EP1399938B1 - Actionneur magnetique a temps de reponse reduit - Google Patents

Actionneur magnetique a temps de reponse reduit Download PDF

Info

Publication number
EP1399938B1
EP1399938B1 EP02758514A EP02758514A EP1399938B1 EP 1399938 B1 EP1399938 B1 EP 1399938B1 EP 02758514 A EP02758514 A EP 02758514A EP 02758514 A EP02758514 A EP 02758514A EP 1399938 B1 EP1399938 B1 EP 1399938B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
mobile
air gap
actuator according
magnetic part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02758514A
Other languages
German (de)
English (en)
Other versions
EP1399938A1 (fr
Inventor
Claire Divoux
Pierre Gaud
Jérôme Delamare
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1399938A1 publication Critical patent/EP1399938A1/fr
Application granted granted Critical
Publication of EP1399938B1 publication Critical patent/EP1399938B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/42Auxiliary magnetic circuits, e.g. for maintaining armature in, or returning armature to, position of rest, for damping or accelerating movement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core

Definitions

  • the present invention relates to magnetic actuators whether they be miniature or larger size. We talk about micro-actuators when they are miniature. The realization of such actuators uses machining techniques from mechanical structures, micro-machining or techniques used in microelectronics.
  • actuators are used in particular to make electrical, optical, power, high frequency, switches, but also to realize pumps, valves, engines.
  • switch is meant a device with several contacts that can be closed separately while the relay has only one or more close at the same time. These contacts can be in open or closed position.
  • Electromagnetic relays and switches are widely employees in many applications such as telecommunications in transmission or reception, in optical telecommunications, in equipment of automatic tests, in automobile, in aeronautics and in consumer electronics.
  • Pumps, valves, motors can be used in broad areas of application and including microbiology, medicine, optics etc.
  • Known types of actuators include a fixed magnetic part 1 and a magnetic part mobile 2 who cooperate.
  • the fixed magnetic part 1 is magnetically connected to the moving magnetic part.
  • FIG. 1 shows a example of magnetic actuator of known type to a single gap.
  • the fixed magnetic part 1 and the part movable magnet 2 form a magnetic circuit 6 closed on itself able to guide a magnetic flux.
  • the fixed magnetic part 1 and the moving magnetic part 2 are stacked on top of each other.
  • the circuit magnetic 6 cooperates with means 7 to generate the magnetic flux.
  • the fixed magnetic part and the part mobile magnet 2 each comprise a portion 12, 8 respectively, helping to delimit an air gap 9 so that a force can be exerted at the level of the portion 8 of the movable part 2 to move it under the effect of the magnetic field.
  • the fixed magnetic part 1 comprises a base or breech 10 which is extended by a first stud 11 and a second magnetic stud 12.
  • second magnetic stud 12 helps delimit the gap 9.
  • the cylinder head 10 is connected magnetically to the mobile magnetic part 2 via the first stud 11. It also has a role of mechanical maintenance of the part mobile magnetic 2 with respect to the magnetic part fixed 1.
  • the fixed magnetic part 1 and the part mobile magnetic 2 extend one above the other, in substantially parallel planes when the actuator is in the open position.
  • the magnetic circuit 6 in closed loop follows each other in one of the direction of circulation of the magnetic flux: the yoke 20, the first magnetic stud 11, the mobile part 2, the gap 9 and the second magnetic pad 12.
  • Sa reference 6 schematizes the path traveled by the flow magnetic when crossing the different elements who compose it.
  • the mobile magnetic part 2 is in the example shaped arm with a support end 13 connected to the first magnetic stud 11 and another free end that corresponds in the example to the portion 8 helping to delimit the gap 9.
  • the end free serves as an electrical contact that the arm is made of electrically conductive material or that the arm is equipped with an electrical contact. No contact electric was not shown.
  • Means 7 to generate the flow Magnetic may include one or more coils surrounding one or more pieces of the game fixed magnet 1 and / or mobile magnetic part 2 and / or possibly one or more magnets permanent. When an electric current flows in a coils a magnetic flux is produced. It is materialized by the closed loop with arrows.
  • a winding 7 was represented around the first magnetic pad 11.
  • Several coils could be used, they could be around breech 10, around the second magnetic stud 12 or even around the part movable magnetic 2.
  • Magnetic flux available in the air gap 9 corresponds to the one that is guided by the magnetic circuit 6 on both sides of the air gap 9.
  • the maximum magnetic flux that can be guided by a piece of magnetic material is function magnetic material and section of the workpiece.
  • the section of the magnetic circuit 6 can be substantially homogeneous throughout its length. In this case the mechanical performance of the actuator is mediocre.
  • the section of the game mobile magnet 2 is lower than that of the part fixed magnet 5 for mechanical reasons. Indeed it is sought that the stiffness of the movable part 2 not too important for her to bend easily.
  • One of the ways to reduce the stiffness of the moving part is to reduce its section. This reduction of the section of the moving part is done at detriment of the possibility of flow passage magnetic element in the moving magnetic part, which leads to a decrease in the force at the level of the air gap and an increased response time of the part mobile.
  • Figure 2 illustrates a micro-relay in view On top. This micro-relay is realized in form planar and no longer in stacked form. He was described in the article: "Fully Batch Fabricated Magnetic Microactuators Using A Two Layer LIGA Process "by B. ROGGE, J. SCHULZ, J. MOHR, A. THOMMES and W. MENZ in TRANDUSCERS '95 - EUROSENSORS IX pages 320 to 323.
  • the movable magnetic part 2 corresponds to a free end 17 of a mobile arm 5 whose other end 13 is a bearing end secured to the support 3.
  • the arm 5 and the part Magnetic fixed 1 are located next to each other substantially in the same plane, parallel to the plane of the support 3. The movement is in the plane of the arm 5 and the fixed magnetic part 1.
  • the free end 17 ends with a mobile electrical contact 16 intended to come against a fixed electrical contact 15 carried by the support 3.
  • the fixed magnetic part 1 has in this example a cylinder head 10 secured to one side of a magnetic block 12 which contributes to delimit the gap principal 9 with the mobile magnetic part 2. From the other side, the bolt 10 is integral with a magnetic extension 14, in this example in the form of arm, which comes opposite the magnetic stud 12. This magnetic stud 12 and the magnetic extension 14 delimit an auxiliary air gap 18.
  • the magnetic circuit 6 then comprises the cylinder head 10, the first magnetic pad 12, the second air gap 18, magnetic extension 14 and bypass the gap 9 and the mobile magnetic part 2.
  • the low rigidity of the arm 5 implies a restoring force weak which slows down the movement in repulsion of the arms.
  • the magnetic circuit 6 cooperates with means 7 to generate the flow magnetic. They were represented by a winding around breech 10 and another around his extension 14.
  • this relay is of stacked construction.
  • the mobile magnetic part 2 is a portion of a larger moving part 5 but this last is only sketched in the figures. It's missing its connection to a fixed element which can be for example a support on which would rest the magnetic part 1. The reason for this absence is that the link to the fixed element plays no magnetic role.
  • the fixed magnetic part 1 comprises, in this example, a breech 10 which is prolonged, in a central zone, by a central magnetic block 12 helping to delineate with the magnetic part mobile 2 the main airgap 9. It is assumed that the mobile magnetic part 2 corresponds substantially to the hatched portion of Figure 3A and that it takes the shape of a plate.
  • the cylinder head 10 is also integral, on either side of the central block 12, two magnetic extensions 14 that project to the movable magnetic part 2. These extensions 14 are end in opposite, near the party mobile magnet 2, they each contribute to delimit with the moving magnetic part 2 a auxiliary air gap 18.
  • the magnetic circuit 6 then comprises, at following each other, breech 10, one of the extensions 14, the auxiliary air gap 18, the part mobile magnet 2, the main air gap 9 and the stud magnetic 12 central.
  • the extensions 14 allow only better guidance of the magnetic flux at vicinity of the moving magnetic part 2. This is the only way of guiding the flow and creating a additional air gap. There is no direct way flow guidance.
  • the magnetic flux flowing in the magnetic circuit 6 follows two closed loops that get join in the central stud 12. These two loops are symmetrical if the magnetic circuit is symmetrical with respect to a median axis passing through the central stud 12 in the direction of movement.
  • the magnetic part mobile 2 is a conductor of electricity, it plays the role of an electrical contact that when it gets closer of the central stud 12 under the effect of the induced force comes close an electrical circuit.
  • This circuit electrical ends with two fixed contacts 15 inserted between the central magnetic block 12 and the movable magnetic part 2. These electrical contacts fixtures increase the size of the gap.
  • the magnetic circuit 6 cooperates with means 7 to generate the flow magnetic. They were represented by a winding surrounding the central magnetic block 12.
  • the flow magnetic in the main air gap 9 is not optimum, because when looking to close the actuator, the magnetic flux in the cylinder head 10 is well guided towards the extensions 14 but all this flow does not pass through the mobile magnetic part 2 towards the main air gap 9, leaks occur significant flow between the extensions 14 and the breech 10, through the central stud 12, without passing neither by the mobile magnetic part 2 nor by the gap principal 9.
  • the present invention aims to realize an electromagnetic actuator whose strength applying on the moving part and the speed are increased compared to conventional actuators and which avoids a damping of the magnetic part mobile.
  • Such an actuator makes it possible to have a significant displacement force while retaining the moving part a reduced section so that it has compatible mechanical properties with the reduction of the mechanical response time.
  • the present invention proposes a magnetic actuator having a circuit closed magnet, able to guide a magnetic flux, this magnetic circuit having a magnetic part fixed with a cylinder head and a moving magnetic part magnetically connected to each other and moreover, at least a main air gap delimited by at least one portion of the moving magnetic part and by the breech and in which the magnetic flux closes in establishing itself substantially across the mobile magnetic.
  • the fixed magnetic part comprises more ways of recovering flows that help to delineate with the magnetic part mobile, an auxiliary air gap in which the flow Magnetic is established laterally to the part mobile magnetic field, the magnetic flux being contained in either side of the main air gap on one side the breech and the other jointly by the party mobile magnetic and by means of recovery of flow via the portion contributing to delimit the gap principal, the auxiliary airgap having a dimension in the flow setting direction that is minimum at the level of at least one zone of the portion helping to delimit the main air gap.
  • At least a first magnetic stud allows to mechanically and magnetically connect the cylinder head to the moving magnetic part.
  • At least one second magnetic pad helps to delimit the main gap, this stud magnetic being from either the breech or the mobile magnetic part.
  • this stud magnet is made of a hysteresis material.
  • At least one other magnetic pad allows mechanically and magnetically connect the cylinder head to flow recovery means.
  • the actuator comprises means for generate the magnetic flux in the magnetic circuit closed, these means for generating the magnetic flux can be made by at least one winding.
  • the mobile magnetic part can overall take the form of at least one arm to a or several non-parallel branches, connected between they at the level of the portion contributing to delimit the main air gap.
  • the means of recovery of flow can overall take the form of at least one arm to a or more branches.
  • the moving magnetic part could take the form of a star with several branches.
  • the means flow recovery present, in the direction displacement of the moving magnetic part, a thicker than that presented by the party movable magnetic in the direction of movement, so that the auxiliary air gap is delimited by surfaces that remain opposite when the displacement.
  • the main air gap is defined by two surfaces opposite, the first belonging to the portion of the moving magnetic part and the second belonging to the breech, the first surface area is greater than the second surface and exceeds around the second surface.
  • the dimension of the auxiliary air gap in the sense of establishing the magnetic flux, which is almost maximal near the portion helping to delimit the main air gap and that it decreases the more one moves away from it.
  • the mobile magnetic part may comprise at least one through opening, in the sense of a displacement, in the moving magnetic part of to further reduce the depreciation.
  • the actuator can be stacked type, the cylinder head forming a first level and the whole formed by the flow recovery means and by the part mobile magnetic a second level.
  • At least one of the levels has a form oblong substantially rounded at both ends.
  • At least one of the levels may have at least one central opening therethrough.
  • the actuator can be substantially symmetrical with respect to a median plane passing through the substantially movable magnetic part perpendicular to the direction of movement.
  • the actuator can be used to close or open an electrical circuit.
  • the portion contributing to delimit the main airgap may include at least an electrical contact for contacting at least one other electrical contact when the actuator is closed.
  • the mobile magnetic part can end with at least an electrical contact offset from the portion helping to delimit the main air gap, this electrical contact being intended to contact at least another electrical contact when the actuator is closed.
  • the electrical contact can be isolated electrically of the moving magnetic part.
  • the moving magnetic part can be in magnetic material conducive to electricity.
  • the present invention also relates to a relay having a magnetic actuator as well defined.
  • the present invention also relates to a switch having at least one actuator magnetic so defined to present several main air gaps.
  • the present invention also relates to a pump comprising a magnetic actuator thus defined, in which the mobile magnetic part is secured of a membrane helping to delimit a cavity for circulate a fluid.
  • Figures 4A to 4D respectively show in top view, in cross section along the axis BB, in cross section along the axis CC, in view from below a magnetic actuator according to the invention.
  • Such an actuator may for example be a micro-relay used in particular in devices portable telephones. It is feasible in micro-technology with stacked layers.
  • circuit magnetic closed 26 able to guide a magnetic flux, is shown schematically by the bold arrows. It has a fixed magnetic part 21 and a magnetic part mobile 22 magnetically connected to each other.
  • the fixed magnetic part 21 has a substantially flat cylinder head or base 30 which extends on one side by a first magnetic stud 31 for magnetically connect the fixed magnetic part 21 and the moving magnetic part 22. It is extended by the other side by a second magnetic pad 32 which helps delineate a main air gap 29 between the fixed magnetic portion 21 and a portion 28 of the movable magnetic part 22. It furthermore comprises 40 stream recovery means that will be detailed thereafter.
  • the moving magnetic part 22 is shaped substantially plane arm having an end 33 of solidarity support of the first magnetic stud 31 and ending with a free end.
  • the free end corresponds to the portion 28 that helps to delimit the main air gap 29.
  • This portion 28 has a maximum amplitude during a displacement of the mobile magnetic part 22.
  • This portion 28 is opposite the second stud magnetic 32, it is on this portion that applies the force generated during the actuation.
  • the first magnetic pad 31 also has a role of mechanical anchoring of the magnetic part mobile 22 to the fixed magnetic part 21. This anchoring can be done by embedding or by articulation.
  • the first magnetic block can be realized in totality in magnetic material or only in part.
  • the second magnetic pad 32 which contributes to delimit the main air gap 29 may have a role of electrical contact in the application of a relay electric.
  • the two magnetic studs 31, 32 are located at both ends of the bolt 30.
  • the flow magnetic closes by establishing itself transversely in the plane of the moving magnetic part 22.
  • the fixed magnetic part 21 comprises means for flux recovery 40, magnetically connected with the cylinder head 30 which delimit with the magnetic part mobile 22 at least one auxiliary air gap 38 lateral wherein the magnetic flux settles laterally to the moving part 22.
  • the connection between the cylinder head 30 and the means of stream recovery 40 is done through the first magnetic stud 31.
  • the means to generate the magnetic flux 27 can be made by one or more windings placed around the magnetic circuit 26 closed.
  • One or several permanent magnets can be provided in supplement or instead of coils.
  • FIGS. 4 the means for generating the magnetic flux are not represented, in a for the sake of clarity, but they are visible in the figures 5 described later. They can be placed around of the breech, magnetic studs, means of flux recovery or even the magnetic part mobile, if they do not interfere with the movement.
  • the means of stream recovery 40 are represented such an arm to two branches 41, substantially flat with one end 40.1 magnetically unrelated and a support end 40.2 connected magnetically and mechanically to the cylinder head 30 via the first magnetic stud 31.
  • 40 flow recovery means are located substantially in the same plane as the magnetic part mobile 22.
  • the two branches 41 are joined to two ends of the arm 40.
  • the two branches delimit a space in which the part takes place
  • the magnetic mobile magnetic part 22 and the means of 40 flux recovery are integral to the same first magnetic stud 31, but several studs could to be present.
  • the means of recovery of flows 40 surround the fixed magnetic part 22 and the gap lateral auxiliary 38, which they help to delimit, borders the mobile magnetic part 22 since its flush mounting end 33 up to portion 28 helping to delimit the main air gap 29.
  • the means of recovery of flows 40 cooperate with the moving magnetic part 22. They recover some of the magnetic flux established in the main air gap 29 which, when the part magnetic magnet 22 is in a saturated state, can not be guided by it. This may be the case when the main air gap 29 is low, when the relay is being closed for example, especially for deposited thin-film materials electrolytic for example, for which the value of the saturation induction is weak.
  • FIGS. 4 flow circulation magnetic has been shown.
  • the magnetic flux that settles in the auxiliary gap 38 is directed substantially transversely to that which is established in the main gap 29 and therefore substantially transversely to the movement.
  • the closed magnetic circuit 26 includes a section comprising the means of flux recovery 40 and the moving magnetic part 22 mounted in parallel, this section being in series with another section including the first magnetic block 31, the cylinder head 30, the second magnetic pad 32 and the main air gap 29 mounted in series.
  • the means of recovery of flows 40 allow to increase the section of the magnetic circuit in the part corresponding to the magnetic part mobile and therefore to guide a more magnetic flux important that the one that could be guided in the lack of recovery means. These means of 40 stream recovery are used before, during, and after the movement of the moving magnetic part 22.
