EP1403494B1 - Verfahren und Vorrichtung zur Regelung einer Druckgrösse einer Brennkraftmaschine - Google Patents

Verfahren und Vorrichtung zur Regelung einer Druckgrösse einer Brennkraftmaschine Download PDF

Info

Publication number
EP1403494B1
EP1403494B1 EP20030015720 EP03015720A EP1403494B1 EP 1403494 B1 EP1403494 B1 EP 1403494B1 EP 20030015720 EP20030015720 EP 20030015720 EP 03015720 A EP03015720 A EP 03015720A EP 1403494 B1 EP1403494 B1 EP 1403494B1
Authority
EP
European Patent Office
Prior art keywords
value
pressure
variable
combustion engine
manipulated variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20030015720
Other languages
English (en)
French (fr)
Other versions
EP1403494A1 (de
Inventor
Thilo Jahn
Hubert Moine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1403494A1 publication Critical patent/EP1403494A1/de
Application granted granted Critical
Publication of EP1403494B1 publication Critical patent/EP1403494B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves

Definitions

  • the invention relates to a method and a device for controlling a Pressure variable of an internal combustion engine according to the preambles of the independent Claims.
  • a method and apparatus for controlling a print size of a Internal combustion engine is known for example from DE 19731995. There will be one Method and a device for regulating the rail pressure in a common rail system described. Starting from the comparison between an actual value and a Setpoint for the rail pressure is a control value for controlling a corresponding one Actuator, such as a pressure control valve and / or a controlled High pressure pump can be specified.
  • Actuator such as a pressure control valve and / or a controlled High pressure pump
  • US-5237975 describes a conventional control of the rail pressure of a so-called common rail system.
  • a controller with PID behavior gives based on the comparison between an actual and a a setpoint for the rail pressure before a manipulated variable.
  • Such a conventional control works in dynamic Operation of the internal combustion engine is not optimal.
  • the rail pressure must be constantly adapted to the respective driving condition. This serves the optimal combustion and thus also the economy and comfort.
  • the problem is the control in dynamic driving conditions. Since the delivery rate of Pump of the injection quantity and the speed, in particular the feed pump Changes in these parameters have a negative effect on the control. In addition, the pressure level of the excess Railinhaltes must be as fast as possible be adjusted. Furthermore, there is a dead time between the controller output and the change in the delivery rate.
  • a particular problem is that dynamic changes by a PI controller not can be compensated.
  • the D-component connected in parallel prevents one Overshoot of the integrator.
  • the downstream D component is to tax the dead time.
  • large changes in the injection quantity or the pump speed have an effect continue to interfere with the pressure control.
  • FIG. 1 shows components required for understanding the invention Fuel supply system of an internal combustion engine with high-pressure injection shown.
  • the illustrated system is commonly called a common rail system designated.
  • a fuel tank is called. This is about a first filter 105, a prefeed pump 110 with a second filter means 115 in connection. from second filter means 115, the fuel passes via a line to a High pressure pump 125.
  • the connecting line between the filter means 115 and the High-pressure pump 125 is connected via a low-pressure limiting valve 145 with the Reservoir 100 in conjunction.
  • the high-pressure pump 125 is connected to a rail 130 in connection.
  • the rail 130 is also referred to as storage and stands over Fuel lines with different injectors 131 in contact.
  • the pressure regulating valve 135 is controllable by means of a coil 136.
  • the high pressure pump includes an actuator with which the pumped by the high pressure pump 125 Fuel quantity is affected.
  • This actuator is in the high pressure pump or placed in front of the high-pressure pump and determines the amount of fuel that the High pressure pump supplied and thus promoted in the high pressure area.
  • the lines between the output of the high pressure pump 125 and the input of the Pressure control valve 135 are referred to as high pressure area.
  • high pressure area stands the fuel under high pressure.
  • the pressure in the high pressure area is determined by means of a Sensor 140 detected.
  • the pipes between the tank 100 and the high-pressure pump 125 are referred to as low pressure area.
  • a controller 160 supplies the high-pressure pump 125 with a drive signal AP, the injectors 131 with a drive signal A and / or the pressure control valve 135th with drive signal AV.
  • the controller 160 processes various signals various sensors 165, the operating state of the internal combustion engine and / or of the motor vehicle that drives the internal combustion engine characterize. Such a Operating state, for example, the speed N of the internal combustion engine.
  • This device works as follows: The fuel that is in the reservoir, is conveyed by the feed pump 110 through the filter means 105 and 115.
  • the high pressure pump 125 delivers the amount of fuel Q1 from the low pressure area in the high pressure area.
