EP1404520A2 - Mehrschichtsysteme enthaltend antistatische formmassen - Google Patents

Mehrschichtsysteme enthaltend antistatische formmassen

Info

Publication number
EP1404520A2
EP1404520A2 EP02735232A EP02735232A EP1404520A2 EP 1404520 A2 EP1404520 A2 EP 1404520A2 EP 02735232 A EP02735232 A EP 02735232A EP 02735232 A EP02735232 A EP 02735232A EP 1404520 A2 EP1404520 A2 EP 1404520A2
Authority
EP
European Patent Office
Prior art keywords
acid
antistatic
ion
hydroxyphenyl
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02735232A
Other languages
English (en)
French (fr)
Inventor
Rüdiger Gorny
Siegfried Anders
Wolfgang Nising
Martin Döbler
Jürgen Röhner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1404520A2 publication Critical patent/EP1404520A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2325/00Polymers of vinyl-aromatic compounds, e.g. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the invention relates to multilayer systems made of thermoplastic molding compositions, in particular sheets, which have a lower tendency to accumulate dust and do not become electrostatically charged during manufacture and use.
  • Thermoplastic extruded molded articles such as Polycarbonate sheets are known, for example, from EP A 0 110 221 and are provided for a large number of applications. They are produced by extrusion and, if appropriate, coextrusion of the thermoplastics.
  • JP-A 06 228 420 describes aliphatic sulfonic acid ammonium salts in polycarbonate as an antistatic. However, these compounds lead to in the polycarbonate melt
  • JP-A 62 230 835 describes the addition of 4% nonylphenylsulfonic acid tetrabutylphosphonium in polycarbonate.
  • WO-A 01/12713 describes the use of tetraethylammonium perfluorooctane sulfonate as an antistatic in polycarbonate.
  • a disadvantage of this compound is the appearance of a yellow color after the
  • Extruded molded parts from thermoplastics such as polycarbonate sheets are mainly used as clear-transparent, translucent or opaque colored sheets.
  • the sheets colored in this way are produced by adding color masterbatches to undyed or lightly blued polycarbonate during the extrusion.
  • the maximum usable concentration of the antistatic in the polycarbonate matrix is limited by the molecular weight reduction of the polycarbonate caused by the antistatic. In the case of colored plates in particular, the color is then thinned by adding the antistatic masterbatch.
  • the invention is therefore based on the object of providing moldings and extrudates from antistatic thermoplastic molding compositions whose optical quality, but also their other properties, such as e.g. their mechanical properties and heat resistance do not differ significantly from non-antistatic molding compounds and bodies.
  • thermoplastic molding compositions which contain at least one special antistatic.
  • This layer system is characterized in that it contains at least two layers and at least one of these layers contains at least one thermoplastic molding composition according to the invention, containing at least one special antistatic.
  • the layer system consists of at least two layers of one or different thermoplastics, at least one layer containing a thermoplastic which contains at least one of the special antistatic agents according to the invention.
  • the thickness of the entire layer system is preferably 21 ⁇ m to 10 cm, particularly preferably 40 ⁇ m to 15 mm and very particularly preferably 100 ⁇ m to 12 mm.
  • the thickness of the individual layers of the layer system is preferably 1 ⁇ m to 10 cm.
  • the thickness of the layer or layers which the antistatic contains is preferably between 1 ⁇ m and 200 ⁇ m, preferably 20 ⁇ m to 100 ⁇ m, particularly preferably 40 ⁇ m to 60 ⁇ m.
  • the thickness of the layer or layers which the antistatic according to the invention does not contain is between 20 ⁇ m and 10 cm.
  • the preferred thickness is between 20 and 600 ⁇ m, in the case of solid sheets between 600 ⁇ m and 15 mm and in the case of multi-wall sheets between 0.4 and 10 cm.
  • thermoplastic molding compositions without the antistatic according to the invention A layer containing thermoplastic molding compositions without the antistatic according to the invention
  • thermoplastic molding composition A layer containing the antistatic thermoplastic molding composition according to the invention. - A layer containing thermoplastic molding compositions without the antistatic agent according to the invention
  • a layer containing the antistatic thermoplastic molding composition according to the invention is a layer containing the antistatic thermoplastic molding composition according to the invention.
  • the individual layer systems can furthermore each independently further
  • additives such as UV absorbers, thermal stabilizers, antioxidants, mold release agents medium, flame retardant additives, dyes, pigments, brighteners, glass fibers, foaming agents, nucleating agents, plasticizers, processing aids, fillers or other additives customary in the respective thermoplastics in amounts between 0.001 and 30% by weight.
  • additives suitable and their amount such as, for example, Gumbleter; Müller, Plastics Additives, Hanser Verlag, Kunststoff 1996 or described in EP 0 839 623 AI or EP 0 500 496 AI
  • the salts of type (I) are suitable as antistatic agents in the sense of the invention.
  • R perfluorinated linear or branched carbon chains with 1 to 30 carbon atoms, preferably 4 to 8 carbon atoms;
  • A is a direct bond or an aromatic nucleus, for example and preferably fluorinated or non-fluorinated o-, m- or p-phenylene;
  • R ⁇ R ", R" ⁇ R "" each independently of one another or unsubstituted
  • Particularly preferred quaternary ammonium salts in the sense of the invention are:
  • Cyclohexyldiethylmethylammoniumperfluoroctansulfonat Cyclohexyltrimethylammonium perfluorobutyl sulfonate, cyclohexyltrimethylammonium perfluorooctane sulfonate,
  • each of the salts mentioned is also preferably suitable.
  • the perfluoroalkylsulfonic acid ammonium salts are known or can be prepared by known methods.
  • the salts of the sulfonic acids can be prepared by combining equimolar amounts of the free sulfonic acid with the hydroxy form of the corresponding cation in water at room temperature and concentrating the solution.
  • Other manufacturing processes are described e.g. in DE A 19
  • the perfluoroalkylsulfonic acid ammonium salts are preferably added to the plastics in amounts of 0.001 to 2% by weight, preferably 0.1 to 1% by weight.
  • Thermoplastics suitable for the purposes of the invention are in particular transparent thermoplastics. Polymers of ethylenically unsaturated monomers and / or polycondensates of bifunctional reactive compounds are preferred.
  • plastics are polycarbonates or copolycarbonates based on bisphenols, the poly- or copolyacrylates and poly- or copolymethacrylates such as by way of example and preferably polymethyl methacrylate, poly- or copolymers with styrene such as by way of example and preferably transparent polystyrene or polystyrene-acrylonitrile (SAN), transparent thermoplastic Polyurethanes, as well as polyolefins, such as exemplary and preferably transparent types of polypropylene or poly- olefins based on cyclic olefins (eg TOPAS ® , Hoechst), poly- or copolycondensates of terephthalic acid with or without isophthalic acid, with ethylene glycol and / or cyclohexanedimethanol such as by way of example and preferably poly- or copolyethylene terephthalate (PET or CoPET) or cyclohexanedim
  • Polycarbonates or copolycarbonates in particular non-halogenated polycarbonates and / or copolycarbonates with weight-average molecular weights M w of from 5000 to 100,000, preferably from 10,000 to 50,000, particularly preferably from 15,000 to 40,000, are particularly preferred.
  • Homopolycarbonates, copolycarbonates and thermoplastic polyester carbonates are particularly suitable. They have weight average molecular weights M w of 18,000 to 40,000, preferably from 26,000 to 36,000 and in particular from 28,000 to 35,000, determined by measuring the rel. Solution viscosity in dichloromethane or in
  • the melt viscosity of the molding compositions containing the antistatic should preferably be lower than the melt viscosity of the molding compositions of the others
  • Compounds which are preferably to be used as starting compounds are bisphenols of the general formula HO-Z-OH, in which Z is a divalent organic radical having 6 to 30 carbon atoms and containing one or more aromatic groups.
  • Examples of such compounds are bisphenols which belong to the group of dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, indane bisphenols, bis (hydroxyphenyl) ethers, bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) ketones and ⁇ , ⁇ '-bis (hydroxy- phenyl) diisopropylbenzenes belong.
  • Particularly preferred bisphenols belonging to the abovementioned connecting groups are bisphenol-A (2,2-bis (4-hydroxyphenyl) propane), tetraalkylbisphenol-A, 4,4- (meta-phenylenediisopropyl) diphenol (bisphenol M), 4,4- (para-phenylene-diisopropyl) diphenol, l, l-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BP-TMC) and optionally their mixtures.
  • bisphenol-A 2,2-bis (4-hydroxyphenyl) propane
  • bisphenol M 4,4- (meta-phenylenediisopropyl) diphenol
  • BP-TMC 4,4- (para-phenylene-diisopropyl) diphenol
  • BP-TMC l-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
  • Homopolycarbonates based on bisphenol-A and copolycarbonates based on the monomers bisphenol-A and l, l-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane are particularly preferred.
  • the bisphenol compounds to be used according to the invention are reacted with carbonic acid compounds, in particular phosgene, or diphenyl carbonate or dimethyl carbonate in the melt transesterification process.
  • Polyester carbonates are obtained by reacting the bisphenols already mentioned, at least one aromatic dicarboxylic acid and optionally carbonic acid equivalents.
  • aromatic dicarboxylic acids are, for example, phthalic acid, terephthalic acid, isophthalic acid, 3,3'- or 4,4'-diphenyldicarboxylic acid and
  • Benzophenone A part, up to 80 mol%, preferably from 20 to 50 mol% of the carbonate groups in the polycarbonates can be replaced by aromatic dicarboxylic acid ester groups.
  • Inert organic solvents used in the interfacial process are, for example, dichloromethane, the various dichloroethanes and chloropropane compounds, carbon tetrachloride, trichloromethane, chlorobenzene and chlorotoluene; chlorobenzene or dichloromethane or mixtures of dichloromethane and chlorobenzene are preferably used.
  • phase interface reaction can be accelerated by catalysts such as tertiary amines, in particular N-alkylpiperidines or onium salts.
  • catalysts such as tertiary amines, in particular N-alkylpiperidines or onium salts.
  • Tributylamine, triethylamine and N-ethylpiperidine are preferably used.
  • the catalysts mentioned in DE A 42 38 123 are used.
  • branching agents allow the polycarbonates to be deliberately and controlled branched.
  • Some suitable branching agents are: phloroglucin, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -hepten-2; 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) heptane; 1,3,5-tri- (4-hydroxyphenyl) benzene; 1,1,1-tri- (4-hydroxyphenyl) ethane; Tri- (4-hydroxyphenyl) -phenylmethane; 2,2-bis- [4,4-bis- (4-hydroxyphenyl) cyclohexyl] propane; 2,4-bis (4-hydroxyphenyl-isopropyl) -phenol; 2,6-bis (2-hydroxy-5'-methylbenzyl) -4-methylphenol; 2- (4-hydroxyphenyl) -2- (2,4-dihydroxyphenyl) propane; Hexa- (4- (4-hydroxyphenyl-isoprop
