EP1393411B1 - Resonatorantenne mit rundstrahlcharakteristik - Google Patents

Resonatorantenne mit rundstrahlcharakteristik Download PDF

Info

Publication number
EP1393411B1
EP1393411B1 EP02747511A EP02747511A EP1393411B1 EP 1393411 B1 EP1393411 B1 EP 1393411B1 EP 02747511 A EP02747511 A EP 02747511A EP 02747511 A EP02747511 A EP 02747511A EP 1393411 B1 EP1393411 B1 EP 1393411B1
Authority
EP
European Patent Office
Prior art keywords
strands
electric conductor
antenna according
resonant antenna
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02747511A
Other languages
English (en)
French (fr)
Other versions
EP1393411A1 (de
Inventor
Bernard Jecko
François TORRES
Guillaume Villemaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1393411A1 publication Critical patent/EP1393411A1/de
Application granted granted Critical
Publication of EP1393411B1 publication Critical patent/EP1393411B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/44Resonant antennas with a plurality of divergent straight elements, e.g. V-dipole, X-antenna; with a plurality of elements having mutually inclined substantially straight portions

Definitions

  • the present invention relates to omnidirectional resonant antennas and more particularly omnidirectional resonant antennas in a half-space or all of the space.
  • resonant antennas that is to say, antennas whose dimensions have been determined so that they exhibit a resonance phenomenon for multiples of one frequency. predetermined. These antennas use the resonance phenomenon to increase the energy of the radiation emitted and / or received at the predetermined frequency and thus have a limited bandwidth. These antennas also have the advantage of having a small footprint compared to non-resonant antennas, that is to say antennas that do not have a resonance phenomenon for multiples of a predetermined frequency.
  • antennas can be made using a single electrical conductor forming a dipole or a monopole, most often wired type. They are, for example, made using a metal roof printed on a dielectric substrate, the latter antennas being known as “patch antennas”. Another embodiment consists in cutting slots in a ground plane, these antennas being known as “slot antennas”. However, at best, it is known at the present time, to realize omnidirectional resonant antennas in a plane of space, that is to say that the electromagnetic radiation emitted or received is substantially uniform whatever the direction in this plan.
  • the present invention therefore aims to fill this gap by creating an omnidirectional resonant antenna in a half-space or in the entire space.
  • the invention also relates to a device for receiving and emitting electromagnetic radiation in a half-space or in the entire space, characterized in that it comprises a plurality of omnidirectional resonant antennas according to any one of the preceding claims.
  • the figure 1 represents extending along the x-axis of the graph, an electrical conductor 4 forming a monopole.
  • an electrical conductor 4 In a classic way, it is a "quarter-wave" electrical conductor, that is to say an electrical conductor whose total length is equal to a quarter of a wavelength, denoted by ⁇ , of a frequency predetermined.
  • the predetermined frequency is subsequently called “working frequency”.
  • a constructive resonance phenomenon occurs in the electrical conductor 4 when emitting and / or receiving electromagnetic radiation whose wavelength is ⁇ .
  • the electrical conductor 4 is here formed of a current conducting band of constant width.
  • the electrical conductor 4 has a first end 6 connected to a ground and a second end 8 connected to a wave transmitter / receiver 10 such as a conventional microwave transmitter / receiver.
  • a transceiver capable of emitting and / or receiving electromagnetic radiation at a given frequency when it is connected to an electrical conductor is called a transceiver.
  • Curve 12 represents the distribution of the surface density of current along the electrical conductor at the working frequency. This curve is determined, for example, using conventional software for electromagnetic radiation simulation of electrical conductors.
  • the area between the curve 12 and the electrical conductor 4 is divided into three areas 14, 16 and 18 of equal area and whose interest will appear in the following description.
  • a point 20 on the electrical conductor 4 marks the boundary separating the area 14 from the area 16; likewise a point 22 on the electrical conductor 4 marks the boundary separating the area 16 from the area 18.
  • the points 20 and 22 thus delimit three strands placed end to end on the electrical conductor 4.