  • the amount of fuel delivered is determined by the signal AP determines, with which the actuator is acted upon in the high-pressure pump. This means the high-pressure pump is regulated on the suction side.
  • the high-pressure pump 125 builds up a very high pressure in the rail 130.
  • pressure values of about 30 up to 100 bar and with self-igniting internal combustion engines pressure values of about 1000 to 2000 bar achieved.
  • the injectors 131 the fuel under high pressure the individual cylinder of the internal combustion engine are metered.
  • the pressure P in the rail or in the entire high-pressure region detected.
  • the controllable high-pressure pump 125 and / or the pressure regulating valve 135 the pressure is regulated in the high pressure area.
  • FIG 2 the control of the rail pressure according to the invention is shown in more detail. This is preferably included in the controller 160. Already described in Figure 1 Elements are designated by corresponding reference numerals.
  • a map 200 be different signals from different sensors or signals internally in the Control 160 are present, fed. These are in particular a signal regarding the Speed N and a signal QK that characterizes the amount of fuel injected.
  • Speed is preferably the speed of the internal combustion engine and / or the speed used the high pressure pump.
  • the output signal of the map 200 becomes a node 205 in turn, a node 206 and a differentiating first share 215 charged. With the output signal of the first differentiating Proportion is the second input of the node 206 acted upon.
  • the Output of the node 206 passes through a limit 210 to the Actuator 125.
  • the actuator is around the controlled high-pressure pump. Alternatively, it can also be provided that others Actuators are controlled with which the rail pressure can be influenced, this can for example, be the pressure control valve 135.
  • the output signal P of the pressure sensor 140 reaches a node 225, at whose second input the output signal S a setpoint input 220 is applied, the provides a setpoint S for the rail pressure.
  • the output signal of the Link point 225 which corresponds to the control deviation, arrives at a Proportional component 230, an integral component 232 and a differentiating component 238 of a rail pressure regulator. With the output of the proportional component 230 and the Integralanteils 232, a node 234 is applied, which in turn a Connection point 236 acted upon.
  • the output signal of the differentiating component 238 passes via the connection point 240 to the connection point 236. Das Output signal of the node 236 reaches the node 205.
  • the elements 225 to 240 form a pressure regulator and the map 200 includes in Essentially a feedforward control.
  • the controller 160 also provides a value of one or more operating characteristics ready to become a differentiating behavior element 260 and get to a window comparator 270.
  • the output signal of the Window comparator 270 is applied to a switching input of a switching means 265.
  • Das Output signal of the differentiating element 260 reaches the one to a PT1 element 275 and to the switching means 265.
  • the output of PT1 gate 275 also passes to the switching means 265. With the output signal of the switching means 265, the second input of the node 240 is applied.
  • the Elements 260 to 275 together form a dynamic precontrol 250.
  • the linking of the output signals of the different components 230, 232 and 238 preferably takes place in the linking points 234 and 236. Alternatively, these can also be summarized to a node point.
  • This manipulated variable thus formed reaches a first differentiating portion 215 which, starting from the manipulated variable by differentiation forms a further correction value, with which the manipulated variable in the node 206 is influenced such that the Dynamics improved.
  • the value thus corrected then passes to the limiter 210. This limits the manipulated variable to physically possible and / or permissible values.
  • the dynamic pilot control 250 is provided.
  • This dynamic precontrol forms, starting from a suitable Operating characteristic, another correction value for influencing the manipulated variable.
  • the differentiating element 260 is preferably used. As size becomes In doing so, the difference between two values of the operating parameters determined between two successive injections are present.
  • Operating characteristics used to form the dynamic feedforward values Characterize the amount of fuel to be injected.
  • Particularly suitable here is a Size with respect to the driver's request or a torque size that the driver's request characterized.
  • the D component 260 detects a significant change in the operating parameter, it indicates a corresponding correction value for the manipulated variable.
  • the default of this Correction size only takes place with corresponding changes in the operating parameter. This is ensured by the window comparator 270. Only if the Changes are greater than a threshold SW, the window comparator 270 inputs Signal to the switching means 265, which is the output signal of the differentiating element 260 comes into effect. If the signal is smaller than the threshold SW, the Value 0 passed.
