EP1396341B1 - Method and control device for determining register errors - Google Patents

Method and control device for determining register errors Download PDF

Info

Publication number
EP1396341B1
EP1396341B1 EP03014130A EP03014130A EP1396341B1 EP 1396341 B1 EP1396341 B1 EP 1396341B1 EP 03014130 A EP03014130 A EP 03014130A EP 03014130 A EP03014130 A EP 03014130A EP 1396341 B1 EP1396341 B1 EP 1396341B1
Authority
EP
European Patent Office
Prior art keywords
sheet
register
sensor
error
transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03014130A
Other languages
German (de)
French (fr)
Other versions
EP1396341A1 (en
Inventor
Dieter Karl-Heinz Dobberstein
Walter Dr. Dworschak
Christian Friedrich Dr. Engeln
Heiko Hunold
Patrick Dr. Metzler
Karlheinz Walter Dr. Peter
Rolf Johannes Spilz
Stefan Theden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of EP1396341A1 publication Critical patent/EP1396341A1/en
Application granted granted Critical
Publication of EP1396341B1 publication Critical patent/EP1396341B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0081Devices for scanning register marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2213/00Arrangements for actuating or driving printing presses; Auxiliary devices or processes
    • B41P2213/90Register control
    • B41P2213/91Register control for sheet printing presses