  • the reluctance of the magnetic circuit 26 is decreased by the magnetic elements put in place and the gain of Magnetic flux and force are appreciable.
  • the reluctance of a magnetic circuit is the equivalent of the resistance of an electrical circuit.
  • the strength gain magnetic drive causes a decrease in the time of mechanical switching.
  • the distance between the magnetic part mobile 22 and the flow recovery means 40 characterizes the auxiliary airgap 38. It can be substantially constant as shown in Figure 4A. However, it is best to adjust to adjust the passage of the flow and optimize the force exerted on the maximum amplitude portion 28 and avoid depreciation. It is better that the dimension D1 of the auxiliary air gap 38, in the direction the magnetic flux, which is minimal at level of at least one area of the contributing portion 28 to delimit the main air gap.
  • the flow recovery means 40 have, in the direction of movement, a thickness E1 greater than that E2 of the mobile magnetic part 22 so that the surfaces delimiting the air gap auxiliary 38 remain in opposite.
  • the main air gap 29 is delimited by the portion 28 of the moving magnetic portion 22 which has a surface S1 and the second stud magnetic 32 of the cylinder head 30 which has a surface S2 facing the surface S1.
  • the surface S1 is more large than the S2 surface and that it exceeds around the surface S2.
  • the surface S1 exceeds a distance P1 the surface S2.
  • the magnetic flux contained in the means recovery 40 then goes more willingly into the portion 28 of the moving magnetic portion 22 that in the second stud 32.
  • Figures 5A and 5B are two variants, seen from above, of a magnetic actuator according to the invention. These figures are comparable to Figure 4A with respect to the overall shape of the mobile magnetic part 22 and the magnetic flux recovery means 40.
  • FIG. 5A shows the means to generate the magnetic flux 27 in the form of one or several windings 27.1 to 27.3.
  • windings 27.1 to 27.3 There are a large number of possibilities to dispose of them and to realize them.
  • Windings 27.1 the studs 31, 32 are spiral windings. This guy winding, compatible with micro-technologies, is easy to achieve. Windings 27.2, 27.3 around arm and branches were represented as type solenoid. One or more windings 27.4 of the latter type for example, can be associated with the breech 30 as shown in Figure 6B.
  • These means 42.1 may consist in providing along the moving magnetic part 22 one or several first zones Z1 at which the 40 magnetic flux recovery means are more only in one or more Z2 zones.
  • the auxiliary air gap 38 has a dimension in the direction of establishment of the magnetic flux that is minimum in at least one area of the 28th helping to delimit the main air gap. is therefore larger in at least one area outside of said portion 28.
  • the mobile magnetic part 22 is an arm that ends 28, the latter being enlarged by relative to the width of the arm.
  • the distance D2 between the flow recovery means 40 and the part magnetic magnet 22 is near maximum in the vicinity of the 28th portion and it decreases more away from it. At level of the portion 28 the distance D1 is minimal as we saw earlier. In FIGS. 5A, 5B, the minimum dimension D1 exists all around the portion 28.
  • auxiliary airgap If the size of the auxiliary airgap is substantially constant, air is likely to remain trapped at the moving magnetic part 22, which dampens his movement.
  • These means to promote the exhaust may also consist of providing the magnetic part mobile 22 through apertures 42.2 in the direction of the movement. This configuration is illustrated in Figure 5B in combination with adjusting the distance between the magnetic part mobile 22 and the flux recovery means 40. find a series of openings 42.2 along the arm from the bearing end 33 to the portion 28 and two sets of openings along the portion 28.
  • Figures 5C and 5D show two more configurations of the auxiliary air gap 38, they are derived from Figures 5A and 5B.
  • the magnetic part mobile 22 may move sideways in the plan of the auxiliary airgap 38 to come to contact the flow recovery means 40, because of a mechanical instability due to magnetic forces between the mobile magnetic part 22 and the flux recovery means 40.
  • the magnetic part mobile 22 may come crashing against the means 40. This generates a disfunction and wear of the actuator.
  • first magnetic pad 31 and the second magnetic pad 32 are derived from the moving magnetic part 22 instead from the fixed magnetic part 21.
  • the 40 stream recovery means are always connected magnetically and mechanically at the breech 30 by the first magnetic stud 31.
  • the second magnetic stud 32 is then part of portion 28 of the game movable magnet 22.
  • the main air gap is delimited by the second magnetic pad 32 and by the portion of the breech that is opposite with this second stud magnetic.
  • the bolt 30 exceeds the entire mobile magnetic part 22-means of stream recovery 40 on much of his periphery. It can also provide at least one through opening on at least one of the levels for reduce the areas facing each other. In the example, the breech 30 is provided with a large opening 43 substantially central. This configuration is not others are possible.
  • relay has been made by conventional technologies assembly and machining of mechanical structures by opposition to micro-technologies.
  • Such a relay relatively massive is particularly suitable for the high powers.
  • This relay is shown in top view in Figure 7A and in section in Figure 7B.
  • the fixed magnetic part 21 with the bolt 30 magnetically and electrically connected to the part mobile magnet 22 via the first holding stud 31.
  • the second stud 32 which contributes to delimit the main air gap 29 is massive.
  • the means for generating the magnetic flux 27 are made by a winding arranged around the second stud 32.
  • the mobile magnetic part 22 is an arm with a bearing end 33 connected to the first stud 31 and a free end forming the portion 28 which comes into opposite the second stud 32 to delimit the gap principal 29.
  • the flow recovery means 40 are made by a massive arm mechanically connected and magnetically by one of its ends 35 at the cylinder head 30 via a third stud 34. Like the other two studs, this third stud 34 is a protuberance with respect to the breech 30. On could consider that this third stud 34 is issued 40 flow recovery means instead of doing part of the breech.
  • the other end 36 of the arm is not connected magnetically, she comes close to the mobile magnetic part 22 and contributes with this the last to delimit the auxiliary airgap 38.
  • the mobile magnetic part and the flow recovery means were directed substantially in the same direction while in this configuration their directions are substantially perpendicular. Their magnetic binding points with the breech are distinct.
  • the mobile magnetic part 22 and the second stud magnetic 32 are electrically conductive and make part of an electrical circuit that is open when the actuator is open and that is closed when the actuator is closed.
  • FIG. 7C illustrates this configuration.
  • the magnetic part mobile 22 is now connected by its end 33 supporting a breech with two branches 30.1, 30.2 substantially parallel and this connection is made by first two studs 31.1, 31.2 in the extension one of the other. It is the same for the means of 40 flux recovery. They are magnetically connected each to a branch 30.1, 30.2 of the bolt 30 via two third studs that are not visible on the Figure 7C but which are in the extension one of the other.
  • the second magnetic studs 32.1, 32.2 are made of a hysteresis material, one can obtain two stable states of the actuator.
  • Figure 7D illustrates a relay having substantially the same structure but realized in micro-technology.
  • a substrate 70 for example in silicon.
  • An opening 71 is etched in the substrate to realize the means to generate the flow magnetic 27 in the form of a spiral winding.
  • a sacrificial layer made of silicon oxide for example, it is engraved at the level of magnetic bonding pads 31, 34.
  • a resin is deposited photolithographically at through a mask and developed to create a box in which we will deposit the moving magnetic part 22 and the flux recovery means 40.
  • the layer sacrificial is then released under the party mobile magnetic to give him his freedom to movement.
  • the sacrificial layer is not shown in Figure 7D but its location is found between the substrate 70 and the magnetic part 22. The latter masks the means of stream recovery.
  • the moving magnetic part 22 is prolonged beyond the main air gap 29 to come into screws of the two electrical contacts 75 carried by the 70.
  • both electrical contacts 75 are electrically connected via the free end of the movable magnetic part 22.
  • the magnetic part mobile or at least its free end is carried out in magnetic material conducive to electricity.
  • breech 30 which is supported by a support 80 which can be glass, ceramic or in silicon for example.
  • Figure 8B it has a first single stud 31 which ensures both its connection magnetic with the mobile magnetic part 22 and with the flow recovery means 40 and a second plot 32 which helps to delimit the main air gap 29.
  • Figure 8C it has a pair of first pads 31.1, 31.2 which ensures both its magnetic connection with the moving magnetic part 22 and with the flow recovery means 40 and a second stud 32 which helps to delimit the main air gap 29.
  • the auxiliary air gap has a dimension in the direction of establishment of the flow which is minimal at the level of at least one zone of the portion helping to delimit the gap main.
  • the mobile magnetic part 22 is always in the form of substantially plane arms but instead of being massive arm consists of two branches 22.1, 22.2 not parallel. On one side branches 22.1, 22.2 are magnetically and mechanically connected to either the first single stud 31, at one of the studs 31.1, 31.2 of the pair and on the other they come together to form the portion 28 which helps to delimit the gap principal 29.
  • the flow recovery means 40 are shaped like a substantially plane arm which is housed between the two branches 22.1, 22.2 of the mobile magnetic part 22 substantially in the same plan.
  • the branches 22.1, 22.2 are substantially symmetrical with respect to a longitudinal axis of the arm flow recovery means 40.
  • This arm is magnetically and mechanically connected to one side, either to the first single pad 31, or to the pair of first pads 31.1, 31.2, and on the other side is free. he is approaching the portion 28. It delimits with the movable magnet 22 the auxiliary air gap 38.
  • the means 27 to generate the flow take the form of a or several windings.
  • Figure 8B we have represented a single winding 27 around the first stud 31 single while in Figure 8C is shown a winding 27.1, 27.2 around each of the pads 31.1, 31.2 of the pair. We could have added a winding around the second stud 32.
  • the cylinder head is electrolytically deposited.
  • the depot is then planarized to keep the breech 30 only in the box 130 ( Figure 13B).
  • a dielectric layer is then deposited 81, for example, silicon oxide, and is etched at least one box 132 to delimit the means 27 for generate the flux in the form of winding with their studs electrical control.
  • This engraving is preceded a lithography step. It does not reach the the cylinder head 30.
  • the conductive tracks of the coils 27, for example copper, are deposited by electrolysis, this step is preceded by the deposition of an underlayer driver and is followed by a planarization step ( Figure 13C).
  • a new dielectric layer is deposited 82.
  • the two dielectric layers 81, 82 are etched caissons 133 for delimiting the studs 31, 32. This engraving is preceded by a step of lithography.
  • the boxes 133 reach the breech 30.
  • the magnetic studs 31, 32 are deposited electrolysis, this step is preceded by the deposit of a conductive underlayer and is followed by a step planarization ( Figure 13D).
  • a sacrificial layer is then deposited 83 for example in silicon oxide, and it is serious to clear the first magnetic stud 31 and ensure a separation between the moving magnetic part and the fixed magnetic part with recovery means flows that will be deposited ( Figure 13E).
  • a layer of material is then deposited magnetic to achieve the fixed magnetic part with the flow recovery means 40 and the part movable magnet 22 and by a lithography step and engraving they are delimited. Finally, the layer sacrificial 83 is removed, for example by etching chemical, under the moving magnetic part 22 for the free ( Figure 13F).
  • the electric control pads coils 27 are exposed (not shown).
  • the actuator can be covered with a cover of protection (not shown).
  • FIG 9A we see in top view an electric relay comparable to that of the figure 4A.
  • the yoke 30 is supported by a substrate 90.
  • 40 flow recovery means are visible they take the form of an arm with two branches.
  • the part movable magnet 22 protrudes beyond the second stud magnetic 32 and its end ends with a mobile electrical contact 91 offset from the main air gap 29.
  • the substrate 90 on which rests the cylinder head 30 has a conductive track 92 discontinuous.
  • the discontinuity 93 is at the level of movable electrical contact 91. When the actuator is in the closed state, the movable electrical contact 91 comes contact the conductive track 92 on either side of the discontinuity 93 so as to restore continuity.
  • the track 92 has a contact zone 94 of material different from that of the track.
  • This material can be in gold, for example, to improve the quality of contact.
  • the conductive track 92 can be a simple conductive line or a microstrip line by example. It's this last configuration that is represented.
  • the movable electrical contact 91 can be disposed at any part of the game mobile magnet and it is dimensioned independently dimensions of it. We have space to adjust the level of the track 91 on the substrate 90. It is an advantageous construction to increase the closing force of the relay.
  • a movable electrical contact 97 is attached to the mobile magnetic part 22 at the level of the portion 28 seat of the force generated by the magnetic flux.
  • This mobile electrical contact 97 is electrically isolated of the mobile magnetic part 22 by a layer insulation 95.
  • This insulating layer 95 can be removed if the mobile magnetic part 22 is electrically conductive and that this property is used. In this case, we can electrically isolate the part movable magnetic 22 of the rest of the actuator magnetic. It can thus serve itself to the transmission of an electrical signal, contact mobile electric coming to close an electric circuit integrating the mobile magnetic part.
  • a discontinuous conducting track 96 is represented next to the mobile contact 97. It is found between the second magnetic pad 32 and the contact In this configuration, we do not have represented from contact areas on the runway for improve the quality of the contact. With such configuration, the main air gap 29 is increased the more we add electrically conductive layers or insulation between the moving magnetic part 22 and the second magnetic pad 32, while the spacing between the electrical contacts is substantially constant. Despite the increase in the air gap, the process to realize the actuator can be more simple.
  • the actuator can function as a switch, that the mobile magnetic part 22 is equipped with two movable electrical contacts 97.1, 97.2. These contacts are placed substantially symmetrically with respect to a median plane of the moving magnetic part 22 substantially perpendicular to the direction of the movement. They are each intended to come close a electrical circuit, schematized by a contact zone 96.1, 96.2, these circuits being arranged on the else of the mobile magnetic part 22.
  • the mobile magnetic part 22 is move in one direction or in the opposite direction and one of the mobile electrical contacts 97.1 or 97.2 just shut down one of the electrical circuits.
  • the contact zone fixed 96.1 is located between the second magnetic pad 32 and the movable electrical contact 97.1.
  • the insulating layer between the part movable magnet 22 and the electrical contacts mobiles 97.1, 97.2 is omitted.
  • FIGS 11A and 11B illustrate this variant.
  • the part movable magnet 22 is in balance with two free ends 37.1, 37.2. It has two portions 28.1, 28.2 which help to delimit each a main air gap 29.1, 29.2 and these portions find on the side of its two free ends 37.1, 37.2.
  • the breech 30 is now equipped with a first central magnetic anchor pad 31 and a pair of second pads 32.1, 32.2 which contribute each to delimit one of the main air gaps 29.1, 29.2. It is made of a magnetic material electrically conductive. It is assumed that in this example the first central magnetic pad 31 serves also to magnetically connect the means of recovery of flux 40 at the cylinder head 30. The means of stream recovery 40 are comparable to those represented in FIGS. 6.
  • the means for generating the magnetic flux 27 take the form of a pair of windings 27.1, 27.2, each of them surrounding one of the second pads. References 100.1 and 100.2 represent the electrical terminals for the power supply windings.
  • terminals 100.1 are electrically connected directly to one end of the driver of a winding 27.1, 27.2 while terminals 100.2 are connected via a 100.3 conductor and via one of the seconds magnetic studs 32.1, 32.2 at the other end of the conductor of a winding 27.1, 27.2.
  • the windings 27.1, 27.2 are isolated electrically of the cylinder head 30 by a layer dielectric 101 which also extends between the first magnetic stud 31 and the cylinder head.
  • the mobile magnetic part 22 comprises at level of its free ends 37.1, 37.2 a zone 28.1, 28.2 on which the force is exerted during the actuation of the switch.
  • This area 28.1, 28.2 is located opposite each of the second pads 32.1, 32.2, it helps to delimit the main air gap 29.1, 29.2.
  • the two free ends 37.1, 37.2 are terminate with a contact area, electrical 102.1, 102.1 mobile. It is assumed that the magnetic part mobile 22 is conducting electricity as well as the first magnetic stud 31. The latter is connected to a input conductor E for routing a signal electrical to the mobile magnetic part 22.
  • a fixed electrical contact 104.1, 104.2 electrically isolated from the second magnetic pad 32.1, 32.2 by a dielectric layer 101. This contact electrical supply is extended by an output conductor S1, S2.
  • the mobile magnetic part comes to contact one fixed electrical contacts 104.1, 104.2, the signal electrical power can be collected on any of the output conductors S1 or S2.
  • the windings 27.1, 27.2 are also electrically isolated from output conductors S1, S2.
  • windings can be independent or be electrically connected in series, for example opposite windings can be in series in the case use of materials with remanent magnetization or of hysteresis materials.
  • FIGS 12A, 12B illustrate now an actuator according to the invention in an application of pump and more particularly micro-pump.
  • the center 28 of the star helps to delineate the main air gap 29. It may take the form of a magnetic block bearing the same reference 28.
  • the ends of branches 22.1, 22.2, 22.3 are support ends connected magnetically and mechanically at the single breech 30.
  • the breech can for example in the form of a disc.
  • the breech is with a series of first pads 31.1, 31.2, 31.3 to connect it to the mobile magnetic part 22.
  • It also comprises a second central stud 32 which helps delineate the main air gap 29 and a series of third pads 34.1, 34.2, 34.3 for the magnetically and mechanically connect to the means of stream recovery 40.1, 40.2, 40.3.
  • These means of stream recovery help to delineate a auxiliary airgap 38.1, 38.2, 38.3 with the part 22. They occupy the space between two contiguous branches remaining spaced branches.
  • the membrane 120 helps delimit on one side with the breech 30 a first cavity 121.
  • the auxiliary air gaps 38.1, 38.2, 38.3 may serve as contributing orifices to the circulation of the fluid, for its ejection of or its suction in an actuating cavity 122 included between the other side of the membrane 120 and the means of flux recovery 40.
  • At least one other orifice 44 also contributing to fluid circulation could cross the crown and lead into the actuating cavity 122.
  • a valve system (no represented) would be used for the fluid to circulate appropriately.
  • the means to generate the magnetic flux are represented in the form of coils 27 encircling the first magnetic studs 31.1, 31.2, 31.3 and the second magnetic pad 32.
  • a layer seal 123 coats the coils 27 between the cylinder head 30 and the magnetic studs 31.1, 31.2, 31.3, 32, 34.1, 34.2, 34.3 so as to isolate them from the cavity 121.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnets (AREA)