  • the PT1 member it is ensured that not abruptly the output signal of the differentiating element is switched to 0. According to the invention, when switching to the value 0, the previous one Output of the differentiating element 260 by means of a predetermined Function set by the PT1 member, returned to 0.
  • the procedure according to the invention has hitherto been based on the example of the fuel quantity or an amount that characterizes this quantity. This procedure is also applicable to other operating characteristics. Particularly advantageous is the Application to the speed of the internal combustion engine or to a speed of the Internal combustion engine characterizing size. As such size, for example, the Speed of the high pressure pump used.
  • a first step 300 the fuel quantity QK to be injected is determined.
  • the difference QKD between the current value of Fuel quantity QK and the value calculated in the previous injection QKA determined.
  • step 320 the amount QKDB of this size is determined.
  • Which Subsequent query 330 checks if the QKDB value is greater than a threshold SW is. If this is the case, then the switching means 265 is controlled so that in step 340 the differentiating element 260 has access to the manipulated variable. Is not this the In this case, the switching means 265 is activated in step 350 in such a way that the PT1 element Has access to the manipulated variable owns. It is provided that the starting value of the PT1 element is initialized so that it takes over the previous value of the D-share.
  • a subsequent query 360 checks to see if the previous metering a sign change has occurred in the signal QKD. If this is the case, then in Step 365, the value of the differentiating element 260 reinitialized. Is not this the case, then goes to the normal program flow, the Fuel metering with the value QKA in the previous step calculated in Step 370 is performed.
  • a controller based on a target-IstVertician specifies a manipulated variable, additionally provided a dynamic feedforward control is.
  • the static pilot control 200 may be omitted.
  • this dynamic Vorêtung only in the large signal range acts, that is, that the feedforward control only in the first Operating states is used to correct the manipulated variable.
  • These first Operating states occur when the operating parameter increases by more than one predetermined value SW changes.
  • an initialization of the differentiation of the Behavioral element 260 is provided, which takes place such that no unintentional jumps occur in the manipulated variable and the stored value is not the Dynamics in the wrong direction disturbs. It is preferably provided that the differentiating element 260 is turned off in the small signal range. This is with the Switching means 265 realized in conjunction with the window comparator 260. Done one such shutdown, the existing output value of the differentiating element 260 led back to 0 by means of the PT1 element 265. This can make jumps in the Output signal can be avoided. If the sign changes at the entrance, then it will the memory in the D-part is deleted immediately and a new output value in the correct one Precontrol direction calculated. This avoids that the value of the D-share has a dynamic inhibiting effect.
  • the injection quantity, as an operating parameter is the one Injection amount characterizing size, the pump speed, a pump speed characterizing size or a size corresponding to this size such as Engine speed can be used as the operating characteristic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Stand der Technik
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Regelung einer Druckgröße einer Brennkraftmaschine gemäß den Oberbegriffen der unabhängigen Ansprüche.
Ein Verfahren und eine Vorrichtung zur Regelung einer Druckgröße einer Brennkraftmaschine ist beispielsweise aus der DE 19731995 bekannt. Dort wird ein Verfahren und eine Vorrichtung zur Regelung des Raildrucks bei einem Common Rail-System beschrieben. Ausgehend von dem Vergleich zwischen einem Istwert und einem Sollwert für den Raildruck ist eine Stellgröße zur Ansteuerung eines entsprechenden Stellgliedes, beispielsweise eines Druckregelventils und/oder einer gesteuerten Hochdruckpumpe vorgebbar.
Die US-5237975 beschreibt eine übliche Regelung des Raildrucks eines so genannten Common-Rail-Systems. Ein Regler mit PID-Verhalten gibt ausgehend von dem Vergleich zwischen einem Ist- und einem Sollwert für den Raildruck eine Stellgröße vor. Eine solche übliche Regelung arbeitet im dynamischen Betrieb der Brennkraftmaschine nicht optimal.
Dieser Regelung des Raildrucks kommt in Common Rail-Systemen heutzutage eine immer größere Bedeutung zu, da die Regelgüte Auswirkungen auf die Dauerhaltbarkeit der Hydraulikkomponenten hat. Verschärfte Abgasnormen erfordern zudem immer höhere Drücke und geringere Abgasemissionen, die vor allem beim Beschleunigen auftreten. Besondere Anforderungen treten insbesondere bei sportlicher Fahrweise auf, da es hier häufig zu dynamischen Betriebszuständen unter extremen Einsatzbedingungen kommt.
Der Raildruck muß ständig dem jeweiligen Fahrzustand angepasst werden. Dies dient der optimalen Verbrennung und damit auch der Wirtschaftlichkeit und dem Komfort.
Problematisch ist die Regelung in dynamischen Fahrzuständen. Da die Fördermenge der Pumpe von der Einspritzmenge und der Drehzahl, insbesondere der Förderpumpe abhängt, wirken sich Veränderungen dieser Parameter negativ auf die Regelung aus. Zudem muß das Druckniveau des überschüssigen Railinhaltes möglichst schnell angepasst werden. Desweiteren besteht eine Totzeit zwischen dem Reglerausgang und der Änderung der Förderleistung.