Definitions

  • US-A1-2002 / 0024681 discloses a method according to the preamble of claim 1 and a control device according to the preamble of claim 11.
  • register marks are used in addition to the printed image, by means of which deviations from the correct printing are detected and measured by the operator of the printing press.
  • the register accuracy is automatically detected and calculated by means of sensors in the printing press.
  • the sensors detect the register marks on the sheet and determine by means of the measured position of the register marks and a desired position, whether the printing takes place without errors.
  • the printing press is driven to the extent necessary to remove them.
  • a disadvantage of the prior art is that the register marks at different.
  • Substrate types are applied at the same conditions undesirable at different locations.
  • the register mark is applied to a thick substrate at a slightly different location than a thin substrate.
  • These errors are corrected on a regular basis, reducing press availability through the corrective actions that are usually performed with special calibration runs.
  • Another disadvantage of the described prior art is the high number of detection elements.
  • each sheet is stopped for alignment, with considerable time elapsing.
  • the object of the invention is to reliably and simply determine a register error. Another object of the invention is to correct the register error.
  • the object is achieved by the method according to claim 1, and the control device according to claim 11.
  • a method and a control device are provided for determining a register error in which at least one register mark is printed and at least one sensor detects the register mark, wherein the sheet edge of the sheet is detected by the sensor and the register error is determined from the sensor data and desired data.
  • At least two register marks are applied at a distance transversely to the transport direction, the register error is detected in the transport direction of the sheet, and an angular error of the sheet is determined from the sensor data.
  • An embodiment of the invention discloses a method that is performed during the printing operation, the printing result is usable from the first sheet with no scrap of sheets and calibration runs of the printing press are avoided.
  • the print quality is increased because the register error is constantly detected and corrected, not only during a pre-print calibration pass, detecting a drift in the register error that occurs with longer press run times.
  • By omission of the calibration passage is the Increased press availability.
  • the print is usable from the first bow on.
  • the register mark is printed on a transport medium for conveying a sheet. It is advantageously achieved that the print job from the first sheet is usable and no sheet broke arises.
  • the registration of the register mark and the sheet edge of the sheet is performed during the printing operation. This feature increases press availability, precluding calibration runs preceding the print process.
  • a register error in the direction of transport of the sheet is detected, and in another embodiment register errors of the sheet are detected which are based on angular displacements of the sheet.
  • the senor detects the register mark and in response thereto a rotation angle of a drive roller of the transport medium is determined, the sensor detects the sheet edge and in response thereto, the rotation angle of the drive roller of the transport medium and the rotation angle difference is determined, the rotation angle difference is a target - Rotation angle difference compared and the register error is determined from the comparison.
  • the register error is determined for different types of substrates.
  • errors that are caused by different compressibility of different substrates with regard to the register can be avoided.
  • An embodiment of the invention discloses that the registration error is determined for different types of media and stored in an allocation table of a controller of the printing press.
  • Fig. 1 shows an embodiment of the invention with a schematic plan view of a portion of a transport medium 11 with a longitudinally displaced sheet 3.
  • the transport medium 11 is in this case a conveyor belt, but is otherwise executable example as a cylinder.
  • the sheet 3 is shown by solid lines, the error-free position of the sheet 3 without displacement of the sheet 3 in the longitudinal direction is shown in dashed lines. Shown is a so-called Intrack error.
  • the path of the faulty longitudinal displacement of the sheet 3 is ⁇ x .
  • a register mark 2 is applied to the transport medium 11. Then follows on the transport medium 11 of the sheet 3.
  • the sensor 15 above the transport medium 11 detects first the register mark 2 and then the leading edge of the sheet 3.
  • the path between the register mark 2 and the leading edge of the sheet 3 is x1.
  • a clock number between the detection of the register mark 2 and the front edge of the sheet 3 by the sensor 15 is counted by a clock counter 20.
  • the counted number of cycles is attributable to the path x1 , since the speed of the arc 3 and the clock frequency of the clock counter 20 is known.
  • the counted by the clock counter 20 clock number denotes actual data.
  • the actual data are compared to target data, wherein a clock difference is calculated which corresponds to the path x ⁇ and umrechenbar therein.
  • the thus calculated path ⁇ x a calibration value is assigned by means of a mapping table or look up table, which represents a correction value for the register error.
  • a mapping table or look up table which represents a correction value for the register error.
  • the control of the transport rollers 4, 4 'by means of the calibration values causes a displacement of the sheet 3 by the distance ⁇ x independently of the transport of the sheet 3 by the transport rollers 4, 4'.
  • the road ⁇ x is usually in addition to the path covered by the sheet 3 traveled. Other transport roles are executable, but not shown. In this way, the displacement of the sheet 3 is compensated.
  • the register error in the transport direction of the sheet 3 is alternatively 22 correctable by driving an imaging device by the Bereciungszeittician a path- ⁇ x assigned time is shifted. The described process takes place during the printing, a special calibration run is not required, the register error of the sheet 3 is corrected during the transport in the movement of the sheet 3.
  • each signature 3 and register mark 2 that are detected generate additional calibration values that can be used individually for correction or that can be averaged, using the averaged calibration values as the individual calibration values to correct the register error.
  • the calibration values remain permanently stored in the assignment table. In this way, suitable calibration values are available at the beginning of a printing operation in order to avoid register errors. Furthermore, the register errors are dependent on the printing material, and different substrates produce differently sized register errors. Since the type of printing material in the printing press is known in each printing process by entering the special printing process by the operator, the calibration values can be stored as a function of the printing material.
  • a special allocation table is available for every type of substrate.
  • the type of media and stored calibration values are determined based on the printing data retrieved from the allocation table, which is adapted to the type of printing material.
  • calibration values are already available at the beginning of a print job, depending on the type of substrate.
  • transport rollers 4, 4 are driven 'which offset the shift of the sheet 3 by the distance ⁇ x.
  • the speed of the transport rollers 4, 4 is increased 'in such a way that the sheet 3 is transported on the transport medium 1 in addition to the way ⁇ x to the front.
  • the sheet 3 is transported without correction by the transport rollers 4, 4 'at a linear speed to which an additional speed is added with the aid of the calibration values, the transport rollers 4, 4' are accelerated in the short term.
  • the additional speed compensates for the determined path difference ⁇ x , which represents a register error in the transport direction of the sheet 3.
  • the sheet 3 is further transported to another transport medium 11, on which the printing of the sheet 3 is performed, as under Fig. 3 described.
  • Fig. 2 shows a schematic plan view of a portion of a transport medium 11 with an angular displacement of the sheet 3 in order to avoid register error of the sheet 3, which is based on an angular displacement of the sheet 3.
  • the sheet 3 is shown by solid lines, the error-free position of the sheet 3 without angular displacement of the sheet 3 is shown in dashed lines.
  • the arc 3 is to the left by the angle ⁇ Fig. 2 shifted, there is a so-called skew error.
  • Two sensors 15 ', 15 are arranged at the same height above the transport medium 11 with respect to the transport direction of the sheet 3.
  • the angular displacement of the sheet 3 causes the left side of the sheet 3 to be deflected at the point of detection by the sensor 15' by the distance ⁇ x2 is shifted rearward while the right side of the sheet 3 is shifted forward at the detection point by the sensor 15 "by the path ⁇ x3 .
  • Two sensors 15 ', 15 "are in the same height is arranged perpendicular to the transport direction of the sheet 3.
  • the two sensors 15 ', 15 “respectively detect the front edge of the sheet 3 and a respective register mark 2', 2", which is applied to the transport medium 11. Due to the angular displacement, the sensor 15 "detects the register mark 2" before the sensor 15 'detects the register mark 2'.
  • Each sensor 15 ', 15 "generates sensor data from which the clock counter 20 generates a clock difference corresponding to the path x2 or x3 .
  • the path x2 corresponds to the distance of the register mark 2' from the front edge of the sheet 3, measured by the sensor 15 '
  • the path x3 corresponds to the distance of the register mark 2 "from the front edge of the sheet 3, measured by the sensor 15.”
  • the clock counter 20 counts the clock which, upon detection of the register mark 2 'by the sensor 15' and the register mark 2 "by the sensor 15 starts “and ends upon detection of the leading edge of the sheet 3 and forms in each case a timing difference.
  • the path difference ⁇ x2 corresponding to the displacement of the sheet 3 due to the angular displacement at the point at which the sensor 15 'senses the leading edge of the sheet 3
  • the path difference ⁇ x3 corresponds to the displacement of the sheet 3 due to the angular displacement at the point where the sensor 15 "detects the leading edge of the sheet 3, respectively in relation to the error-free position of the sheet Arc 3, which is shown with dashed lines.
  • the clock difference from the sensor data of sensor 15 ' is compared in device 30 with the clock difference from the sensor data of sensor 15 " to Fig. 2 the device 30 controls the transport roller 4 and accelerates it.
  • the transport roller 4 ' is further moved at a uniform speed, while the speed of the transport roller 4 is increased so that the angular displacement of the sheet 3 is offset by the angle ⁇ .
  • the left side of the sheet 3 is thus conveyed at a different speed than the right side for a short time.
  • Fig. 3 shows a further embodiment of the invention with a schematic plan view of a portion of a transport medium 11 with an angular displacement of the sheet 3 to a register error of the sheet 3 to avoid, which is based on an angular displacement of the sheet 3.
  • the sheet 3 is shown by solid lines, the error-free position of the sheet 3 without angular displacement of the sheet 3 is shown in dashed lines.
  • the arc 3 is to the left by the angle ⁇ Fig. 2 shifted, there is a so-called skew error.
  • Two sensors 15 ', 15 are arranged at the same height with respect to the transport direction at the same height above the transport medium 11.
  • the angular displacement of the sheet 3 causes the left side of the sheet 3 to be rearward at the point of detection by the sensor 15' by the distance ⁇ x4 is shifted, while the right side of the sheet 3 is shifted at the detection point by the sensor 15 "by the distance ⁇ x5 forward with respect to the transport direction.
  • Each sensor 15 ', 15 "generates sensor data from which the clock counter 20 generates a clock difference.
  • the path difference ⁇ x4 corresponds to the displacement of the sheet 3 due to the angular displacement at the position where the sensor 15 'detects the leading edge of the sheet 3
  • the path difference ⁇ x5 corresponds to the displacement of the sheet 3 due to the angular displacement at the point at which Sensor 15 "detected the front edge of the sheet 3, respectively in relation to the error-free position of the sheet 3.
  • the clock difference from the sensor data of the sensor 15 ' is compared in the device 30 with the clock difference from the sensor data of the sensor 15". From the comparison of the clock differences, a calibration value is unambiguously obtained, which can be assigned to an angular displacement of the sheet 3.
  • the calibration value then serves to correct the register error.
  • the device 30 controls the transport roller 4 and accelerates it.
  • the transport roller 4 ' is further moved at a uniform speed, while the speed of the transport roller 4 is increased so that the angular displacement is compensated by the angle ⁇ .
  • the left side of the sheet 3 is thus conveyed at a different speed than the right side.
  • the register marks 2 ', 2 are applied to the sheet 3 and not on the transport medium 11. This has the consequence that the sheet 3 in the embodiment according to Fig. 3 in contrast to the embodiment according to Fig. 2 is not usable as a print result, the sheet 3 becomes a reject.
  • the method of the embodiment according to Fig. 3 is performed in a special calibration run, which takes place before printing.
  • Fig. 4 shows a particular embodiment of the invention, wherein register errors are determined, which are defined by a slipping of the sheet 3 perpendicular to the transport direction of the sheet 3.
  • the sheet 3 is hereby shifted by a distance ⁇ x6 to the right perpendicular to the transport direction of the sheet 3.
  • the error-free position of the sheet 3 on the conveyor belt 11 is shown by dashed lines, the faulty position of the sheet 3 is marked by solid lines.
  • the register error perpendicular to the transport direction of the sheet 3, a so-called Crosstrack error points in Fig. 4 a size of ⁇ x6 .
  • the error direction is with the double-sided arrow in Fig. 4 characterized.
  • the sensor 15 is arranged above the sheet 3 approximately in the region of the side edge of the sheet 3.
  • a register mark 2 V is applied on the conveyor belt 11 as a vertical bar, ie the register mark 2 V is parallel to the side edges of the sheet 3, provided that the sheet 3 has no angular displacement.
  • the register error is determined by the sensor 15 detects the register mark 2 V and then at least one side edge of the sheet 3.
  • the sensor 15 in this embodiment comprises about an LED row or a CCD array, with approximately a portion 32 shown in dashed lines, in which a portion of the side edge of the sheet 3 is detected by the sensor 15.
  • the register mark 2 V is preferably on the same line, viewed in the transport direction, as the side edge of the sheet 3.
  • the faulty position of the side edge of the sheet 3 is determined in dependence on the register mark 2 V. Based on the measurements by the sensor 15, the path ⁇ x6 can be determined, similar to the above described.
  • a correction of the register error in the present case, a shift of the sheet 3 to the left by the distance .DELTA.x6 is carried out such that the transport rollers 4, 4 'are driven by the device 30 and moved by the path .DELTA.x6 to the left. By frictional engagement with the sheet 3, this is shifted by the same way to the left as the transport rollers 4, 4 '.
  • the registration and correction of the register error takes place during the printing process, as described.
  • Fig. 5 shows a schematic side view of a portion of a printing module or printing unit of a multi-color printing machine above a transport medium 11 and a control device 19.
  • a single sensor 15 and a single register mark 2 per sheet 3 is provided and a bow displacement in the longitudinal direction to the transport direction can be determined and corrected.
  • an embodiment for determining and correcting an angular displacement of the sheet 3 is executable.
  • the transport medium 11 follows the transport medium 1, the in Fig. 1 is shown in a section, the sheet 3 is transported from the transport medium 1, which is stretched around rollers 17, 18, on the transport medium 11.
  • the sheet 3 is in this case moved by the transport rollers 4, 4 ', which act on the sheet 3, the transport medium 1 is rigid.
  • the printing press has a plurality of printing modules, each printing module applies a color, with the individual colors printed on top of one another on a printing material, here the sheet 3, composing the overall picture, as is known.
  • the transport medium 11 is driven by the drive on a second deflection roller 16 and moves in the direction of the arrow.
  • the first guide roller 14, the second guide roller 16, an intermediate cylinder 25, a Be logisticsungszylinder 23 and a counter-pressure cylinder 27 for providing a counter force to the pressing force of the intermediate cylinder 25 move in the in Fig. 5 directions represented by the curved arrows.
  • impression cylinder 23, 25 in the present description, the imaging cylinder 23 and the intermediate cylinder 25 as an intermediate carrier of the printed image, depending on whether the image from the imaging cylinder 23 directly on a sheet 3 or first on a Intermediate cylinder 25 and is transmitted from this to the sheet 3.
  • the imaging cylinder 23 and the intermediate cylinder 25 have a first rotary encoder 24 and a second rotary encoder 26, respectively, which detect a specific rotational angle of the imaging cylinder 23 or the intermediate cylinder 25 so that their rotational angle is known at all times.
  • the first rotary encoder 24 on the imaging cylinder 23 and the second rotary encoder 26 on the intermediate cylinder 25 transmit the detected rotation angles to a device 30.
  • the device 30 comprises allocation tables or look-up tables, which are designed as registers, which data from the first rotary encoder 24, the second rotary encoder 26, obtained by the drive at the second guide roller 16 and by a sensor 15 or register sensor and each time numbers are assigned.
  • the cycle numbers obtained from the look up tables serve to determine the time of the beginning of the imaging of the imaging cylinder 23 with an image.
  • image in this context comprises color separations of images of the individual printing modules, which are composed of the overall image, for example, the color separations cyan, magenta, yellow and black in four-color printing, individual lines of the image or image areas. In Fig. 5 only one printing module for a color separation, cyan, magenta, yellow or black is shown, further printing modules are executable along the transport medium 11.
  • the clock counter 20 transmits, after a certain number of clocks predetermined by the device 30, a signal to a imaging device 22, which transmits an electrostatic image to the imaging cylinder 23 on the basis of the signal.
  • the imaging cylinder 23 has an electrostatically charged photoconductor which is subjected to controlled light by the imaging device 22, such as an LED source or a laser.
  • the imaging device 22 such as an LED source or a laser.
  • the electrostatic charges are removed.
  • toner particles having magnetically opposite charges are applied to the locations freed from the electrostatic charges, and an image is provided on the imaging cylinder 23.
  • the image is transferred to an intermediate cylinder 25, which rotates in opposite directions to the imaging cylinder 23, and from the intermediate cylinder 25 by rolling the Intermediate cylinder 25 printed on the sheet 3.
  • the intermediate cylinder 25 exerts a force on the transport medium 11 from above
  • an impression cylinder 27 exerts from below a force opposite the intermediate cylinder 25 force on the transport medium 11 from.
  • the imaging cylinder 23, the intermediate cylinder 25, the first guide roller 14 and the impression cylinder 27 are driven by frictional engagement with the transport medium 11, which is driven by a drive on the second guide roller 16.
  • the imaging by the imaging device 22, which is triggered by the clock counter 20, takes place exactly at a time that the image is transferred from the imaging cylinder 23 via the intermediate cylinder 25 to the sheet 3 micrometer accurate.
  • the register mark 2 is, as described, transferred from the intermediate cylinder 25 to the transport medium 11.
  • the sensor 15 at the end of the transport medium 11 first detects the register mark 2 on the transport medium 11, transmits in response thereto a signal to the device 30, which triggers a counting of a clock of the clock counter 20. Thereafter, the sensor 15 detects the leading edge of the sheet 3 and, in response, transmits a signal to the device 30, which stops counting the clock.
  • Each register mark 2 is followed by a sheet 3. Between the detection of the register mark 2 and the front edge of the sheet 3, a cycle number is counted, which denotes the distance x1 between the register mark 2 and the front edge of the sheet 3.
  • the number of cycles is clearly a distance, in this example the distance x1 can be assigned.
  • the counted number of cycles denotes actual data which is compared in the device 30 with desired data. If the comparison shows that the actual data matches the target data, then there is no register error. If the comparison shows that the actual data does not match the target data, there is a register error, which is the greater, the greater the deviation of the actual data from the target data, the larger the path ⁇ x is, the greater the deviation of the actual data from the target data.
  • the path difference ⁇ x calculated in this way is assigned to a calibration value in the allocation table of the device 30. With the calibration value, the transport rollers 4, 4 'are controlled, which are arranged above the transport medium 1 and transport the sheet 3.
  • the transport rollers 4, 4 ' usually convey the sheet 3 evenly and are momentarily negatively or positively accelerated to avoid a registration error.
  • the transport rollers 4, 4 ' are accelerated such that the sheet is x 3 moves by the distance ⁇ in addition to the front.
  • the sheet 3 arrives at the right time on the transport medium 11, so that the printing is carried out without error by the intermediate cylinder 25.
  • the sheet 3 is thus transferred in the correct position with respect to the transport direction of the transport medium 1 to the transport medium 11.
  • the sheet 3 is also transferred in the correct position with respect to the direction perpendicular to the transport direction of the sheet 3 to the transport medium 11.

Landscapes

  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Controlling Sheets Or Webs (AREA)
  • Error Detection And Correction (AREA)
  • Handling Of Sheets (AREA)

Abstract

The method involves printing at least one register marker (2) and detecting the register marker with at least one optical sensor (15). The sensor detects the edge of the sheet (3) and the register error is determined from the sensor data and desired data. The register marker is printed on a transport medium (11) for transporting a sheet. Detection of the sheet edge and marker takes place during printing. AN Independent claim is also included for the following: (a) a control device for determining a register error in a printer.

Description

US-A1-2002/0024681 offenbart ein Verfahren nach dem Oberbegriff des Anspruchs 1 und eine Steuerungseinrichtung nach dem Oberbegriff des Anspruchs 11. US-A1-2002 / 0024681 discloses a method according to the preamble of claim 1 and a control device according to the preamble of claim 11.