Description

DOMAINE TECHNIQUE
La présente invention est relative à des actionneurs magnétiques qu'ils soient miniatures ou de taille plus conséquente. On parle de micro-actionneurs lorsqu'ils sont miniatures. La réalisation de tels actionneurs fait appel à des techniques d'usinage de structures mécaniques, de micro-usinage ou des techniques employées en micro-électronique.
Ces actionneurs sont utilisés notamment pour réaliser des relais électriques, optiques, de puissance, à haute fréquence, des commutateurs, mais également pour réaliser des pompes, des vannes, des moteurs. Par commutateur, on entend un dispositif avec plusieurs contacts qui peuvent se fermer séparément alors que le relais n'en possède qu'un ou plusieurs qui se ferment en même temps. Ces contacts peuvent être en position ouverte ou fermée.
Les relais électromagnétiques et les commutateurs, miniaturisés ou non, sont largement employés dans de nombreuses applications telles que les télécommunications en émission ou en réception, dans les télécommunications optiques, dans des équipements de tests automatiques, en automobile, en aéronautique et dans les appareils électroniques grand public.
Les pompes, vannes, moteurs peuvent être utilisés dans de larges domaines d'application et notamment la microbiologie, la médecine, l'optique etc.
ETAT DE LA TECHNIQUE ANTERIEURE
Les actionneurs de types connus comprennent une partie magnétique fixe 1 et une partie magnétique mobile 2 qui coopèrent. La partie magnétique fixe 1 est reliée magnétiquement à la partie magnétique mobile.
On se réfère à la figure 1 qui montre un exemple d'actionneur magnétique de type connu à un seul entrefer.
La partie magnétique fixe 1 et la partie magnétique mobile 2 forment un circuit magnétique 6 fermé sur lui-même apte à guider un flux magnétique. La partie magnétique fixe 1 et la partie magnétique mobile 2 sont empilées l'une sur l'autre. Le circuit magnétique 6 coopère avec des moyens 7 pour générer le flux magnétique. La partie magnétique fixe et la partie magnétique mobile 2 comportent chacune une portion 12, 8 respectivement, contribuant à délimiter un entrefer 9 de manière à ce qu'une force puisse s'exercer au niveau de la portion 8 de la partie mobile 2 pour la déplacer sous l'effet du champ magnétique.
Dans l'entrefer 9 le flux magnétique s'établit transversalement à la portion 8. Dans cet exemple, la partie magnétique fixe 1 comprend une base ou culasse 10 qui se prolonge par un premier plot magnétique 11 et par un second plot magnétique 12. Le second plot magnétique 12 contribue à délimiter l'entrefer 9.
La culasse 10 est reliée magnétiquement à la partie magnétique mobile 2 via le premier plot 11. Il a aussi un rôle de maintien mécanique de la partie magnétique mobile 2 par rapport à la partie magnétique fixe 1. La partie magnétique fixe 1 et la partie magnétique mobile 2 s'étendent l'une au-dessus de l'autre, dans des plans sensiblement parallèles lorsque l'actionneur est en position ouverte.
Le circuit magnétique 6 en boucle fermée comporte à la suite les uns des autres, dans un des sens de circulation du flux magnétique : la culasse 20, le premier plot magnétique 11, la partie mobile 2, l'entrefer 9 et le second plot magnétique 12. Sa référence 6 schématise le chemin parcouru par le flux magnétique lors de sa traversée des différents éléments qui le composent.
La partie magnétique mobile 2 est dans l'exemple en forme de bras avec une extrémité d'appui 13 reliée au premier plot magnétique 11 et une autre extrémité libre qui correspond dans l'exemple à la portion 8 contribuant à délimiter l'entrefer 9.
Dans les relais électriques, l'extrémité libre sert de contact électrique que le bras soit réalisé en matériau conducteur électrique ou que le bras soit équipé d'un contact électrique. Aucun contact électrique n'a été représenté.
Les moyens 7 pour générer le flux magnétique peuvent inclure un ou plusieurs bobinages entourant une ou plusieurs pièces de la partie magnétique fixe 1 et/ou de la partie magnétique mobile 2 et/ou éventuellement un ou plusieurs aimants permanents. Quand un courant électrique circule dans un des bobinages un flux magnétique est produit. Il est matérialisé par la boucle fermée dotée de flèches.
Dans l'exemple de la figure 1, un bobinage 7 a été représenté autour du premier plot magnétique 11. Plusieurs bobinages pourraient être utilisés, ils pourraient être autour de la culasse 10, autour du second plot magnétique 12 ou même autour de la partie magnétique mobile 2.
Dans un tel circuit magnétique 6, il faut trouver un compromis entre les sections transversales au flux de ses différentes parties : celle de la partie magnétique mobile 2, celle de la partie magnétique fixe 1 et celle de l'entrefer 9.
On cherche à obtenir une valeur d'induction importante au niveau de l'entrefer 9 de manière à ce que la force qui va s'exercer sur la partie magnétique mobile 2, au niveau de la portion 8, soit importante. Il faut pour cela que le flux magnétique disponible dans l'entrefer 9 soit important. Le flux magnétique disponible dans l'entrefer 9 correspond à celui qui est guidé par le circuit magnétique 6 de part et d'autre de l'entrefer 9. Le flux magnétique maximum qui peut être guidé par une pièce en matériau magnétique est fonction du matériau magnétique et de la section de la pièce.
En état non saturé du matériau magnétique, plus la section est grande plus les pertes magnétiques sont faibles et en état saturé du matériau magnétique, tout le flux magnétique généré ne peut être contenu et l'excédant de flux magnétique correspond aux pertes, il ne peut être guidé par le matériau magnétique et il contribue que très faiblement à la force.
La section du circuit magnétique 6 peut être sensiblement homogène sur toute sa longueur. Dans ce cas les performances mécaniques de l'actionneur sont médiocres.
Généralement, la section de la partie magnétique mobile 2 est inférieure à celle de la partie magnétique fixe 5 pour des raisons mécaniques. En effet on cherche à ce que la raideur de la partie mobile 2 ne soit pas trop importante pour qu'elle puisse se courber aisément. Une des façons de réduire la raideur de la partie mobile est de réduire sa section. Cette réduction de la section de la partie mobile se fait au détriment de la possibilité de passage du flux magnétique dans la partie magnétique mobile, ce qui entraíne une diminution de la force au niveau de l'entrefer et un temps de réponse accru de la partie mobile.
Il existe d'autres types d'actionneurs magnétiques dans lesquels il y a plusieurs entrefers.
Dans ces types d'actionneur, on va appeler entrefer principal celui qui est délimité par des surfaces transversales au sens du mouvement de la partie magnétique mobile. Il y a dans ces configurations au moins un autre entrefer qui sera qualifié d'auxiliaire.
La figure 2 illustre un micro-relais en vue de dessus. Ce micro-relais est réalisé sous forme planaire et non plus sous forme empilée. Il a été décrit dans l'article : « Fully Batch Fabricated Magnetic Microactuators Using A Two Layer LIGA Process » par B. ROGGE,J. SCHULZ, J. MOHR, A. THOMMES et W. MENZ dans TRANDUSCERS' 95 - EUROSENSORS IX pages 320 à 323.
Il comporte maintenant sur un support commun 3 la partie magnétique fixe 1 et la partie magnétique mobile 2. La partie magnétique mobile 2 correspond à une extrémité libre 17 d'un bras mobile 5 dont l'autre extrémité 13 est une extrémité d'appui solidaire du support 3. Le bras 5 et la partie magnétique fixe 1 sont situés l'un à côté de l'autre sensiblement dans un même plan, parallèle au plan du support 3. Le mouvement se fait dans le plan du bras 5 et de la partie magnétique fixe 1.
L'extrémité libre 17 se termine par un contact électrique mobile 16 destiné à venir contre un contact électrique fixe 15 porté par le support 3.
La partie magnétique fixe 1 comporte dans cet exemple une culasse 10 solidaire d'un côté d'un plot magnétique 12 qui contribue à délimiter l'entrefer principal 9 avec la partie magnétique mobile 2. De l'autre côté, la culasse 10 est solidaire d'une extension magnétique 14, dans cet exemple en forme de bras, qui vient en regard avec le plot magnétique 12. Ce plot magnétique 12 et l'extension magnétique 14 délimitent un entrefer auxiliaire 18.
Le circuit magnétique 6 comporte alors la culasse 10, le premier plot magnétique 12, le second entrefer 18, l'extension magnétique 14 et en dérivation l'entrefer 9 et la partie magnétique mobile 2. La faible rigidité du bras 5 implique une force de rappel faible qui ralentit donc le mouvement en répulsion du bras.
On comprend bien que le fonctionnement de ce micro-relais n'est pas optimum, la force qui s'exerce sur la partie mobile est très limitée.
Comme précédemment, le circuit magnétique 6 coopère avec des moyens 7 pour générer le flux magnétique. Ils ont été représentés par un bobinage autour de la culasse 10 et un autre autour de son extension 14.
On connaít également par la demande de brevet WO-97/39468 un relais électrique tel que représenté sur les figures 3A et 3B. Ces deux figures ne sont pas à la même échelle.
Au lieu d'être de construction planaire, ce relais est de construction empilée. On retrouve la partie magnétique fixe 1 et la partie magnétique mobile 2 qui coopèrent. La partie magnétique mobile 2 est une portion d'une partie mobile 5 plus grande, mais cette dernière n'est qu'ébauchée sur les figures. Il manque sa liaison à un élément fixe qui peut être par exemple un support sur lequel reposerait la partie magnétique fixe 1. La raison de cette absence est que la liaison à l'élément fixe ne joue aucun rôle magnétique.
La partie magnétique fixe 1 comporte, dans cet exemple, une culasse 10 qui se prolonge, dans une zone centrale, par un plot magnétique 12 central contribuant à délimiter avec la partie magnétique mobile 2 l'entrefer principal 9. On suppose que la partie magnétique mobile 2 correspond sensiblement à la partie hachurée de la figure 3A et qu'elle prend la forme d'une plaque. La culasse 10 est aussi solidaire, de part et d'autre du plot central 12, de deux extensions magnétiques 14 qui se projettent vers la partie magnétique mobile 2. Ces extensions 14 se terminent en vis à vis, à proximité de la partie magnétique mobile 2, elles contribuent chacune à délimiter avec la partie magnétique mobile 2 un entrefer auxiliaire 18.
Le circuit magnétique 6 comporte alors, à la suite les uns des autres, la culasse 10, l'une des extensions 14, l'entrefer auxiliaire 18, la partie magnétique mobile 2, l'entrefer principal 9 et le plot magnétique 12 central. Les extensions 14 permettent seulement un meilleur guidage du flux magnétique au voisinage de la partie magnétique mobile 2. C'est le seul moyen de guidage du flux et il y a création d'un entrefer supplémentaire. Il n'y a pas de moyen direct de guidage de flux.
Le flux magnétique qui circule dans le circuit magnétique 6 suit deux boucles fermées qui se rejoignent dans le plot central 12. Ces deux boucles sont symétriques si le circuit magnétique est symétrique par rapport à un axe médian passant par le plot central 12 dans la direction du mouvement.
Dans cet exemple, la partie magnétique mobile 2 est conductrice de l'électricité, elle joue le rôle d'un contact électrique qui lorsqu'il se rapproche du plot central 12 sous l'effet de la force induite vient fermer un circuit électrique. Ce circuit électrique se termine par deux contacts fixes 15 insérés entre le plot magnétique central 12 et la partie magnétique mobile 2. Ces contacts électriques fixes augmentent la dimension de l'entrefer.
Comme précédemment, le circuit magnétique 6 coopère avec des moyens 7 pour générer le flux magnétique. Ils ont été représentés par un bobinage entourant le plot magnétique central 12.
Dans cette configuration, le flux magnétique dans l'entrefer principal 9 n'est pas optimum, car lorsqu'on cherche à fermer l'actionneur, le flux magnétique se trouvant dans la culasse 10 est bien guidé vers les extensions 14, mais tout ce flux ne passe pas au travers de la partie magnétique mobile 2 vers l'entrefer principal 9, il se produit des fuites importantes de flux entre les extensions 14 et la culasse 10, à travers le plot central 12, sans passer ni par la partie magnétique mobile 2 ni par l'entrefer principal 9.
EXPOSÉ DE L'INVENTION
La présente invention a pour but de réaliser un actionneur électromagnétique dont la force s'appliquant sur la partie mobile et la rapidité sont augmentées par rapport aux actionneurs conventionnels et qui évite un amortissement de la partie magnétique mobile. Un tel actionneur permet de disposer d'une force de déplacement importante tout en conservant à la partie mobile une section réduite de manière à ce qu'elle possède des propriétés mécaniques compatibles avec la réduction du temps de réponse mécanique.
Pour y parvenir, la présente invention propose un actionneur magnétique possédant un circuit magnétique fermé, apte à guider un flux magnétique, ce circuit magnétique comportant une partie magnétique fixe avec une culasse et une partie magnétique mobile reliées magnétiquement entre elles et de plus, au moins un entrefer principal délimité par au moins une portion de la partie magnétique mobile et par la culasse et dans lequel le flux magnétique se referme en s'établissant sensiblement transversalement à la partie magnétique mobile. La partie magnétique fixe comporte de plus des moyens de récupération de flux qui contribuent à délimiter avec la partie magnétique mobile, un entrefer auxiliaire dans lequel le flux magnétique s'établit latéralement à la partie magnétique mobile, le flux magnétique étant contenu de part et d'autre de l'entrefer principal d'un côté par la culasse et de l'autre conjointement par la partie magnétique mobile et par les moyens de récupération de flux via la portion contribuant à délimiter l'entrefer principal, l'entrefer auxiliaire possédant une dimension dans le sens d'établissement du flux qui est minimale au niveau d'au moins une zone de la portion contribuant à délimiter l'entrefer principal.
Au moins un premier plot magnétique permet de relier mécaniquement et magnétiquement la culasse à la partie magnétique mobile.
Au moins un second plot magnétique contribue à délimiter l'entrefer principal, ce plot magnétique étant issu soit de la culasse, soit de la partie magnétique mobile. Avantageusement ce plot magnétique est réalisé dans un matériau à hystérésis.
Au moins un autre plot magnétique permet de relier mécaniquement et magnétiquement la culasse aux moyens de récupération de flux.
L'actionneur comporte des moyens pour générer le flux magnétique dans le circuit magnétique fermé, ces moyens pour générer le flux magnétique pouvant être réalisés par au moins un bobinage.
Pour éviter des déplacements latéraux non souhaités de la partie magnétique mobile, elle peut prendre globalement la forme d'au moins un bras à une ou plusieurs branches non parallèles, reliées entre elles au niveau de la portion contribuant à délimiter l'entrefer principal.
Les moyens de récupération de flux peuvent prendre globalement la forme d'au moins un bras à une ou plusieurs branches.
La partie magnétique mobile pourrait prendre la forme d'une étoile avec plusieurs branches.
Pour éviter l'apparition de forces parasites sur la portion qui contribue à délimiter l'entrefer principal, il est préférable que les moyens de récupération de flux présentent, dans la direction d'un déplacement de la partie magnétique mobile, une épaisseur supérieure à celle présentée par la partie magnétique mobile dans la direction du déplacement, de manière à ce que l'entrefer auxiliaire soit délimité par des surfaces qui restent en vis à vis lors du déplacement.