  • phenols such as phenol, alkylphenols such as cresol and 4-tert-butylphenol, chlorophenol, bromophenol, cumylphenol or mixtures thereof are preferably used in amounts of 1-20 mol%, preferably 2-10 mol% per mol of bisphenol. Phenol, 4-tert-butylphenol and cumylphenol are preferred.
  • Chain terminators and branching agents can be added to the syntheses separately or together with the bisphenol.
  • Additives suitable as UV absorbers in the sense of the invention are e.g. in
  • EP A 0 839 623 page 23f
  • EP A 0 500 496 page 2, connection I, and page 6f, chapter 2).
  • UV absorbers which are particularly suitable according to the invention for the molding compositions to be used are those compounds which, owing to their absorption capacity below 400 nm, are able to effectively protect polycarbonate from UV light.
  • Suitable UV absorbers are in particular the compounds of the formula (I) described in WO 99/05205
  • R 1 and R 2 are identical or different and are H, halogen, C ⁇ -C ⁇ 0 alkyl, C5-C10-cycloalkyl, C 7 -C ⁇ 3 aralkyl, C 6 -C ⁇ 4 aryl, -OR 5 or - ( CO) -OR 5 mean with R 5 - H or CC 4 alkyl,
  • R 3 and R 4 are likewise the same or different and are H, CrC-alkyl, C 5 -C 6 - cycloalkyl, benzyl or C 6 -C ⁇ 4 -aryl,
  • n 1, 2, 3 or 4,
  • R 1 , R 2 , m and n have the meaning given for formula (II),
  • p is also an integer from 0 to 3
  • q is an integer from 1 to 10
  • R 3 and R 4 have the meaning given for formula (II).
  • Represent triazines such as 2,4-bis (2,4-dimethylphenyl) -6- (2-hydroxy-4-n-octyloxy- ⁇ henyl) -l, 3,5-triazine (CYASORB® UV-1164) or 2 - (4,6-Diphenyl-l, 3,5-triazin-2-yl) -5- (hexyl) oxy-phenol (Tinuvin® 1577).
  • a particularly preferred UV absorber is 2,2-methylenebis (4- (1, 1, 3, 3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), which is commercially available under the name Tinuvin® 360 or Adeka Stab ® LA 31 is sold.
  • the UN absorbers mentioned in EP 0500496 AI are also suitable.
  • the UV absorber Uvinul 3030 from BASF AG obtained in WO 96/15102, Example 1 can also be used.
  • UV absorbers suitable according to the invention are hydroxy-benzotriazoles, such as
  • the UV absorbers are preferred in amounts of in each case between 0.001% by weight and 20% by weight, preferably 0.01% by weight and 1% by weight, preferably between 0.1-1% by weight and very particularly preferably between 0.2 and 0.6 wt .-% used.
  • preferably 2 to 11% by weight, preferably 3 to 10% by weight and very particularly preferably between 3 and 7% by weight are used.
  • Suitable stabilizers for the polycarbonates for the molding compositions according to the invention are, for example, phosphines, phosphites or Si-containing stabilizers and further compounds described in EP-A 0 839 623 (page 21, chapter 1).
  • Examples include triphenyl phosphites, diphenylalkyl phosphites, phenyl dialkyl phosphites, tris (nonylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenylene diphosponite and triaryl phosphite.
  • Triphenylphosphine and tris (2,4-di-tert-butylphenyl) phosphite are particularly preferred.
  • the molding composition according to the invention can also contain 0.01 to 0.5% by weight of the (partial) esters of monohydric to hexavalent alcohols, in particular glycerol, pentaerythritol or Guerbet alcohols.
  • Monohydric alcohols are, for example, stearyl alcohol, palmityl alcohol and Guerbet alcohols.
  • a dihydric alcohol is glycol.
  • a trihydric alcohol is, for example, glycerin.
  • Tetravalent alcohols are, for example, pentaerythritol and mesoerythritol.
  • pentavalent alcohols are arabite, ribite and xylitol.
  • Hexahydric alcohols are, for example, mannitol, glucitol (sorbitol) and dulcitol.
  • the esters are the monoesters, diesters, triesters, tetraesters, optionally pentaesters and hexaesters or their mixtures, in particular statistical mixtures, of saturated, aliphatic C 10 to C 36 monocarboxylic acids and optionally hydroxy monocarboxylic acids, preferably with saturated, aliphatic C 14 to C. 3 -monocarboxylic acids and optionally hydroxy-monocarboxylic acids.
  • the commercially available fatty acid esters in particular pentaerythritol and glycerol, may contain ⁇ 60% different partial esters due to the manufacturing process
  • Saturated, aliphatic monocarboxylic acids with 10 to 36 carbon atoms are, for example, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid,
  • Hydroxystearic acid Hydroxystearic acid, arachic acid, behenic acid, lignoceric acid, cerotinic acid and montanic acids.
  • Preferred saturated, aliphatic monocarboxylic acids with 14 to 22 carbon atoms are, for example, myristic acid, palmitic acid, stearic acid, hydroxystearic acid,
  • Saturated, aliphatic monocarboxylic acids such as palmitic acid, stearic acid and hydroxystearic acid are particularly preferred.
  • saturated, aliphatic to C 36 -carboxylic acids and the fatty acid esters to be used according to the invention are either known as such or can be prepared by processes known from the literature.
  • pentaerythritol fatty acid esters are those of the particularly preferred monocarboxylic acids mentioned above. Esters of pentaerythritol and glycerol with stearic acid and palmitic acid are particularly preferred.
  • Esters of Guerbet alcohols or of glycerol with stearic acid and palmitic acid and optionally hydroxystearic acid are also particularly preferred.
  • the molding composition according to the invention can furthermore contain organic dyes, inorganic color pigments, fluorescent dyes and particularly preferably optical brighteners.
  • All starting materials and solvents used for the synthesis of the molding compositions according to the invention which can be contaminated from their production and storage with corresponding impurities, such as particles, gel bodies, ions, solvent residues, monomer or oligomer residues or other compounds should be used as cleanly as possible.
  • the individual constituents can be mixed in a known manner both successively and simultaneously, both at room temperature and at elevated temperature.
  • the additives are incorporated into the molding compositions according to the invention, in particular the antistatic agents and UN absorbers and other additives mentioned above, in a known manner by mixing polymer granules with the additives at temperatures of about 200 to 350 ° C. in conventional units such as internal kneaders, single-screw extruders and twin-screw extruders, for example by melt compounding or melt extrusion or by mixing the solutions of the polymer with solutions of the additives in suitable organic solvents such as CH 2 Cl 2 , haloalkanes, halogen aromatics, chlorobenzene and xylenes and subsequent evaporation of the solvents in a known manner.
  • suitable organic solvents such as CH 2 Cl 2 , haloalkanes, halogen aromatics, chlorobenzene and xylenes and subsequent evaporation of the solvents in a known manner.
  • the proportion of additives in the molding composition can be varied within wide limits and depends on the desired properties of the molding composition.
  • the total proportion of additives in the molding composition is approximately up to 30% by weight, preferably 0.1 to 12% by weight, based on the weight of the molding composition.
  • the invention thus relates to moldings and extrudates which have been produced using the molding compositions according to the invention.
  • the molding compounds can be used to produce foils, solid plastic sheets and multi-skin sheets (e.g. double skin sheets, triple-skin sheets etc.) and corrugated sheets.
  • the layer systems according to the invention also include those which have an additional cover layer on one or both sides with the molding compositions according to the invention with an increased UV absorber content.
  • the layer systems according to the invention allow the production of shaped bodies and extrudates on which no dust figures are deposited over time, in particular of plates and shaped bodies made from them, e.g. Glazing for winter gardens, bus stops, machine covers, billboards, signs,
  • Extruders for producing the core layer and cover layer (s) are connected to a coextrusion adapter.
  • the adapter is constructed in such a way that the melt forming the cover layers) is adhered to the melt of the core layer as a thin layer.
  • the multilayer melt strand thus produced is then brought into the desired shape (multi-wall or solid sheet) in the nozzle connected subsequently.
  • the melt is then cooled in a known manner by means of calendering (solid plate) or vacuum calibration (multi-wall plate) under controlled conditions and then cut to length. If necessary, a tempering furnace can be installed after the calibration to eliminate stresses.
  • the adapter attached in front of the nozzle the nozzle itself can also be designed such that the melts are brought together there.
  • Makrolon ® 2808 linear bisphenol-A polycarbonate from Bayer AG, Leverkusen with a melt flow index (MFR) of 10 g / 10 min at 300 ° C and 1.2 kg load
  • MFR melt flow index
  • 2- (2nd '-Hydroxy-3' - (2-butyl) -5'- (tert-butyl) phenyl) benzotriazole 0.1% octadecyl-3- (3 ', 5'-di-tert-butyl-4' -hydroxyphenyl) propionate and 1.5% dimethyldiisopropylammonium perfluorobutylsulfonate (Ex. 1) compounded as described below.
  • Base material was Makrolon ® 3103 (linear bisphenol-A polycarbonate of Bayer AG Leverkusen having a melt flow rate (MFR) of 6.5 g / 10 min at 300 ° C and 1, 2 kg load) are used. This was coextruded with those in Table 1 specified compounds based on Makrolon ® 3103 (linear bisphenol-A polycarbonate from Bayer AG, Leverkusen with a melt flow index (MFR) of 6.5 g / 10 min at 300 ° C and 1.2 kg load).
  • MFR melt flow rate
  • the compounds were produced as follows: at 310 ° C. and 80 rpm, the UV absorber and the antistatic according to Table 1 were incorporated into the polycarbonate on a twin-screw extruder (ZSK 32, Werner & Pfleiderer) and the extrudate was then granulated.
  • the thickness of the coex layer is approximately 50 ⁇ m in each case.
  • Rectangular sheets are then sprayed from this granulate at a melt temperature of 300 ° C (155 mm x 75 mm x 2 mm) and subjected to the dust test.
  • the facility consists of
  • the polycarbonate granulate of the base material is fed to the hopper of the main extruder, the coextrusion material to that of the coextruder.
  • the respective material is melted and conveyed in the respective plasticizing system cylinder / screw. Both material melts are brought together in the coex adapter and form a bond between the rollers after leaving the nozzle and cooling.
  • the other facilities are used for transport, surface protection and cutting the extruded sheets to length.
  • the dust-repellent effect was tested as follows and evaluated with a standard evaluation: In order to investigate the dust accumulation in the laboratory test, the sprayed plates are exposed to an atmosphere with whirled up dust. For this purpose, a 2-1 beaker with an 80 mm long magnetic stirring bar with a triangular cross section with dust (coal dust / 20 g activated carbon, Riedel-de
  • the desired combination of dust repellency and little impairment of the optical properties can only be achieved with the layer systems according to the invention. Furthermore, the layer systems according to the invention show excellent weather stability.