  • the areas 14, 16 and 18 are respectively proportional to the level of radiation of the electrical conductor strands 4 between the end 8 and the point 20, between the points 20 and 22 and between the point 22 and the end 6. conceives, therefore, that with the help of figure 1 it is possible to determine the length of a strand of electrical conductor so that it has a predetermined level of radiation.
  • the figure 2 represents a first embodiment of an omnidirectional resonant antenna in the space dimensioned from the graph of the figure 1 .
  • This comprises an electrical conductor 26 forming a monopole similar to that of the figure 1 .
  • the electrical conductor 26 possesses and a current density distribution of current per unit length similar to that of the figure 1 . It consists of three strands 28, 30 and 32 placed end to end and orthogonal two by two between them.
  • the strand 28 has a length equal to that of the strand between the end 8 and the point 20 of the figure 1 .
  • the strand 30 has a length equal to that strand between the points 20 and 22 of the figure 1 .
  • the strand 32 has a length equal to that of the strand between the point 22 and the end 6 of the figure 1 .
  • the free end of the strand 28 is connected via an electromagnetic coupling zone 34 to a terminal 36 of a wave transmitter / receiver 37.
  • the length of the coupling zone 34 that is to say say the gap between the free end of the strand 28 and the terminal 36 is determined by simulation or experimentally to match the actual impedance of the antenna to the impedance of the wave transmitter / receiver 37. Note that it is also possible to play on the width of each strand of the electrical conductor 26 to adapt the actual impedance of the antenna to the impedance of the wave transmitter / receiver 37 so as to limit the phenomena at the interface of these two devices 26 and 37.
  • the free end of the strand 32 is connected perpendicular to a ground plane 38 whose dimensions are smaller than the wavelength ⁇ of the working frequency. Under these conditions, the ground plane 38 does not form a radiation shield of the electrical conductor 26.
  • the various parameters of the strands must be adjusted to compensate for the edge effects of the plane. of mass 38.
  • the ground plane 38 is a plane whose width and length are several times greater than the wavelength ⁇ of the working frequency of the electrical conductor 26. It is said that the ground plane is infinite. It will be appreciated that an infinite ground plane forms a shield to the electromagnetic radiation of an electrical conductor such as the conductor 26 and therefore the resonant antenna is omnidirectional in a half space. In this case, the lengths of the strands such as the strands 28, 30 and 32 are respectively less than ⁇ 5 , ⁇ 10 and ⁇ 80 , where X is the wavelength of the working frequency.
  • the lengths of each of the strands corresponding to the strands 28, 30 and 32 are respectively 53 mm, 30 mm and 3 mm.
  • the width of the coupling zone such as zone 34 is 1 mm
  • terminal 36 is 4 mm long
  • the diameter of the connecting wire with the emitter / receiver is 0.2 mm.
  • the figure 3 represents a second embodiment of an omnidirectional resonant antenna in the space according to the invention in which the resonant antenna is formed by an electrical conductor 50 forming a monopole.
  • This electrical conductor comprises five strands 52, 54, 56, 58 and 60 placed end to end and arranged to form a first and a second image portions of each other with respect to a plane of symmetry 62.
  • the strands 52, 54, and 56 are rectilinear and orthogonal pairwise to each other.
  • the first part consists of the strands 52, 54 and a half-strand 64.
  • the half-strand 64 represents the upper half of the strand 56.
  • the strands 52, 54 and 64 form an electrical conductor similar to the electrical conductor 26 described next to the figure 2 .
  • the total length of the electrical conductor formed by the strands 52, 54 and the half-strand 64 is equal to the wavelength of the working frequency divided by four. More precisely, the length of the strand 52 is equal to that of the strand between the end 8 and the point 20 of the figure 1 .
  • the length of the strand 54 is equal to that of the strand between the points 20 and 22 of the figure 1 .
  • the length of the half-strand 64 is equal to that of the strand between the point 22 and the end 6 of the figure 1 .
  • the second part of the electrical conductor 50 consists of the strands 58, 60 and a half-strand 66.
  • the half-strand 66 represents the lower half of the strand 56.
  • the dimensions of the strands 58, 60 and the half-strand 66 are respectively the same as those of the strands 54, 52 and the half-strand 64.
  • the second part of the electrical conductor 50 is intended to make an electrical image of the first part in ways to simulate the existence of a ground plane.