Bei der Bedruckung von Bogen von Papier oder ähnlichem durch Druckmaschinen ist das lagerichtige Drucken des Druckbildes auf die Bogen von erheblicher Bedeutung. Dieses Merkmal wird durch den Begriff der Registerhaltigkeit bezeichnet. Zur Feststellung der Registerhaltigkeit werden außer dem aufgedruckten Bild Registermarken verwendet, durch welche Abweichungen vom lagerichtigen Druck vom Bediener der Druckmaschine festgestellt und ausgemessen werden. Bei einer Fortbildung dieses Verfahrens wird die Registerhaltigkeit mit Hilfe von Sensoren in der Druckmaschine automatisch festgestellt und berechnet. Hierzu erfassen die Sensoren die Registermarken auf dem Bogen und ermitteln mittels der gemessenen Lage der Registermarken und einer Solllage, ob die Bedruckung fehlerfrei stattfindet. Im Falle von Registerabweichungen oder Registerfehlern wird die Druckmaschine im entsprechenden Maße angesteuert, um diese zu entfernen. Nachteilig beim Stand der Technik ist, dass die Registermarken bei verschiedenen . Bedruckstoffarten bei gleichen Bedingungen unerwünscht an unterschiedlichen Stellen aufgebracht werden. Beispielsweise wird die Registermarke bei einem dicken Bedruckstoff an einer geringfügig anderen Stelle aufgebracht als bei einem dünnen Bedruckstoff. Diese Fehler werden regelmäßig korrigiert, wobei die Druckmaschinenverfügbarkeit durch die Korrekturmaßnahmen verringert wird, welche gewöhnlich mit speziellen Kalibrierungsläufen durchgeführt werden. Ein weiterer Nachteil beim beschriebenen Stand der Technik ist die hohe Anzahl von Detektionselementen. Außerdem wird beim Stand der Technik jeder Bogen zum Ausrichten angehalten, wobei erhebliche Zeit verstreicht.In the printing of sheets of paper or the like by printing machines, the correct position printing of the printed image on the sheets is of considerable importance. This feature is referred to by the term registering. In order to determine the registration, register marks are used in addition to the printed image, by means of which deviations from the correct printing are detected and measured by the operator of the printing press. In a further development of this method, the register accuracy is automatically detected and calculated by means of sensors in the printing press. For this purpose, the sensors detect the register marks on the sheet and determine by means of the measured position of the register marks and a desired position, whether the printing takes place without errors. In the case of register deviations or registration errors, the printing press is driven to the extent necessary to remove them. A disadvantage of the prior art is that the register marks at different. Substrate types are applied at the same conditions undesirable at different locations. For example, the register mark is applied to a thick substrate at a slightly different location than a thin substrate. These errors are corrected on a regular basis, reducing press availability through the corrective actions that are usually performed with special calibration runs. Another disadvantage of the described prior art is the high number of detection elements. In addition, in the prior art, each sheet is stopped for alignment, with considerable time elapsing.

Aufgabe der Erfindung ist, einen Registerfehler zuverlässig und auf einfache Weise zu bestimmen. Eine weitere Aufgabe der Erfindung ist, den Registerfehler zu korrigieren.The object of the invention is to reliably and simply determine a register error. Another object of the invention is to correct the register error.

Die Aufgabe wird durch das Verfahren gemäß Anspruch 1, und die Steuereinrichtung gemäß Anspruch 11 gelöst.The object is achieved by the method according to claim 1, and the control device according to claim 11.

Vorgesehen ist ein Verfahren und eine Steuerungseinrichtung zum Bestimmen eines Registerfehlers, bei dem wenigstens eine Registermarke gedruckt wird und wenigstens ein Sensor die Registermarke erfasst, wobei der Bogenrand des Bogens vom Sensor erfasst wird und der Registerfehler aus den Sensordaten und Soll- Daten bestimmt wird.A method and a control device are provided for determining a register error in which at least one register mark is printed and at least one sensor detects the register mark, wherein the sheet edge of the sheet is detected by the sensor and the register error is determined from the sensor data and desired data.

Hierdurch werden die vorstehend beschriebenen Nachteile des Stands der Technik beseitigt. Ferner ist nur ein geringer Schaltungsaufwand erforderlich.This eliminates the disadvantages of the prior art described above. Furthermore, only a small amount of circuitry is required.

Vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen aufgeführt.Advantageous embodiments of the invention are listed in the subclaims.

Bei einer Ausführungsform der Erfindung werden wenigstens zwei Registermarken mit einem Abstand quer zur Transportrichtung aufgebracht, der Registerfehler wird in Transportrichtung des Bogens erfasst und aus den Sensordaten wird ein Winkelfehler des Bogens bestimmt. Mit diesem Merkmal sind Winkelfehler einfach bestimmbar.In one embodiment of the invention, at least two register marks are applied at a distance transversely to the transport direction, the register error is detected in the transport direction of the sheet, and an angular error of the sheet is determined from the sensor data. With this feature, angle errors are easily determinable.

Eine Ausführungsform der Erfindung offenbart ein Verfahren, das während des Druckvorgangs durchgeführt wird, das Druckergebnis ist vom ersten Bogen an ohne Ausschuss von Bogen verwendbar und Kalibrierungsläufe der Druckmaschine werden vermieden. Die Druckqualität wird erhöht, da der Registerfehler ständig erfasst und korrigiert wird, nicht nur während eines Kalibrierungsdurchgangs vor dem Druckvorgang, wobei eine Drift des Registerfehlers erkannt wird, die bei längeren Druckmaschinenlaufzeiten auftritt. Durch Wegfall des Kalibrierungsdurchgangs wird die Druckmaschinenverfügbarkeit erhöht. Ferner fallen keine Bogen an, die aufgrund des Aufdrucks mit Registermarken nicht verwendet werden. Der Druck ist vom ersten Bogen an verwendbar.An embodiment of the invention discloses a method that is performed during the printing operation, the printing result is usable from the first sheet with no scrap of sheets and calibration runs of the printing press are avoided. The print quality is increased because the register error is constantly detected and corrected, not only during a pre-print calibration pass, detecting a drift in the register error that occurs with longer press run times. By omission of the calibration passage is the Increased press availability. Furthermore, there are no sheets that are not used due to the printing with register marks. The print is usable from the first bow on.

Bei einer weiteren Ausführungsform der Erfindung wird die Registermarke auf ein Transportmedium zum Befördern eines Bogens gedruckt. Vorteilhaft wird erreicht, dass der Druckauftrag vom ersten Bogen verwendbar ist und kein Bogenausschuss entsteht.In another embodiment of the invention, the register mark is printed on a transport medium for conveying a sheet. It is advantageously achieved that the print job from the first sheet is usable and no sheet broke arises.

Vorteilhaft wird das Erfassen der Registermarke und des Bogenrands des Bogens während des Druckvorgangs durchgeführt. Dieses Merkmal erhöht die Druckmaschinenverfügbarkeit, dem Druckvorgang vorangehende Kalibrierungsdurchläufe werden vermieden.Advantageously, the registration of the register mark and the sheet edge of the sheet is performed during the printing operation. This feature increases press availability, precluding calibration runs preceding the print process.

Bei einer Ausführungsform wird ein Registerfehler in Transportrichtung des Bogens erfasst und bei einer weiteren Ausführungsform werden Registerfehler des Bogens erfasst, die auf Winkelverschiebungen des Bogens beruhen.In one embodiment, a register error in the direction of transport of the sheet is detected, and in another embodiment register errors of the sheet are detected which are based on angular displacements of the sheet.

Bei einer Weiterbildung der Erfindung erfasst der Sensor die Registermarke und als Reaktion darauf wird ein Drehwinkel einer Antriebsrolle des Transportmediums bestimmt, der Sensor erfasst den Bogenrand und als Reaktion darauf wird der Drehwinkel der Antriebsrolle des Transportmediums und die Drehwinkeldifferenz bestimmt, die Drehwinkeldifferenz wird mit einer Soll- Drehwinkeldifferenz verglichen und der Registerfehler wird aus dem Vergleich bestimmt.In a further development of the invention, the sensor detects the register mark and in response thereto a rotation angle of a drive roller of the transport medium is determined, the sensor detects the sheet edge and in response thereto, the rotation angle of the drive roller of the transport medium and the rotation angle difference is determined, the rotation angle difference is a target - Rotation angle difference compared and the register error is determined from the comparison.

Außerdem wird der Registerfehler für verschiedene Bedruckstoffarten bestimmt. Vorteilhaft können Fehler, die durch unterschiedliche Kompressibilität von verschiedenen Bedruckstoffen hinsichtlich der Registerhaltigkeit verursacht werden, vermieden werden.In addition, the register error is determined for different types of substrates. Advantageously, errors that are caused by different compressibility of different substrates with regard to the register, can be avoided.

Eine Ausführungsform der Erfindung offenbart, dass der Registerfehler für verschiedene Bedruckstoffarten bestimmt wird und in einer Zuordnungstabelle einer Steuerungseinrichtung der Druckmaschine gespeichert wird.An embodiment of the invention discloses that the registration error is determined for different types of media and stored in an allocation table of a controller of the printing press.

Um ein zuverlässiges Entfernen der Registerfehler zu erzielen, wird eine Anzahl von Registerfehlern statistisch gemittelt. Die Verwendung von statistisch gemittelten Registerfehlern führt zu einer weiteren Verbesserung des Verfahrens.In order to achieve a reliable removal of register errors, a number of register errors are statistically averaged. The use of statistically averaged register errors leads to a further improvement of the method.

Im Folgenden ist die Erfindung anhand der Figuren ausführlich beschrieben.

Fig. 1
zeigt eine schematische Draufsicht eines Abschnitts eines Transportmediums mit einem in Längsrichtung verschobenen Bogen, einer Registermarke auf dem Transportmedium und einem Sensor zum Erfassen der Registermarke und des Vorderrands des Bogens als Ausführungsform der Erfindung,
Fig. 2
zeigt eine schematische Draufsicht eines Abschnitts eines Transportmediums mit einer Winkelverschiebung des Bogens, zwei Registermarken auf dem Transportmedium und zwei Sensoren zum Erfassen der Registermarken und des Vorderrands des Bogens als Ausführungsform der Erfindung,
Fig. 3
zeigt eine schematische Draufsicht eines Abschnitts eines Transportmediums mit einer Winkelverschiebung des Bogens, zwei Registermarken auf dem Bogen und zwei Sensoren zum Erfassen der Registermarken und des Vorderrands des Bogens als Ausführungsform der Erfindung,
Fig. 4
zeigt eine schematische Draufsicht eines Abschnitts eines Transportmediums mit einem senkrecht zur Transportrichtung verschobenen Bogen, einer Registermarke auf dem Transportmedium und einem Sensor zum Erfassen der Registermarke und des Seitenrands des Bogens als Ausführungsform der Erfindung,
Fig. 5
zeigt eine Seitenansicht einer Prinzipdarstellung einer Steuerungseinrichtung zum Bestimmen und Korrigieren eines Registerfehlers.
The invention is described in detail below with reference to the figures.
Fig. 1
shows a schematic plan view of a portion of a transport medium with a longitudinally displaced sheet, a register mark on the transport medium and a sensor for detecting the register mark and the leading edge of the sheet as an embodiment of the invention,
Fig. 2
shows a schematic plan view of a portion of a transport medium with an angular displacement of the sheet, two register marks on the transport medium and two sensors for detecting the register marks and the front edge of the sheet as an embodiment of the invention,
Fig. 3
shows a schematic plan view of a portion of a transport medium with an angular displacement of the sheet, two register marks on the sheet and two sensors for detecting the register marks and the leading edge of the sheet as an embodiment of the invention,
Fig. 4
shows a schematic plan view of a portion of a transport medium with a perpendicular to the transport direction shifted sheet, a register mark on the transport medium and a sensor for detecting the register mark and the side edge of the sheet as an embodiment of the invention,
Fig. 5
shows a side view of a schematic diagram of a control device for determining and correcting a register error.