Pour limiter le flux de fuite directe entre les moyens de récupération de flux et les autres parties fixes du circuit magnétique fermé, il est préférable que, sachant que l'entrefer principal est défini par deux surfaces en vis à vis, la première appartenant à la portion de la partie magnétique mobile et la seconde appartenant à la culasse, la première surface soit supérieurs à la seconde surface et dépasse autour de la seconde surface.
Pour que l'amortissement soit évité efficacement, il est possible que la dimension de l'entrefer auxiliaire, dans le sens d'établissement du flux magnétique, soit quasiment maximale à proximité de la portion contribuant à délimiter l'entrefer principal et qu'elle décroisse plus on s'en éloigne.
La partie magnétique mobile peut comporter au moins une ouverture traversante, dans le sens d'un déplacement, dans la partie magnétique mobile de manière à réduire encore l'amortissement.
L'actionneur peut être de type empilé, la culasse formant un premier niveau et l'ensemble formé par les moyens de récupération de flux et par la partie magnétique mobile un second niveau.
Pour limiter les fuites de flux, il est préférable qu'au moins un des niveaux ait une forme oblongue sensiblement arrondie à ses deux extrémités.
Dans le même but, il est préférable que les deux niveaux se chevauchent. Au moins un des niveaux peut comporter au moins une ouverture centrale traversante.
L'actionneur peut être sensiblement symétrique par rapport à un plan médian passant par la partie magnétique mobile sensiblement perpendiculairement à la direction du mouvement.
L'actionneur peut servir pour fermer ou ouvrir un circuit électrique. La portion contribuant à délimiter l'entrefer principal peut comporter au moins un contact électrique destiné à contacter au moins un autre contact électrique lorsque l'actionneur est fermé.
Selon un autre mode de réalisation, la partie magnétique mobile peut se terminer par au moins un contact électrique décalé par rapport à la portion contribuant à délimiter l'entrefer principal, ce contact électrique étant destiné à contacter au moins un autre contact électrique lorsque l'actionneur est fermé.
Le contact électrique peut être isolé électriquement de la partie magnétique mobile.
La partie magnétique mobile peut être en matériau magnétique conducteur de l'électricité.
La présente invention concerne aussi un procédé de réalisation d'un actionneur magnétique. Il comporte les étapes suivantes :
  • gravure dans un substrat d'un caisson à remplir d'un matériau magnétique pour réaliser une culasse d'une partie magnétique fixe,
  • dépôt d'une première couche diélectrique sur le substrat avec la culasse,
  • gravure d'au moins un caisson pour délimiter des moyens de génération d'un flux magnétique, et dépôt desdits moyens,
  • dépôt d'une seconde couche diélectrique sur la première couche,
  • gravure de caissons à travers les deux couches atteignant la culasse pour délimiter au moins un premier plot magnétique et au moins un second plot magnétique, le second plot contribuant à délimiter au moins un entrefer principal,
  • dépôt des premier et second plots magnétiques dans les caissons,
  • dépôt d'une couche sacrificielle sur la seconde couche diélectrique et gravure de la couche sacrificielle pour dégager le premier plot magnétique et assurer une séparation entre une partie magnétique mobile et des moyens de récupération de flux de la partie magnétique fixe déposés ultérieurement,
  • dépôt sur la couche sacrificielle de matériau magnétique pour réaliser la partie magnétique mobile et les moyens de récupération de flux, puis gravure du matériau magnétique pour les délimiter,
  • élimination de la couche sacrificielle sous la partie magnétique mobile pour la libérer et réaliser l'entrefer principal.
La présente invention concerne aussi un relais comportant un actionneur magnétique ainsi défini.
La présente invention concerne aussi un commutateur comportant au moins un actionneur magnétique ainsi défini de manière à présenter plusieurs entrefers principaux.
La présente invention concerne aussi une pompe comportant un actionneur magnétique ainsi défini, dans lequel la partie magnétique mobile est solidaire d'une membrane contribuant à délimiter une cavité pour faire circuler un fluide.
BRÈVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention apparaítront à la lecture de la description qui suit, illustrée par les figures jointes.
  • La figure 1 (déjà décrite) représente une coupe longitudinale d'un actionneur magnétique connu.
  • La figure 2 (déjà décrite) représente une vue de dessus d'un autre actionneur magnétique connu.
  • Les figures 3A et 3B (déjà décrites) montrent respectivement en coupe longitudinale et en vue de dessus un troisième actionneur magnétique connu.
  • Les figures 4A à 4D montrent respectivement en vue de dessus, en coupe longitudinale selon l'axe BB, en coupe longitudinale selon l'axe CC, en vue de dessous, un actionneur magnétique selon l'invention.
  • Les figures 5A à 5D montrent en vue de dessus des actionneurs magnétiques selon l'invention, équipés de moyens pour éviter un amortissement de la partie magnétique mobile lors de son déplacement.
  • Les figures 6A et 6B montrent respectivement en vue de dessus et en vue de dessous, un actionneur magnétique selon l'invention, à flux de fuite limité.
  • Les figures 7A et 7B montrent un actionneur magnétique massif, la figure 7C un actionneur magnétique symétrique par rapport à un plan médian de la partie magnétique mobile, sensiblement perpendiculaire à la direction du mouvement et la figure 7D un actionneur magnétique réalisé en micro-technologies.
  • Les figures 8A à 8D montrent une coupe longitudinale et des vues de dessus d'un actionneur magnétique à grande stabilité mécanique en torsion.
  • Les figures 9A et 9B montrent respectivement en vue de dessus et en coupe longitudinale, un relais électrique selon l'invention.
  • Les figures 10A à 10C montrent différentes variantes du contact électrique d'un actionneur selon l'invention.
  • Les figures 11A et 11B sont respectivement une vue de dessus et une vue en coupe d'un commutateur électrique selon l'invention.
  • Les figures 12A et 12B sont respectivement une vue de dessus et une vue en coupe d'une pompe selon l'invention.
  • Les figures 13A à 13F représentent différentes étapes de fabrication d'un actionneur similaire à celui de la figure 8A.
  • EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
    Les figures 4A à 4D montrent respectivement en vue de dessus, en coupe transversale le long de l'axe BB, en coupe transversale le long de l'axe CC, en vue de dessous un actionneur magnétique selon l'invention. Un tel actionneur peut par exemple être un micro-relais utilisable notamment dans des appareils téléphoniques portables. Il est réalisable en micro-technologie avec des couches empilées.
    Dans cette configuration le circuit magnétique fermé 26, apte à guider un flux magnétique, est schématisé par les flèches en gras. Il comporte une partie magnétique fixe 21 et une partie magnétique mobile 22 reliées magnétiquement entre elles.
    La partie magnétique fixe 21 comporte une culasse ou base 30 sensiblement plane qui se prolonge d'un côté par un premier plot magnétique 31 destiné à relier magnétiquement la partie magnétique fixe 21 et la partie magnétique mobile 22. Elle se prolonge de l'autre côté par un second plot magnétique 32 qui contribue à délimiter un entrefer principal 29 entre la partie magnétique fixe 21 et une portion 28 de la partie magnétique mobile 22. Elle comporte de plus des moyens de récupération de flux 40 qui seront détaillés par la suite.
    La partie magnétique mobile 22 est en forme de bras sensiblement plan ayant une extrémité 33 d'appui solidaire du premier plot magnétique 31 et se terminant par une extrémité libre. Dans cet exemple l'extrémité libre correspond à la portion 28 qui contribue à délimiter l'entrefer principal 29. Cette portion 28 possède une amplitude maximale lors d'un déplacement de la partie magnétique mobile 22. Cette portion 28 se trouve en vis à vis du second plot magnétique 32, c'est sur cette portion que s'applique la force générée lors de l'actionnement.
    Le premier plot magnétique 31 a également un rôle d'ancrage mécanique de la partie magnétique mobile 22 à la partie magnétique fixe 21. Cet ancrage peut se faire par encastrement ou par articulation. Le premier plot magnétique peut être réalisé en totalité en matériau magnétique ou seulement en partie.
    Le second plot magnétique 32 qui contribue à délimiter l'entrefer principal 29 peut avoir un rôle de contact électrique dans l'application d'un relais électrique.
    Il est possible de réaliser le second plot magnétique dans un matériau à hystérésis par exemple il peut être réalisé par un dépôt électrolytique d'un alliage de cobalt. Ce mode réalisation permet d'obtenir un état stable de l'actionneur.
    Les deux plots magnétiques 31, 32 se trouvent aux deux extrémités de la culasse 30.
    Dans l'entrefer principal 29 le flux magnétique se referme en s'établissant transversalement au plan de la partie magnétique mobile 22.
    Selon une caractéristique de l'invention, la partie magnétique fixe 21 comporte des moyens de récupération de flux 40, reliés magnétiquement avec la culasse 30 qui délimitent avec la partie magnétique mobile 22 au moins un entrefer auxiliaire 38 latéral dans lequel le flux magnétique s'établit latéralement à la partie mobile 22. Dans cet exemple, la liaison magnétique entre la culasse 30 et les moyens de récupération de flux 40 se fait par l'intermédiaire du premier plot magnétique 31.
    Les moyens pour générer le flux magnétique 27 peuvent être réalisés par un ou plusieurs bobinages placés autour du circuit magnétique 26 fermé. Un ou plusieurs aimants permanents peuvent être prévus en supplément ou à la place des bobinages.
    Sur les figures 4, les moyens pour générer le flux magnétique ne sont pas représentés, dans un souci de clarté, mais ils sont visibles sur les figures 5 décrites ultérieurement. Ils peuvent se placer autour de la culasse, des plots magnétiques, des moyens de récupération de flux ou même de la partie magnétique mobile, s'ils ne gênent pas le mouvement.
    Dans l'exemple des figures 4, les moyens de récupération de flux 40 sont représentés tel un bras à deux branches 41, sensiblement plat avec une extrémité 40.1 non reliée magnétiquement et une extrémité d'appui 40.2 reliée magnétiquement et mécaniquement à la culasse 30 via le premier plot magnétique 31. Les moyens de récupération de flux 40 sont situés sensiblement dans le même plan que la partie magnétique mobile 22.
    Les deux branches 41 sont jointives aux deux extrémités du bras 40. Les deux branches délimitent un espace dans lequel prend place la partie magnétique mobile 22. En fait dans cet exemple, la partie magnétique mobile 22 et les moyens de récupération de flux 40 sont solidaires du même premier plot magnétique 31, mais plusieurs plots pourraient être présents. Les moyens de récupération de flux 40 entourent la partie magnétique fixe 22 et l'entrefer auxiliaire latéral 38, qu'ils contribuent à délimiter, borde la partie magnétique mobile 22 depuis son extrémité d'appui encastrée 33 jusqu'à la portion 28 contribuant à délimiter l'entrefer principal 29.
    Les moyens de récupération de flux 40 coopèrent avec la partie magnétique mobile 22. Ils récupèrent une partie du flux magnétique établie dans l'entrefer principal 29 qui, lorsque la partie magnétique mobile 22 est dans un état saturé, ne peut être guidée par cette dernière. Cela peut être le cas lorsque l'entrefer principal 29 est faible, lorsque le relais est en train d'être fermé par exemple, notamment pour des matériaux en couche mince déposés par voie électrolytique par exemple, pour lesquels la valeur de l'induction à saturation est faible.
    Sur les figures 4 la circulation du flux magnétique a été représentée. Le flux magnétique qui s'établit dans l'entrefer auxiliaire 38 est dirigé sensiblement transversalement à celui qui s'établit dans l'entrefer principal 29 et donc sensiblement transversalement au mouvement.
    En faisant une analogie avec un circuit électrique, le circuit magnétique 26 fermé ainsi réalisé comporte un tronçon comprenant les moyens de récupération de flux 40 et la partie magnétique mobile 22 montés en parallèle, ce tronçon étant en série avec un autre tronçon comprenant le premier plot magnétique 31, la culasse 30, le second plot magnétique 32 et l'entrefer principal 29 montés en série.
    Les moyens de récupération de flux 40 permettent d'augmenter la section du circuit magnétique dans la partie correspondant à la partie magnétique mobile et donc de guider un flux magnétique plus important que celui qui pourrait être guidé en l'absence des moyens de récupération. Ces moyens de récupération de flux 40 sont utilisés avant, pendant et après le mouvement de la partie magnétique mobile 22.
    Il est alors possible de donner à la partie mobile magnétique 22 une section adaptée aux contraintes mécaniques souhaitées sans craindre qu'elle ne sature, car la saturation n'est plus synonyme de force réduite s'exerçant sur la portion 28 contribuant à délimiter l'entrefer principal 29 et de temps de réponse long.
    Grâce à la présence des moyens de récupération de flux 40, pour un faible entrefer principal 29, le flux magnétique qui s'y établit peut être accru et la force qui s'exerce également. Il y a moins de flux magnétique qui ne peut être guidé à cause de la saturation.
    Pour un entrefer principal plus grand, la réluctance du circuit magnétique 26 est diminuée par les éléments magnétiques mis en place et le gain de flux magnétique et de force sont appréciables. On rappelle que la réluctance d'un circuit magnétique est l'équivalent de la résistance d'un circuit électrique.
    Dans tous les cas, le gain de force magnétique entraíne une diminution du temps de commutation mécanique.
    L'éloignement entre la partie magnétique mobile 22 et les moyens de récupération de flux 40 caractérise l'entrefer auxiliaire 38. Il peut être sensiblement constant comme le montre la figure 4A. Toutefois, il est préférable de l'ajuster pour régler le passage du flux et optimiser la force s'exerçant sur la portion à amplitude maximale 28 et éviter l'amortissement. Il est préférable que la dimension D1 de l'entrefer auxiliaire 38, dans la direction d'établissement du flux magnétique, soit minimale au niveau d'au moins une zone de la portion 28 contribuant à délimiter l'entrefer principal.
    Toujours dans le but d'optimiser la valeur de la force qui s'exerce sur la partie magnétique mobile 22, il est préférable de limiter l'apparition de forces parasites entre les moyens de récupération de flux 40 et la partie magnétique mobile 22.
    Lors de l'établissement d'un flux magnétique dans deux éléments magnétiques, des forces liées aux effets réluctants tendent à aligner les deux éléments magnétiques dans la direction de l'induction magnétique. Si les moyens de récupération de flux 40 et la partie magnétique mobile 22 ont la même dimension dans le sens du mouvement, lors de l'actionnement, il se produit un décalage entre eux, ce décalage peut conduire à ce que les surfaces délimitant l'entrefer auxiliaire 38 ne soient plus en vis à vis. La partie magnétique mobile 22 subit alors une force de Lorentz qui s'oppose à son déplacement et qui peut perturber le fonctionnement de l'actionneur.