  • the second part thus fulfills the functions of a mass plan such as the plane of mass 38 of the figure 2 for the first part, and vice versa. This is why the strand dimensions of the first part are determined in the same way as in the embodiment of the figure 2 .
  • the free end of the strand 52 is connected to a first terminal of a wave transmitter / receiver 68 and the free end of the strand 60 is connected to a second terminal of the wave transmitter / receiver 68.
  • This first and second terminals are also the image of one another with respect to the plane of symmetry 62 so as not to introduce a phase shift between the signals transmitted / received by the transmitter / receiver of waves 68.
  • the figure 4 represents, extending along the x-axis of a graph, an electrical conductor 68 forming a monopole.
  • This electrical conductor is here formed by a band of constant current-conducting width, however other forms may be used in other embodiments.
  • a first end of this electrical conductor is connected to a wave transmitter / receiver 69. The second end remains free.
  • a curve 70 represents the surface density of current along the electrical conductor 68 at the working frequency. This curve is obtained, for example, using conventional simulation software.
  • the area between the curve 12 and the electrical conductor 68 is divided into three areas 72, 74 and 76 of equal area.
  • a point 78 is placed on the electrical conductor 68 to mark the boundary between the area 72 and the area 74.
  • a point 80, on the electrical conductor 68 marks the boundary between the Area 74 and area 76.
  • Points 78 and 80 cut the electrical conductor 68 into three strands of respective length L1, L2 and L3.
  • the areas of areas 72, 74 and 76 are respectively proportional to the radiation levels of the length of strands L1, L2 and L3.
  • the figure 5 represents a resonant antenna sized according to the graph of the figure 4 .
  • This antenna comprises an electrical conductor 86 forming a monopole similar to the electrical conductor 68 of the figure 4 .
  • the electrical conductor 86 is connected at one end to a terminal 87 of a wave transmitter / receiver 88. A second end of the electrical conductor 68 remains free.
  • This electrical conductor 86 consists of three strands 90, 92 and 94 placed end to end. These strands are rectilinear and orthogonal two by two between them. The length of each of these strands is determined in accordance with figure 4 that is, the strand 94 has a length L1, the strand 92 has a length L2 and the strand 90 has a length L3.
  • the free end of the strand 94 is connected to the transceiver 88 while being perpendicular to a ground plane 96 whose dimensions are smaller than the wavelength ⁇ of the working frequency.
  • the assembly of the antenna formed by the electrical conductor 86 and the ground plane 96 is embedded in a dielectric material 98 to reduce the dimensions of the antenna.
  • embedding the electrical conductor of an antenna in a dielectric material or placing it on the surface of a dielectric material makes it possible to reduce the dimensions required for the electrical conductor and therefore the antenna.
  • the resonant antenna of the figure 6 comprises an electrical conductor 110 formed of a band of current-conducting material of constant width.
  • This electrical conductor consists of three strands 112, 114 and 116 placed end to end and orthogonal two by two between them.
  • the antenna also comprises two ground elements 120 and 122. These ground elements 120 and 122 are each formed by a current-conducting strip of constant width.
  • the first element 120 comprises three strands 124, 126 and 128 placed end to end.
  • the second mass element 122 also has three strands 130, 132 and 134 placed end to end. These two ground elements 120 and 122 are respectively disposed to the right and left of the electrical conductor 110.
  • the strands 124 and 130 of the ground elements are parallel and coplanar with the strand 112 of the electrical conductor 110.
  • the strands 126 and 132 and the strands 128 and 134 are respectively parallel and coplanar with the strands 114 and 116 of the electrical conductor 110.
  • the ends of the strands 128, 116 and 134 opposite the strands 126, 114 and 132 are interconnected by a current-conducting element 136.
  • the free end of the strand 112 is connected to a wave transmitter / receiver 138.
  • the lengths of the strands 112, 114 and 116 are determined according to the distribution of the current surface density along the electrical conductor 110 in a manner similar to what has been described with regard to Figures 1 and 2 .
  • the width of the gaps 140, 142 separating the strands of the ground elements, the strands of the electrical conductor 110, as well as the width of the bands forming the ground elements are determined by simulation or experimentation to adapt the actual impedance of the antenna. that of the wave transmitter / receiver 138.