Abstract

Die Erfindung betrifft Schichtsysteme aus thermoplastische Formmassen und mit diesen Schichtsystemen hergestellte Gegenstände, insbesondere Platten, welche eine geringere Tendenz besitzen Staub anzulagern und sich beim Herstellen und Gebrauch nicht elektrostatisch aufladen.

Description

Mehrschichtsysteme enthaltend antistatische Formmassen
Die Erfindung betrifft Mehrschichtsysteme aus thermoplastische Formmassen, insbesondere Platten, welche eine geringere Tendenz besitzen Staub anzulagern und sich beim Herstellen und Gebrauch nicht elektrostatisch aufladen.
Thermoplastische extrudierte Formkörper, wie z.B. Polycarbonatplatten, sind bekannt beispielsweise aus der EP A 0 110 221 und werden für eine Vielzahl von Anwendungszwecken bereitgestellt. Die Herstellung erfolgt durch Extrusion und gegebenenfalls Coextrusion der Thermoplasten.
Bei Kunststoffformkörpern im Allgemeinen und bei Polycarbonatplatten im Speziellen ist die Anlagerung von Staub unter Ausbildung von Staubfiguren ein weit verbreitetes Problem. Siehe hierzu z.B. Saechtling, Kunststoff-Taschenbuch, 26. Ausgabe, Hanser Verlag, 1995, München, S. 140 f. Sie stammen von einer elektrostatischen Aufladung der Formkörper bei der Herstellung. Besonders störend sind Staubablagerungen bei transparenten, transluzenten und in hellen oder leuchtenden Farben eingefärbten thermoplastischen Formkörpern. Ferner kann durch Staubanlagerung die Transparenz vermindert werden und dadurch die Funktion beeinträchtigt werden. Schließlich können elektrostatische Aufladungen an sich eine Gefährdung gerade beim Umgang mit brennbaren Stoffen oder entzündlichen Stäuben darstellen.
Eine bekannte Methode elektrostatische Aufladung und damit die Staubanlagerung auf Kunststoffkörpern zu vermindern ist der Einsatz von Antistatika. In der Literatur sind für Thermoplaste Antistatika beschrieben (siehe z.B. Gächter, Müller, Plastic
Additives, Hanser Verlag, München, 1996, S. 749 ff), welche die Staubanlagerung einschränken. Diese Antistatika verbessern die elektrische Leitfähigkeit der Kunststoffformmassen und leiten so Oberflächenladungen, welche sich bei der Herstellung und beim Gebrauch bilden, ab. Somit werden Staubpartikel weniger angezogen und folglich gibt es eine geringere Staubanlagerung. Bei den Antistatika unterscheidet man im allgemeinen zwischen internen und externen Antistatika. Ein externes Antistatikum wird nach der Verarbeitung auf den Kunststoffformkörper aufgetragen, ein internes Antistatikum wird als Additiv den Kunststoffformmassen zugesetzt. Aus wirtschaftlichen Gründen ist die Verwendung von internen Antistatika meist wünschenswert, da keine weiteren Arbeitsschritte zur
Auftragung des Antistatikums nach der Verarbeitung nötig ist. In der Literatur sind bislang wenige interne Antistatika beschrieben worden, welche auch völlig transparente Formkörper insbesondere mit Polycarbonat bilden. JP-A 06 228 420 beschreibt aliphatische Sulfonsäureammoniumsalze in Polycarbonat als Antistati- kum. Diese Verbindungen fuhren in der Polycarbonat-Schmelze jedoch zu
Molekulargewichtsabbau und/oder Trübung wegen Unverträglichkeit. JP-A 62 230 835 beschreibt den Zusatz von 4 % Nonylphenylsulfonsäuretetrabutyl- phosphonium in Polycarbonat. WO-A 01/12713 beschreibt die Verwendung von Tetraethylammonium perfluoroctansulfonat als Antistatikum in Polycarbonat. Nachteilig an dieser Verbindung ist das Auftreten einer Gelbfärbung nach dem
Verspritzen.
Ein Nachteil der bekannten Antistatika ist, dass diese in relativ hohen Konzentrationen eingesetzt werden müssen, um den antistatischen Effekt zu erzielen. Dadurch werden aber die Materialeigenschaften der Thermoplaste in unerwünschter
Weise verändert.
Extrudierte Formteile von Thermoplasten wie beispielsweise Polycarbonat-Platten werden hauptsächlich als klar-transparent, transluzent oder opak eingefärbte Platten verwendet. Aus Kostengründen erfolgt die Herstellung derartig gefärbter Platten durch Zugabe von Farbmasterbatchen zu ungefärbtem oder leicht gebläutem Polycarbonat während der Extrusion.
Wie eingangs beschrieben verursachen viele Antistatika in Polycarbonat eine Gelb- färbung oder einen Molekulargewichtsabbau. Wenn ein durch das Antistatikum gelbstichiger Masterbatch bei der Plattenextrusion zudosiert wird, dann ändert sich der Farbeindruck der Platten. Um diesen Farbeindruck zu kompensieren, muss mit Farbpigmenten nachgesteuert werden. Außerdem wird bei gefärbten Platten durch die Zugabe eines Antistatik-Masterbatches die Farbe verdünnt.
Durch den durch das Antistatikum verursachten Molekulargewichtsabbau des Poly- carbonats wird die maximal einsetzbare Konzentration des Antistatikums in der Polycarbonat-Matrix begrenzt. Insbesondere bei gefärbten Platten wird dann durch die Zugabe des Antistatik-Masterbatches die Farbe verdünnt.
Viele Antistatika führen zudem zu einer Trübung im Polycarbonat.
Der Erfindung liegt somit die Aufgabe zugrunde, Formkörper und Extrudate aus antistatisch ausgerüstete thermoplastische Formmassen bereitzustellen, deren optische Qualität, aber auch deren sonstigen Eigenschaften, wie z.B. deren mechanischen Eigenschaften und Wärmeformbeständigkeit sich nicht wesentlich von nicht antistatisch ausgerüsteten Formassen und -körpem unterscheiden.
Überraschenderweise wird diese Aufgabe durch Herstellung eines Schichtsystems aus thermoplastischen Formmassen gelöst, die mindestens ein spezielles Antistatikum enthalten. Dieses Schichtsystem ist dadurch gekennzeichnet, dass es mindestens zwei Schichten enthält und mindestens eine dieser Schichten mindestens eine erfindungsgemäße thermoplastischen Formmasse, enthaltend mindestens ein spezielles Antistatikum, enthält.
Im erfindungsgemäßen Sinn besteht das Schichtsystem aus mindestens zwei Schichten eines oder verschiedener Thermoplaste, wobei mindestens eine Schicht einen Thermoplasten enthält welcher mindestens eines der speziellen erfindungs- gemäßen Antistatika enthält. Die Dicke des gesamten Schichtsystems ist vorzugsweise 21 μm bis 10 cm, besonders bevorzugt 40 μm bis 15 mm und ganz besonders bevorzugt 100 μm bis 12 mm.
Die Dicke der einzelnen Schichten des Schichtsystems ist vorzugsweise 1 μm bis 10 cm. Die Dicke der Schicht bzw. der Schichten, welche das Antistatikum enthält ist vorzugsweise zwischen 1 μm und 200 μm, bevorzugt 20 μm bis 100 μm, besonders bevorzugt 40 μm bis 60 μm. Die Dicke der Schicht oder der Schichten die das erfϊndungsgemäße Antistatikum nicht enthalten ist zwischen 20 μm und 10 cm. Im Falle von Folien liegt die bevorzugte Dicke zwischen 20 und 600 μm, im Falle von Massivplatten zwischen 600 μm und 15 mm und im Falle von Mehrfachstegplatten zwischen 0,4 und 10 cm.
Besonders bevorzugt sind die beiden folgenden Schichtaufbauten (Anordnung in der beschriebenen Reihenfolge):
1. Schichtaufbau
Eine Schicht, enthaltend die erfindungsgemäße antistatische thermoplastischen Formmasse
Eine Schicht, enthaltend thermoplastische Formmassen ohne das erfindungsgemäße Antistatikum
2. Schichtaufbau