Fig. 1 zeigt eine Ausführungsform der Erfindung mit einer schematischen Draufsicht eines Abschnitts eines Transportmediums 11 mit einem in Längsrichtung verschobenen Bogen 3. Das Transportmedium 11 ist in diesem Fall ein Transportband, ist jedoch anders beispielsweise als Zylinder ausführbar. Der Bogen 3 ist mit durchgezogenen Linien dargestellt, die fehlerfreie Lage des Bogens 3 ohne Verschiebung des Bogens 3 in Längsrichtung ist mit gestrichelten Linien dargestellt. Dargestellt ist ein sogenannter Intrack-Fehler. Der Weg der fehlerhaften Längsverschiebung des Bogens 3 beträgt Δx. In Fig. 1 ist eine Registermarke 2 auf dem Transportmedium 11 aufgetragen. Danach folgt auf dem Transportmedium 11 der Bogen 3. Da die Registermarke 2 auf das Transportmedium 11 übertragen wird, treten keine vom Bedruckstoff des Bogens 3 abhängigen Registerfehler auf, die Registermarke 2 wird nahezu fehlerfrei auf das Transportmedium 11 mit konstanten gleichen Eigenschaften übertragen. Der Sensor 15 oberhalb des Transportmediums 11 erfasst zuerst die Registermarke 2 und danach den Vorderrand des Bogens 3. Der Weg zwischen der Registermarke 2 und dem Vorderrand des Bogens 3 beträgt x1. Eine Taktzahl zwischen dem Erfassen der Registermarke 2 und dem Vorderrand des Bogens 3 durch den Sensor 15 wird von einem Taktzähler 20 abgezählt. Die abgezählte Taktzahl ist dem Weg x1 zuordnenbar, da die Geschwindigkeit des Bogens 3 sowie die Taktfrequenz des Taktzählers 20 bekannt ist. Die vom Taktzähler 20 abgezählte Taktzahl bezeichnet Ist-Daten. Die Ist-Daten werden mit Soll-Daten verglichen, wobei eine Taktdifferenz berechnet wird, die dem Weg Δx entspricht und in diesen umrechenbar ist. Dem derart berechneten Weg Δx wird mit Hilfe einer Zuordnungstabelle oder Look up Table ein Kalibrierwert zugeordnet, welcher einen Korrekturwert für den Registerfehler darstellt. In dem vorliegenden Beispiel werden mit dem Kalibrierwert Transportrollen 4, 4' angesteuert, die an den Bogen 3 angreifen und diesen um den Weg Δx zusätzlich nach vorne transportieren. Die Transportrollen 4, 4' sind in den Fig. 1 bis 3 der Anschaulichkeit wegen oberhalb des Transportmediums 11 dargestellt, befinden sich jedoch tatsächlich oberhalb des Transportmediums 1, wie in Fig. 5 gezeigt. Die Ansteuerung der Transportrollen 4, 4' mittels der Kalibrierwerte bewirkt eine Verschiebung des Bogens 3 um den Weg Δx unabhängig vom Transport des Bogens 3 durch die Transportrollen 4, 4'. Der Weg Δx wird zusätzlich zum gewöhnlich zurückgelegten Weg des Bogens 3 zurückgelegt. Weitere Transportrollen sind ausführbar, jedoch nicht dargestellt. Auf diese Weise wird die Verschiebung des Bogens 3 ausgeglichen. Außer mit Hilfe der Transportrollen 4, 4' ist der Registerfehler in Transportrichtung des Bogens 3 alternativ durch Ansteuern einer Bebilderungseinrichtung 22 korrigierbar, indem der Bebilderungszeitpunkt um eine dem Weg Δx zugeordnete Zeit verschoben wird. Der beschriebene Vorgang findet während des Drucks statt, ein spezieller Kalibrierungsdurchlauf ist nicht erforderlich, der Registerfehler des Bogens 3 wird während des Transports in der Bewegung des Bogens 3 korrigiert. Da die Registermarke 2 nicht auf den Bogen 3 gedruckt wird, entsteht kein Ausschuss von Bogen 3, bereits der erste bedruckte Bogen 3 ist als Druckergebnis nutzbar. Jeder Bogen 3 und jede Registermarke 2, die erfasst werden, erzeugen weitere Kalibrierwerte, die einzeln zum Korrigieren verwendbar sind oder gemittelt werden können, wobei die gemittelten Kalibrierwerte wie die einzelnen Kalibrierwerte zum Korrigieren des Registerfehlers verwendet werden. Die Kalibrierwerte bleiben in der Zuordnungstabelle fest gespeichert. Auf diese Weise stehen bei Beginn eines Druckvorgangs geeignete Kalibrierwerte zum Vermeiden von Registerfehlern zur Verfügung. Ferner sind die Registerfehler bedruckstoffabhängig, verschiedene Bedruckstoffe erzeugen unterschiedlich große Registerfehler. Da bei jedem Druckvorgang durch Eingabe des speziellen Druckvorgangs durch den Bediener die Art des Bedruckstoffs in der Druckmaschine bekannt ist, können die Kalibrierwerte in Abhängigkeit vom Bedruckstoff gespeichert werden. Daher steht für jede Bedruckstoffart eine spezielle Zuordnungstabelle zur Verfügung. Beim Anfang eines Druckvorgangs oder Druckjobs der Druckmaschine wird anhand der Daten bezüglich des Druckvorgangs die Bedruckstoffart bestimmt und gespeicherte Kalibrierwerte aus der Zuordnungstabelle abgerufen, welche der Bedruckstoffart angepasst ist. Auf diese Weise stehen bereits bei Beginn eines Druckauftrages Kalibrierwerte zur Verfügung, die von der Bedruckstoffart abhängig sind. Mit den Kalibrierwerten werden Transportrollen 4, 4' angesteuert, welche die Verschiebung des Bogens 3 um den Weg Δx ausgleichen. Die Transportrollen 4, 4' sind in gleicher Höhe bezüglich der Transportrichtung angeordnet und dienen allgemein zum Transport des Bogens 3 und greifen dazu an diesen an. Bei Ansteuerung mit den Kalibrierwerten werden die Transportrollen 4, 4' kurzzeitig beschleunigt oder abgebremst. Im vorliegenden Beispiel wird die Geschwindigkeit der Transportrollen 4, 4' in der Weise erhöht, dass der Bogen 3 auf dem Transportmedium 1 zusätzlich um den Weg Δx nach vorne transportiert wird. Der Bogen 3 wird ohne Korrektur von den Transportrollen 4, 4' mit einer linearen Geschwindigkeit transportiert, zu der mit Hilfe der Kalibrierwerte eine zusätzliche Geschwindigkeit addiert wird, die Transportrollen 4, 4' werden kurzfristig beschleunigt. Die zusätzliche Geschwindigkeit gleicht die bestimmte Wegdifferenz Δx aus, die einen Registerfehler in Transportrichtung des Bogens 3 darstellt. Hinter dem Transportmedium 1 wird der Bogen 3 weiter auf ein anderes Transportmedium 11 befördert, auf dem das Bedrucken des Bogens 3 durchgeführt wird, wie unter Fig. 3 beschrieben. Fig. 1 shows an embodiment of the invention with a schematic plan view of a portion of a transport medium 11 with a longitudinally displaced sheet 3. The transport medium 11 is in this case a conveyor belt, but is otherwise executable example as a cylinder. The sheet 3 is shown by solid lines, the error-free position of the sheet 3 without displacement of the sheet 3 in the longitudinal direction is shown in dashed lines. Shown is a so-called Intrack error. The path of the faulty longitudinal displacement of the sheet 3 is Δ x . In Fig. 1 a register mark 2 is applied to the transport medium 11. Then follows on the transport medium 11 of the sheet 3. Since the register mark 2 is transmitted to the transport medium 11, occur from the substrate of the sheet 3 dependent register errors, the register mark 2 is almost error-free transmitted to the transport medium 11 with constant same properties. The sensor 15 above the transport medium 11 detects first the register mark 2 and then the leading edge of the sheet 3. The path between the register mark 2 and the leading edge of the sheet 3 is x1. A clock number between the detection of the register mark 2 and the front edge of the sheet 3 by the sensor 15 is counted by a clock counter 20. The counted number of cycles is attributable to the path x1 , since the speed of the arc 3 and the clock frequency of the clock counter 20 is known. The counted by the clock counter 20 clock number denotes actual data. The actual data are compared to target data, wherein a clock difference is calculated which corresponds to the path x Δ and umrechenbar therein. The thus calculated path Δ x a calibration value is assigned by means of a mapping table or look up table, which represents a correction value for the register error. In the present example, with the calibration value transport rollers 4, 4 'are controlled, the attack the sheet 3 and this transport to the way Δ x in addition to the front. The transport rollers 4, 4 'are in the Fig. 1 to 3 However, because of the clarity shown above the transport medium 11, are actually above the transport medium 1, as in Fig. 5 shown. The control of the transport rollers 4, 4 'by means of the calibration values causes a displacement of the sheet 3 by the distance Δ x independently of the transport of the sheet 3 by the transport rollers 4, 4'. The road Δ x is usually in addition to the path covered by the sheet 3 traveled. Other transport roles are executable, but not shown. In this way, the displacement of the sheet 3 is compensated. Except by means of the transport rollers 4, 4 'of the register error in the transport direction of the sheet 3 is alternatively 22 correctable by driving an imaging device by the Bebilderungszeitpunkt a path-Δ x assigned time is shifted. The described process takes place during the printing, a special calibration run is not required, the register error of the sheet 3 is corrected during the transport in the movement of the sheet 3. Since the register mark 2 is not printed on the sheet 3, there is no scrap of sheet 3, even the first printed sheet 3 can be used as a print result. Each signature 3 and register mark 2 that are detected generate additional calibration values that can be used individually for correction or that can be averaged, using the averaged calibration values as the individual calibration values to correct the register error. The calibration values remain permanently stored in the assignment table. In this way, suitable calibration values are available at the beginning of a printing operation in order to avoid register errors. Furthermore, the register errors are dependent on the printing material, and different substrates produce differently sized register errors. Since the type of printing material in the printing press is known in each printing process by entering the special printing process by the operator, the calibration values can be stored as a function of the printing material. Therefore, a special allocation table is available for every type of substrate. At the beginning of a printing or printing job on the press, the type of media and stored calibration values are determined based on the printing data retrieved from the allocation table, which is adapted to the type of printing material. In this way, calibration values are already available at the beginning of a print job, depending on the type of substrate. With the calibration values transport rollers 4, 4 are driven 'which offset the shift of the sheet 3 by the distance Δ x. The transport rollers 4, 4 'are arranged at the same height with respect to the transport direction and are generally used to transport the sheet 3 and attack it to this. When activated with the calibration values, the transport rollers 4, 4 'are briefly accelerated or decelerated. In the present example, the speed of the transport rollers 4, 4 is increased 'in such a way that the sheet 3 is transported on the transport medium 1 in addition to the way Δ x to the front. The sheet 3 is transported without correction by the transport rollers 4, 4 'at a linear speed to which an additional speed is added with the aid of the calibration values, the transport rollers 4, 4' are accelerated in the short term. The additional speed compensates for the determined path difference Δ x , which represents a register error in the transport direction of the sheet 3. Behind the transport medium 1, the sheet 3 is further transported to another transport medium 11, on which the printing of the sheet 3 is performed, as under Fig. 3 described.