  • Such an antenna is typically made by cutting slots of constant width in a sheet which is then bent at right angles.
  • the wave transmitter / receiver 37 When emitting electromagnetic radiation at the working frequency using the antenna of the figure 2 , the wave transmitter / receiver 37 generates electromagnetically coupled in the electromagnetic coupling zone 34 a surface density of current in the electrical conductor 26. The surface density thus created is distributed along the electrical conductor 26 as illustrated on the graph of the figure 1 .
  • the length of the strands 28, 30 and 32 is determined so that the areas 14, 16 and 18 have an equal area. Therefore, the radiation levels of each of the strands of the electrical conductor 26 are the same.
  • the level of radiation emitted at a point in any space is practically the vector sum of the radiation emitted by each of the strands 28, 30 and 32.
  • These strands are orthogonal to one another and the radiation emitted by a strand being parallel to its direction, it is conceivable that the radiation emitted by one strand does not interfere with that of the others.
  • orthogonal strands optimize the gain of the antenna by avoiding destructive interference phenomena. It is realized, therefore, that no particular direction of space is privileged by this antenna, since the strands are orthogonal and the level of radiation of each strand is the same. Therefore, the antenna thus produced is practically omnidirectional. It is considered here that the radiation is practically omnidirectional in a predetermined region of space, if the level of radiation emitted / received by the antenna in any two directions of this region of space does not vary by more than 50% .
  • ground plane 38 does not constitute a screen with electromagnetic radiation and that consequently the radiation of the preceding antenna is omnidirectional in the whole of the space.
  • the radiation levels received along the directions of the strands 28, 30 and 32 are respectively proportional to the areas 14, 16 and 18 and thus determined by the respective lengths of each strand.
  • the length each strand was chosen so that areas 14, 16 and 18 are equal. Consequently, the level of radiation received for a given radiation parallel to a strand will be the same whether this radiation is parallel to the strands 28, 30 or 32. Any directional radiation can always be decomposed into three components respectively parallel to the three strands 28, 30 and 32 the overall level of radiation received by the antenna is unchanged regardless of the direction of this radiation. It will be noted that, as the emission, the reception is not limited by the ground plane 38 to a half-space, if the width and length dimensions thereof are less than ⁇ .
  • the second portion of the electrical conductor 50 of the antenna formed by the strands 58, 60 and the half-strand 66 performs the functions of a ground plane extending along the plane of symmetry 62 for the first part formed by the strands 52, 54 and the half-strand 64. Therefore the study of the operation of the first part of the antenna is reduced to the study of the operation of an electrical conductor connected perpendicularly to a ground plane se confusing with the plane of symmetry 62. The operation of such a structure has already been described with regard to the figure 2 .
  • the first part of the antenna performs the functions of ground plane merging with the plane of symmetry 62 for the second part of the antenna. Therefore, similar to what has just been described above, the operation of the second part of the antenna is reduced to the study of an antenna whose structure is similar to that described with respect to the figure 2 .
  • the electrical conductor of the preceding embodiments consists of strands formed with wire elements instead of strands in the form of a strip.
  • the diameter of the wire forming each strand is determined to adjust the actual impedance of such an antenna to that of the wave transmitter / receiver.
  • the electrical conductor of the preceding examples of embodiment consists of strands of any shape, the distribution of the surface density of the current at the working frequency being known to be calculated.
  • a device for receiving and transmitting electromagnetic radiation comprises a plurality of omnidirectional resonant antennas in a half space or in the whole of the space such as those described above each adapted to receive and emit a predetermined wavelength.
  • the receiving and transmitting device is both omnidirectional in a half-space or in the whole of the space, and able to receive and transmit at different wavelengths.