Eine Schicht, enthaltend die erfindungsgemäße antistatische thermoplastische Formmasse. - Eine Schicht, enthaltend thermoplastische Formmassen ohne das erfindungsgemäße Antistatikum
Eine Schicht, enthaltend die erfindungsgemäße antistatische thermoplastische Formmasse.
Die einzelnen Schichtsysteme können ferner jeder unabhängig für sich noch weitere
Additive wie UV-Absorber, Thermostabilisatoren, Antioxidantien, Entformungs- mittel, Flammschutzadditive, Farbstoffe, Pigmente, Aufheller, Glasfasern, Schaummittel, Nukleierungsmittel, Weichmacher, Verarbeitungshilfsmittel, Füller oder andere bei den jeweiligen Thermoplasten übliche Additive in Mengen zwischen 0,001 und 30 Gew.-% enthalten. Die im einzelnen geeigneten Arten von Additiven und deren Menge sind dem Fachmann geläufig, (wie z.B. Gächter; Müller, Plastics Additives, Hanser Verlag, München 1996 oder in EP 0 839 623 AI oder EP 0 500 496 AI beschrieben)
Als Antistatikum im erfindungsgemäßen Sinn geeignet sind die Salze vom Typ (I)
RA-SO3 X (I) in welcher
R perfluorierte lineare oder verzweigte Kohlenstoffketten mit 1 bis 30 Kohlenstoffatomen, bevorzugt 4 bis 8 Kohlenstoffatomen;
A eine direkte Bindung oder einen aromatischer Kern, beispielhaft und vorzugsweise fluoriertes oder nichtfluoriertes o-, m- oder p-Phenylen;
X alkyliertes und/oder aryliertes Ammoniumion NR'R"R'"R"", Phospho- niumion PR'R"R'"R"", Sulfoniumion SR'R"R'", sowie substituiertes oder nichtsubstituiertes Imidazoliniumion, Pyridiniumion oder Tropyliumion, worin
R\ R", R"\ R"" jeweils unabhängig voneinander unsubstituierte oder durch
Halogen, Hydroxy, Cycloalkyl oder Alkyl, insbesondere durch Ci bis C3- Alkyl bzw. C5-C Cycloalkyl, substituierte, aromatische, cyclische oder lineare, verzweigte oder unverzweigte Kohlenstoffketten mit 1 bis 30 Kohlenstoffatomen, bevorzugt 1 bis 10 Kohlenstoffatomen, im Falle cyclischer Reste bevorzugt solche mit 5 bis 7 Kohlenstoffatomen, besonders bevorzugt
Methyl, Ethyl, Propyl, 1-Butyl, 1-Pentyl, Hexyl, Isopropyl, Isobutyl, tert- Butyl, Neopentyl, 2-Pentyl, Iso-Pentyl, Iso-Hexyl, Cyclohexyl, Cyclo- hexylmethyl, Cyclopentyl, Phenyl oder Benzyl,
bedeuten.
Bevorzugt sind quartemäre Ammoniumsalze NR'R"R'"R'"\
Besonders bevorzugte quarternäre Ammoniumsalze im Sinne der Erfindung sind:
- Perfluoroctansulfonsäuretetraethylammoniumsalz
Perfluorbutansulfonsäuretetraethylylammoniumsalz
Perfluoroctansulfonsäuretetrapropylammoniumsalz,
Perfluorbutansulfonsäuretetrapropylammoniumsalz,
Perfluoroctansulfonsäuretetrabutylammoniumsalz, - Perfluorbutansulfonsäuretetrabutylarn oniumsalz,
Perfluoroctansulfonsäuretetrapentylammoniumsalz,
Perfluorbutansulfonsäuretetrapentylammoniumsalz,
Perfluoroctansulfonsäuretetrahexylammoniumsalz,
Perfluorbutansulfonsäuretetrahexylammoniumsalz, - N-Methyl-tripropylammoniumperfluorbutylsulfonat,
N-Methyl-tripropylammoniumperfluoroctansulfonat,
N-Ethyl-tripropylammoniumperfluorbutylsulfonat,
N-Ethyl-tripropylammoniumperfluoroctansulfonat
Dimethyldiisopropylammoniumperfluorbutylsulfonat, - Dimethyldiisopropylammoniumperfluoroctansulfonat,
Ethyldiisopropylmethylammoniumperfluorbutylsulfonat,
Ethyldiisopropylmethylammoniumperfluoroctansulfonat,
N-Methyl-tributylammoniumperfluorbutylsulfonat,
N-Methyl-tributylammoniumperfluoroctansulfonat, - Cyclohexyldiethylmethylammoniumperfluorbutylsulfonat,
Cyclohexyldiethylmethylammoniumperfluoroctansulfonat, Cyclohexyltrimethylammoniumperfluorbutylsulfonat, Cyclohexyltrimethylammoniumperfluoroctansulfonat,
sowie die entsprechenden Trifluormethansulfonate.
Insbesondere ist auch jedes einzelne der genannten Salze bevorzugt geeignet.
Bevorzugt sind auch Mischungen von Sulfonsäuresalzen, insbesondere der oben genannten Sulfonsäuresalze.
Die Perfluoralkylsulfonsäureammoniumsalze sind bekannt oder können nach bekannten Methoden hergestellt werden. Die Salze der Sulfonsäuren lassen sich durch Zusammengeben äquimolarer Mengen der freien Sulfonsäure mit der Hydroxy- form des entsprechenden Kations in Wasser bei Raumtemperatur und Einengen der Lösung darstellen. Andere Herstellungsverfahren sind beschrieben z.B. in DE A 19
66 931 und NL A 7 802 830 oder in Pomaville et al., J. Chromatogr. (1989), Volume Date 1988, 468, Seite 261-278.
Die Perfluoralkylsulfonsäureammoniumsalze werden vorzugsweise in Mengen von 0.001 bis 2 Gew.%, bevorzugt von 0.1 bis 1 Gew.% den Kunststoffen zugesetzt.
Im Sinne der Erfindung geeignete Thermoplaste sind insbesondere transparente Thermoplaste. Bevorzugt sind Polymerisate von ethylenisch ungesättigten Monomeren und/oder Polykondensate von bifunktionellen reaktiven Verbindungen.
Besonders geeignete Kunststoffe sind Polycarbonate oder Copolycarbonate auf Basis von Bisphenolen, der Poly- oder Copolyacrylate und Poly- oder Copolymethacrylate wie beispielhaft und vorzugsweise Polymethylmethacrylat, Poly- oder Copolymere mit Styrol wie beispielhaft und vorzugsweise transparentes Polystyrol oder Poly- styrolacrylnitril (SAN), transparente thermoplastische Polyurethane, sowie Polyole- fine, wie beispielhaft und vorzugsweise transparente Polypropylentypen oder Poly- olefine auf der Basis von cyclischen Olefinen (z.B. TOPAS®, Hoechst), Poly- oder Copolykondensate der Terephthalsäure mit oder ohne Isophthalsäure, mit Ethylen- glycol und/oder Cyclohexandimethanol wie beispielhaft und vorzugsweise Poly- oder Copolyethylenterephthalat (PET oder CoPET) oder Cyclohexandimethanol- modifiziertes PET (PETG).
Insbesonders bevorzugt sind Polycarbonate oder Copolycarbonate, insbesondere nicht halogenierte Polycarbonate und/oder Copolycarbonate mit gewichtsgemittelten Molekulargewichten Mw von 5000 bis 100 000, bevorzugt von 10 000 bis 50 000, besonders bevorzugt von 15 000 bis 40 000.
Besonders geeignet sind Homopolycarbonate, Copolycarbonate und thermoplastische Polyestercarbonate. Sie haben gewichtsgemittelte Molekulargewichte M w on 18.000 bis 40.000, vorzugsweise von 26.000 bis 36.000 und insbesondere von 28.000 bis 35.000, ermittelt durch Messung der rel. Lösungsviskosität in Dichlormethan oder in
Mischungen gleicher Gewichtsmengen Phenol/o-Dichlorbenzol geeicht durch Lichtstreuung.
Die Schmelzeviskosität der das Antistatikum enthaltende Formmassen sollte vorzugsweise kleiner sein, als die Schmelzeviskosität der Formmasse der anderen
Schichten.
Zur Herstellung von Polycarbonaten für die erfindungsgemäßen Formmassen sei beispielhaft auf „Schnell", Chemistry and Physics of Polycarbonats, Polymer Reviews, Vol. 9, Interscience Publishers, New York, London, Sydney 1964, auf D.C.
PREVORSEK, B.T. DEBONA and Y. KESTEN, Corporate Research Center, Allied Chemical Corporation, Moristown, New Jersey 07960, „Synthesis of Poly(ester)- carbonate Copolymers" in Journal of Polymer Science, Polymer Chemistry Edition, Vol. 19, 75-90 (1980), auf D. Freitag, U. Grigo, P.R. Müller, N. Nouvertne, BAYER AG, „Polycarbonates" in Encyclopedia of Polymer Science and