Zur Entlastung des Integrators in der Regelung ist das Fördermengenkennfeld mit den bekannten Parametern vorgesehen. Dieses arbeitet korrekt für den stationären Betrieb. Systemtoleranzen werden durch den Integrator korrigiert. Änderungen am statischen System führen zu zeitlich begrenzten Abweichungen des Istwertes vom Sollwert. Es gilt, diese Abweichungen so gering wie möglich zu halten.
Besonders problematisch ist, dass dynamische Änderungen durch einen PI-Regler nicht ausgeglichen werden können. Der parallel geschaltete D-Anteil verhindert ein Überschwingen des Integrators. Der nachgeschaltete D-Anteil soll die Totzeit versteuern. Leider wirken sich große Änderungen der Einspritzmenge oder der Pumpendrehzahl weiterhin störend auf die Druckregelung aus.
Es gilt nun die Regelung des Raildrucks, insbesondere in dynamischen Zuständen weiter zu verbessern. Dadurch, dass ausgehend von wenigstens einer Betriebskenngröße mittels eines Elements, das differenzierendes Verhalten aufweist, ein Wert vorgebbar ist, mit dem die Stellgröße beeinflusst werden kann, ist eine wesentlich genauere Regelung in dynamischen Betriebszuständen möglich. Durch diese Vorsteuerung, abhängig von verschiedenen Betriebszuständen mittels eines differenzierenden Anteils, ist eine sehr präzise Regelung des Raildrucks auch in dynamischen Zuständen möglich. Vorteilhafte und zweckmäßige Ausgestaltungen und Weiterbildungen sind in den Unteransprüchen gekennzeichnet.
Zeichnung
Die Erfindung wird nachstehend anhand der Zeichnung dargestellt und Ausführungsformen erläutert.
Es zeigen:
Figur 1
ein Blockdiagramm eines Common Rail-Systems,
Figur 2
ein Blockdiagramm der wesentlichen Elemente der Regelung und
Figur 3
ein Flussdiagramm zur Erläuterung der erfindungsgemäßen Vorgehensweise.
Beschreibung der Ausführungsbeispiele
In Figur 1 sind für das Verständnis der Erfindung erforderlichen Bauteile eines Kraftstoffversorgungssystems einer Brennkraftmaschine mit Hochdruckeinspritzung dargestellt. Das dargestellte System wird üblicherweise als Common-Rail-System bezeichnet.
Mit 100 ist ein Kraftstoffvorratsbehälter bezeichnet. Dieser steht über einen ersten Filter 105, eine Vorförderpumpe 110 mit einem zweiten Filtermittel 115 in Verbindung. Vom zweiten Filtermittel 115 gelangt der Kraftstoff über eine Leitung zu einer Hochdruckpumpe 125. Die Verbindungsleitung zwischen dem Filtermittel 115 und der Hochdruckpumpe 125 steht über ein Niederdruckbegrenzungsventil 145 mit dem Vorratsbehälter 100 in Verbindung. Die Hochdruckpumpe 125 steht mit einem Rail 130 in Verbindung. Das Rail 130 wird auch als Speicher bezeichnet und steht über Kraftstoffleitungen mit verschiedenen Injektoren 131 in Kontakt. Über ein Druckregelventil 135 ist das Rail 130 mit dem Kraftstoffvorratsbehälter 100 verbindbar. Das Druckregelventil 135 ist mittels einer Spule 136 steuerbar. Die Hochdruckpumpe beinhaltet ein Stellelement mit dem die von der Hochdruckpumpe 125 geförderte Kraftstoffmenge beeinflusst wird. Dieses Stellelement ist in der Hochdruckpumpe oder vor der Hochdruckpumpe angeordnet und bestimmt die Kraftstoffmenge, die der Hochdruckpumpe zugeführt und damit in den Hochdruckbereich gefördert wird.
Die Leitungen zwischen dem Ausgang der Hochdruckpumpe 125 und dem Eingang des Druckregelventils 135 werden als Hochdruckbereich bezeichnet. In diesem Bereich steht der Kraftstoff unter hohem Druck. Der Druck im Hochdruckbereich wird mittels eines Sensors 140 erfasst. Die Leitungen zwischen dem Tank 100 und der Hochdruckpumpe 125 werden als Niederdruckbereich bezeichnet.
Eine Steuerung 160 beaufschlagt die Hochdruckpumpe 125 mit einem Ansteuersignal AP, die Injektoren 131 mit einem Ansteuersignal A und/oder das Druckregelventil 135 mit Ansteuersignal AV. Die Steuerung 160 verarbeitet verschiedene Signale verschiedener Sensoren 165, die den Betriebszustand der Brennkraftmaschine und/oder des Kraftfahrzeugs, daß die Brennkraftmaschine antreibt, charakterisieren. Ein solcher Betriebszustand ist beispielsweise die Drehzahl N der Brennkraftmaschine.
Diese Einrichtung arbeitet wie folgt: Der Kraftstoff, der sich im Vorratsbehälter befindet, wird von der Vorförderpumpe 110 durch die Filtermittel 105 und 115 gefördert.
Steigt der Druck im Niederdruckbereich auf unzulässig hohe Werte an, so öffnet das Niederdruckbegrenzungsventil 145 und gibt die Verbindung zwischen dem Ausgang der Vorförderpumpe 110 und dem Vorratsbehälter 100 frei.
Die Hochdruckpumpe 125 fördert die Kraftstoffmenge Q1 vom Niederdruckbereich in den Hochdruckbereich. Die geförderte Kraftstoffmenge wird dabei durch das Signal AP bestimmt, mit dem das Stellelement in der Hochdruckpumpe beaufschlagt wird. Dies bedeutet die Hochdruckpumpe ist saugseitig geregelt.
Die Hochdruckpumpe 125 baut im Rail 130 einen sehr hohen Druck auf. Üblicherweise werden bei Systemen für fremdgezündete Brennkraftmaschinen Druckwerte von etwa 30 bis 100 bar und bei selbstzündenden Brennkraftmaschinen Druckwerte von etwa 1000 bis 2000 bar erzielt. Über die Injektoren 131 kann der Kraftstoff unter hohem Druck den einzelnen Zylinder der Brennkraftmaschine zugemessen werden.
Mittels des Sensors 140 wird der Druck P im Rail bzw. im gesamten Hochdruckbereich erfaßt. Mittels der steuerbaren Hochdruckpumpe 125 und/oder des Druckregelventils 135 wird der Druck im Hochdruckbereich geregelt.