Fig. 2 zeigt eine schematische Draufsicht eines Abschnitts eines Transportmediums 11 mit einer Winkelverschiebung des Bogens 3, um einen Registerfehler des Bogens 3 zu vermeiden, der auf einer Winkelverschiebung des Bogens 3 beruht. Der Bogen 3 ist mit durchgezogenen Linien dargestellt, die fehlerfreie Lage des Bogens 3 ohne Winkelverschiebung des Bogens 3 ist mit gestrichelten Linien dargestellt. Der Bogen 3 ist um den Winkel ϕ nach links nach der Fig. 2 verschoben, es liegt ein sogenannter Skew-Fehler vor. Oberhalb des Transportmediums 11 sind in gleicher Höhe bezüglich der Transportrichtung des Bogens 3 zwei Sensoren 15', 15" angeordnet. Die Winkelverschiebung des Bogens 3 führt dazu, dass die linke Seite des Bogens 3 bei der Erfassungsstelle durch den Sensor 15' um den Weg Δx2 nach hinten verschoben ist, während die rechte Seite des Bogens 3 bei der Erfassungsstelle durch den Sensor 15" um den Weg Δx3 nach vorne verschoben ist. Zwei Sensoren 15', 15" sind in gleicher Höhe senkrecht zur Transportrichtung des Bogens 3 angeordnet. Die zwei Sensoren 15', 15" erfassen jeweils den Vorderrand des Bogens 3 sowie jeweils eine Registermarke 2', 2", die auf dem Transportmedium 11 aufgebracht ist. Aufgrund der Winkelverschiebung erfasst der Sensor 15" die Registermarke 2" bevor der Sensor 15' die Registermarke 2' erfasst. Jeder Sensor 15', 15" erzeugt Sensordaten, aus welchen der Taktzähler 20 eine Taktdifferenz erzeugt, die dem Weg x2 bzw. x3 entspricht. Der Weg x2 entspricht dem Abstand der Registermarke 2' vom Vorderrand der Bogens 3, gemessen vom Sensor 15', der Weg x3 entspricht dem Abstand der Registermarke 2" vom Vorderrand der Bogens 3, gemessen vom Sensor 15". Hierzu zählt der Taktzähler 20 den Takt, der beim Erfassen der Registermarke 2' durch den Sensor 15' und der Registermarke 2" durch den Sensor 15" beginnt und bei Erfassen des Vorderrands des Bogens 3 endet und bildet jeweils eine Taktdifferenz. Die Wegdifferenz Δx2 entspricht der Verschiebung des Bogens 3 aufgrund der Winkelverschiebung an der Stelle, an welcher der Sensor 15' den Vorderrand des Bogens 3 erfasst, die Wegdifferenz Δx3 entspricht der Verschiebung des Bogens 3 aufgrund der Winkelverschiebung an der Stelle, an welcher der Sensor 15" den Vorderrand des Bogens 3 erfasst, jeweils im Verhältnis zur fehlerfreien Lage des Bogens 3, die mit gestrichelten Linien dargestellt ist. Die Taktdifferenz aus den Sensordaten des Sensors 15' wird in der Einrichtung 30 mit der Taktdifferenz aus den Sensordaten des Sensors 15" verglichen. Aus dem Vergleich der Taktdifferenzen wird in eindeutiger Weise ein Kalibrierwert erhalten, der einer Winkelverschiebung des Bogens 3 zuordnenbar ist. Im Beispiel nach Fig. 2 steuert die Einrichtung 30 die Transportrolle 4 an und beschleunigt diese. Die Transportrolle 4' wird weiter mit gleichmäßiger Geschwindigkeit bewegt, während die Geschwindigkeit der Transportrolle 4 derart erhöht wird, dass die Winkelverschiebung des Bogens 3 um den Winkel ϕ ausgeglichen wird. Die linke Seite des Bogens 3 wird folglich für eine kurze Zeit mit einer anderen Geschwindigkeit befördert als die rechte Seite. Fig. 2 shows a schematic plan view of a portion of a transport medium 11 with an angular displacement of the sheet 3 in order to avoid register error of the sheet 3, which is based on an angular displacement of the sheet 3. The sheet 3 is shown by solid lines, the error-free position of the sheet 3 without angular displacement of the sheet 3 is shown in dashed lines. The arc 3 is to the left by the angle φ Fig. 2 shifted, there is a so-called skew error. Two sensors 15 ', 15 "are arranged at the same height above the transport medium 11 with respect to the transport direction of the sheet 3. The angular displacement of the sheet 3 causes the left side of the sheet 3 to be deflected at the point of detection by the sensor 15' by the distance Δ x2 is shifted rearward while the right side of the sheet 3 is shifted forward at the detection point by the sensor 15 "by the path Δx3 . Two sensors 15 ', 15 "are in the same height is arranged perpendicular to the transport direction of the sheet 3. The two sensors 15 ', 15 "respectively detect the front edge of the sheet 3 and a respective register mark 2', 2", which is applied to the transport medium 11. Due to the angular displacement, the sensor 15 "detects the register mark 2" before the sensor 15 'detects the register mark 2'. Each sensor 15 ', 15 "generates sensor data from which the clock counter 20 generates a clock difference corresponding to the path x2 or x3 . The path x2 corresponds to the distance of the register mark 2' from the front edge of the sheet 3, measured by the sensor 15 ', the path x3 corresponds to the distance of the register mark 2 "from the front edge of the sheet 3, measured by the sensor 15." For this, the clock counter 20 counts the clock which, upon detection of the register mark 2 'by the sensor 15' and the register mark 2 "by the sensor 15 starts "and ends upon detection of the leading edge of the sheet 3 and forms in each case a timing difference. the path difference Δ x2 corresponding to the displacement of the sheet 3 due to the angular displacement at the point at which the sensor 15 'senses the leading edge of the sheet 3, the path difference Δx3 corresponds to the displacement of the sheet 3 due to the angular displacement at the point where the sensor 15 "detects the leading edge of the sheet 3, respectively in relation to the error-free position of the sheet Arc 3, which is shown with dashed lines. The clock difference from the sensor data of sensor 15 'is compared in device 30 with the clock difference from the sensor data of sensor 15 " to Fig. 2 the device 30 controls the transport roller 4 and accelerates it. The transport roller 4 'is further moved at a uniform speed, while the speed of the transport roller 4 is increased so that the angular displacement of the sheet 3 is offset by the angle φ . The left side of the sheet 3 is thus conveyed at a different speed than the right side for a short time.