Engineering, Vol. 11, Second Edition, 1988, Seiten 648-718 und schließlich auf Dres. U. Grigo, K. Kircher und P.R. Müller „Polycarbonate" in Becker/Braun, Kunststoff-Handbuch, Band 3/1, Polycarbonate, Polyacetale, Polyester, Cellulose- ester, Carl Hanser Verlag München, Wien 1992, Seiten 1 17-299 verwiesen. Die Herstellung erfolgt vorzugsweise nach dem Phasengrenzflächenverfahren oder dem Schmelze-Umesterungsverfahren und wird beispielhaft an dem Phasengrenzflächen- verfahren beschrieben.
Als Ausgangsverbindungen bevorzugt einzusetzende Verbindungen sind Bisphenole der allgemeinen Formel HO-Z-OH, worin Z ein divalenter organischer Rest mit 6 bis 30 Kohlenstoffatomen ist, der eine oder mehrere aromatische Gruppen enthält.
Beispiele solcher Verbindungen sind Bisphenole, die zu der Gruppe der Dihydroxy- diphenyle, Bis(hydroxyphenyl)alkane, Indanbisphenole, Bis(hydroxyphenyl)ether, Bis(hydroxyphenyl)sulfone, Bis(hydroxyphenyl)ketone und α, α'- Bis(hydroxy- phenyl)-diisopropylbenzole gehören.
Besonders bevorzugte Bisphenole, die zu den vorgenannten Verbindungsgruppen gehören, sind Bisphenol-A (2,2-Bis-(4-hydroxyphenyl)-propan), Tetraalkylbisphenol- A, 4,4-(meta-Phenylendiisopropyl) diphenol (Bisphenol M), 4,4-(para-Phenylen- diisopropyl) diphenol, l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan (BP- TMC) sowie gegebenenfalls deren Gemische. Besonders bevorzugt sind Homopoly- carbonate auf Basis Bisphenol-A und Copolycarbonate auf der Basis der Monomere Bisphenol-A und l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan. Die erfindungsgemäß einzusetzenden Bisphenolverbindungen werden mit Kohlensäureverbindungen, insbesondere Phosgen oder beim Schmelzeumesterungsprozeß Diphenyl- carbonat bzw. Dimethylcarbonat, umgesetzt.
Polyestercarbonate werden durch Umsetzung der bereits genannten Bisphenole, mindestens einer aromatischen Dicarbonsäure und gegebenenfalls Kohlensäureäquivalente erhalten. Geeignete aromatische Dicarbonsäuren sind beispielsweise Phthal- säure, Terephthalsäure, Isophthalsäure, 3,3'- oder 4,4'-Diphenyldicarbonsäure und
Benzophenondicarbonsäuren. Ein Teil, bis zu 80 Mol%, vorzugsweise von 20 bis 50 Mol% der Carbonatgruppen in den Polycarbonaten können durch aromatische Dicarbonsäureester-Gruppen ersetzt sein.
Beim Phasengrenzflächenverfahren verwendete inerte organische Lösungsmittel sind beispielsweise Dichlormethan, die verschiedenen Dichlorethane und Chlorpropanver- bindungen, Tetrachlormethan, Trichlormethan, Chlorbenzol und Chlortoluol, vorzugsweise werden Chlorbenzol oder Dichlormethan bzw. Gemische aus Dichlormethan und Chlorbenzol eingesetzt.
Die Phasengrenzflächenreaktion kann durch Katalysatoren wie tertiäre Amine, insbesondere N-Alkylpiperidine oder Oniumsalze beschleunigt werden. Bevorzugt werden Tributylamin, Triethylamin und N-Ethylpiperidin verwendet. Im Falle des Schmelze- umesterungsprozesses werden die in DE A 42 38 123 genannten Katalysatoren verwendet.
Die Polycarbonate können durch den Einsatz geringer Mengen Verzweiger bewusst und kontrolliert verzweigt werden. Einige geeignete Verzweiger sind: Phloroglucin, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hepten-2; 4,6-Dimethyl-2,4,6-tri-(4- hydroxyphenyl)-heptan; 1 ,3,5-Tri-(4-hydroxyphenyl)-benzol; 1,1,1 -Tri-(4-hydroxy- phenyl)-ethan; Tri-(4-hydroxyphenyl)-phenylmethan; 2,2-Bis-[4,4-bis-(4-hydroxy- phenyl)-cyclohexyl]-propan; 2,4-Bis-(4-hydroxyphenyl-isopropyl)-phenol; 2,6-Bis- (2-hydroxy-5'-methyl-benzyl)-4-methylphenol; 2-(4-Hydroxyphenyl)-2-(2,4- dihydroxyphenyl)-propan; Hexa-(4-(4-hydroxyphenyl-isopropyl)-phenyl)-orthotere- phthalsäureester; Tetra-(4-hydroxyphenyl)-methan; Tetra-(4-(4-hydroxyphenyl- isopropyl)-phenoxy)-methan; α, α α ', α α α "-Tris-(4-hydroxyphenyl)- 1,3,5 -triisop- ropylbenzol; 2,4-Dihydroxybenzoesäure; Trimesinsäure; Cyanurchlorid; 3,3-Bis-(3- methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol; 1 ,4-Bis-(4',4"-dihydroxy- triphenyl)-methyl)-benzol und insbesondere: l,l,l-Tri-(4-hydroxyphenyl)-ethan und 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol. Die gegebenenfalls mitzuverwendenden 0,05 bis 2 mol%, bezogen auf eingesetzte Diphenole, an Verzweigern bzw. Mischungen der Verzweigern, können mit den Diphenolen zusammen eingesetzt werden aber auch in einem späteren Stadium der Synthese zugegeben werden.
Als Kettenabbrecher werden bevorzugt Phenole wie Phenol, Alkylphenole wie Kresol und 4-tert.-Butylphenol, Chloφhenol, Bromphenol , Cumylphenol oder deren Mischungen verwendet in Mengen von 1-20 Mol% bevorzugt 2-10 Mol% je Mol Bisphenol. Bevorzugt sind Phenol, 4-tert.-Butylphenol bzw. Cumylphenol.
Kettenabbrecher und Verzweiger können getrennt oder aber auch zusammen mit dem Bisphenol den Synthesen zugesetzt werden.
Die Herstellung der Polycarbonate für die erfindungsgemäßen Formmassen nach dem Schmelzeumesterungsprozess ist in DE A 42 38 123 beispielhaft beschrieben.
Im erfindungsgemäßen Sinn als UV-Absorber geeignete Additive sind z.B. in
EP A 0 839 623 (Seite 23f) und EP A 0 500 496 (Seite 2, Verbindung I, sowie Seite 6f, Kapitel 2) beschrieben.
Besonders geeignet sind Derivate des Benzotriazols, des Benzophenons, des Triazins, sowie arylierte Cyanoacrylate und weitere übliche UV-Absorber.
Erfindungsgemäß besonders geeignete UV-Absorber für die zu verwendenden Form- massen sind solche Verbindungen, die aufgrund ihres Absoφtionsvermögens unterhalb 400nm in der Lage sind, Polycarbonat wirksam vor UV-Licht zu schützen.
Geeignete UV-Absorber sind insbesondere die in der WO 99/05205 beschriebenen Verbindungen der Formel (I)
worin R1 und R2 gleich oder verschieden sind und H, Halogen, Cι-Cι0-Alkyl, C5-C10- Cycloalkyl, C7-Cι3-Aralkyl, C6-Cι4-Aryl, -OR5 oder -(CO)-O-R5 bedeuten mit R5 - H oder C C4-Alkyl,
R3 und R4 ebenfalls gleich oder verschieden sind und H, CrC -Alkyl, C5-C6- Cycloalkyl, Benzyl oder C6-Cι4-Aryl bedeuten,
m 1 ,2 oder 3 ist und n 1 ,2,3 oder 4 ist,
sowie solche der Formel (II)
worin die Brücke
-(CHR3)P — c- -O- (Y-0)q— C (CHR4) — bedeutet,
R1, R2, m und n die für Formel (II) genannte Bedeutung haben,
worin außerdem p eine ganze Zahl von 0 bis 3 ist,
q eine ganze Zahl von 1 bis 10 ist,
Y -CH2-CH2-, -(CH2)3-, -(CH2)4-, -(CH2)5-, -(CH2)6-, oder
CH(CH3) CH2 ist und
R3 und R4 die für Formel (II) genannte Bedeutung haben.
Weitere erfindungsgemäß geeignete UN- Absorber sind solche, die substituierte
Triazine darstellen, wie das 2,4-Bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-n-octyloxy- ρhenyl)-l,3,5-triazin (CYASORB® UV-1164) oder 2-(4,6-Diphenyl-l,3,5-triazin-2- yl)-5-(hexyl)oxy-Phenol (Tinuvin® 1577). Besonders bevorzugt als UV-Absorber ist 2,2-Methylenbis-(4-( 1 , 1 ,3 ,3-tetramethylbutyl)-6-(2H-benztriazol-2-yl)phenol), das im Handel unter der Bezeichnung Tinuvin® 360 oder Adeka Stab® LA 31 vertrieben wird. Geeignet sind außerdem die in EP 0500496 AI genannten UN-Absorber. Der in WO 96/15102, Beispiel 1 erhaltene UV-Absorber Uvinul 3030 der BASF AG kann auch verwendet werden.
Weitere erfindungsgemäß geeignete UV-Absorber sind Hydroxy-Benzotriazole, wie