Landscapes

  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Claims (18)

  1. Resonatorantenne mit Rundstrahlcharakteristik in einer Hälfte oder der Gesamtheit des Raums umfassend einen einzigen elektrischen Strahlungsleiter (26; 50; 86; 110), der einen Monopol mit einer Gesamtlänge, die bei einer vorbestimmten Frequenz mitschwingt, und einer vorbestimmten oberflächlichen Stromdichteverteilung entlang des elektrischen Leiters, der von mindestens drei Strängen (28, 30, 32; 52, 54, 56, 58, 60; 90; 92; 94; 112; 114; 116) gebildet wird, die nahtlos aneinandergefügt sind, bildet, wobei die Länge von jedem Strang und die Orientierung der Stränge zueinander dazu beitragen, die Gesamtstrahlung des elektrischen Leiters zu bestimmen, wobei die Stränge in mindestens drei verschiedene Richtungen des Raum orientiert und jeweils paarweise zueinander orthogonal sind, dadurch gekennzeichnet, dass das Integral der Strom-Oberflächendichte entlang von jedem Strang einen gleichen Wert hat.
  2. Resonatorantenne nach Anspruch 1, dadurch gekennzeichnet, dass der elektrische Strahlungsleiter (50) zwei symmetrische Teile bezüglich einer Symmetrieebene (62) umfasst, um eine in die Gesamtheit des Raums omnidirektionale Strahlung des elektrischen Leiters zu erhalten.
  3. Resonatorantenne nach Anspruch 2, dadurch gekennzeichnet, dass der elektrischen Strahlungsleiter (50) aus einem ersten, einem zweiten, einem dritten, einem vierten und einem fünften Strang (52, 54, 56, 58, 60) besteht, wobei der vierte und der fünfte Strang (58, 62) jeweils die Symmetriebilder des zweiten und des ersten Strangs (52, 54) bezüglich der Symmetrieebene (62) durch die Mitte des dritten Strangs (56) sind.
  4. Antenne nach Anspruch 1, dadurch gekennzeichnet, dass ein Strang am Ende des elektrischen Strahlungsleiters (26, 86) senkrecht zu einer Masseebene (38; 96) angeordnet ist.
  5. Resonatorantenne mit einer Wellenlänge λ nach Anspruch 4, dadurch gekennzeichnet, dass die Dimensionen der Masseebene (38; 96) kleiner sind als die Wellenlänge X, um eine in die Gesamtheit des Raumes omnidirektionale Strahlung des elektrischen Leiters zu erhalten.
  6. Resonatorantenne mit einer Wellenlänge λ nach Anspruch 4, dadurch gekennzeichnet, dass die Dimensionen der Masseebene (38; 96) ein Vielfaches größer sind als Wellenlänge λ, um eine in die Gesamtheit des Raumes omnidirektionale Strahlung des elektrischen Leiters zu erhalten.
  7. Resonatorantenne nach Anspruch 6, dadurch gekennzeichnet, dass sie Masseelemente (124, 126, 128, 130, 132, 134) umfasst und dadurch, dass die Stränge (112, 114, 116) des elektrischen Strahlungsleiters (110) jeweils zu diesen coplanar sind.
  8. Resonatorantenne nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass der elektrische Strahlungsleiter (26) ein erstes Ende, das an einen Emitter/Wellen-Empfänger (37) angeschlossen ist und ein zweites Ende, das an die Masseebene (38) angeschlossen ist, umfasst.
  9. Resonatorantenne nach einem der Ansprüche 4 bis 7, 10, dadurch gekennzeichnet, dass der elektrische Strahlungsleiter (110) ein erstes Ende, das an einen Emitter/Wellen-Empfänger (138) angeschlossen ist und ein zweites Ende, das an die Masseelemente (120, 122) angeschlossen ist, umfasst.
  10. Resonatorantenne nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der elektrische Strahlungsleiter (26) an den Emitter/Wellen-Empfänger (37) über eine elektromagnetische Kopplungszone (34) angeschlossen ist.
  11. Resonatorantenne nach Anspruch 10, dadurch gekennzeichnet, dass die Dimensionen der elektromagnetischen Kopplungszone (34) teilweise die reelle Impedanz der Antenne bestimmen.
  12. Resonatorantenne nach einem der Ansprüche 4 bis 11, dadurch gekennzeichnet, dass der elektrische Strahlungsleiter (26; 86; 110) aus einem ersten, einem zweiten und einem dritten Strang (28, 30, 32; 90, 92, 94; 112, 114, 116) besteht.
  13. Resonatorantenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aufeinanderfolgenden Stränge (28, 30, 32; 52, 54, 56, 25, 58, 60; 90, 92, 94; 112, 114, 116) des elektrischen Strahlungsleiters in zwei zueinander orthogonale Richtungen orientiert sind.
  14. Resonatorantenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Stränge (28, 30, 32; 52, 54, 56, 25, 58, 60; 90, 92, 94; 112, 114, 116) jeweils von einem Band gebildet werden, dessen Breite bestimmt ist, um, zumindest zum Teil, die reelle Impedanz der Antenne an die Impedanz von einem Emitter/Wellen-Empfänger anzupassen, der dazu bestimmt ist, an die Antenne angeschlossen zu werden.
  15. Resonatorantenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der elektrische Strahlungsleiter (26; 50; 86; 110) aus Kabelsträngen besteht.
  16. Resonatorantenne nach einem der Ansprüche 1 bis 7 und 12 bis 15, dadurch gekennzeichnet, dass der elektrische Strahlungsleiter (86) ein erstes Ende, das an einen Emitter/Wellen-Empfänger angeschlossen ist, und ein zweites freies Ende umfasst.
  17. Resonatorantenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem elektrischen Strahlungsleiter (86) ein dielektrisches Material (98) beigefügt ist, das die Dimensionen der Antenne vermindert.
  18. Empfangs- und Sendevorrichtung von elektromagnetischen Strahlungen in einer Hälfte oder in der Gesamtheit des Raums, dadurch gekennzeichnet, dass sie mehrere Resonatorantennen mit Rundstrahlcharakteristik nach einem der vorhergehenden Ansprüche umfasst.
EP02747511A 2001-06-08 2002-06-06 Resonatorantenne mit rundstrahlcharakteristik Expired - Lifetime EP1393411B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0107546A FR2825836B1 (fr) 2001-06-08 2001-06-08 Antenne resonante omnidirectionnelle
FR0107546 2001-06-08
PCT/FR2002/001935 WO2002101877A1 (fr) 2001-06-08 2002-06-06 Antenne resonante omnidirectionnelle