In Figur 2 ist die erfindungsgemäße Regelung des Raildrucks detailierter dargestellt. Diese ist vorzugsweise in der Steuerung 160 enthalten. Bereits in Figur 1 beschriebene Elemente sind mit entsprechenden Bezugszeichen bezeichnet. Einem Kennfeld 200 werden verschiedene Signale von verschiedenen Sensoren bzw. Signale, die intern in der Steuerung 160 vorliegen, zugeführt. Dies sind insbesondere ein Signal bezüglich der Drehzahl N und ein Signal QK, das die eingespritzte Kraftstoffmenge charakterisiert. Als Drehzahl wird vorzugsweise die Drehzahl der Brennkraftmaschine und/oder die Drehzahl der Hochdruckpumpe verwendet.
Mit dem Ausgangssignal des Kennfeldes 200 wird ein Verknüpfungspunkt 205 beaufschlagt, der wiederum einen Verknüpfungspunkt 206 und einen differenzierenden ersten Anteil 215 beaufschlagt. Mit dem Ausgangssignal des ersten differenzierenden Anteils wird der zweite Eingang des Verknüpfungspunktes 206 beaufschlagt. Das Ausgangssignal des Verknüpfungspunktes 206 gelangt über eine Begrenzung 210 zu dem Stellglied 125. In der dargestellten Ausführungsform handelt es sich bei dem Stellglied um die gesteuerte Hochdruckpumpe. Alternativ kann auch vorgesehen sein, dass andere Stellglieder angesteuert werden, mit denen der Raildruck beeinflussbar ist, dies kann beispielsweise das Druckregelventil 135 sein.
Das Ausgangssignal P des Drucksensors 140 gelangt zu einem Verknüpfungspunkt 225, an dessen zweiten Eingang das Ausgangssignal S einer Sollwertgabe 220 anliegt, die einen Sollwert S für den Raildruck bereitstellt. Das Ausgangssignal des Verknüpfungspunktes 225, das der Regelabweichung entspricht, gelangt zu einem Proportionalanteil 230, einem Integralanteil 232 und zu einem differenzierenden Anteil 238 eines Raildruckreglers. Mit dem Ausgangssignal des Proportionalanteils 230 und des Integralanteils 232 wird ein Verknüpfungspunkt 234 beaufschlagt, der wiederum einen Verknüpfungspunkt 236 beaufschlagt. Das Ausgangssignal des differenzierenden Anteils 238 gelangt über den Verknüpfungspunkt 240 zu dem Verknüpfungspunkt 236. Das Ausgangssignal des Verknüpfungspunktes 236 gelangt zu dem Verknüpfungspunkt 205. Die Elemente 225 bis 240 bilden einen Druckregler und das Kennfeld 200 beinhaltet im Wesentlichen eine Vorsteuerung.
Die Steuerung 160 stellt ferner einen Wert einer oder mehrerer Betriebskenngrößen bereit, der zu einem zu einem differenzierenden Verhalten aufweisenden Element 260 und zu einem Fensterkomparator 270 gelangt. Das Ausgangssignal des Fensterkomparators 270 gelangt an einen Schalteingang eines Schaltmittels 265. Das Ausgangssignal des differenzierenden Elements 260 gelangt zum einen zu einem PT1-Glied 275 und zu dem Schaltmittel 265. Das Ausgangssignal des PT1-Gliedes 275 gelangt ebenfalls zu dem Schaltmittel 265. Mit dem Ausgangssignal des Schaltmittels 265 wird der zweite Eingang des Verknüpfungspunktes 240 beaufschlagt. Die Elemente 260 bis 275 bilden gemeinsam eine dynamische Vorsteuerung 250.
Ausgehend von verschiedenen Betriebszuständen sind in dem Kennfeld 200 Vorsteuerwerte abgelegt, mit denen die Stellgröße für das Stellglied 125 beeinflusst werden kann. Diese Beeinflussung erfolgt im Verknüpfungspunkt 205. Die Vorsteuerung bewirkt eine Dynamikverbesserung der eigentlichen Regelung. Ausgehend von dem Vergleich zwischen dem Sollwert und dem Istwert P bestimmt der Regler, bestehend aus den Anteilen 230, 232 und 238 einen Wert zur Beeinflussung der Stellgröße. Das Ausgangssignal des Reglers und das Ausgangssignal der Vorsteuerung werden in dem Verknüpfungspunkt 205 vorzugsweise additiv verknüpft.
Die Verknüpfung der Ausgangssignale der verschiedenen Anteile 230, 232 und 238 erfolgt vorzugsweise in den Verknüpfungspunkten 234 und 236. Alternativ können diese auch zu einem Verknüpfungspunkt zusammen gefasst werden.
Diese so gebildete Stellgröße gelangt zu einem ersten differenzierenden Anteil 215, der, ausgehend von der Stellgröße durch Differentiation einen weiteren Korrekturwert bildet, mit dem die Stellgröße im Verknüpfungspunkt 206 derart beeinflusst wird, dass sich die Dynamik verbessert. Der so korrigierte Wert gelangt dann zu dem Begrenzer 210. Dieser begrenzt die Stellgröße auf physikalisch mögliche und/oder zulässige Werte.
Erfindungsgemäß wurde erkannt, dass die Vorsteuerung und der erste D-Anteil 215 nicht ausreichen, um im dynamischen Betrieb eine optimale Regelung gewährleisten zu können. Deshalb ist erfindungsgemäß die dynamische Vorsteuerung 250 vorgesehen. Diese dynamische Vorsteuerung bildet, ausgehend von einer geeigneten Betriebskenngröße, einen weiteren Korrekturwert zur Beeinflussung der Stellgröße. Hierzu wird vorzugsweise das differenzierende Element 260 verwendet. Als Größe wird dabei die Differenz zweier Werte der Betriebskenngrößen ermittelt, die zwischen zwei aufeinander folgenden Einspritzungen vorliegen. Vorzugsweise werden als Betriebskenngrößen zur Bildung der dynamischen Vorsteuerung Werte verwendet, die die einzuspritzende Kraftstoffmenge charakterisieren. Besonders geeignet ist hierbei eine Größe bezüglich des Fahrerwunsches bzw. eine Momentengröße, die den Fahrerwunsch charakterisiert. Dadurch können sehr früh bevorstehende Änderungen der Einspritzmenge bzw. des Fahrerwunsches für die Raildruckregelung erfasst werden. Zusätzlich kann auch noch die Pumpendrehzahl herangezogen werden. Besonders vorteilhaft ist es, wenn die Werte zweier aufeinander folgenden Einspritzungen verwendet werden und zur Steuerung der Einspritzung der Mengenwunsch verzögert weitergeleitet wird, d.h. dass der Mengenwunsch zur Steuerung der Menge erst dann verarbeitet wird, wenn die Vorsteuerung diese Änderung schon erkannt und eine entsprechende Korrektur der Stellgröße vorgenommen hat. Dies bedeutet, die dynamische Vorsteuerung 250 ändert die Stellgröße bereits bevor die Steuerung der Einspritzmenge die Einspritzmenge erhöht.