Fig. 3 zeigt eine weitere Ausführungsform der Erfindung mit einer schematischen Draufsicht eines Abschnitts eines Transportmediums 11 mit einer Winkelverschiebung des Bogens 3, um einen Registerfehler des Bogens 3 zu vermeiden, der auf einer Winkelverschiebung des Bogens 3 beruht. Der Bogen 3 ist mit durchgezogenen Linien dargestellt, die fehlerfreie Lage des Bogens 3 ohne Winkelverschiebung des Bogens 3 ist mit gestrichelten Linien dargestellt. Der Bogen 3 ist um den Winkel ϕ nach links nach der Fig. 2 verschoben, es liegt ein sogenannter Skew-Fehler vor. Oberhalb des Transportmediums 11 sind in gleicher Höhe bezüglich der Transportrichtung zwei Sensoren 15', 15" angeordnet. Die Winkelverschiebung des Bogens 3 führt dazu, dass die linke Seite des Bogens 3 bei der Erfassungsstelle durch den Sensor 15' um den Weg Δx4 nach hinten verschoben ist, während die rechte Seite des Bogens 3 bei der Erfassungsstelle durch den Sensor 15" um den Weg Δx5 nach vorne bezüglich der Transportrichtung verschoben ist. Zwei Sensoren 15', 15" sind in gleicher Höhe senkrecht zur Transportrichtung des Bogens 3 angeordnet. Die zwei Sensoren 15', 15" erfassen jeweils den Vorderrand des Bogens 3 sowie jeweils eine Registermarke 2', 2", die auf dem Bogen 3 aufgebracht ist. Aufgrund der Winkelverschiebung erfasst der Sensor 15" die Registermarke 2" bevor der Sensor 15' die Registermarke 2' erfasst. Jeder Sensor 15', 15" erzeugt Sensordaten, aus welchen der Taktzähler 20 eine Taktdifferenz erzeugt. Die Wegdifferenz Δx4 entspricht der Verschiebung des Bogens 3 aufgrund der Winkelverschiebung an der Stelle, an welcher der Sensor 15' den Vorderrand des Bogens 3 erfasst, die Wegdifferenz Δx5 entspricht der Verschiebung des Bogens 3 aufgrund der Winkelverschiebung an der Stelle, an welcher der Sensor 15" den Vorderrand des Bogens 3 erfasst, jeweils im Verhältnis zur fehlerfreien Lage des Bogens 3. Die Taktdifferenz aus den Sensordaten des Sensors 15' wird in der Einrichtung 30 mit der Taktdifferenz aus den Sensordaten des Sensors 15" verglichen. Aus dem Vergleich der Taktdifferenzen wird in eindeutiger Weise ein Kalibrierwert erhalten, der einer Winkelverschiebung des Bogens 3 zuordnenbar ist. Der Kalibrierwert dient anschließend zum Korrigieren des Registerfehlers. Im Beispiel nach Fig. 3 steuert die Einrichtung 30 die Transportrolle 4 an und beschleunigt diese. Die Transportrolle 4' wird weiter mit gleichmäßiger Geschwindigkeit bewegt, während die Geschwindigkeit der Transportrolle 4 derart erhöht wird, dass die Winkelverschiebung um den Winkel ϕ ausgeglichen wird. Die linke Seite des Bogens 3 wird folglich mit einer anderen Geschwindigkeit befördert als die rechte Seite. Zu bemerken ist hierbei, dass im Unterschied zu der Ausführungsform nach Fig. 2 die Registermarken 2', 2" auf dem Bogen 3 aufgebracht sind und nicht auf dem Transportmedium 11. Dies hat zur Folge, dass der Bogen 3 bei der Ausführungsform nach Fig. 3 im Gegensatz zur Ausführungsform nach Fig. 2 nicht als Druckergebnis verwendbar ist, der Bogen 3 wird zum Ausschuss. Das Verfahren der Ausführungsform nach Fig. 3 wird in einem speziellen Kalibrierungsdurchlauf durchgeführt, welcher vor dem Druckvorgang stattfindet. Fig. 3 shows a further embodiment of the invention with a schematic plan view of a portion of a transport medium 11 with an angular displacement of the sheet 3 to a register error of the sheet 3 to avoid, which is based on an angular displacement of the sheet 3. The sheet 3 is shown by solid lines, the error-free position of the sheet 3 without angular displacement of the sheet 3 is shown in dashed lines. The arc 3 is to the left by the angle φ Fig. 2 shifted, there is a so-called skew error. Two sensors 15 ', 15 "are arranged at the same height with respect to the transport direction at the same height above the transport medium 11. The angular displacement of the sheet 3 causes the left side of the sheet 3 to be rearward at the point of detection by the sensor 15' by the distance Δx4 is shifted, while the right side of the sheet 3 is shifted at the detection point by the sensor 15 "by the distance Δ x5 forward with respect to the transport direction. Two sensors 15 ', 15 "are arranged at the same height perpendicular to the transport direction of the sheet 3. The two sensors 15', 15" respectively detect the front edge of the sheet 3 and a register mark 2 ', 2 "applied to the sheet 3 Due to the angular displacement, the sensor 15 "detects the register mark 2" before the sensor 15 'detects the register mark 2'. Each sensor 15 ', 15 "generates sensor data from which the clock counter 20 generates a clock difference. The path difference Δx4 corresponds to the displacement of the sheet 3 due to the angular displacement at the position where the sensor 15 'detects the leading edge of the sheet 3, the path difference Δx5 corresponds to the displacement of the sheet 3 due to the angular displacement at the point at which Sensor 15 "detected the front edge of the sheet 3, respectively in relation to the error-free position of the sheet 3. The clock difference from the sensor data of the sensor 15 'is compared in the device 30 with the clock difference from the sensor data of the sensor 15". From the comparison of the clock differences, a calibration value is unambiguously obtained, which can be assigned to an angular displacement of the sheet 3. The calibration value then serves to correct the register error. In the example below Fig. 3 the device 30 controls the transport roller 4 and accelerates it. The transport roller 4 'is further moved at a uniform speed, while the speed of the transport roller 4 is increased so that the angular displacement is compensated by the angle φ . The left side of the sheet 3 is thus conveyed at a different speed than the right side. It should be noted here that in the Difference to the embodiment according to Fig. 2 the register marks 2 ', 2 "are applied to the sheet 3 and not on the transport medium 11. This has the consequence that the sheet 3 in the embodiment according to Fig. 3 in contrast to the embodiment according to Fig. 2 is not usable as a print result, the sheet 3 becomes a reject. The method of the embodiment according to Fig. 3 is performed in a special calibration run, which takes place before printing.

Fig. 4 zeigt eine besondere Ausführungsform der Erfindung, wobei Registerfehler bestimmt werden, die durch ein Verrutschen des Bogens 3 senkrecht zur Transportrichtung des Bogens 3 definiert sind. Der Bogen 3 ist hierbei um einen Weg Δx6 nach rechts senkrecht zur Transportrichtung des Bogens 3 verschoben. Die fehlerfreie Lage des Bogens 3 auf dem Transportband 11 ist durch gestrichelte Linien dargestellt, die fehlerhafte Lage des Bogens 3 ist mit durchgezogenen Linien gekennzeichnet. Der Registerfehler senkrecht zur Transportrichtung des Bogens 3, ein sogenannter Crosstrack-Fehler, weist in Fig. 4 eine Größe von Δx6 auf. Die Fehlerrichtung ist mit dem doppelseitigen Pfeil in Fig. 4 gekennzeichnet. Um den dargestellten Registerfehler zu bestimmen, ist der Sensor 15 oberhalb des Bogens 3 etwa im Bereich des Seitenrands des Bogens 3 angeordnet. Eine Registermarke 2V ist auf dem Transportband 11 als senkrechter Balken aufgetragen, d.h. die Registermarke 2V liegt parallel zu den Seitenrändern des Bogens 3, vorausgesetzt der Bogen 3 weist keine Winkelverschiebung auf. Der Registerfehler wird ermittelt, indem der Sensor 15 die Registermarke 2V und anschließend wenigstens einen Seitenrand des Bogens 3 erfasst. Der Sensor 15 umfasst bei dieser Ausführungsform etwa eine LED-Reihe oder eine CCD-Reihe, wobei etwa ein Abschnitt 32, der mit gestrichelten Linien dargestellt ist, in dem sich ein Abschnitt des Seitenrands des Bogens 3 befindet, vom Sensor 15 erfasst wird. Bei einer fehlerfreien Lage befindet sich die Registermarke 2V bevorzugt auf der gleichen Linie, in Transportrichtung betrachtet, wie der Seitenrand des Bogens 3. Die fehlerhafte Lage des Seitenrandes des Bogens 3 wird in Abhängigkeit von der Registermarke 2V bestimmt. Auf der Grundlage der Messungen durch den Sensor 15 kann der Weg Δx6 bestimmt werden, ähnlich wie vorstehend beschrieben. Eine Korrektur des Registerfehlers, im vorliegenden Fall eine Verschiebung des Bogens 3 nach links um den Weg Δx6 wird derart durchgeführt, dass die Transportrollen 4, 4' von der Einrichtung 30 entsprechend angesteuert werden und um den Weg Δx6 nach links verschoben werden. Durch Reibschluss mit dem Bogen 3 wird dieser um den gleichen Weg nach links verschoben wie die Transportrollen 4, 4'. Das Erfassen und Korrigieren des Registerfehlers findet während des Druckvorgangs statt, wie beschrieben. Fig. 4 shows a particular embodiment of the invention, wherein register errors are determined, which are defined by a slipping of the sheet 3 perpendicular to the transport direction of the sheet 3. The sheet 3 is hereby shifted by a distance Δx6 to the right perpendicular to the transport direction of the sheet 3. The error-free position of the sheet 3 on the conveyor belt 11 is shown by dashed lines, the faulty position of the sheet 3 is marked by solid lines. The register error perpendicular to the transport direction of the sheet 3, a so-called Crosstrack error points in Fig. 4 a size of Δx6 . The error direction is with the double-sided arrow in Fig. 4 characterized. In order to determine the illustrated register error, the sensor 15 is arranged above the sheet 3 approximately in the region of the side edge of the sheet 3. A register mark 2 V is applied on the conveyor belt 11 as a vertical bar, ie the register mark 2 V is parallel to the side edges of the sheet 3, provided that the sheet 3 has no angular displacement. The register error is determined by the sensor 15 detects the register mark 2 V and then at least one side edge of the sheet 3. The sensor 15 in this embodiment comprises about an LED row or a CCD array, with approximately a portion 32 shown in dashed lines, in which a portion of the side edge of the sheet 3 is detected by the sensor 15. In a faultless position, the register mark 2 V is preferably on the same line, viewed in the transport direction, as the side edge of the sheet 3. The faulty position of the side edge of the sheet 3 is determined in dependence on the register mark 2 V. Based on the measurements by the sensor 15, the path Δx6 can be determined, similar to the above described. A correction of the register error, in the present case, a shift of the sheet 3 to the left by the distance .DELTA.x6 is carried out such that the transport rollers 4, 4 'are driven by the device 30 and moved by the path .DELTA.x6 to the left. By frictional engagement with the sheet 3, this is shifted by the same way to the left as the transport rollers 4, 4 '. The registration and correction of the register error takes place during the printing process, as described.