Publications (2)

Publication Number Publication Date
EP1393411A1 EP1393411A1 (de) 2004-03-03
EP1393411B1 true EP1393411B1 (de) 2013-02-27

Family

ID=8864120

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02747511A Expired - Lifetime EP1393411B1 (de) 2001-06-08 2002-06-06 Resonatorantenne mit rundstrahlcharakteristik

Country Status (6)

Country Link
US (1) US7170448B2 (de)
EP (1) EP1393411B1 (de)
JP (2) JP2004529593A (de)
CA (1) CA2449667C (de)
FR (1) FR2825836B1 (de)
WO (1) WO2002101877A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375689B2 (en) * 2006-02-27 2008-05-20 High Tech Computer Corp. Multi-band antenna of compact size
EP2111671B1 (de) * 2006-10-09 2017-09-06 Advanced Digital Broadcast S.A. Dielektrische antenneneinrichtung für die drahtlose kommunikation
EP2453524A4 (de) * 2009-07-09 2014-06-11 Murata Manufacturing Co Antenne
JP5698596B2 (ja) * 2011-05-09 2015-04-08 株式会社日本自動車部品総合研究所 アンテナ装置
JP2019121925A (ja) * 2018-01-05 2019-07-22 富士通株式会社 アンテナ装置、及び、無線通信装置
KR102049876B1 (ko) * 2019-05-10 2019-11-28 노재성 전방향성 pcb 안테나
KR102146072B1 (ko) * 2019-05-10 2020-08-19 김종헌 전방향성 안테나를 포함하는 마을방송 수신기
US11781916B2 (en) * 2020-01-17 2023-10-10 Shenzhen Hypersynes Co., Ltd. Tag antenna and passive temperature detection apparatus