    Pour éviter ce phénomène, il est préférable que les moyens de récupération de flux 40 présentent, dans la direction du mouvement, une épaisseur E1 supérieure à celle E2 de la partie magnétique mobile 22 de manière à ce que les surfaces délimitant l'entrefer auxiliaire 38 restent en vis à vis.
    Il est aussi préférable de limiter le flux de fuite directe entre les moyens de récupération de flux 40 et les autres parties fixes du circuit magnétique fermé 26, notamment le second plot magnétique 32.
    L'entrefer principal 29 est délimité par la portion 28 de la partie magnétique mobile 22 qui présente une surface S1 et par le second plot magnétique 32 de la culasse 30 qui présente une surface S2 en vis à vis de la surface S1. Pour limiter le flux de fuite, il est possible que la surface S1 soit plus grande que la surface S2 et qu'elle dépasse autour de la surface S2. La surface S1 dépasse d'une distance P1 la surface S2.
    Le flux magnétique contenu dans les moyens de récupération 40 passe alors plus volontiers dans la portion 28 de la partie magnétique mobile 22 que dans le second plot 32.
    On s'intéresse maintenant aux figures 5A et 5B qui sont deux variantes, en vue de dessus, d'un actionneur magnétique selon l'invention. Ces figures sont comparables à la figure 4A en ce qui concerne la forme globale de la partie magnétique mobile 22 et des moyens de récupération de flux magnétique 40.
    On a représenté sur la figure 5A les moyens pour générer le flux magnétique 27 sous forme d'un ou plusieurs bobinages 27.1 à 27.3. Il y un grand nombre de possibilités pour les disposer et pour les réaliser. On trouve dans cet exemple, un bobinage 27.1 autour de chacun des plots 31, 32, un bobinage 27.2 autour du bras formant la partie magnétique mobile 22 et un bobinage 27.3 autour de chacune des branches 41 des moyens de récupération de flux 40.
    On suppose que les bobinages 27.1 associés aux plots 31, 32 sont des bobinages spiralés. Ce type de bobinage, compatible avec les micro-technologies, est facile à réaliser. Les bobinages 27.2, 27.3 autour du bras et des branches ont été représentés de type solénoïde. Un ou plusieurs bobinages 27.4 de ce dernier type par exemple, peut être associé avec la culasse 30 comme l'illustre la figure 6B.
    Pour diminuer encore le temps de réponse de l'actionneur selon l'invention, il est préférable de prévoir des moyens pour éviter un amortissement de la partie magnétique mobile 22 lors de son déplacement. Ces moyens favorisent un échappement de l'air se trouvant dans l'entrefer principal 29 lorsque le déplacement de la partie magnétique mobile 22 a pour effet de diminuer l'entrefer principal 29.
    Ces moyens 42.1 peuvent consister à prévoir le long de la partie magnétique mobile 22 une ou plusieurs premières zones Z1 au niveau desquelles les moyens de récupération de flux magnétique 40 sont plus éloignés que dans une ou plusieurs secondes zones Z2.
    Pour optimiser la force s'exerçant sur la portion 28 qui délimite l'entrefer principal 29 et éviter l'amortissement de la partie magnétique mobile 22, l'entrefer auxiliaire 38 possède une dimension dans le sens d'établissement du flux magnétique qui est minimale au niveau d'au moins une zone de la portion 28 contribuant à délimiter l'entrefer principal 29. Elle est donc plus grande dans au moins une zone en dehors de ladite portion 28.
    Dans l'exemple des figures 5A et 5B, la partie magnétique mobile 22 est un bras qui se termine par la portion 28, cette dernière étant élargie par rapport à la largeur du bras. L'éloignement D2 entre les moyens de récupération de flux 40 et la partie magnétique mobile 22 est quasiment maximal à proximité de la portion 28 et il décroít plus on s'en éloigne. Au niveau de la portion 28 l'éloignement D1 est minimal comme on l'a vu précédemment. Sur les figures 5A, 5B, la dimension minimale D1 existe tout autour de la portion 28.
    Si la dimension de l'entrefer auxiliaire est sensiblement constante, de l'air risque de rester emprisonné au niveau de la partie magnétique mobile 22, ce qui amortit son mouvement.
    Ces moyens pour favoriser l'échappement peuvent aussi consister à doter la partie magnétique mobile 22 d'ouvertures traversantes 42.2 dans la direction du mouvement. Cette configuration est illustrée sur la figure 5B en combinaison avec l'ajustement de la distance entre la partie magnétique mobile 22 et les moyens de récupération de flux 40. On trouve une série d'ouvertures 42.2 le long du bras depuis l'extrémité d'appui 33 vers la portion 28 et deux séries d'ouvertures le long de la portion 28.
    Les figures 5C et 5D montrent deux autres configurations de l'entrefer auxiliaire 38, elles sont dérivées des figures 5A et 5B.
    On s'aperçoit que la partie magnétique mobile 22 risque de se déplacer latéralement dans le plan de l'entrefer auxiliaire 38 pour venir contacter les moyens de récupération de flux 40, à cause d'une instabilité mécanique due à des forces magnétiques existantes entre la partie magnétique mobile 22 et les moyens de récupération de flux 40. La partie magnétique mobile 22 risque de venir se bloquer contre les moyens de récupération de flux 40. Cela engendre un disfonctionement et une usure de l'actionneur.
    Il est possible, pour éviter cet inconvénient d'augmenter la dimension D3 de l'entrefer auxiliaire 38, de part et d'autre de la partie magnétique mobile 22, au niveau de la portion 28 contribuant à délimiter l'entrefer principal 29. Par contre, à l'extrémité de la partie magnétique mobile 22, en bout de bras, la dimension D4 de l'entrefer auxiliaire, dans le sens d'établissement du flux magnétique, reste minimale.
    Sur ces figures 5, on suppose que le premier plot magnétique 31 et le second plot magnétique 32 sont issus de la partie magnétique mobile 22 au lieu d'être issus de la partie magnétique fixe 21. Les moyens de récupération de flux 40 sont toujours reliés magnétiquement et mécaniquement à la culasse 30 par le premier plot magnétique 31. Le second plot magnétique 32 fait alors partie de la portion 28 de la partie magnétique mobile 22. L'entrefer principal est délimité par le second plot magnétique 32 et par la portion de la culasse qui est en vis à vis avec ce second plot magnétique.
    Toujours dans l'optique d'optimiser la force s'exerçant sur la portion 28, on cherche à limiter les fuites de flux dans le circuit magnétique 26 notamment entre ses différents niveaux empilés. Les fuites de flux sont dues à la longueur du circuit magnétique, à la section du matériau magnétique et aux effets de forme du circuit. Dans les matériaux en couches minces, les fuites sont plus importantes que dans les matériaux massifs.
    Il est toutefois possible, pour limiter l'effet de forme, de donner à la culasse 30 (qui correspond à un premier niveau de l'actionneur) et/ou à l'ensemble formé par la partie magnétique mobile 22 et les moyens de récupération de flux 40 (qui correspond à un second niveau de l'actionneur) une forme oblongue sensiblement arrondie à ses deux extrémités. Les figures 6A et 6B sont des vues de dessus et de dessous respectivement d'un actionneur selon l'invention.
    Il est aussi possible, toujours dans le même but, de faire se chevaucher les deux niveaux. Dans l'exemple des figures 6, la culasse 30 dépasse l'ensemble partie magnétique mobile 22-moyens de récupération de flux 40 sur une grande partie de son pourtour. On peut également prévoir au moins une ouverture traversante sur moins un des niveaux pour réduire les surfaces en regard. Dans l'exemple, la culasse 30 est pourvue d'une grande ouverture 43 sensiblement centrale. Cette configuration n'est pas limitative, d'autres sont envisageables.
    On va voir maintenant un autre exemple de relais selon l'invention. On suppose que le relais a été réalisé par des technologies conventionnelles d'assemblage et d'usinage de structures mécaniques par opposition aux micro-technologies. Un tel relais relativement massif convient particulièrement bien pour les puissances élevées.
    Ce relais est représenté en vue de dessus sur la figure 7A et en coupe sur la figure 7B. On retrouve la partie magnétique fixe 21 avec la culasse 30 reliée magnétiquement et électriquement à la partie magnétique mobile 22 par l'intermédiaire du premier plot de maintien 31. Le second plot 32 qui contribue à délimiter l'entrefer principal 29 est massif. Les moyens pour générer le flux magnétique 27 sont réalisés par un bobinage disposé autour du second plot 32. La partie magnétique mobile 22 est un bras avec une extrémité d'appui 33 reliée au premier plot 31 et une extrémité libre formant la portion 28 qui vient en vis à vis du second plot 32 pour délimiter l'entrefer principal 29.
    Les moyens de récupération de flux 40 sont réalisés par un bras massif relié mécaniquement et magnétiquement par une de ses extrémités 35 à la culasse 30 par l'intermédiaire d'un troisième plot 34. Comme les deux autres plots, ce troisième plot 34 est une protubérance par rapport à la culasse 30. On pourrait envisager que ce troisième plot 34 soit issu des moyens de récupération de flux 40 au lieu de faire partie de la culasse.
    L'autre extrémité 36 du bras est n'est pas reliée magnétiquement, elle vient à proximité de la partie magnétique mobile 22 et contribue avec cette dernière à délimiter l'entrefer auxiliaire 38. Dans les configurations précédentes, la partie magnétique mobile et les moyens de récupération de flux étaient dirigés sensiblement dans la même direction tandis que dans cette configuration leurs directions sont sensiblement perpendiculaires. Leurs points de liaison magnétique avec la culasse sont distincts.
    On suppose que dans cette configuration la partie magnétique mobile 22 et le second plot magnétique 32 sont conducteurs de l'électricité et font partie d'un circuit électrique qui est ouvert lorsque l'actionneur est ouvert et qui est fermé lorsque l'actionneur est fermé.
    On peut symétriser l'actionneur selon l'invention par rapport à un plan P médian passant par la partie magnétique mobile 22 sensiblement perpendiculaire à la direction du mouvement (matérialisée par une flèche à doubles pointes). On peut ainsi réaliser un commutateur. La figure 7C illustre cette configuration. La partie magnétique mobile 22 est maintenant reliée par son extrémité d'appui 33 à une culasse à deux branches 30.1, 30.2 sensiblement parallèles et cette liaison se fait par deux premiers plots 31.1, 31.2 dans le prolongement l'un de l'autre. Il est de même pour les moyens de récupération de flux 40. Ils sont reliés magnétiquement chacun à une branche 30.1, 30.2 de la culasse 30 via deux troisièmes plots qui ne sont pas visibles sur la figure 7C mais qui sont dans le prolongement l'un de l'autre.
    On trouve également une paire de seconds plots 32.1, 32.2 dans le prolongement l'un de l'autre, en vis à vis, chacun d'entre eux contribuant à délimiter un entrefer principal 29.1, 29.2 avec la partie magnétique mobile 22. Ces entrefers sont disposés dans le prolongement l'un de l'autre, de part et d'autre de la partie magnétique mobile 22. La portion 28 de la partie magnétique mobile 22 est le siège d'une force qui s'exerce dans un sens ou dans l'autre, de manière à déplacer la partie magnétique mobile 22 vers un des seconds plots 32.1 ou vers l'autre 32.2. On a représenté les moyens pour générer le flux magnétique sous la forme de deux bobinages 27.1, 27.1, l'un 27.1 permettant au flux de s'établir dans l'un 28.1 des entrefers principaux et l'autre 27.2 permettant au flux de s'établir dans l'autre entrefer principal 28.2. Les bobinages 27.1, 27.2 encerclent chacun un des seconds plots 32.1, 32.2.
    Si les seconds plots magnétiques 32.1, 32.2 sont réalisés dans un matériau à hystérésis, on peut obtenir deux états stables de l'actionneur.
    La figure 7D illustre un relais ayant sensiblement la même structure mais réalisé en micro-technologie. On part d'un substrat 70 par exemple en silicium. On grave dans le substrat une ouverture 71 pour réaliser les moyens pour générer le flux magnétique 27 sous forme d'un bobinage spiralé. On la remplit de matériau conducteur. On dépose sur une des faces du substrat 70 une couche isolante électriquement 72 au niveau du bobinage spiralé. On perce au moins une paire de trous 73 au travers du substrat 70, on les remplit de matériau conducteur pour réaliser deux contacts électriques 75 destinés à être reliés électriquement lorsque l'actionneur magnétique est fermé.
    On perce d'autres trous 74 au travers du substrat 70 et de la couche isolante 72 pour réaliser les plots 31, 32, 34. On les remplit de matériau magnétique. On a pris soin de placer le second plot 32 qui contribue à délimiter l'entrefer principal 29 dans la zone centrale du bobinage. Le troisième plot 34 n'est pas visible mais il est comparable à celui de la figure 7A.
    On dépose aussi, sur la face portant la couche isolante 72 la culasse 30 reliée aux plots 31, 32, 34. Sur l'autre face du substrat 70, on dépose une couche sacrificielle, en oxyde de silicium par exemple, on la grave au niveau des plots de liaison magnétique 31, 34. Une résine est déposée photolithographiée à travers un masque et développée pour créer un caisson dans lequel on va déposer la partie magnétique mobile 22 et les moyens de récupération de flux 40. La couche sacrificielle est ensuite dégagée sous la partie magnétique mobile pour lui donner sa liberté de mouvement. La couche sacrificielle n'est pas représentée sur la figure 7D mais son emplacement se trouve entre le substrat 70 et la partie magnétique mobile 22. Cette dernière masque les moyens de récupération de flux.
    La partie magnétique mobile 22 se prolonge au-delà de l'entrefer principal 29 pour venir en vis à vis des deux contacts électriques 75 portés par le substrat 70. Lorsque l'actionneur est fermé, les deux contacts électriques 75 sont reliés électriquement via l'extrémité libre de la partie magnétique mobile 22. On suppose que dans cet exemple, la partie magnétique mobile ou du moins son extrémité libre est réalisée en matériau magnétique conducteur de l'électricité.
    On va décrire maintenant une autre variante d'un actionneur magnétique selon l'invention, ce dernier possédant une grande stabilité mécanique en torsion. On se réfère aux figures 8A à 8C.
    On retrouve la culasse 30 qui est supportée par un support 80 qui peut être en verre, en céramique ou en silicium par exemple.
    Sur la figure 8B, elle est dotée d'un premier plot 31 unique qui assure à la fois sa liaison magnétique avec la partie magnétique mobile 22 et avec les moyens de récupération de flux 40 et d'un second plot 32 qui contribue à délimiter l'entrefer principal 29.
    Sur la figure 8C, elle est dotée d'une paire de premiers plots 31.1, 31.2 qui assure à la fois sa liaison magnétique avec la partie magnétique mobile 22 et avec les moyens de récupération de flux 40 et d'un second plot 32 qui contribue à délimiter l'entrefer principal 29.
    Sur la figure 8D, l'entrefer auxiliaire possède une dimension dans le sens d'établissement du flux qui est minimale au niveau d'au moins une zone de la portion contribuant à délimiter l'entrefer principal.