Erkennt der D-Anteil 260 eine wesentliche Änderung der Betriebskenngröße, gibt er einen entsprechenden Korrekturwert für die Stellgröße vor. Die Vorgabe dieser Korrekturgröße erfolgt lediglich bei entsprechenden Änderungen der Betriebskenngröße. Dies wird durch den Fensterkomparator 270 gewährleistet. Lediglich wenn die Änderungen größer als ein Schwellwert SW sind, gibt der Fensterkomparator 270 ein Signal an das Schaltmittel 265, das das Ausgangssignal des differenzierenden Elements 260 zur Wirkung kommt. Ist das Signal kleiner als der Schwellenwert SW, so wird der Wert 0 weitergegeben. Mittels des PT1-Gliedes wird gewährleistet, dass nicht abrupt von dem Ausgangssignal des differenzierenden Elementes auf 0 umgeschaltet wird. Erfindungsgemäß wird bei einer Umschaltung auf den Wert 0 das bisherige Ausgangssignal des differenzierenden Elements 260 mittels einer vorgegebenen Funktion, die durch das PT1-Glied festgelegt wird, auf 0 zurück geführt.
Desweiteren ist vorgesehen, dass bei einem Vorzeichenwechsel am Eingang der differenzierenden Elements 260 dessen Wert sofort gelöscht und ein neuer Ausgangswert in der korrekten Vorsteuerrichtung berechnet wird.
Die erfindungsgemäße Vorgehensweise wurde bisher am Beispiel der Kraftstoffmenge bzw. einer diese Größe charakterisierende Menge beschrieben. Diese Vorgehensweise ist auch auf andere Betriebskenngrößen anwendbar. Besonders vorteilhaft ist die Anwendung auf die Drehzahl der Brennkraftmaschine bzw. auf eine die Drehzahl der Brennkraftmaschine charakterisierende Größe. Als solche Größe wird beispielsweise die Drehzahl der Hochdruckpumpe verwendet.
Die erfindungsgemäße Vorgehensweise ist in Figur 3 näher erläutert.
In einem ersten Schritt 300 wird die einzuspritzende Kraftstoffmenge QK ermittelt. Im anschließenden Schritt 310 wird die Differenz QKD zwischen dem aktuellen Wert der Kraftstoffmenge QK und dem, bei der vorhergehenden Einspritzung berechneten Wert QKA ermittelt. Im Schritt 320 wird der Betrag QKDB dieser Größe bestimmt. Die sich anschließende Abfrage 330 überprüft, ob der Wert QKDB größer als ein Schwellenwert SW ist. Ist dies der Fall, so wird das Schaltmittel 265 so angesteuert, dass in Schritt 340 das differenzierende Element 260 Durchgriff auf die Stellgröße besitzt. Ist dies nicht der Fall, so wird in Schritt 350 das Schaltmittel 265 derart angesteuert, dass das PT1-Glied Durchgriff auf die Stellgröße besitzt. Dabei ist vorgesehen, dass der Startwert des PT1-Gliedes derart initialisiert wird, dass es den bisherigen Wert des D-Anteiles übernimmt.
Eine sich anschließende Abfrage 360 überprüft, ob bei der vorhergehenden Zumessung ein Vorzeichenwechsel bei dem Signal QKD aufgetreten ist. Ist dies der Fall, so wird in Schritt 365 der Wert des differenzierenden Elements 260 neu initialisiert. Ist dies nicht der Fall, so wird zum normalen Programmablauf übergegangen, wobei die Kraftstoffzumessung mit dem im vorhergehenden Schritt berechneten Wert QKA in Schritt 370 durchgeführt wird.
Erfindungsgemäß ist vorgesehen, dass neben einer statischen Vorsteuerung, die durch das Kennfeld 200 realisiert wird, einem Regler, der ausgehend von einem Soll-IstVergleich eine Stellgröße vorgibt, zusätzlich eine dynamische Vorsteuerung vorgesehen ist. Alternativ kann auch die statische Vorsteuerung 200 weggelassen werden. Bei einer besonders vorteilhaften Ausgestaltung ist vorgesehen, dass diese dynamische Vorsteuerung nur im Großsignalbereich wirkt, d.h., dass die Vorsteuerung nur in ersten Betriebszuständen zur Korrektur der Stellgröße verwendet wird. Diese ersten Betriebszustände liegen vor, wenn sich die Betriebskenngröße um mehr als einen vorgegebenen Wert SW ändert.
Besonders vorteilhaft ist ferner, dass eine Initialisierung des Differenzierens des Verhalten aufweisenden Elements 260 vorgesehen ist, die derart erfolgt, dass keine ungewollten Sprünge bei der Stellgröße austreten und der gespeicherte Wert nicht die Dynamik in der falschen Richtung stört. Vorzugsweise ist vorgesehen, dass das differenzierende Element 260 im Kleinsignalbereich abgeschaltet ist. Dies wird mit dem Schaltmittel 265 in Verbindung mit dem Fensterkomparator 260 realisiert. Erfolgt eine solche Abschaltung, wird der bestehende Ausgangswert des differenzierenden Element 260 mittels des PT1-Gliedes 265 auf 0 zurück geführt. Dadurch können Sprünge im Ausgangssignal vermieden werden. Ändert sich das Vorzeichen am Eingang, dann wird der Speicher im D-Anteil sofort gelöscht und ein neuer Ausgangswert in der korrekten Vorsteuerrichtung berechnet. Dadurch wird vermieden, dass der Wert des D-Anteils dynamikhemmend wirkt.
Besonders vorteilhaft ist es, wenn als Betriebskenngrößen die Einspritzmenge, eine die Einspritzmenge charakterisierende Größe, die Pumpendrehzahl, eine die Pumpendrehzahl charakterisierende Größe oder eine dieser Größe entsprechende Größe wie beispielsweise Motordrehzahl als Betriebskenngröße verwendet werden.