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653801U (de) * 1979-10-02 1981-05-12
JPS58166111U (ja) * 1982-04-30 1983-11-05 ソニー株式会社 マイクロストリツプアンテナ
JPH0642607B2 (ja) * 1989-03-28 1994-06-01 日本通信電線株式会社 移動無線機用空中線
JPH032712U (de) * 1989-05-31 1991-01-11
US5363114A (en) * 1990-01-29 1994-11-08 Shoemaker Kevin O Planar serpentine antennas
JP2870940B2 (ja) * 1990-03-01 1999-03-17 株式会社豊田中央研究所 車載アンテナ
JP3110536B2 (ja) * 1991-12-18 2000-11-20 財団法人国際科学振興財団 薄形アンテナ
JPH05299929A (ja) * 1992-04-22 1993-11-12 Sony Corp アンテナ
JP3457351B2 (ja) * 1992-09-30 2003-10-14 株式会社東芝 携帯無線装置
JPH06224619A (ja) * 1993-01-22 1994-08-12 Sony Corp マイクロストリップアンテナ
JPH06350332A (ja) * 1993-06-02 1994-12-22 Uniden Corp 小型送受スタックアンテナ
JPH0715229A (ja) * 1993-06-25 1995-01-17 Casio Comput Co Ltd 伝送線路アンテナ装置
JP3563763B2 (ja) * 1994-04-13 2004-09-08 日本アンテナ株式会社 無指向性アンテナ、無指向性vhfアンテナ、無指向性uhfアンテナおよび無指向性vhf/uhfアンテナ
JP3114582B2 (ja) * 1995-09-29 2000-12-04 株式会社村田製作所 表面実装型アンテナおよびこれを用いた通信機
JPH09116332A (ja) * 1995-10-23 1997-05-02 Soudai:Kk 面界輻射型アンテナ
JP3055456B2 (ja) * 1996-02-21 2000-06-26 株式会社村田製作所 アンテナ装置
TW320813B (de) * 1996-04-05 1997-11-21 Omron Tateisi Electronics Co
JP3114621B2 (ja) * 1996-06-19 2000-12-04 株式会社村田製作所 表面実装型アンテナおよびこれを用いた通信機
GB2315922A (en) * 1996-08-01 1998-02-11 Northern Telecom Ltd An antenna arrangement
JPH1065425A (ja) * 1996-08-19 1998-03-06 Shinko Sangyo Kk アンテナ
FR2752646B1 (fr) * 1996-08-21 1998-11-13 France Telecom Antenne imprimee plane a elements superposes court-circuites
JPH10107535A (ja) * 1996-09-27 1998-04-24 Murata Mfg Co Ltd 表面実装型アンテナ
US6008762A (en) * 1997-03-31 1999-12-28 Qualcomm Incorporated Folded quarter-wave patch antenna
US6114996A (en) * 1997-03-31 2000-09-05 Qualcomm Incorporated Increased bandwidth patch antenna
US6184833B1 (en) * 1998-02-23 2001-02-06 Qualcomm, Inc. Dual strip antenna
US6259407B1 (en) * 1999-02-19 2001-07-10 Allen Tran Uniplanar dual strip antenna
SE9804498D0 (sv) * 1998-04-02 1998-12-22 Allgon Ab Wide band antenna means incorporating a radiating structure having a band form
DE69832696T2 (de) * 1998-06-30 2006-08-17 Lucent Technologies Inc. Phasenverzögerungsleitung für kollineare Gruppenantenne
US6107967A (en) * 1998-07-28 2000-08-22 Wireless Access, Inc. Billboard antenna
FR2783115B1 (fr) * 1998-09-09 2000-12-01 Centre Nat Rech Scient Antenne perfectionnee
DE19922699C2 (de) * 1999-05-18 2001-05-17 Hirschmann Electronics Gmbh Antenne mit wenigstens einem Vertikalstrahler
WO2001006596A1 (fr) * 1999-07-19 2001-01-25 Nippon Tungsten Co., Ltd. Antenne dielectrique
FI113911B (fi) * 1999-12-30 2004-06-30 Nokia Corp Menetelmä signaalin kytkemiseksi ja antennirakenne
DE10029733A1 (de) * 2000-06-23 2002-01-03 Alcatel Sa Antennenanordnung für Mobilfunktelefone
US6650294B2 (en) * 2001-11-26 2003-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Compact broadband antenna
US6573867B1 (en) * 2002-02-15 2003-06-03 Ethertronics, Inc. Small embedded multi frequency antenna for portable wireless communications