    La partie magnétique mobile 22 est toujours en forme de bras sensiblement plan mais au lieu d'être massif le bras se compose de deux branches 22.1, 22.2 non parallèles. D'un côté les branches 22.1, 22.2 sont reliées magnétiquement et mécaniquement soit au premier plot 31 unique, soit à l'un des plots 31.1, 31.2 de la paire et de l'autre elles se rejoignent pour former la portion 28 qui contribue à délimiter l'entrefer principal 29.
    Les moyens de récupération de flux 40, dans cet exemple, sont en forme d'un bras sensiblement plan qui est logé entre les deux branches 22.1, 22.2 de la partie magnétique mobile 22 sensiblement dans le même plan.
    Les branches 22.1, 22.2 sont sensiblement symétriques par rapport à un axe longitudinal du bras des moyens de récupération de flux 40. Ce bras est relié magnétiquement et mécaniquement d'un côté, soit au premier plot 31 unique, soit à la paire de premiers plots 31.1, 31.2, et de l'autre côté est libre. Il s'approche de la portion 28. Il délimite avec la partie magnétique mobile 22 l'entrefer auxiliaire 38. Les moyens 27 pour générer le flux prennent la forme d'un ou plusieurs bobinages. Sur la figure 8B, on a représenté un seul bobinage 27 autour du premier plot 31 unique tandis que sur la figure 8C on a représenté un bobinage 27.1, 27.2 autour de chacun des plots 31.1, 31.2 de la paire. On aurait pu ajouter un bobinage autour du second plot 32.
    La réalisation d'un actionneur en micro-technologie similaire à celui de la figure 8A peut se faire comme suit en se référant aux figures 13A à 13F.
    Sur le substrat 80, on va réaliser la culasse 30. On dépose une couche de résine, puis on réalise une étape de lithographie. On grave dans le substrat 80 ou dans une couche déposée sur le substrat un caisson 130. On dépose une sous-couche conductrice 131 au fond du caisson 130 (figure 13A).
    On dépose la culasse 30 électrolytiquement. Le dépôt est ensuite planarisé pour ne conserver la culasse 30 que dans le caisson 130 (figure 13B).
    On dépose ensuite une couche diélectrique 81, par exemple en oxyde de silicium, et on y grave au moins un caisson 132 pour délimiter les moyens 27 pour générer le flux sous forme de bobinage avec leurs plots de commande électrique. Cette gravure est précédée d'une étape de lithographie. Elle n'atteint pas la culasse 30. Les pistes conductrices des bobinages 27, par exemple en cuivre, sont déposées par électrolyse, cette étape est précédée du dépôt d'une sous-couche conductrice et est suivie d'une étape de planarisation (figure 13C).
    On dépose une nouvelle couche diélectrique 82. On grave dans les deux couches diélectriques 81, 82 des caissons 133 destinés à délimiter les plots magnétiques 31, 32. Cette gravure est précédée d'une étape de lithographie. Les caissons 133 atteignent la culasse 30. Les plots magnétiques 31, 32 sont déposés par électrolyse, cette étape est précédée du dépôt d'une sous-couche conductrice et est suivie d'une étape de planarisation (figure 13D).
    On dépose ensuite une couche sacrificielle 83 par exemple en oxyde de silicium, et on la grave pour dégager le premier plot magnétique 31 et assurer une séparation entre la partie magnétique mobile et la partie magnétique fixe avec les moyens de récupération de flux qui vont être déposées(figure 13E).
    On dépose ensuite une couche de matériau magnétique pour réaliser la partie magnétique fixe avec les moyens de récupération de flux 40 et la partie magnétique mobile 22 et par une étape de lithographie et de gravure on les délimite. Enfin, la couche sacrificielle 83 est ôtée, par exemple par gravure chimique, sous la partie magnétique mobile 22 pour la libérer (figure 13F).
    Les plots de commande électrique des bobinages 27 sont mis à nu (non représentés). L'actionneur peut être recouvert d'un couvercle de protection (non représenté).
    On va voir maintenant des exemples de relais et de commutateurs électriques en détaillant plus particulièrement leurs contacts électriques.
    Sur la figure 9A, on voit en vue de dessus un relais électrique comparable à celui de la figure 4A. La culasse 30 est supportée par un substrat 90. Les moyens de récupération de flux 40 sont visibles, ils prennent la forme d'un bras à deux branches. La partie magnétique mobile 22 dépasse au-delà du second plot magnétique 32 et son extrémité se termine par un contact électrique mobile 91 décalé par rapport à l'entrefer principal 29. Le substrat 90 sur lequel repose la culasse 30 comporte une piste conductrice 92 discontinue. La discontinuité 93 se trouve au niveau du contact électrique mobile 91. Lorsque l'actionneur est à l'état fermé, le contact électrique mobile 91 vient contacter la piste conductrice 92 de chaque côté de la discontinuité 93 de manière à rétablir la continuité. On suppose que, de chaque côté de la discontinuité 93, la piste 92 comporte une zone de contact 94 en matériau différent de celui de la piste. Ce matériau peut être en or par exemple, pour améliorer la qualité du contact. La piste conductrice 92 peut être une simple ligne conductrice ou une ligne à microruban par exemple. C'est cette dernière configuration qui est représentée.
    La portion 28 sur laquelle s'applique la force et le contact électrique mobile 91 ont été décalés l'un par rapport à l'autre le long de la partie magnétique mobile 22, mais ils restent dans le même plan. Ils peuvent être réalisés par la même étape technologique. On peut ainsi conserver un entrefer principal 29 le plus faible possible, par rapport au cas où la distance entre les contacts électriques est incluse dans l'entrefer principal, lorsque l'actionneur est à l'état ouvert et une distance entre le contact électrique mobile 91 et la piste 92 la plus grande possible. Le contact électrique mobile 91 peut être disposé en un endroit quelconque de la partie magnétique mobile et il est dimensionné indépendamment des dimensions de celle-ci. On a de l'espace pour ajuster le niveau de la piste 91 sur le substrat 90. C'est une construction avantageuse pour augmenter la force de fermeture du relais.
    On peut envisager de réaliser le contact électrique au niveau de l'entrefer principal 29. C'est cette variante qu'illustrent les figures 10A, 10B, 10C.
    Un contact électrique mobile 97 est fixé à la partie magnétique mobile 22 au niveau de la portion 28 siège de la force générée par le flux magnétique. Ce contact électrique mobile 97 est isolé électriquement de la partie magnétique mobile 22 par une couche isolante 95. Cette couche isolante 95 peut être ôtée si la partie magnétique mobile 22 est électriquement conductrice et qu'on utilise cette propriété. Dans ce cas, on pourra isoler électriquement la partie magnétique mobile 22 du reste de l'actionneur magnétique. Elle peut ainsi servir elle-même à la transmission d'un signal électrique, le contact électrique mobile venant fermer un circuit électrique intégrant la partie magnétique mobile.
    On peut envisager que le contact électrique soit réalisé par le matériau magnétique lui-même comme l'illustrent les figures 11.
    Une piste conductrice 96 discontinue est représentée en regard du contact mobile 97. Elle se trouve entre le second plot magnétique 32 et le contact mobile 97. Dans cette configuration, on n'a pas représenté de zones de contact sur la piste pour améliorer la qualité du contact. Avec une telle configuration, l'entrefer principal 29 est augmenté plus on ajoute de couches électriquement conductrice ou isolante entre la partie magnétique mobile 22 et le second plot magnétique 32, tandis que l'espacement entre les contacts électriques est sensiblement constante. Malgré l'augmentation de l'entrefer, le procédé pour réaliser l'actionneur peut être plus simple.
    On peut envisager pour que l'actionneur puisse fonctionner en tant que commutateur, que la partie magnétique mobile 22 soit équipée de deux contacts électriques mobiles 97.1, 97.2. Ces contacts sont placés sensiblement symétriquement par rapport à un plan médian de la partie magnétique mobile 22 sensiblement perpendiculaire à la direction du mouvement. Ils sont destinés chacun à venir fermer un circuit électrique, schématisé par une zone de contact 96.1, 96.2, ces circuits étant disposés de part et d'autre de la partie magnétique mobile 22. En générant un flux magnétique dans l'entrefer principal 29 dans un sens ou dans l'autre, la partie magnétique mobile 22 se déplace dans une direction ou dans la direction opposée et l'un des contacts électriques mobiles 97.1 ou 97.2 vient fermer l'un des circuits électriques.
    Comme sur la figure 10A, la zone de contact fixe 96.1 est située entre le second plot magnétique 32 et le contact électrique mobile 97.1. Dans cette représentation la couche isolante entre la partie magnétique mobile 22 et les contacts électriques mobiles 97.1, 97.2 est omise.
    Pour réaliser un commutateur, il est également possible de placer l'ancrage de la partie magnétique mobile 22 dans sa partie centrale au lieu de le placer à l'une de ses extrémités. Les figures 11A et 11B illustrent cette variante. Maintenant la partie magnétique mobile 22 est en balancier avec deux extrémités libres 37.1, 37.2. Elle comporte deux portions 28.1, 28.2 qui contribuent à délimiter chacune un entrefer principal 29.1, 29.2 et ces portions se trouvent du côté de ses deux extrémités libres 37.1, 37.2.
    La culasse 30 est dotée maintenant d'un premier plot magnétique d'ancrage 31 central et d'une paire de seconds plots 32.1, 32.2 qui contribuent chacun à délimiter l'un des entrefers principaux 29.1, 29.2. Elle est réalisée dans un matériau magnétique conducteur électriquement. On suppose que dans cet exemple le premier plot magnétique central 31 sert aussi pour relier magnétiquement les moyens de récupération de flux 40 à la culasse 30. Les moyens de récupération de flux 40 sont comparables à ceux représentés sur les figures 6. Les moyens pour générer le flux magnétique 27 prennent la forme d'une paire de bobinages 27.1, 27.2, chacun d'eux entourant l'un des seconds plots. Les références 100.1 et 100.2 représentent les bornes électriques pour l'alimentation des bobinages. Les bornes 100.1 sont électriquement reliées directement à une extrémité du conducteur d'un bobinage 27.1, 27.2 tandis que les bornes 100.2 sont reliées via un conducteur 100.3 et via un des seconds plots magnétiques 32.1, 32.2 à l'autre extrémité du conducteur d'un bobinage 27.1, 27.2.
    Les bobinages 27.1, 27.2 sont isolés électriquement de la culasse 30 par une couche diélectrique 101 qui s'étend aussi entre le premier plot magnétique 31 et la culasse.
    La partie magnétique mobile 22 comporte au niveau de ses extrémités libres 37.1, 37.2 une zone 28.1, 28.2 sur laquelle s'exerce la force lors de l'actionnement du commutateur. Cette zone 28.1, 28.2 se trouve en vis à vis de chacun des seconds plots 32.1, 32.2, elle contribue à délimiter l'entrefer principal 29.1, 29.2.
    Les deux extrémités libres 37.1, 37.2 se terminent par une zone de contact, électrique 102.1, 102.1 mobile. On suppose que la partie magnétique mobile 22 est conductrice de l'électricité ainsi que le premier plot magnétique 31. Ce dernier est relié à un conducteur d'entrée E permettant d'acheminer un signal électrique vers la partie magnétique mobile 22. En vis à vis de chacune des zones de contact électrique 102.1, 102.2 se trouve un contact électrique fixe 104.1, 104.2 isolé électriquement du second plot magnétique 32.1, 32.2 par une couche diélectrique 101. Ce contact électrique se prolonge par un conducteur de sortie S1, S2. La partie magnétique mobile vient contacter l'un des contacts électriques fixes 104.1, 104.2, le signal électrique peut être recueilli sur l'un ou l'autre des conducteurs de sortie S1 ou S2. Les bobinages 27.1, 27.2 sont également isolés électriquement des conducteurs de sortie S1, S2.
    Le passage des signaux électriques et le passage du flux magnétique sont schématisés sur la partie droite de la figure 11B. Dans cet exemple le signal électrique passe par la partie magnétique mobile mais ni par le second plot magnétique ni par la culasse. On aurait pu imaginer qu'il passe par ces parties du circuit magnétique.
    Les bobinages peuvent être indépendants ou être reliés électriquement en série, par exemple des bobinages opposés peuvent être en série dans le cas d'utilisation de matériaux à aimantation rémanente ou de matériaux à hystérésis.
    Les figures 12A, 12B illustrent maintenant un actionneur selon l'invention dans une application de pompe et plus particulièrement de micro-pompe.
    On retrouve la partie magnétique mobile 22 formée de plusieurs branches 22.1, 22.2, 22.3 en étoile. Le centre 28 de l'étoile contribue à délimiter l'entrefer principal 29. Il peut prendre la forme d'un plot magnétique portant la même référence 28. Les extrémités des branches 22.1, 22.2, 22.3 sont des extrémités d'appui reliées magnétiquement et mécaniquement à la culasse 30 unique. La culasse peut être par exemple en forme de disque. La culasse est dotée d'une série de premiers plots 31.1, 31.2, 31.3 pour la relier à la partie magnétique mobile 22. Elle comporte également un second plot central 32 qui contribue à délimiter l'entrefer principal 29 et une série de troisièmes plots 34.1, 34.2, 34.3 pour la relier magnétiquement et mécaniquement aux moyens de récupération de flux 40.1, 40.2, 40.3. Ces moyens de récupération de flux contribuent à délimiter un entrefer auxiliaire 38.1, 38.2, 38.3 avec la partie magnétique mobile 22. Ils occupent l'espace entre deux branches contiguës en restant espacés des branches.
    Dans cette configuration de pompe, on suppose que les premiers plots et les troisièmes plots sont jointifs dans leur partie supérieure de manière à former une couronne périphérique à la culasse 30 sur laquelle est fixée une membrane 120. Cette membrane 120 est également solidaire de la partie magnétique mobile 22 et du plot 28 mais pas des moyens de récupération de flux 40. Cette membrane se déplace au rythme des déplacements de la partie magnétique mobile 22. Elle sert à actionner la circulation d'un fluide. Elle peut avoir un effet de compression, d'aspiration ou d'éjection sur le fluide. Elle est réalisée dans un matériau compatible avec le fluide à pomper ou est protégée par un traitement de surface.
    Dans l'exemple des figures 12, la membrane 120 contribue à délimiter d'un côté avec la culasse 30 une première cavité 121. Les entrefers auxiliaires 38.1, 38.2, 38.3 peuvent servir d'orifices contribuant à la circulation du fluide, pour son éjection de ou son aspiration dans une cavité d'actionnement 122 comprise entre l'autre côté de la membrane 120 et les moyens de récupération de flux 40. Au moins un autre orifice 44 contribuant également à la circulation du fluide pourrait traverser la couronne et déboucher dans la cavité d'actionnement 122. Un système de vannes (non représenté) serait utilisé pour que le fluide puisse circuler de manière appropriée.
    Les moyens pour générer le flux magnétique sont représentés sous la forme de bobinages 27 encerclant les premiers plots magnétiques 31.1, 31.2, 31.3 et le second plot magnétique 32. Une couche d'étanchéité 123 enrobe les bobinages 27 entre la culasse 30 et les plots magnétiques 31.1, 31.2, 31.3, 32, 34.1, 34.2, 34.3 de manière à les isoler de la cavité 121.
    D'autres configurations sont possibles, notamment le fluide pourrait se trouver dans un réservoir inclus dans la pompe et il y aurait au moins un orifice pour l'éjecter.
    En supprimant la membrane une telle structure pourrait être utilisée comme un relais.

    Claims (24)

    1. Actionneur magnétique possédant un circuit magnétique fermé (26) apte à guider un flux magnétique, ce circuit magnétique (26) comportant une partie magnétique fixe (30, 31, 32) avec une culasse (30) et une partie magnétique mobile (22) reliées magnétiquement entre elles et de plus au moins un entrefer principal (29) délimité par au moins une portion (28) de la partie magnétique mobile (22) et par la culasse (30), dans lequel le flux magnétique se referme en s'établissant sensiblement transversalement à la partie magnétique mobile (22) dans la direction de mouvement de la partie magnétique mobile (22), caractérisé en ce que la partie magnétique fixe (30, 31, 32) comporte des moyens de récupération de flux (40) qui contribuent à délimiter avec la partie magnétique mobile (22) un entrefer auxiliaire (38) dans lequel le flux magnétique s'établit latéralement à la partie magnétique mobile (22) et donc sensiblement transversalement en mouvement de la partie magnétique mobile (22), le flux magnétique étant contenu de part et d'autre de l'entrefer principal (29) d'un côté par la culasse (30) et de l'autre par la partie magnétique mobile (22) et par les moyens de récupération de flux (40) conjointement via une portion (28) de la partie magnétique mobile (22) contribuant à délimiter l'entrefer principal (29), l'entrefer auxiliaire (38) possède une dimension dans le sens d'établissement du flux magnétique qui est minimale au niveau d'au moins une zone de la portion (28) contribuant à délimiter l'entrefer principal (29).
    2. Actionneur magnétique selon la revendication 1, caractérisé en ce qu'au moins un premier plot magnétique (31) permet de relier mécaniquement et magnétiquement la culasse (30) à la partie magnétique mobile (22).
    3. Actionneur magnétique selon l'une des revendications 1 ou 2, caractérisé en ce qu'au moins un second plot magnétique (32) contribue à délimiter l'entrefer principal (29), ce plot magnétique (32) est réalisé dans un matériau à hystérésis.
    4. Actionneur magnétique selon l'une des revendications 1 à 3, caractérisé en ce qu'au moins un autre plot magnétique (34) permet de relier mécaniquement et magnétiquement la culasse (30) aux moyens de récupération de flux (40).
    5. Actionneur magnétique selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte des moyens (27) pour générer le flux magnétique dans le circuit magnétique fermé (26), ces moyens pour générer le flux magnétique étant réalisés par au moins un bobinage.
    6. Actionneur magnétique selon l'une des revendications 1 à 5, caractérisé en ce que la partie magnétique mobile (22) prend globalement la forme d'au moins un bras à une ou plusieurs branches non parallèles reliées entre elles au niveau de la portion contribuant à délimiter l'entrefer principal (29).
    7. Actionneur magnétique selon l'une des revendications 1 à 6, caractérisé en ce que la partie magnétique mobile (22) prend la forme d'une étoile avec plusieurs branches (22.1, 22.2, 22.3).
    8. Actionneur magnétique selon l'une des revendications 1 à 7, caractérisé en ce que les moyens de récupération de flux (40) présentent, dans la direction d'un déplacement de la partie magnétique mobile (22), une épaisseur (E1) supérieure à celle (E2) présentée par la partie magnétique mobile (22) dans la direction du déplacement de manière à ce que l'entrefer auxiliaire (38) soit délimité par des surfaces qui restent en vis à vis lors du déplacement de la partie magnétique mobile (22).
    9. Actionneur magnétique selon l'une des revendications 1 à 8, caractérisé en ce que l'entrefer principal (29) est défini par deux surfaces (S1, S2) en vis à vis, la première (S1) appartenant à la portion (28) de la partie magnétique mobile (22) et la seconde (S2) appartenant à la culasse (30), la première surface (S1) étant supérieure à la seconde surface (S2) et dépassant autour de la seconde surface (S2).
    10. Actionneur magnétique selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la dimension (D2) de l'entrefer auxiliaire (38), dans le sens d'établissement du flux magnétique, est quasiment maximale à proximité de la portion (28) contribuant à délimiter l'entrefer principal (29) et décroít plus on s'en éloigne.
    11. Actionneur magnétique selon l'une des revendications 1 à 10, caractérisé en ce que la partie magnétique mobile (22) comporte au moins une ouverture (42.2) traversante, dans le sens du mouvement.
    12. Actionneur magnétique selon l'une des revendications 1 à 11, caractérisé en ce que la culasse (30) forme un premier niveau de l'actionneur et l'ensemble formé par les moyens de récupération de flux (40) et par la partie magnétique mobile (22) un second niveau, les deux niveaux étant empilés.
    13. Actionneur magnétique selon la revendication 12, caractérisé en ce qu'au moins un des niveaux a une forme oblongue sensiblement arrondie à ses deux extrémités.
    14. Actionneur magnétique selon l'une des revendications 12 ou 13, caractérisé en ce que les deux niveaux se chevauchent.
    15. Actionneur magnétique selon l'une des revendications 12 à 14, caractérisé en ce qu'au moins un des niveaux comporte au moins une ouverture centrale (43) traversante.
    16. Actionneur magnétique selon l'une des revendications 1 à 15, caractérisé en ce qu'il est sensiblement symétrique par rapport à un plan médian (P) passant par la partie magnétique mobile (22) sensiblement perpendiculairement à la direction du mouvement.
    17. Actionneur magnétique selon l'une des revendications 1 à 16, caractérisé en ce que la portion (28) contribuant à délimiter l'entrefer principal (29) comporte au moins un contact électrique (97), ce contact électrique (97) étant destiné à contacter au moins un autre contact électrique (96) lorsque l'actionneur est fermé.
    18. Actionneur magnétique selon l'une des revendications 1 à 16, caractérisé en ce que la partie magnétique mobile (22) se termine par au moins un contact électrique (91) décalé par rapport à la portion (28) contribuant à délimiter l'entrefer principal (29), destiné à contacter au moins un autre contact électrique lorsque l'actionneur est fermé.
    19. Actionneur magnétique selon l'une des revendications 17 ou 18, caractérisé en ce que le contact électrique (97) est isolé électriquement de la partie magnétique mobile (22).
    20. Actionneur magnétique selon l'une des revendications 17 à 19, caractérisé en ce que la partie magnétique mobile (22) est en matériau magnétique conducteur de l'électricité et sert de contact électrique.
    21. Procédé de réalisation d'un actionneur magnétique selon l'une des revendications 1 à 20, caractérisé en ce qu'il comporte les étapes suivantes :
      gravure dans un substrat (80) d'un caisson (130) à remplir d'un matériau magnétique pour réaliser une culasse (30) d'une partie magnétique fixe (30, 31, 32),
      dépôt d'une première couche diélectrique (81) sur le substrat (80) avec la culasse (30),
      gravure d'au moins un caisson (132) pour délimiter des moyens de génération d'un flux magnétique (27), et dépôt desdits moyens (27),
      dépôt d'une seconde couche diélectrique (82) sur la première couche (81),
      gravure de caissons (133) à travers les deux couches (81, 82) atteignant la culasse (30) pour délimiter au moins un premier plot magnétique (31) et au moins un second plot magnétique (32), le second plot (32) contribuant à délimiter au moins un entrefer principal (29),
      dépôt des premier et second plots magnétiques (31, 32) dans les caissons (133),
      dépôt d'une couche sacrificielle (83) sur la seconde couche diélectrique (82) et gravure de la couche sacrificielle (83) pour dégager le premier plot magnétique (31) et prévoir une séparation entre une partie magnétique mobile (22) et des moyens de récupération de flux (40) de la partie magnétique fixe déposés ultérieurement,
      dépôt sur la couche sacrificielle (83) de matériau magnétique pour réaliser la partie magnétique mobile (22) et les moyens de récupération de flux (40), puis gravure du matériau magnétique pour les délimiter,
      élimination de la couche sacrificielle (83) sous la partie magnétique mobile (22) pour la libérer et réaliser l'entrefer principal (29).
    22. Relais caractérisé en ce qu'il comporte un actionneur magnétique, selon l'une des revendications 1 à 20.
    23. Commutateur caractérisé en ce qu'il comporte au moins un actionneur magnétique, selon l'une des revendications 1 à 20, de manière à présenter plusieurs entrefers principaux (29.1, 29.2).
    24. Pompe caractérisée en ce qu'elle comporte un actionneur magnétique, selon l'une des revendications 1 à 16, dans lequel la partie magnétique mobile (22) est solidaire d'une membrane (120) contribuant à délimiter une cavité (122) pour faire circuler un fluide.
    EP02758514A 2001-06-25 2002-06-24 Actionneur magnetique a temps de reponse reduit Expired - Lifetime EP1399938B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR0108324 2001-06-25
    FR0108324A FR2826504B1 (fr) 2001-06-25 2001-06-25 Actionneur magnetique a temps de reponse reduit
    PCT/FR2002/002176 WO2003001548A1 (fr) 2001-06-25 2002-06-24 Actionneur magnetique a temps de reponse reduit

