr) | 2001-06-21 | 2002-06-14 | Procede de fabrication de stator de pompe moineau et stator ainsi obtenu |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1404973A1 EP1404973A1 (fr) | 2004-04-07 |
EP1404973B1 EP1404973B1 (fr) | 2005-02-02 |
EP1404973B2 true EP1404973B2 (fr) | 2008-05-07 |
Family
ID=8864605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02787097A Expired - Lifetime EP1404973B2 (fr) | 2001-06-21 | 2002-06-14 | Procede de fabrication de stator de pompe moineau et stator ainsi obtenu |
Country Status (8)
Country | Link |
---|---|
US (1) | US6872061B2 (fr) |
EP (1) | EP1404973B2 (fr) |
CN (1) | CN100535443C (fr) |
CA (1) | CA2451462C (fr) |
DE (1) | DE60202873T3 (fr) |
EA (1) | EA005327B1 (fr) |
FR (1) | FR2826407B1 (fr) |
WO (1) | WO2003008807A1 (fr) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2794498B1 (fr) * | 1999-06-07 | 2001-06-29 | Inst Francais Du Petrole | Pompe a cavites progressantes a stator composite et son procede de fabrication |
US7442019B2 (en) | 2002-10-21 | 2008-10-28 | Noetic Engineering Inc. | Stator of a moineau-pump |
DE20302615U1 (de) * | 2003-02-17 | 2004-07-15 | Tower Automotive Gmbh & Co. Kg | Hohlformteil mit geschlossenem Querschnitt und einer Verstärkung |
US20050109502A1 (en) * | 2003-11-20 | 2005-05-26 | Jeremy Buc Slay | Downhole seal element formed from a nanocomposite material |
US7214042B2 (en) * | 2004-09-23 | 2007-05-08 | Moyno, Inc. | Progressing cavity pump with dual material stator |
DE102005028818B3 (de) * | 2005-06-22 | 2006-08-24 | Artemis Kautschuk- Und Kunststoff-Technik Gmbh | Stator für eine Exzenterschneckenpumpe und Verfahren zu seiner Herstellung |
CN101512046B (zh) | 2007-01-24 | 2011-08-10 | 哈利伯顿能源服务公司 | 用于螺杆装置的电铸定子管 |
US8257633B2 (en) * | 2007-04-27 | 2012-09-04 | Schlumberger Technology Corporation | Rotor of progressive cavity apparatus and method of forming |
US8182252B2 (en) * | 2007-10-30 | 2012-05-22 | Moyno, Inc. | Progressing cavity pump with split stator |
US8215014B2 (en) | 2007-10-31 | 2012-07-10 | Moyno, Inc. | Method for making a stator |
US20090152009A1 (en) * | 2007-12-18 | 2009-06-18 | Halliburton Energy Services, Inc., A Delaware Corporation | Nano particle reinforced polymer element for stator and rotor assembly |
US8523545B2 (en) | 2009-12-21 | 2013-09-03 | Baker Hughes Incorporated | Stator to housing lock in a progressing cavity pump |
CN101892982B (zh) * | 2010-06-28 | 2012-06-20 | 中国石油大学(北京) | 单螺杆金属螺杆泵定子及其内螺旋面加工方法 |
US9309767B2 (en) | 2010-08-16 | 2016-04-12 | National Oilwell Varco, L.P. | Reinforced stators and fabrication methods |
US8944789B2 (en) | 2010-12-10 | 2015-02-03 | National Oilwell Varco, L.P. | Enhanced elastomeric stator insert via reinforcing agent distribution and orientation |
CN102062089A (zh) * | 2010-12-24 | 2011-05-18 | 新疆华易石油工程技术有限公司 | 一种全金属螺杆泵定子的加工方法 |
MX2015018041A (es) * | 2013-06-28 | 2016-06-24 | Colormatrix Holdings Inc | Materiales polimericos. |
DE102013107884A1 (de) | 2013-07-23 | 2015-01-29 | Ralf Daunheimer | Vorrichtung zur materialabtragenden Bearbeitung der Innenwandung eines rohrförmig ausgebildeten Hohlkörpers |
AU2015219099B2 (en) | 2014-02-18 | 2018-08-02 | Reme Technologies, Llc | Graphene enhanced elastomeric stator |
FR3020097B1 (fr) | 2014-04-22 | 2019-07-19 | Pcm Technologies | Pompe a cavites progressantes |
DE102014116327A1 (de) * | 2014-11-10 | 2016-05-12 | Netzsch Pumpen & Systeme Gmbh | Verfahren zur Herstellung eines gewendelten Stators und Vorrichtung zur Herstellung eines gewendelten Stators |
CN104707907B (zh) * | 2015-02-09 | 2017-04-12 | 中国石油天然气股份有限公司 | 将中空管加工成螺杆泵定子的模具及其成型方法 |
CN104907383A (zh) * | 2015-06-25 | 2015-09-16 | 王海燕 | 一种等壁厚螺杆泵定子管制造方法 |
CN105574274B (zh) * | 2015-12-18 | 2018-08-03 | 武昌船舶重工集团有限公司 | 一种大中型卧式离心铸型金属筒套截面中拉应力计算方法 |
US10920493B2 (en) * | 2017-02-21 | 2021-02-16 | Baker Hughes, A Ge Company, Llc | Method of forming stators for downhole motors |
DE102019126675A1 (de) * | 2019-10-02 | 2021-04-08 | Netzsch Pumpen & Systeme Gmbh | Exzenterschneckenpumpe in modularer bauweise |
GB2606231B (en) * | 2021-04-30 | 2023-09-27 | Edwards Ltd | Holweck drag pump and method of manufacture |