Claims (9)

  1. Verfahren zur Regelung einer Druckgröße einer Brennkraftmaschine, bei dem ausgehend von einem Vergleich zwischen einem Istwert und einem Sollwert eine Stellgröße vorgebbar ist, dadurch gekennzeichnet, dass in ersten Betriebszuständen, ausgehend von einer Betriebskenngröße, mittels eines differenzierenden Verhalten aufweisenden Elements ein Vorsteuerwert zur Korrektur der Stellgröße vorgegeben wird.
  2. Verfahren nach Anspruch 2, dass die ersten Betriebszustände vorliegen, wenn sich die Betriebskenngröße um mehr als ein Schwellenwert ändert.
  3. Verfahren nach Anspruch 1 oder 2, wobei die Druckgröße den Raildruck in ein Common Rail-System charakterisiert.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Stellgröße zur Beeinflussung eines Stellgliedes dient, dass die Fördermenge einer Hochdruckpumpe beeinflusst.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei einem Vorzeichenwechsel der Änderung der Betriebskenngröße der Wert neu berechnet wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in zweiten Betriebszuständen der Wert mittels eines PT1-Verhaltens aufweisenden Elements auf 0 geführt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweiten Betriebszustände vorliegen, wenn sich die Betriebskenngröße um weniger als den Schwellenwert ändern.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der Betriebskenngröße um eine Größe handelt, die die eingespritzte Kraftstoffmenge, das vom Fahrer gewünschte Moment, die Drehzahl der Brennkraftmaschine und/oder die Drehzahl der Hochdruckpumpe charakterisiert.
  9. Vorrichtung zur Regelung einer Druckgröße einer Brennkraftmaschine, bei dem ein Regler ausgehend von einem Vergleich zwischen einem Istwert und einem Sollwert eine Stellgröße vorgibt, dadurch gekennzeichnet, dass eine differenzierendes Verhalten aufweisende Vorsteuerung in ersten Betriebszuständen ausgehend von einer Betriebskenngröße ein Vorsteuerwert zur Korrektur der Stellgröße vorgibt.
EP20030015720 2002-09-27 2003-07-10 Verfahren und Vorrichtung zur Regelung einer Druckgrösse einer Brennkraftmaschine Expired - Lifetime EP1403494B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002145268 DE10245268A1 (de) 2002-09-27 2002-09-27 Verfahren und Vorrichtung zur Regelung einer Druckgröße einer Brennkraftmaschine
DE10245268 2002-09-27