    Publications (2)

    Publication Number Publication Date
    EP1399938A1 EP1399938A1 (fr) 2004-03-24
    EP1399938B1 true EP1399938B1 (fr) 2005-01-26

    Family

    ID=8864712

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02758514A Expired - Lifetime EP1399938B1 (fr) 2001-06-25 2002-06-24 Actionneur magnetique a temps de reponse reduit

    Country Status (5)

    Country Link
    US (1) US6859122B2 (fr)
    EP (1) EP1399938B1 (fr)
    DE (1) DE60202769T2 (fr)
    FR (1) FR2826504B1 (fr)
    WO (1) WO2003001548A1 (fr)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2824417B1 (fr) * 2001-05-03 2004-05-14 Commissariat Energie Atomique Actionneur magnetique bistable
    JP2006223081A (ja) * 2005-01-14 2006-08-24 Matsushita Electric Ind Co Ltd アクチュエータ構造およびそれを用いたアクチュエータブロック、ならびに電子機器
    US9284183B2 (en) 2005-03-04 2016-03-15 Ht Microanalytical, Inc. Method for forming normally closed micromechanical device comprising a laterally movable element
    US7839242B1 (en) * 2006-08-23 2010-11-23 National Semiconductor Corporation Magnetic MEMS switching regulator
    US8665041B2 (en) * 2008-03-20 2014-03-04 Ht Microanalytical, Inc. Integrated microminiature relay
    US8378766B2 (en) * 2011-02-03 2013-02-19 National Semiconductor Corporation MEMS relay and method of forming the MEMS relay
    EP2492928A3 (fr) * 2011-02-22 2017-08-30 ASML Netherlands BV Actionneur électromagnétique, appareil à platine et appareil lithographique
    EP2963497B1 (fr) * 2014-06-30 2019-10-16 Dr. Johannes Heidenhain GmbH Entraînement pour une table XY et ladite table
    FR3050339B1 (fr) 2016-04-15 2020-08-28 Enerbee Generateur d'electricite comprenant un convertisseur magneto-electrique et son procede de fabrication

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH0287435A (ja) * 1988-09-22 1990-03-28 Fujitsu Ltd 有極電磁継電器
    US5847631A (en) * 1995-10-10 1998-12-08 Georgia Tech Research Corporation Magnetic relay system and method capable of microfabrication production
    US6094116A (en) * 1996-08-01 2000-07-25 California Institute Of Technology Micro-electromechanical relays
    US6124650A (en) * 1999-10-15 2000-09-26 Lucent Technologies Inc. Non-volatile MEMS micro-relays using magnetic actuators

    Also Published As

    Publication number Publication date
    US20040246082A1 (en) 2004-12-09
    FR2826504B1 (fr) 2003-09-12
    WO2003001548A1 (fr) 2003-01-03
    DE60202769T2 (de) 2006-01-12
    US6859122B2 (en) 2005-02-22
    DE60202769D1 (de) 2005-03-03
    EP1399938A1 (fr) 2004-03-24
    FR2826504A1 (fr) 2002-12-27

    Similar Documents

    Publication Publication Date Title
    EP0780858B1 (fr) Dispositif miniature pour exécuter une fonction prédeterminée,notamment microrelais
    EP1698041B1 (fr) Dispositif d actionnement electrostatique
    EP0869519A1 (fr) Moteur planaire magnétique et micro-actionneur magnétique comportant un tel moteur
    EP1399938B1 (fr) Actionneur magnetique a temps de reponse reduit
    WO2005006364A1 (fr) Micro-commutateur bistable a faible consommation
    FR2985085A1 (fr) Actionneur electromagnetique a aimants permanents et interrupteur-sectionneur mecanique actionne par un tel actionneur
    EP1428232B1 (fr) Actionneur magnetique a aimant mobile
    FR2659178A1 (fr) Ensemble de bobines d'excitation, procede de fabrication d'un tel ensemble et micromoteur electromagnetique equipe de celui-ci.
    EP1286465A1 (fr) Composant microélectromécanique
    EP1525595A2 (fr) Actionneur magnetique a levitation
    EP1450011B1 (fr) Actionneur électromécanique de commande de soupape pour moteur interne et moteur à combustion interne muni d'un tel actionneur
    EP1276126A1 (fr) Composant microélectromécanique
    EP1425764B1 (fr) Actionneur magnetique bistable
    WO2004051687A1 (fr) Micro-commutateur electrostatique pour composant a faible tension d’actionnement
    EP3688866B1 (fr) Convertisseur d'énergie électromagnétique
    WO2003001543A2 (fr) Actionneur magnetique a efficacite amelioree
    EP2296157A1 (fr) Actionneur electromecanique a electrodes interdigitees
    EP2479767B1 (fr) Contacteur et interrupteur
    EP1647034A1 (fr) Actionneur magnetique a levitation
    EP3018690B1 (fr) Actionneur électromagnétique et contacteur électrique comprenant un tel actionneur
    EP1836713B1 (fr) Microsysteme integrant un circuit magnetique reluctant
    EP2472542A1 (fr) Procédé de fabrication d'un micro-contacteur actionnable par un champ magnétique
    FR2857777A1 (fr) Actionneur magnetique a levitation a temps de commutation et/ou courant d'actionnement reduits.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20031118

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RBV Designated contracting states (corrected)

    Designated state(s): DE FR GB IT

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 60202769

    Country of ref document: DE

    Date of ref document: 20050303

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050422

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20051027

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20120622

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20120625

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20120626

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20120713

    Year of fee payment: 11

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20130624

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60202769

    Country of ref document: DE

    Effective date: 20140101

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20140228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140101

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130624

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130624

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130701