CN113399484B (zh) * | 2021-05-11 | 2023-03-28 | 广东斯坦德流体系统有限公司 | 一种螺杆泵衬套成型机 |
FR3136019B1 (fr) | 2022-05-25 | 2024-05-10 | Pcm Tech | Pompe à cavités progressives et dispositif de pompage |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3139035A (en) * | 1960-10-24 | 1964-06-30 | Walter J O'connor | Cavity pump mechanism |
US3457762A (en) * | 1967-04-28 | 1969-07-29 | Arma Corp | Compression method for making a tubular product |
AU491586B2 (en) * | 1975-01-28 | 1976-07-29 | Sigma Lutin | Improvements relating to stators for single-spindle pumps |
ZA79440B (en) * | 1978-02-10 | 1980-09-24 | Oakes Ltd E T | Drive arrangement |
FR2756018B1 (fr) | 1996-11-21 | 1999-01-22 | Pcm Pompes | Pompe a engrenages helicoidaux |
DE19804259A1 (de) * | 1998-02-04 | 1999-08-12 | Artemis Kautschuk Kunststoff | Elastomerstator für Exzenterschneckenpumpen |
DE19804260C2 (de) * | 1998-02-04 | 2003-04-10 | Artemis Kautschuk Kunststoff | Elastomerstator für eine Exzenterschneckenpumpe |
US6309195B1 (en) * | 1998-06-05 | 2001-10-30 | Halliburton Energy Services, Inc. | Internally profiled stator tube |
DE19827101A1 (de) * | 1998-06-18 | 1999-12-23 | Artemis Kautschuk Kunststoff | Nach dem Moineau-Prinzip arbeitende Maschine für den Einsatz in Tiefbohrungen |
US6241494B1 (en) * | 1998-09-18 | 2001-06-05 | Schlumberger Technology Company | Non-elastomeric stator and downhole drilling motors incorporating same |
FR2794498B1 (fr) * | 1999-06-07 | 2001-06-29 | Inst Francais Du Petrole | Pompe a cavites progressantes a stator composite et son procede de fabrication |
US6497030B1 (en) * | 1999-08-31 | 2002-12-24 | Dana Corporation | Method of manufacturing a lead screw and sleeve mechanism using a hydroforming process |
-
2001
- 2001-06-21 FR FR0108189A patent/FR2826407B1/fr not_active Expired - Fee Related
-
2002
- 2002-06-14 DE DE60202873T patent/DE60202873T3/de not_active Expired - Lifetime
- 2002-06-14 CA CA002451462A patent/CA2451462C/fr not_active Expired - Lifetime
- 2002-06-14 EP EP02787097A patent/EP1404973B2/fr not_active Expired - Lifetime
- 2002-06-14 WO PCT/FR2002/002052 patent/WO2003008807A1/fr not_active Application Discontinuation
- 2002-06-14 CN CN02812368.9A patent/CN100535443C/zh not_active Expired - Fee Related
- 2002-06-14 US US10/478,193 patent/US6872061B2/en not_active Expired - Lifetime
- 2002-06-14 EA EA200301294A patent/EA005327B1/ru not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US6872061B2 (en) | 2005-03-29 |
CA2451462C (fr) | 2008-05-27 |
FR2826407B1 (fr) | 2004-04-16 |
FR2826407A1 (fr) | 2002-12-27 |
US20040126257A1 (en) | 2004-07-01 |
WO2003008807A1 (fr) | 2003-01-30 |
EA200301294A1 (ru) | 2004-06-24 |
EP1404973A1 (fr) | 2004-04-07 |
EA005327B1 (ru) | 2005-02-24 |
DE60202873D1 (de) | 2005-03-10 |
DE60202873T2 (de) | 2006-04-13 |
EP1404973B1 (fr) | 2005-02-02 |
DE60202873T3 (de) | 2009-07-09 |
CN1518639A (zh) | 2004-08-04 |
CA2451462A1 (fr) | 2003-01-30 |
CN100535443C (zh) | 2009-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1404973B2 (fr) | Procede de fabrication de stator de pompe moineau et stator ainsi obtenu | |
EP0461979B1 (fr) | Réservoir pour le stockage d'un fluide sous pression et son procédé de fabrication | |
EP0488858A1 (fr) | Procédé de fabrication de paroi de chambre de combustion, notamment pour moteur-fusée, et chambre de combustion obtenue par ce procédé | |
OA12754A (fr) | Procédé de réalisation d'un joint tubulaire étanche expansion plastique. | |
FR2536119A1 (fr) | Assemblage d'un element rotatif en ceramique avec un element rotatif metallique pour turbo-machines, notamment pour propulseur a turbine a gaz et dispositif de mise en oeuvre | |
FR2794498A1 (fr) | Pompe a cavites progressantes a stator composite et son procede de fabrication | |
US9163629B2 (en) | Controlled thickness resilient material lined stator and method of forming | |
FR2523490A1 (fr) | Procede pour fixer axialement une roue dentee metallique sur un arbre metallique et element ainsi produit | |
WO2021219526A1 (fr) | Procédé de fabrication par moulage de pièces en matériau composite allongées et creuses, dispositif de moule pour sa mise en œuvre et pièces obtenues | |