Fig. 5 zeigt eine schematische Seitenansicht eines Teils eines Druckmoduls oder Druckwerks einer Mehrfarbdruckmaschine oberhalb eines Transportmediums 11 sowie eine Steuerungseinrichtung 19. Beispielhaft ist eine Ausführungsform der Erfindung nach der Fig. 1 dargestellt, wobei ein einziger Sensor 15 und eine einzige Registermarke 2 je Bogen 3 vorgesehen ist und eine Bogenverschiebung in Längsrichtung zur Transportrichtung bestimmbar und korrigierbar ist. In ähnlicher Weise ist eine Ausführungsform zum Bestimmen und Korrigieren einer Winkelverschiebung des Bogens 3 ausführbar. Das Transportmedium 11 folgt dem Transportmedium 1, das in Fig. 1 in einem Abschnitt dargestellt ist, der Bogen 3 wird vom Transportmedium 1, das um Rollen 17, 18 gespannt ist, auf das Transportmedium 11 befördert. Der Bogen 3 wird hierbei von den Transportrollen 4, 4' fortbewegt, die an den Bogen 3 angreifen, das Transportmedium 1 ist hierbei starr. Gewöhnlich weist die Druckmaschine mehrere Druckmodule auf, jedes Druckmodul bringt eine Farbe auf, wobei sich die einzelnen Farben übereinander gedruckt auf einem Bedruckstoff, hier der Bogen 3, zum Gesamtbild zusammensetzen, wie bekannt. Das Transportmedium 11 wird vom Antrieb an einer zweiten Umlenkrolle 16 angetrieben und bewegt sich in Richtung des Pfeils. Die erste Umlenkrolle 14, die zweite Umlenkrolle 16, ein Zwischenzylinder 25, ein Bebilderungszylinder 23 und ein Gegendruckzylinder 27 zum Bereitstellen einer Gegenkraft zur Druckkraft des Zwischenzylinders 25 bewegen sich in die in Fig. 5 durch die gekrümmten Pfeile dargestellten Richtungen. Der Begriff Druckzylinder 23, 25 umfasst in der vorliegenden Beschreibung den Bebilderungszylinder 23 und den Zwischenzylinder 25 als Zwischenträger des Druckbildes, je nachdem ob das Bild vom Bebilderungszylinder 23 direkt auf einen Bogen 3 oder zuerst auf einen Zwischenzylinder 25 und von diesem auf den Bogen 3 übertragen wird. Der Bebilderungszylinder 23 und der Zwischenzylinder 25 weisen einen ersten Drehgeber 24 bzw. einen zweiten Drehgeber 26 auf, die einen bestimmten Drehwinkel des Bebilderungszylinders 23 bzw. des Zwischenzylinders 25 erfassen, so dass ihr Drehwinkel zu jedem Zeitpunkt bekannt ist. Der erste Drehgeber 24 am Bebilderungszylinder 23 und der zweite Drehgeber 26 am Zwischenzylinder 25 übertragen die erfassten Drehwinkel zu einer Einrichtung 30. Die Einrichtung 30 umfasst Zuordnungstabellen oder Look up Tables, die als Register ausgeführt sind, welche Daten vom ersten Drehgeber 24, vom zweiten Drehgeber 26, vom Antrieb bei der zweiten Umlenkrolle 16 und von einem Sensor 15 oder Registersensor erhalten und jeweils Taktzahlen zugeordnet werden. Die aus den Look up Tables erhaltenen Taktzahlen dienen dazu, den Zeitpunkt des Anfangs der Bebilderung des Bebilderungszylinders 23 mit einem Bild festzulegen. Der Begriff Bild umfasst in diesem Zusammenhang Farbauszüge von Bildern der einzelnen Druckmodule, die sich zum Gesamtbild zusammensetzen, beispielsweise die Farbauszüge Cyan, Magenta, Gelb und Schwarz beim Vierfarbdruck, einzelne Linien des Bildes oder Bildbereiche. In Fig. 5 ist nur ein Druckmodul für einen Farbauszug, Cyan, Magenta, Gelb oder Schwarz dargestellt, weitere Druckmodule sind entlang des Transportmediums 11 ausführbar. Der Taktzähler 20 überträgt nach einer bestimmten von der Einrichtung 30 vorgegebenen Anzahl von Takten ein Signal an eine Bebilderungseinrichtung 22, welche aufgrund des Signals ein elektrostatisches Bild auf den Bebilderungszylinder 23 überträgt. Zu diesem Zweck weist der Bebilderungszylinder 23 einen elektrostatisch geladenen Fotoleiter auf, der von der Bebilderungseinrichtung 22 mit gesteuertem Licht beaufschlagt wird, etwa von einer LED-Quelle oder einem Laser. An den Stellen, an denen das gesteuerte Licht auf die elektrostatisch geladene Fotoleiterschicht des Bebilderungszylinders 23 auftrifft, werden die elektrostatischen Ladungen entfernt. Anschließend werden Tonerpartikel mit magnetisch entgegengesetzten Ladungen auf die von den elektrostatischen Ladungen befreiten Stellen aufgebracht und auf dem Bebilderungszylinder 23 liegt ein Bild vor. Das Bild wird auf einen Zwischenzylinder 25 übertragen, der sich gegenläufig zum Bebilderungszylinder 23 dreht, und vom Zwischenzylinder 25 durch Abrollen des Zwischenzylinders 25 auf den Bogen 3 gedruckt. Der Zwischenzylinder 25 übt von oben eine Kraft auf das Transportmedium 11 aus, ein Gegendruckzylinder 27 übt von unten eine dem Zwischenzylinder 25 entgegengesetzte Kraft auf das Transportmedium 11 aus. Der Bebilderungszylinder 23, der Zwischenzylinder 25, die erste Umlenkrolle 14 und der Gegendruckzylinder 27 sind durch Reibschluss mit dem Transportmedium 11 angetrieben, das von einem Antrieb an der zweiten Umlenkrolle 16 angetrieben ist. Die Bebilderung durch die Bebilderungseinrichtung 22, die vom Taktzähler 20 ausgelöst wird, erfolgt genau zu einem Zeitpunkt, dass das Bild vom Bebilderungszylinder 23 über den Zwischenzylinder 25 auf den Bogen 3 mikrometergenau übertragen wird. Eine Voraussetzung hierbei ist, dass der Bogen 3 fehlerfrei vom Transportmedium 1 auf das Transportmedium 11 transportiert wird. Die Registermarke 2 wird, wie beschrieben, vom Zwischenzylinder 25 auf das Transportmedium 11 übertragen. Der Sensor 15 am Ende des Transportmediums 11 erfasst zuerst die Registermarke 2 auf dem Transportmedium 11, überträgt als Reaktion darauf ein Signal an die Einrichtung 30, das ein Zählen eines Taktes des Taktzählers 20 auslöst. Danach erfasst der Sensor 15 den Vorderrand des Bogens 3 und überträgt als Reaktion darauf ein Signal an die Einrichtung 30, welches das Zählen des Taktes stoppt. Jeder Registermarke 2 folgt ein Bogen 3. Zwischen dem Erfassen der Registermarke 2 und dem Vorderrand des Bogens 3 wird eine Taktzahl abgezählt, welche den Abstand x1 zwischen der Registermarke 2 und dem Vorderrand des Bogens 3 bezeichnet. Der Taktzahl ist in eindeutiger Weise ein Abstand, hier im Beispiel der Abstand x1 zuordnenbar. Die abgezählte Taktzahl bezeichnet Ist-Daten, die in der Einrichtung 30 mit Soll-Daten verglichen wird. Ergibt der Vergleich, dass die Ist-Daten mit den Soll-Daten übereinstimmen, so liegt kein Registerfehler vor. Ergibt der Vergleich, dass die Ist-Daten nicht mit den Soll-Daten übereinstimmen, so liegt ein Registerfehler vor, der um so größer ist, je größer die Abweichung der Ist-Daten von den Soll-Daten ist, je größer der Weg Δx ist, desto größer ist die Abweichung der Ist-Daten von den Soll-Daten. Die derart berechnete Wegdifferenz Δx wird in der Zuordnungstabelle der Einrichtung 30 einem Kalibrierwert zugeordnet. Mit dem Kalibrierwert werden die Transportrollen 4, 4' angesteuert, welche oberhalb des Transportmediums 1 angeordnet sind und den Bogen 3 transportieren. Die Transportrollen 4, 4' befördern den Bogen 3 gewöhnlich gleichmäßig und werden zum Vermeiden eines Registerfehlers kurzzeitig negativ oder positiv beschleunigt. Im Beispiel nach Fig. 1 werden die Transportrollen 4, 4' derart beschleunigt, dass der Bogen 3 um den Weg Δx zusätzlich nach vorne bewegt wird. Der Bogen 3 gelangt zum richtigen Zeitpunkt auf das Transportmedium 11, so dass die Bedruckung durch den Zwischenzylinder 25 fehlerfrei durchgeführt wird. Der Bogen 3 wird folglich in lagerichtiger Ausrichtung bezüglich der Transportrichtung vom Transportmedium 1 an das Transportmedium 11 übergeben. Bei alternativer oder zusätzlicher Anwendung des Ausführungsbeispiels nach Fig. 4 wird der Bogen 3 auch lagerichtig bezüglich der Richtung senkrecht zur Transportrichtung des Bogens 3 an das Transportmedium 11 übergeben. Fig. 5 shows a schematic side view of a portion of a printing module or printing unit of a multi-color printing machine above a transport medium 11 and a control device 19. By way of example, an embodiment of the invention according to the Fig. 1 shown, wherein a single sensor 15 and a single register mark 2 per sheet 3 is provided and a bow displacement in the longitudinal direction to the transport direction can be determined and corrected. Similarly, an embodiment for determining and correcting an angular displacement of the sheet 3 is executable. The transport medium 11 follows the transport medium 1, the in Fig. 1 is shown in a section, the sheet 3 is transported from the transport medium 1, which is stretched around rollers 17, 18, on the transport medium 11. The sheet 3 is in this case moved by the transport rollers 4, 4 ', which act on the sheet 3, the transport medium 1 is rigid. Usually, the printing press has a plurality of printing modules, each printing module applies a color, with the individual colors printed on top of one another on a printing material, here the sheet 3, composing the overall picture, as is known. The transport medium 11 is driven by the drive on a second deflection roller 16 and moves in the direction of the arrow. The first guide roller 14, the second guide roller 16, an intermediate cylinder 25, a Bebilderungszylinder 23 and a counter-pressure cylinder 27 for providing a counter force to the pressing force of the intermediate cylinder 25 move in the in Fig. 5 directions represented by the curved arrows. The term impression cylinder 23, 25 in the present description, the imaging cylinder 23 and the intermediate cylinder 25 as an intermediate carrier of the printed image, depending on whether the image from the imaging cylinder 23 directly on a sheet 3 or first on a Intermediate cylinder 25 and is transmitted from this to the sheet 3. The imaging cylinder 23 and the intermediate cylinder 25 have a first rotary encoder 24 and a second rotary encoder 26, respectively, which detect a specific rotational angle of the imaging cylinder 23 or the intermediate cylinder 25 so that their rotational angle is known at all times. The first rotary encoder 24 on the imaging cylinder 23 and the second rotary encoder 26 on the intermediate cylinder 25 transmit the detected rotation angles to a device 30. The device 30 comprises allocation tables or look-up tables, which are designed as registers, which data from the first rotary encoder 24, the second rotary encoder 26, obtained by the drive at the second guide roller 16 and by a sensor 15 or register sensor and each time numbers are assigned. The cycle numbers obtained from the look up tables serve to determine the time of the beginning of the imaging of the imaging cylinder 23 with an image. The term image in this context comprises color separations of images of the individual printing modules, which are composed of the overall image, for example, the color separations cyan, magenta, yellow and black in four-color printing, individual lines of the image or image areas. In Fig. 5 only one printing module for a color separation, cyan, magenta, yellow or black is shown, further printing modules are executable along the transport medium 11. The clock counter 20 transmits, after a certain number of clocks predetermined by the device 30, a signal to a imaging device 22, which transmits an electrostatic image to the imaging cylinder 23 on the basis of the signal. For this purpose, the imaging cylinder 23 has an electrostatically charged photoconductor which is subjected to controlled light by the imaging device 22, such as an LED source or a laser. At the points where the controlled light impinges on the electrostatically charged photoconductor layer of the imaging cylinder 23, the electrostatic charges are removed. Subsequently, toner particles having magnetically opposite charges are applied to the locations freed from the electrostatic charges, and an image is provided on the imaging cylinder 23. The image is transferred to an intermediate cylinder 25, which rotates in opposite directions to the imaging cylinder 23, and from the intermediate cylinder 25 by rolling the Intermediate cylinder 25 printed on the sheet 3. The intermediate cylinder 25 exerts a force on the transport medium 11 from above, an impression cylinder 27 exerts from below a force opposite the intermediate cylinder 25 force on the transport medium 11 from. The imaging cylinder 23, the intermediate cylinder 25, the first guide roller 14 and the impression cylinder 27 are driven by frictional engagement with the transport medium 11, which is driven by a drive on the second guide roller 16. The imaging by the imaging device 22, which is triggered by the clock counter 20, takes place exactly at a time that the image is transferred from the imaging cylinder 23 via the intermediate cylinder 25 to the sheet 3 micrometer accurate. A prerequisite here is that the sheet 3 is transported error-free from the transport medium 1 to the transport medium 11. The register mark 2 is, as described, transferred from the intermediate cylinder 25 to the transport medium 11. The sensor 15 at the end of the transport medium 11 first detects the register mark 2 on the transport medium 11, transmits in response thereto a signal to the device 30, which triggers a counting of a clock of the clock counter 20. Thereafter, the sensor 15 detects the leading edge of the sheet 3 and, in response, transmits a signal to the device 30, which stops counting the clock. Each register mark 2 is followed by a sheet 3. Between the detection of the register mark 2 and the front edge of the sheet 3, a cycle number is counted, which denotes the distance x1 between the register mark 2 and the front edge of the sheet 3. The number of cycles is clearly a distance, in this example the distance x1 can be assigned. The counted number of cycles denotes actual data which is compared in the device 30 with desired data. If the comparison shows that the actual data matches the target data, then there is no register error. If the comparison shows that the actual data does not match the target data, there is a register error, which is the greater, the greater the deviation of the actual data from the target data, the larger the path Δ x is, the greater the deviation of the actual data from the target data. The path difference Δ x calculated in this way is assigned to a calibration value in the allocation table of the device 30. With the calibration value, the transport rollers 4, 4 'are controlled, which are arranged above the transport medium 1 and transport the sheet 3. The transport rollers 4, 4 ' usually convey the sheet 3 evenly and are momentarily negatively or positively accelerated to avoid a registration error. In the example below Fig. 1 the transport rollers 4, 4 'are accelerated such that the sheet is x 3 moves by the distance Δ in addition to the front. The sheet 3 arrives at the right time on the transport medium 11, so that the printing is carried out without error by the intermediate cylinder 25. The sheet 3 is thus transferred in the correct position with respect to the transport direction of the transport medium 1 to the transport medium 11. In alternative or additional application of the embodiment according to Fig. 4 the sheet 3 is also transferred in the correct position with respect to the direction perpendicular to the transport direction of the sheet 3 to the transport medium 11.