2-(3 ',5-'Bis-(l ,l-dimethylbenzyl)-2'-hydroxy-phenyl)-benzotriazol (Tinuvin® 234, Ciba Spezialitätenchemie, Basel), 2-(2'-Hydroxy-5'-(tert-octyl)-phenyl)-benzotriazol (Tinuvin® 329, Ciba Spezialitätenchemie), 2-(2'-Hydroxy-3'-(2-butyl)-5'-(tert- butyl)-phenyl)-benzotriazol (Tinuvin® 350, Ciba Spezialitätenchemie), Bis-(3-(2H- benztriazolyl)-2-hydroxy-5-tert-octyl)methan, (Tinuvin® 360, Ciba Spezialitätenchemie), 2-(4-Hexoxy-2-hydroxyphenyl)-4,6-diphenyl- 1 ,3,5-triazin (Tinuvin® 1577, Ciba Spezialitätenchemie), und 2,4-Dihydroxy-benzophenon (Chimasorb22®, Ciba Spezialitätenchemie) und 2-Hydroxy-4-(octyloxy)-benzophenon
(Chimasorbδl®, Ciba Spezialitätenchemie).
Bevorzugt werden die UV- Absorber in Mengen von jeweils zwischen 0.001 Gew.-% und 20 Gew.-%, bevorzugt 0.01 Gew.-% und 1 Gew.-% vorzugsweise zwischen 0.1-1 Gew.-% und ganz besonders bevorzugt zwischen 0.2 und 0.6 Gew.-% eingesetzt. Für Außenanwendungen werden vorzugsweise 2 bis 11 Gew-%, bevorzugt 3- 10 Gew-% und ganz besonders bevorzugt zwischen 3 und 7 Gew-% eingesetzt.
Geeignete Stabilisatoren für die Polycarbonate für die erfindungsgemäßen Formmassen sind beispielsweise Phosphine, Phosphite oder Si-enthaltende Stabilisatoren und weitere in der EP-A 0 839 623 (Seite 21, Kapitel 1) beschriebene Verbindungen. Beispielhaft seien Triphenylphosphite, Diphenylalkylphosphite, Phenyldialkyl- phosphite, Tris-(nonylphenyl)phosphit, Tetrakis-(2,4-di-tert.-butylphenyl)-4,4'- biphenylen-diphosponit und Triarylphosphit genannt. Besonders bevorzugt sind Triphenylphosphin und Tris-(2,4-di-tert.-butylphenyl)phosphit.
Femer kann die erfindungsgemäße Formmasse 0.01 bis 0.5 Gew% der (Teil)Ester von ein- bis sechswertigen Alkoholen, insbesondere des Glycerins, des Pentaerythrits oder von Guerbetalkoholen enthalten.
Einwertige Alkohole sind beispielsweise Stearylalkohol, Palmitylalkohol und Guerbetalkohole.
Ein zweiwertiger Alkohol ist beispielsweise Glycol.
Ein dreiwertiger Alkohol ist beispielsweise Glycerin.
Vierwertige Alkohole sind beispielsweise Pentaerythrit und Mesoerythrit. Fünfwertige Alkohole sind beispielsweise Arabit, Ribit und Xylit.
Sechswertige Alkohole sind beispielsweise Mannit, Glucit (Sorbit) und Dulcit.
Die Ester sind die Monoester, Diester, Triester, Tetraester ggf. Pentaester und Hexaester oder deren Mischungen, insbesondere statistische Mischungen, aus gesättigten, aliphatischen C10 bis C36-Monocarbonsäuren und gegebenenfalls Hydroxy-Monocarbonsäuren, vorzugsweise mit gesättigten, aliphatischen C14 bis C3 -Monocarbonsäuren und gegebenenfalls Hydroxy-Monocarbonsäuren.
Die kommerziell erhältlichen Fettsäureester, insbesondere des Pentaerythrits und des Glycerins, können herstellungsbedingt <60% unterschiedlicher Teilester enthalten
Gesättigte, aliphatische Monocarbonsäuren mit 10 bis 36 C-Atomen sind beispiels- weise Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure,
Hydroxystearinsäure, Arachinsäure, Behensäure, Lignocerinsäure, Cerotinsäure und Montansäuren.
Bevorzugte gesättigte, aliphatische Monocarbonsäuren mit 14 bis 22 C-Atomen sind beispielsweise Myristinsäure, Palmitinsäure, Stearinsäure, Hydroxystearinsäure,
Arachinsäure und Behensäure.
Besonders bevorzugt sind gesättigte, aliphatische Monocarbonsäuren wie Palmitinsäure, Stearinsäure und Hydroxystearinsäure.
Die gesättigten, aliphatischen do bis C36-Carbonsäuren und die erfindungsgemäß einzusetzenden Fettsäureester sind als solche entweder literaturbekannt oder nach literaturbekannten Verfahren herstellbar. Beispiele für Pentaerythritfettsäureester sind die der besonders bevorzugten, vorstehend genannten Monocarbonsäuren. Besonders bevorzugt sind Ester des Pentaerythrits und des Glycerins mit Stearinsäure und Palmitinsäure.
Besonders bevorzugt sind auch Ester von Guerbetalkoholen bzw. des Glycerins mit Stearinsäure und Palmitinsäure und gegebenenfalls Hydroxystearinsäure.
Femer kann die erfindungsgemäße Formmasse organische Farbstoffe, anorganische Farbpigmente, Fluoreszenzfarbstoffe und besonders bevorzugt optische Aufheller enthalten.
Alle für die Synthese der erfindungsgemäßen Formmassen verwandten Einsatzstoffe und Lösungsmittel die aus ihrer Herstellung und Lagerung mit entsprechenden Verunreinigungen, wie Partikel, Gelköφer, Ionen, Lösungsmittelresten, Monomer- oder Oligomerresten oder sonstigen Verbindungen kontaminiert sein können sollten so sauber wie möglich eingesetzt werden.
Das Vermischen der einzelnen Bestandteile kann in bekannter Weise sowohl sukzessive als auch simultan erfolgen und zwar sowohl bei Raumtemperatur als auch bei erhöhter Temperatur.
Die Einarbeitung der Zusätze in die erfindungsgemäßen Formmassen, insbesondere der Antistatika und UN-Absorber und weiterer vorgenannter Additive erfolgt in bekannter Weise durch Nermischen von Polymergranulat mit den Zusätzen bei Temperaturen von etwa 200 bis 350°C in üblichen Aggregaten wie Innenknetern, Einschneckenextrudern und Doppelwellenextrudern beispielsweise durch Schmelze- compoundierung oder Schmelzeextrusion oder durch Nermischen der Lösungen des Polymers mit Lösungen der Additive in geeigneten organischen Lösungsmitteln wie CH2CI2, Halogenalkanen, Halogenaromaten, Chlorbenzol und Xylolen und anschließende Verdampfung der Lösungsmittel in bekannter Weise. Der Anteil der Additive in der Formmasse kann in weiten Grenzen variiert werden und richtet sich nach den gewünschten Eigenschaften der Formmasse. Der Gesamtanteil der Additive in der Formmasse beträgt etwa bis zu 30 Gew.%, vorzugsweise 0,1 bis 12 Gew.%, bezogen auf das Gewicht der Formmasse.
Gegenstand der Erfindung sind also Formköφer und Extrudate, die unter Mitver- wendung der erfindungsgemäßen Formmassen hergestellt worden sind. Die Formmassen können zur Erzeugung von Folien, von massiven Kunststoffplatten und Stegplatten (z.B. Stegdoppelplatten, Stegdreifachplatten usw.) und Wellplatten eingesetzt werden. Die erfindungsgemäßen Schichtsysteme umfassen auch solche, die auf einer Seite oder beiden Seiten eine zusätzliche Deckschicht mit der erfin- dungsgemäßen Formmassen mit einem erhöhten UV-Absorbergehalt aufweisen.
Die erfindungsgemäßen Schichtsysteme erlauben die Herstellung von Formköφern und Extrudaten, auf denen sich mit der Zeit keine Staubfiguren ablagern, insbesondere von Platten und aus ihnen hergestellte Formköφer wie z.B. Verscheibungen für Wintergärten, Bushaltestellen, Maschinenabdeckungen, Reklametafeln, Schilder,
Schutzscheiben, Automobilverscheibungen, Fenster und Überdachungen.
Nachträgliche Bearbeitungen der mit der erfindungsgemäßen Formmasse beschichteten Extrusionsköφer, wie z.B. Tiefziehen oder Oberflächenbearbeitungen sind möglich und die durch diese Verfahren hergestellten Formköφer ebenfalls Gegenstand des Patentes.
Die Coextrusion als solche ist literaturbekannt (siehe beispielsweise EP A 0 110 221 und EP A 0 110 238). Im vorliegenden Fall wird vorzugsweise wie folgt verfahren:
An einem Coextrusionsadapter sind Extruder zur Erzeugung der Kemschicht und Deckschicht(en) angeschlossen. Der Adapter ist so konstruiert, dass die die Deckschichten) formende Schmelze als dünne Schicht haftend auf die Schmelze der Kernschicht aufgebracht werden. Der so erzeugte, mehrschichtige Schmelzestrang wird dann in der anschließend angeschlossenen Düse in die gewünschte Form (Steg- oder Massivplatte) gebracht. Anschließend wird in bekannter Weise mittels Kalandrierung (Massivplatte) oder Vakuumkalibrierung (Stegplatte) die Schmelze unter kontrollierten Bedingungen abgekühlt und anschließend abgelängt. Gegebenenfalls kann nach der Kalibrierung ein Temperofen zur Eliminierung von Spannungen angebracht werden. Anstelle des vor der Düse angebrachten Adapters kann auch die Düse selbst so ausgelegt sein, dass dort die Zusammenführung der Schmelzen erfolgt.
Beispiele
Die Erfindung soll durch die folgenden Beispiele weiter illustriert werden, ohne sie jedoch dadurch zu beschränken.
Beispiel KAdditiv):
396,2 g Perfluorbutansulfonylfluorid (1,311 mol, Aldrich) und 78,8 g Dimethyl- dimethoxy-silan (0,655 mol, Fluka) werden in tert-Butylmethylether (Aldrich) vorgelegt und bei Raumtemperatur langsam mit 151,1 g N,N-Diisopropylmethylamin
(1,311 mol, Fluka) versetzt. Die Reaktionslösung wird anschließend für 7 h bei Raumtemperatur gerührt bis die Gasentwicklung nachlässt und schließlich wird das ausgefallene Produkt abfiltriert, mit tert-Butylmethylether gewaschen und getrocknet. Ausbeute 525 g weiße Kristalle von Dimethyldiisopropylammoniumperfluorbutyl- sulfonat.
Beispiel 2 (additiviertes Polymer)
Makrolon® 2808 (lineares Bisphenol-A Polycarbonat der Bayer AG, Leverkusen mit mit einem Schmelzflussindex (MFR) von lO g/lO min bei 300°C und 1,2 kg Belastung) wird mit 0.05 % Triphenylphosphin, 0.3 % 2-(2'-Hydroxy-3'-(2-butyl)-5'- (tert-butyl)-phenyl)-benzotriazol, 0,1 % Octadecyl-3-(3',5'-di-tert-butyl-4'-hydroxy- phenyl)-propionat und 1,5 % Dimethyldiisopropylammonium-perfluorbutylsulfonat (Bsp. 1) wie unten beschrieben compoundiert.
Beispiel 3 (Plattenherstellung)
3 mm Massivplatten A bis G wurden aus folgenden Formmassen hergestellt: Als
Basismaterial wurde Makrolon® 3103 (lineares Bisphenol-A Polycarbonat der Bayer AG, Leverkusen mit einem Schmelzflussindex (MFR) von 6,5 g/10 min bei 300°C und 1 ,2 kg Belastung) verwendet. Coextrudiert wurde dieses mit den in der Tabelle 1 angegebenen Compounds auf Basis Makrolon® 3103 (lineares Bisphenol-A Polycarbonat der Bayer AG, Leverkusen mit einem Schmelzflussindex (MFR) von 6,5 g/10 min bei 300°C und 1,2 kg Belastung).
Die Compounds wurden folgendermaßen hergestellt: Bei 310°C und 80 U/min wurde der UV-Absorber und das Antistatikum gemäß Tabelle 1 auf einem Doppelwellenextruder (ZSK 32, Werner & Pfleiderer) in das Polycarbonat eingearbeitet und das Extrudat dann granuliert.
Die Dicke der Coex-Schicht beträgt jeweils etwa 50 μm.
Tabelle 1: Zusammensetzung der Compounds für die Coex-Schichten
*) Im Handel erhältlich, Perfluoro-1 -octansulfonsäure, Tetraethylammoniumsalz der Firma Bayer AG, Leverkusen
**) Im Handel erhaltlich, 2-(2H-benzotriazol-2-yl)-4-(l,l-dimethylethyl)-6-(2-methylpropyl)-phenol der Firma Ciba
Spezialitätenchemie, Lampertheim ***) Im Handel erhältlich, 2,2'-Methylenbis[6-(2H-benzotriazol-2-yl)-4-(l,l,3,3-tetramethylbutyl)phenol] der Firma Ciba
Spezialitätenchemie, Lampertheim ****) Hergestellt durch Mischen von Granulat von Makrolon 3103 und Masterbatch ****) Im Handel erhältlich bei Clariant, Muttenz, Schweiz. Antistatik Masterbatch auf Basis nichtfluorierter aliphatischer
Sulfonate. Beispiel 4 (erfindungsgemäße Formmasse nicht coextrudiert):
Es wird wird ein additivfreies, unstabilisiertes Polycarbonat (Makrolon® 2808 der Bayer AG, Leverkusen) bei 340°C auf einem Zweiwellenextuder mit der in Tabelle 1 angegebenen Menge von Perfluoroctansulfonsäuretetraethylammoniumsalz sowie den anderen angegebenen Zusatzstoffen kompoundiert und anschließend granuliert.
Aus diesem Granulat werden anschließend Rechteckplatten bei Massetemperatur von 300°C abgespritzt (155 mm x 75 mm x 2 mm) und dem Staubtest unterzogen.
Tabelle 2: Kunststoffzusammensetzungen
Die verwendeten Maschinen und Apparate zur Herstellung von mehrschichtigen
Massivplatten werden im Folgenden beschrieben:
Die Einrichtung besteht aus
dem Hauptextruder mit einer Schnecke der Länge 33D und einem Durchmesser von 60 mm mit Entgasung dem Coexadapter (Feedblocksystem), einschicht beidseitig einem Coextruder zum Aufbringen der Deckschichten mit einer Schnecke der
Länge 25D und einem Durchmesser von 30 mm der Breitschlitzdüse mit 350 mm Breite dem 3 -Walzen Glättkalander, vertikale Walzenanordnung der Rollenbahn der Schutzfolienkaschierung der Abzugseinrichtung der Ablängvorrichtung (Säge) dem Ablagetisch.
Das Polycarbonat-Granulat des Basismaterials wird dem Fülltrichter des Hauptextruders zugeführt, das Coextrusionsmaterial dem des Coextruders. Im jeweiligen Plastifiziersystem Zylinder/Schnecke erfolgt das Aufschmelzen und Fördern des jeweiligen Materials. Beide Materialschmelzen werden im Coexadapter zusammen- geführt und bilden nach Verlassen der Düse und Abkühlen zwischen den Walzen einen Verbund. Die weiteren Einrichtungen dienen dem Transport, Oberflächenschutz, und Ablängen der extrudierten Platten.
Die erhaltenen Platten wurden anschließend einer farbmetrischen Bewertung unter- zogen. Dabei wurde folgendes Messverfahren herangezogen:
Transmission (auf Basis der Normen ASTM E 308 / ASTM D 1003) Gerät: Pye-Unicam (Meßgeometrie: 0°/diffus, berechnet nach Lichtart C) Yellownessindex YI nach ASTM E 313.
Die staubabweisende Wirkung wurde folgendermaßen getestet und mit praxisüblicher Bewertung bewertet: Um die Staubanlagerung im Laborversuch zu untersuchen, werden die gespritzten Platten einer Atmosphäre mit aufgewirbeltem Staub ausgesetzt. Dazu wird ein 2-1-Becherglas mit einem 80 mm langen Magnetrührstab mit dreieckigem Querschnitt mit Staub (Kohlenstaub / 20 g Aktivkohle, Riedel-de
Haen, Seelze, Deutschland, Artikel Nr. 18003) ca. 1 cm hoch gefüllt. Mit Hilfe eines Magnetrührers wird der Staub aufgewirbelt. Nach dem Stoppen des Rührers wird der Probeköφer 7 sec lang dieser Staubatmosphäre ausgesetzt. Je nach verwendetem Probeköφer setzt sich mehr oder weniger Staub auf den Probeköφern ab. Die Beurteilung der Staubanlagerungen (Staubfiguren) wird visuell durchgeführt.
Die nachfolgende Tabelle zeigt, dass Platten, die mit den erfindungsgemäßen Formmassen coextrudiert sind, gegenüber Platten aus bekannten, nicht additivierten Formmassen (1) nach der Herstellung näherungsweise die gleiche Vergilbung (Yellowness Index) besitzen wie, sowie gegenüber Platten aus mit anderen als den erfindungsgemäßen Additiven versehenen Formmassen (2 und 3) bezüglich Transparenz bzw. Staubbild deutlich überlegen sind. Gegenüber Platten (9-11), die zwar die erfindungsgemäßen Formmassen, sprich Additive verwenden, aber nicht über das erfindungsgemäße Schichtsystem verfügen, zeigen die erfindungsgemäßen Platten ein deutlich geringeren Yellowness Index.
Tabelle 3:
Wie aus obigen Tabellen zu sehen ist, kann die gewünschte Kombination aus Staubabweisung und geringer Beeinträchtigung der optischen Eigenschaften nur mit den erfindungsgemäßen Schichtsystemen erreicht werden. Femer zeigen die erfindungs- gemäßen Schichtsysteme eine ausgezeichnete Witterungsstabilität.

Claims

Patentansprüche
1. Schichtsystem aus mindestens zwei Schichten eines oder verschiedener Thermoplaste, wobei mindestens eine Schicht einen Thermoplasten enthält, welcher mindestens ein Antistatikum der Formel (I)
RA-SO3 X (I)
in welcher
R perfluorierte lineare oder verzweigte Kohlenstoffketten mit 1 bis 30 Kohlenstoffatomen;
A eine direkte Bindung oder einen aromatischer Kern,;
X alkyliertes und/oder aryliertes Ammoniumion NR'R"R'"R"", Phos- phoniumion PR'R"R'"R"", Sulfoniumion SR'R"R'", sowie substituiertes oder nichtsubstituiertes Imidazoliniumion, Pyridiniumion oder Tropyliumion, worin
R\ R", R'", R"" jeweils unabhängig voneinander unsubstituierte oder durch Halogen, Hydroxy, Cycloalkyl oder Alkyl substituierte, aromatische, cyclische oder lineare, verzweigte oder unverzweigte Kohlenstoffketten mit 1 bis 30 Kohlenstoffatomen
bedeuten, enthält.
Formköφer oder Extrudate, dadurch gekennzeichnet, dass sie ein Schichtsystem gemäß Anspruch 1 enthalten. Verfahren zur Herstellung des Schichtsystems gemäß Anspruch 1 durch Co- extrusion.
EP02735232A 2001-04-20 2002-04-08 Mehrschichtsysteme enthaltend antistatische formmassen Withdrawn EP1404520A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10119416A DE10119416A1 (de) 2001-04-20 2001-04-20 Mehrschichtsysteme enthaltend antistatische Formmassen
DE10119416 2001-04-20
PCT/EP2002/003853 WO2002085613A2 (de) 2001-04-20 2002-04-08 Mehrschichtsysteme enthaltend antistatische formmassen

Publications (1)

Publication Number Publication Date
EP1404520A2 true EP1404520A2 (de) 2004-04-07

Family

ID=7682111

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02735232A Withdrawn EP1404520A2 (de) 2001-04-20 2002-04-08 Mehrschichtsysteme enthaltend antistatische formmassen

Country Status (13)

Country Link
US (1) US20030031844A1 (de)
EP (1) EP1404520A2 (de)
JP (1) JP2004525004A (de)
KR (1) KR20030090757A (de)
CN (1) CN1518497A (de)
BR (1) BR0209044A (de)
CA (1) CA2444606A1 (de)
DE (1) DE10119416A1 (de)
IL (1) IL158323A0 (de)
MX (1) MXPA03009480A (de)
RU (1) RU2003133922A (de)
TW (1) TW584598B (de)
WO (1) WO2002085613A2 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043234A1 (en) * 2002-05-10 2004-03-04 Grant Hay Light management films and articles thereof
US7341784B2 (en) * 2004-09-10 2008-03-11 General Electric Company Light management film and its preparation and use
DE102005040315A1 (de) * 2005-08-24 2007-03-01 Bayer Materialscience Ag Lichtstreuende antistatische Kunststoffzusammensetzung mit hoher Helligkeit und deren Verwendung in Flachbildschirmen
DE102005040313A1 (de) * 2005-08-24 2007-03-01 Bayer Materialscience Ag Lichtstreuende Formkörper mit hoher Lichttransmission und verbesserter Antistatik
DE102005047614A1 (de) * 2005-10-05 2007-04-12 Bayer Materialscience Ag Licht streuende Kunststoffzusammensetzung mit hoher Helligkeit und deren Verwendung in Flachbildschirmen
DE102005047615A1 (de) * 2005-10-05 2007-04-12 Bayer Materialscience Ag Lichtstreuende Kunststoffzusammensetzung mit hoher Helligkeit und deren Verwendung in Flachbildschirmen
US20070203271A1 (en) * 2006-01-27 2007-08-30 Alms Gregory R Coating process for thermoplastics
CN102099714A (zh) * 2008-06-03 2011-06-15 3M创新有限公司 包含聚烷基氮或磷鎓氟代烷基磺酰基盐的微结构
EP2133202A1 (de) * 2008-06-11 2009-12-16 Bayer MaterialScience AG Mehrschichtige optische Folienaufbauten mit verbesserten Eigenschaften und deren Verwendung
EP2157133A1 (de) * 2008-08-19 2010-02-24 Bayer MaterialScience AG Folien mit verbesserten Eigenschaften
US9570211B2 (en) * 2008-08-27 2017-02-14 Covestro Llc Transparent thermoplastic composition with improved electrical conductivity in the melt
DE102009043509A1 (de) * 2009-09-30 2011-03-31 Bayer Materialscience Ag Polycarbonatzusammensetzung mit verbesserter Thermostabilität
DE102009043511A1 (de) * 2009-09-30 2011-03-31 Bayer Materialscience Ag UV-stabile Polycarbonat-Zusammensetzung mit verbesserten Eigenschaften
AU2013277753B2 (en) 2012-06-21 2015-04-09 3M Innovative Properties Company A static dissipating laser engravable film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4613520A (en) * 1983-07-14 1986-09-23 Hercules Incorporated Coating compositions
US5032458A (en) * 1985-01-15 1991-07-16 Hoechst Aktiengesellschaft Polyester film
JPS61285232A (ja) * 1985-06-13 1986-12-16 Daikin Ind Ltd 帯電防止剤組成物
US5145727A (en) * 1990-11-26 1992-09-08 Kimberly-Clark Corporation Multilayer nonwoven composite structure
DE4202282A1 (de) * 1991-01-29 1992-08-20 Fuji Photo Film Co Ltd Lichtempfindliches uebertragungsmaterial und bilderzeugungsverfahren
CA2094434A1 (en) * 1992-04-30 1993-10-31 Tomoyuki Kotani Biaxially oriented laminated polyester film for magnetic recording media
JP4003090B2 (ja) * 1996-04-11 2007-11-07 東洋紡績株式会社 導電性組成物
US6194497B1 (en) * 1997-07-23 2001-02-27 General Electric Company Anti-static resin composition containing fluorinated phosphonium sulfonates
US6383641B1 (en) * 1997-08-15 2002-05-07 Asahi Glass Company Ltd. Transparent coated molded product and method for producing the same
DE19943637A1 (de) * 1999-08-16 2001-02-22 Bayer Ag Antistatikum
DE10159373A1 (de) * 2001-12-04 2003-06-12 Bayer Ag Mehrschichtiges Erzeugnis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02085613A2 *

Also Published As

Publication number Publication date
MXPA03009480A (es) 2004-05-24
WO2002085613A2 (de) 2002-10-31
TW584598B (en) 2004-04-21
CN1518497A (zh) 2004-08-04
RU2003133922A (ru) 2005-05-10
DE10119416A1 (de) 2002-10-24
IL158323A0 (en) 2004-05-12
WO2002085613A3 (de) 2003-02-13
KR20030090757A (ko) 2003-11-28
BR0209044A (pt) 2004-08-10
JP2004525004A (ja) 2004-08-19
CA2444606A1 (en) 2002-10-31
US20030031844A1 (en) 2003-02-13

Similar Documents

Publication Publication Date Title
DE10230983A1 (de) Mehrschichtiges Erzeugnis enthaltend Polycarbonat
EP1762591B1 (de) Zusammensetzung enthaltend Polycarbonat und neuartige UV-Absorber
EP0998525B1 (de) Polycarbonatformmassen und ihre verwendung als beschichtungen in coextrudierten platten
EP3116971B1 (de) Thermisch leitfähige thermoplastische zusammensetzungen mit ausgewogener verarbeitbarkeit
EP1404520A2 (de) Mehrschichtsysteme enthaltend antistatische formmassen
EP1651711A1 (de) Polyformale als coextrusionsschutzschicht auf polycarbonat
EP1453673A1 (de) Mehrschichtiges erzeugnis
EP1290078B1 (de) Transparente thermoplastische zusammensetzung
EP1274780B1 (de) Zusammensetzungen enthaltend polycarbonat
EP1335952B1 (de) Zusammensetzung enthaltend thermoplastische kunststoffe
EP1238002B1 (de) Polycarbonatformmassen
EP1187879A1 (de) Polycarbonatformmassen zur herstellung von artikeln mit verminderter staubanlagerung
WO2001094486A1 (de) Zusammensetzungen enthaltend polycarbonat
EP1474472B1 (de) Verwendung von zusammensetzungen enthaltend polycarbonat oder polyester zur coextrusion
EP2496638B1 (de) Platten aus polycarbonat mit verbesserter flammwidrigkeit
EP1332175B1 (de) Zusammensetzung enthaltend thermoplastische kunststoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031120

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20050225

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050506