WO1987000457A1 (fr) | Outil d'expansion hydraulique pour element tubulaire | |
FR2862354A1 (fr) | Pompe a cylindree variable, en particulier pompe a palettes | |
RU2340793C2 (ru) | Эксцентриковый червячный насос с эрозионно-стойким ротором | |
EP3595842B1 (fr) | Procédé de fabrication de pièces en alliage métallique de forme complexe | |
EP4214044B1 (fr) | Moule pour la fabrication d'un carter de soufflante de turbomachine en materiau composite a dilatation differentielle | |
FR2957973A1 (fr) | Tube de degazage d'un turboreacteur, procede de montage d'un tel tube et turboreacteur avec un tel tube | |
EP0879961A1 (fr) | Pompe à piston alternatif avec soufflet d'étanchéité | |
FR2498006A1 (fr) | Procede de fabrication de cylindres pour anodes de tubes electroniques | |
WO2018029417A1 (fr) | Volant d'inertie en béton et enveloppe filaire de précontrainte et son procédé de fabrication | |
EP4166881B1 (fr) | Module pour la fabrication d'un caloduc a pompe capillaire a rainures réentrantes | |
CH350433A (fr) | Elément creux formé d'une matière filamenteuse et procédé pour sa fabrication | |
FR2957974A1 (fr) | Tube de degazage d'un turboreacteur, procede de montage d'un tel tube et turboreacteur avec un tel tube | |
EP0655968B1 (fr) | Appareil de production, par extrusion, en continu, de tubes composites renforces par un insert | |
FR2816878A1 (fr) | Procede de fabrication d'un tube spirale souple et installation mettant en oeuvre ledit procede | |
FR3143709A1 (fr) | Réservoir modulaire pour gaz sous pression | |
FR2471835A1 (fr) | Procede de fabrication de bagues polymetalliques et bagues polymetalliques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20031217 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60202873 Country of ref document: DE Date of ref document: 20050310 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050517 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: ARTEMIS KAUTSCHUK- UND KUNSTSTOFF-TECHNIK GMBH Effective date: 20051102 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: ARTEMIS KAUTSCHUK- UND KUNSTSTOFF-TECHNIK GMBH Effective date: 20051102 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: PCM |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20080507 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): DE FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080808 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: DE Effective date: 20090316 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8570 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20150305 AND 20150311 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: PCM TECHNOLOGIES, FR Effective date: 20150325 Ref country code: FR Ref legal event code: CA Effective date: 20150325 Ref country code: FR Ref legal event code: CD Owner name: PCM TECHNOLOGIES, FR Effective date: 20150325 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60202873 Country of ref document: DE Representative=s name: KLINGSEISEN & PARTNER, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 60202873 Country of ref document: DE Owner name: PCM TECHNOLOGIES, FR Free format text: FORMER OWNER: PCM POMPES, VANVES, FR Effective date: 20150515 Ref country code: DE Ref legal event code: R082 Ref document number: 60202873 Country of ref document: DE Representative=s name: KLINGSEISEN & PARTNER, DE Effective date: 20150515 Ref country code: DE Ref legal event code: R082 Ref document number: 60202873 Country of ref document: DE Representative=s name: KLINGSEISEN, RINGS & PARTNER PATENTANWAELTE, DE Effective date: 20150515 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20170619 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180614 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210616 Year of fee payment: 20 Ref country code: FR Payment date: 20210422 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20210622 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60202873 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20220613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20220613 |