Claims (11)

  1. Method for the determination of a register error, wherein at least one register mark (2, 2', 2", 2"') is printed, said register mark and a sheet edge of a sheet (3, 3', 3", 3"') to be printed being detected by at least one sensor (15, 15'), and wherein the register error is determined based on the sensor data and the nominal data,
    characterized in that
    the register mark (2, 2', 2", 2"') is printed on a transport medium (11) for transporting the sheet (3, 3', 3", 3"').
  2. Method as in Claim 1, characterized in that the detection of the register mark (2, 2', 2", 2"') and of the sheet edge of the sheet (3, 3', 3", 3"') is performed during the printing operation.
  3. Method as in one of the previous Claims, characterized in that a register error is detected in transport direction of the sheet (3, 3', 3", 3"').
  4. Method as in one of the previous Claims, characterized in that a register error is detected perpendicular to the transport direction of the sheet (3, 3', 3", 3"'), whereby the sensor (15, 15') detects at least one lateral edge of the sheet (3, 3', 3", 3'").
  5. Method as in one of the previous Claims, characterized in that at least two register marks (2, 2', 2", 2"') are applied at a distance and transverse with respect to the transport direction, that the register error is detected in transport direction of the sheet, and that an angular error of the sheet (3, 3', 3", 3"') is determined based on the sensor data.
  6. Method as in Claim 4 or 5, characterized in that the sensor (15, 15) detects the register mark (2, 2', 2", 2"') and that, in response thereto, an angle of rotation of a drive roller of the transport medium (11) is determined, that the sensor (15, 15') detects the sheet edge and, in response thereto, the angle of rotation of the drive roller of the transport medium (11) and the difference of the angles of rotation are determined, and that the difference of the angles of rotation is compared with a difference of a nominal difference of the angles of rotation, and that the register error is determined based on this comparison.
  7. Method as in one of the previous Claims, characterized in that the register error is determined for various types of printing material.
  8. Method as in one of the previous Claims, characterized in that the register error for various types of printing material is stored in an allocation table of a control device of the printing machine.
  9. Method as in one of the previous Claims, characterized in that the statistic average of a number of register errors is determined.
  10. Control device (19) for the determination of a register error in a printing machine comprising a transport medium (11) for transporting sheets, said device being used to carry out the method in accordance with Claim 1, comprising at least one sensor (15) for the detection of the leading edge of a sheet (3, 3', 3", 3"') and of at least one register mark (2, 2', 2", 2"'), and comprising a device (30) for the calculation of the register error based on the sensor data of the sensor (15) and based on stored data,
    characterized in that
    the register mark (2, 2', 2", 2'") is printed on the transport medium (11).
  11. Control device (19) as in Claim 10, characterized by a device (30) for the correction of the calculated register error.
EP03014130A 2002-09-07 2003-06-24 Method and control device for determining register errors Expired - Lifetime EP1396341B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10241609A DE10241609A1 (en) 2002-09-07 2002-09-07 Method and control device for determining a register error
DE10241609 2002-09-07

Publications (2)

Publication Number Publication Date
EP1396341A1 EP1396341A1 (en) 2004-03-10
EP1396341B1 true EP1396341B1 (en) 2008-09-24

Family

ID=31502486

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03014130A Expired - Lifetime EP1396341B1 (en) 2002-09-07 2003-06-24 Method and control device for determining register errors

Country Status (4)

Country Link
US (1) US7162956B2 (en)
EP (1) EP1396341B1 (en)
AT (1) ATE409116T1 (en)
DE (2) DE10241609A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004015101B4 (en) * 2004-03-27 2012-04-26 Eastman Kodak Co. Method and sensor device for controlling an endless, seam-containing transport medium for a printing press
DE102005007435A1 (en) 2005-02-18 2006-08-24 Bosch Rexroth Ag Method for performing a pressure correction and device therefor
FR2910372B1 (en) * 2006-12-21 2010-12-10 Goss Int Montataire Sa DEVICE FOR CONTROLLING A ROTARY PRESS OF PRINTING A WEB OF MATERIAL, AND ROTATING PRESS.
JP4664391B2 (en) * 2008-04-28 2011-04-06 シャープ株式会社 Print output device and print output system
US20150116734A1 (en) * 2013-10-24 2015-04-30 Joshua Hart Howard Printer with image plane alignment correction

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535428B2 (en) * 1990-04-13 1996-09-18 エス・ケイエンジニアリング株式会社 Sheet supply device
US5156391A (en) * 1991-11-04 1992-10-20 Xerox Corporation Short paper path electronic deskew system
EP0708046A1 (en) * 1994-10-21 1996-04-24 Maschinenfabrik Gietz Ag Register and feeding device
DE10127249B4 (en) * 2000-06-28 2013-05-02 Heidelberger Druckmaschinen Ag Method for determining a position of a printed image and monitoring device for a printing machine
DE10141034A1 (en) * 2001-08-22 2003-03-20 Nexpress Solutions Llc Method and printing machine for determining register errors
DE10141035A1 (en) * 2001-08-22 2003-03-20 Nexpress Solutions Llc Method and printing machine for determining register errors
US6848361B2 (en) * 2002-01-18 2005-02-01 Eastman Kodak Company Control device and method to prevent register errors
DE10227766A1 (en) * 2002-06-21 2004-01-15 Nexpress Solutions Llc Method and control device for avoiding register errors
US6997455B2 (en) * 2004-02-09 2006-02-14 Eastman Kodak Company Sheet deskewing method and apparatus

Also Published As

Publication number Publication date
US7162956B2 (en) 2007-01-16
EP1396341A1 (en) 2004-03-10
DE50310536D1 (en) 2008-11-06
DE10241609A1 (en) 2004-03-18
US20060013468A1 (en) 2006-01-19
ATE409116T1 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
DE102012212659B4 (en) System for dynamic stretch reflex printing
DE69606076T2 (en) Image compensation using printed reference marks
EP3201000B1 (en) Device for coding printing sheets in a sheet-fed press
US20090283002A1 (en) Method for printing correction
EP1157837A2 (en) Method and apparatus for registration in a multi-colour printing press
EP1572457B1 (en) Pre-register adjustment
EP1285756B1 (en) Procedure and printing machine for determining register errors
DE10139310B4 (en) Method for determining START OF FRAME correction data and START OF LINE correction data for register setting for printing presses in multi-color printing
EP1759844B1 (en) Process for printing correcting
EP1285757B1 (en) Procedure and printing machine for determining register errors
EP1396341B1 (en) Method and control device for determining register errors
DE10208597B4 (en) Method for avoiding registry errors in a printing machine
DE4218761A1 (en) Pre-adjustment of registration devices on rotary printing presses - involves standstill or very slow running of sheet feed while registration mark sensors are repositioned
DE102004007367A1 (en) Method and printing machine for detecting marks
DE102017212138B4 (en) Sheet processing machine
EP1156386B1 (en) Apparatus for minimizing the influence of registration differences
DE102015200148B4 (en) Method for adapting at least one length of an area to be formed on a plurality of printed sheets of the same size by printing technology
EP1482383A1 (en) Method and control device for avoiding of registration errors
DE19728514B4 (en) Printing method and appropriately equipped printing device
DE10306442A1 (en) Register label input method for detecting topographical printing, involves determining content of print out based on register label entered by sensor from surface of print out
DE102004015101B4 (en) Method and sensor device for controlling an endless, seam-containing transport medium for a printing press
DE102018221599A1 (en) Machine for processing web or sheet material and method for pressure correction in such a machine
DE29516830U1 (en) Digital printing machine with register control
DE10239158A1 (en) Method for avoiding register errors in print machines, involves placing sheet sensor at an integer multiple of the circumference of a counter pressure cylinder from the nip formed with the image transfer cylinder
DE19930738A1 (en) Procedure for controlling a paper feed cycle for a sheet fed printer detects multiple sheet miss-feeds and partial sheet overlays and sets a positioning member to re-direct miss-fed sheets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EASTMAN KODAK COMPANY

17P Request for examination filed

Effective date: 20040908

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070524

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: THEDEN, STEFAN

Inventor name: SPILZ, ROLF JOHANNES

Inventor name: PETER, KARLHEINZ WALTER, DR.

Inventor name: HUNOLD, HEIKO

Inventor name: ENGELN, CHRISTIAN FRIEDRICH, DR.

Inventor name: DWORSCHAK, WALTER, DR.

Inventor name: DOBBERSTEIN, DIETER KARL-HEINZ

Inventor name: METZLER, PATRICK, DR.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50310536

Country of ref document: DE

Date of ref document: 20081106

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

26N No opposition filed

Effective date: 20090625

BERE Be: lapsed

Owner name: EASTMAN KODAK CY

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090624

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170621

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50310536

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101