Publications (2)

Publication Number Publication Date
EP1403494A1 EP1403494A1 (de) 2004-03-31
EP1403494B1 true EP1403494B1 (de) 2005-10-26

Family

ID=31969679

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030015720 Expired - Lifetime EP1403494B1 (de) 2002-09-27 2003-07-10 Verfahren und Vorrichtung zur Regelung einer Druckgrösse einer Brennkraftmaschine

Country Status (3)

Country Link
EP (1) EP1403494B1 (de)
JP (1) JP2004116527A (de)
DE (2) DE10245268A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004023365B4 (de) * 2004-05-12 2007-07-19 Mtu Friedrichshafen Gmbh Verfahren zur Druck-Regelung eines Speichereinspritzsystems
DE102004049812B4 (de) * 2004-10-12 2017-09-14 Robert Bosch Gmbh Verfahren zum Betreiben einer Kraftstoffeinspritzanlage insbesondere eines Kraftfahrzeugs
JP4088627B2 (ja) * 2005-01-24 2008-05-21 三菱電機株式会社 内燃機関の燃料圧力制御装置
DE102008036299B3 (de) * 2008-08-04 2009-12-03 Mtu Friedrichshafen Gmbh Verfahren zur Druckregelung
DE102008049964A1 (de) * 2008-10-02 2010-04-08 Deutz Ag Raildruckregelungskonzept für Raildruckregler mit mehreren Stellgliedern
DE102009051389A1 (de) 2009-10-30 2011-05-26 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine in V-Anordnung
DE102010030872A1 (de) * 2010-07-02 2012-01-05 Robert Bosch Gmbh Verfahren zum Bestimmen einer Korrekturkennlinie
DE102017211770B4 (de) * 2017-07-10 2019-06-13 Mtu Friedrichshafen Gmbh Verfahren zur Druckregelung in einem Hochdruck-Einspritzsystem einer Brennkraftmaschine, und Brennkraftmaschine zur Durchführung eines solchen Verfahrens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545229A1 (de) * 1985-12-20 1987-07-30 Audi Ag Verfahren und schaltung zur regelung des spritzbeginns bei einer verteilerpumpe fuer dieselkraftstoff an einer dieselbrennkraftmaschine
JPH0765523B2 (ja) * 1989-07-20 1995-07-19 日産自動車株式会社 ディーゼルエンジンの燃料噴射制御装置
US5237975A (en) * 1992-10-27 1993-08-24 Ford Motor Company Returnless fuel delivery system
GB2293895B (en) * 1994-10-03 1998-10-21 Ford Motor Co Returnless fuel delivery system
JP3695046B2 (ja) * 1997-02-07 2005-09-14 いすゞ自動車株式会社 エンジンの燃料噴射方法及びその装置

Also Published As

Publication number Publication date
EP1403494A1 (de) 2004-03-31
DE10245268A1 (de) 2004-04-08
DE50301474D1 (de) 2005-12-01
JP2004116527A (ja) 2004-04-15

Similar Documents

Publication Publication Date Title
EP1303693B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
EP0837986B1 (de) Vorrichtung und verfahren zur regelung des kraftstoffdruckes in einem hochdruckspeicher
DE19548278B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1086307B1 (de) Common-rail-system mit einer gesteuerten hochdruckpumpe als zweites druckregelmittel
DE102006000432B4 (de) Regelungseinrichtung für ein Kraftstoffeinspritzsystem der Common-Rail-Art
DE19731994B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10157641C2 (de) Verfahren zur Steuerung einer Brennkraftmaschine
EP2297444A1 (de) Verfahren und vorrichtung zur druckwellenkompensation bei zeitlich aufeinander folgenden einspritzungen in einem einspritzsystem einer brennkraftmaschine
EP0930426B1 (de) Verfahren zur Vorgabe des Einspritzdruck-Sollwertes bei Speichereinspritzsystemen
DE102009018654B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006001374B4 (de) Verfahren und Vorrichtung zur Steuerung und/oder Regelung einer Brennkraftmaschine
EP1403494B1 (de) Verfahren und Vorrichtung zur Regelung einer Druckgrösse einer Brennkraftmaschine
DE102011003812A1 (de) Steuergerät für ein Kraftstoffeinspritzsystem
DE4333896B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102007052092B4 (de) Verfahren und Kraftstoffsystem zum Steuern der Kraftstoffzufuhr für eine Brennkraftmaschine
DE19731201C2 (de) Verfahren zum Regeln des Kraftstoffdruckes in einem Kraftstoffspeicher
DE10147814A1 (de) Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
EP1672206B1 (de) Verfahren und Vorrichtung zur Motorsteuerung bei einem Kraftfahrzeug
DE19916101A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102013220419A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine mit Hochdruckeinspritzung
DE10026273C2 (de) Verfahren zur Zylindergleichstellung bei einer Verbrennungskraftmaschine
DE102004039311B4 (de) Verfahren und Steuergerät zur Steuerung eines Enspritzdruckaufbaus bei einem Start eines Verbrennungsmotors
DE102007033678B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102017211770B4 (de) Verfahren zur Druckregelung in einem Hochdruck-Einspritzsystem einer Brennkraftmaschine, und Brennkraftmaschine zur Durchführung eines solchen Verfahrens
DE19844744C1 (de) Verfahren und Vorrichtung zum Regeln eines Drucks in einem Hochdruckspeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040930

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20041126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50301474

Country of ref document: DE

Date of ref document: 20051201

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060216

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140724

Year of fee payment: 12

Ref country code: GB

Payment date: 20140721

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150925

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150710

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50301474

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201