Also Published As

Publication number Publication date
JP2008029037A (ja) 2008-02-07
FR2825836B1 (fr) 2005-09-23
EP1393411A1 (de) 2004-03-03
CA2449667A1 (fr) 2002-12-19
FR2825836A1 (fr) 2002-12-13
US7170448B2 (en) 2007-01-30
US20040183730A1 (en) 2004-09-23
CA2449667C (fr) 2011-11-22
JP2004529593A (ja) 2004-09-24
WO2002101877A1 (fr) 2002-12-19

Similar Documents

Publication Publication Date Title
EP0954055B1 (de) Antenne für zwei Frequenzen für die Radiokommunikation in Form einer Mikrostreifenleiterantenne
EP2047558B1 (de) Isotrope antenne und diesbezüglicher messsensor
EP1172885B1 (de) Kurzgeschlossene Streifenleiterantenne und Zweiband-Übertragungsanordnung damit
EP1145378B1 (de) Zweiband-übertragungsanordnung und eine antenne für diese anordnung
FR2752646A1 (fr) Antenne imprimee plane a elements superposes court-circuites
EP0012055B1 (de) In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler
CA2254263A1 (fr) Antenne a court-circuit realisee selon la technique des microrubans et dispositif incluant cette antenne
CA2019181A1 (fr) Element rayonnant diplexant
FR2843832A1 (fr) Antenne large bande a resonateur dielectrique
WO1991009435A1 (fr) Antenne iff aeroportee a diagrammes multiples commutables
EP1393411B1 (de) Resonatorantenne mit rundstrahlcharakteristik
EP2039021B1 (de) Verfahren und vorrichtung zur übertragung von wellen
EP0439970B1 (de) Geschlitzter Hohlleiterstrahler mit quer verlaufenden Schlitzen, die von gedruckten, leitenden Mustern erregt werden
FR2709604A1 (fr) Antenne pour appareil radio portatif.
EP3175509B1 (de) Logarithmisch-periodische antenne mit breitem frequenzband
FR2664749A1 (fr) Antenne microonde.
FR3013906A1 (fr) Antenne radio integree a meandres
CA2392696C (fr) Antenne ciseaux a large bande
EP3155689B1 (de) Flachantenne zur satellitenkommunikation
EP0254373B1 (de) Antenne für hohe Frequenzen
EP3605730B1 (de) Antennenvorrichtung mit zwei verschiedenen und schneidenden planaren substraten
EP3432009B1 (de) Vorrichtung zur stimulation von nahfeld-antennen
FR2697680A1 (fr) Antenne radar à balayage électronique, notamment applicable à un radar anticollision pour automobile.
WO2020187821A1 (fr) Antenne directive compacte, dispositif comportant une telle antenne
EP1739790A1 (de) Rundstrahlerantennenelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20071220

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 598917

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60244569

Country of ref document: DE

Effective date: 20130425

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ARNOLD AND SIEDSMA AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 598917

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130607

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130528

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNR

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

26N No opposition filed

Effective date: 20131128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60244569

Country of ref document: DE

Effective date: 20131128

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130606

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190515

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190611

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190628

Year of fee payment: 18

Ref country code: SE

Payment date: 20190618

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190620

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190620

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60244569

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200606

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200607

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG