EP1390694A1 - Optischer faserkreisel - Google Patents

Optischer faserkreisel

Info

Publication number
EP1390694A1
EP1390694A1 EP02732844A EP02732844A EP1390694A1 EP 1390694 A1 EP1390694 A1 EP 1390694A1 EP 02732844 A EP02732844 A EP 02732844A EP 02732844 A EP02732844 A EP 02732844A EP 1390694 A1 EP1390694 A1 EP 1390694A1
Authority
EP
European Patent Office
Prior art keywords
phase
frequency
output
digital
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02732844A
Other languages
English (en)
French (fr)
Inventor
Jean-Claude Thales Intellect. Property LEHUREAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1390694A1 publication Critical patent/EP1390694A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/726Phase nulling gyrometers, i.e. compensating the Sagnac phase shift in a closed loop system

Definitions

  • the present invention relates to fiber optic gyros and more particularly to a device for measuring a non-reciprocal phase shift generated in an optical ring interferometer of the gyrometer, also called SAGNAC interferometer.
  • SAGNAC interferometer mainly comprises a light energy source generally constituted by a laser; an optical device consisting either of a certain number of mirrors, or of an optical fiber wound on itself, this device forming a waveguide; a device for separating and mixing light and a device for detecting and processing the detected signal.
  • a fundamental property of ring interferometers is reciprocity, which can be expressed as follows: any disturbance in the optical path similarly affects the two waves, although these two waves are neither subjected to it at exactly the same instant, nor in the same direction.
  • the phase difference (which will be called in the following ⁇ ) between the two waves which recombine in the separation and mixing device after having traversed the optical path is zero.
  • the detection and processing device detects signals representing the optical power of the composite wave obtained after recombination. This power can be broken down in the interferometers of the known art into two components: a constant component and a component proportional to Cos ( ⁇ ), this component only existing at the appearance of "non-reciprocal" disturbances.
  • the sensitivity is maximum since the term to be measured is proportional to Cos ( ⁇ + ⁇ / 2), that is to say to sin ( ⁇ ).
  • the instability of these devices is generally of the same order of magnitude as the variations of the quantity to be measured.
  • This method is based on the property that the SAGNAC interferometer has of producing the equivalent of a discrete temporal derivation.
  • a phase modulation being produced at one end of the fiber loop one of the waves undergoes the modulation at the moment when this is produced, while the other wave undergoes it with a delay equal to the propagation time in the fiber.
  • the "natural frequency" of the interferometer is (1 / 2.t 0 ), and represents the modulation frequency at which the two waves undergo two phase shifts in phase opposition.
  • phase shift between the two optical waves is therefore equal to the difference S (t) -S (t -t 0 ), where S (t) is the signal applied to the phase modulator. It is therefore seen that, if the half-period of the modulation signal is t 0 , the phase shift at the output of the interferometer is equal to twice the phase shift applied. It is this method which is used to create the bias giving the operating point of the interferometer.
  • phase shift ⁇ 0 due to the non-reciprocal effect, in this case due to the rotation if it is not zero.
  • a more precise method avoiding errors due to possible drifts of the various elements used, for example optoelectronic elements, consists of an indirect method or "zero method". According to this method, this difference in phase shift is compared with ⁇ ⁇ / 2 radians by generating an additional phase shift, equal in absolute value to the amplitude of the phase shift due to the non-reciprocal effect and of opposite sign, so that l 'to cancel.
  • this method involves two separate operations: phase modulation and the generation of a feedback signal.
  • the proportionality factor or scale factor is not linked to that used for the modulation of ⁇ ( ⁇ / 2) radians.
  • phase "ramp" cannot be infinite, that is to say that the signal, which in practice consists of a control voltage of a phase modulator, cannot increase above d 'a determined threshold.
  • a usable method is to generate sawtooth phase-shift control signals of peak to peak amplitude 2 ⁇ radians, the mathematical functions involved being periodic and of period 2 ⁇ radians. It follows the problem of precisely determining this amplitude of phase shift equal to 2 ⁇ radians.
  • the phase “ramp” consists of a digital signal.
  • the phase modulation, also in digital form, and this phase “ramp” are combined into a single signal and converted into an analog signal for controlling a phase modulator arranged in the ring.
  • the invention to overcome the drawbacks of the prior art which have just been mentioned, proposes a fiber optic gyrometer comprising a Sagnac interferometer using two light waves circulating in opposite directions in a ring waveguide, comprising a photodetector delivering an electrical signal representing the light intensity of the interference between the two waves, and optical phase shifting means of the waves controlled by a slot modulation signal capable of controlling a variation of optical phase at a frequency FO substantially equal to 1/2.
  • t 0 is the travel time of a wave in the guide
  • the photodetector being connected to at least first and second sampling circuits controlled in phase opposition by a clock at frequency FO and providing two samples at each period respectively on a first and a second input of a differential amplifier, an analog-digital converter at the output of the differential amplifier and an adder / subtractor to accumulate the digital values successively supplied by the analog-digital converter, l adder / subtractor providing content representing a parameter of the gyrometer rotation measurement, characterized in that means are provided for reversing, at a frequency f much lower than the frequency FO, the phase of the clock, by so as to alternate, at frequency f, the direction of the difference in samples at the output of the differential amplifier, and in this that the adder / subtractor is also controlled by the frequency f, to operate alternatively as an adder or as a subtractor.
  • FIG. 1 represents a ring interferometer of the known art
  • FIG. 2 represents the variation of the optical power P s in an output branch of the interferometer of FIG. 1.
  • FIG. 3 shows a block diagram of a gyrometer according to the invention.
  • FIG. 4a represents a modulation signal Um of the phase modulator of the gyrometer of FIG. 3.
  • FIG. 4b represents the control signal from an inverter of the complementary states of a clock of the gyrometer of FIG. 3.
  • - Figure 5 shows a variant of the gyrometer of Figure 3 according to the invention correcting the scale factor of the phase ramp controlling the modulator.
  • Figure 1 schematically illustrates the architecture of a ring interferometer as described in this patent.
  • a laser source S produces a beam of parallel rays 1, towards a separating device constituted, for example, by a blade or a semi-transparent mirror M optically coupled to the ring 2 of the interferometer.
  • This ring 2 can be produced for example using a single mode optical fiber wound on itself. Indeed, the sensitivity of the measurement is increased thanks to the use of a long optical path, proportional to the number of turns.
  • This ring 2 is looped back onto the separating device M which also plays the role of a mixing device and thus defines an output branch 3.
  • the ring is therefore traversed by two waves propagating in opposite directions: one in the direction clockwise S1 the other anticlockwise S2 These two waves recombine on the separating plate M. The result of this recombination can be observed in the output branch 3 using the photodetector 4.
  • ⁇ 0 be the phase difference between the two waves propagating in opposite directions in the ring and Ps the optical output power that can be measured in the output branch 3. In the absence of "non-reciprocal" disturbance ⁇ 0 is zero.
  • L the length of the course optical
  • the wavelength of the light emitted by the laser source S
  • C the speed of light in the ring 2.
  • the sensitivity of the interferometer is very low if the phase difference ⁇ is little different from zero. This is the case in a gyrometer if one wishes to measure low rotational speeds ⁇ .
  • a constant “non-reciprocal” bias can be introduced in the phase of the two waves traveling in opposite directions so as to move the operating point of the interferometer.
  • a phase modulator 5 is introduced on the wave path in the ring 2, bringing into play a reciprocal effect.
  • the phase modulator 5 (FIG. 1) is excited so as to create a phase variation ⁇ (t) of the wave passing through it.
  • This variation is periodic, its period being equal to 2.t o , t 0 being the travel time of a wave in the ring.
  • FIG. 3 represents the architecture of a gyrometer according to the invention implementing the ring interferometer of FIG. 1.
  • An electronic device 20 for operating the interferometer receives electrical information from the photodetector 4 optically coupled to channel 3, at the output of the separating blade M of the interferometer of FIG.
  • a processor 28 manages the entire electronic operating device 20 of the gyrometer according to the invention.
  • the control signals Ca and Cb necessary for the control of the synchronous detector 26 which can be, for example, the copying of impulse signals from a clock 30 driven by a quartz oscillator 32 of the processor 28.
  • the synchronous detector 26 essentially comprises a first 34 and a second sampler / blocker 36 controlled by the clock 30, through an inverter 38 of the complementary logic states H and R supplied by the clock 30, so that the signal Ud at the output of the adapter 24 is sampled, by the first blocker sampler 34, for a half-period t 0 of the phase modulation of the optical signal in one direction, then, by the second blocker sampler 36, during the another half-following period of the phase modulation of the optical signal in the other direction, the two directions corresponding to the synchronous phase modulations in + ⁇ / 2 and - ⁇ / 2 (sum of the physical phase shifts according to S2 of + and- ⁇ / 4 to T- 1 0 and according to S1 from - and + ⁇ / 4 to T).
  • the amplitude of this modulation is extracted by the synchronous detector 26 which supplies an analog voltage Us corresponding to the phase variation.
  • Analog voltage Us after digitization by a analog / digital converter 42 is applied to a digital control circuit 44 generating a composite signal for modulating the phase modulator 5.
  • the analog / digital converter 42 is controlled by a clock at frequency FO.
  • the purpose of the digital control circuit 44 is to develop a digital ramp and to combine it with the digital phase modulation signals.
  • the digital control circuit 44 includes an adder / subtractor 46 receiving on inputs the digital signals at the output of the analog-digital converter 42 and an accumulation order at the frequency FO and supplying an output with digital information to an integrator 48 responsible for producing a digital ramp whose slope is a function of the speed of rotation of the gyrometer.
  • the digital output of the integrator 48 drives a digital / analog converter 50 generating, through a power amplifier 52, the analog modulation voltage Um of the phase shifter 5 disposed in the path of the light waves of the interferometer.
  • the operating device comprises means for reversing, at a frequency f much lower than the frequency F0, the phase of the clock 30, so as to alternate, at this frequency f , the meaning of the difference in samples.
  • the adder / subtractor circuit 46 is also controlled by the frequency f, to operate alternately as an adder (+1) or as a subtractor (-1).
  • the states H and H supplied by the clock 30 are inverted by the inverter 38, at the rate of the frequency f applied to a control input 54 of the inverter 38.
  • the sampler-blockers 34, 36 perform the sampling of the signal Ud at the output of the adapter 24 of the photodetector 4.
  • the signal Ud represents the optical power resulting from the interference between the two light waves Si and S2 propagating in the fiber optics of the interferometer.
  • Each of the outputs 60, 62 of the sample-and-hold units 34 and 36 drives one and the other of the two inputs (+, -) of a differential amplifier 64 supplying at its output the voltage Us representing the difference between two consecutive samples taken in either half period of the frequency FO of the optical power signal Ud at the output of the photodetector 4.
  • Each of the sampler-blockers of the synchronous detector has control inputs Ea, ⁇ a and Eb, Eb controlled by the clock 30 through the inverter 38 as described below.
  • the output Ca of the inverter is connected respectively to the input Ea of the first blocker sampler 34 and to the input Eb of the second 36 and the output Cb of the inverter 38 is connected to the input Ea of the first sampler- blocker 34 and at the input Eb of the second, thus, in a known manner, the sample maintained is the analog value present at the input on the rising edges for example, of the inputs Ea and Eb.
  • the signal presented at the input of the analog / digital converter 42 is the difference between the values sampled during the last rising edges of the signals at the inputs Ea and Eb.
  • the inverter 38 receives by its control input 54 a command signal Co of inversion, at the frequency f, having for a half-period of duration 1 / 2.f, a high state then during the following half-period, of the same duration, a low state.
  • the inversion control signal is, for example, in the high state
  • the states H and H are transmitted respectively to the outputs Ca and Cb of the inverter 38, the output Ca transmitting the state H of l clock and the output Cb state H
  • the inversion control signal is in the low state
  • the states H and R are inverted at the outputs Ca and Cb of the inverter 38, the output Ca transmitting the state R of the clock and the output Cb state H.
  • the differential amplifier 64 presents at its output a voltage corresponding to a series of differences of two consecutive samples A p and B (P + i) taken respectively during one and the other phases of modulation of the light signals (+ ⁇ / 2 and - ⁇ / 2).
  • the signal Us at the output of the differential amplifier representing the difference of the samples (A p - B (p + i ) ) during a period 2to, is applied, after digitization by the analog-digital converter 42, to the adder / subtractor 46.
  • the adder / subtractor 46 is controlled by the processor 28, while the control signal from the inverter 38 is in the high state, so as to effect a positive accumulation (+1).
  • the states H and R are reversed at the outputs Ca and Cb of the inverter 26, the output Ca transmitting the state R of l 'clock and output Cb state H reversing the logic states at the respective inputs Eb and Eb and Ea and ⁇ a of the sample and hold units.
  • the samples taken by the first blocker sampler 34, when the control signal Co of the inverter was in the high state during a phase variation of the light signals in one direction, are taken by the second sampler. blocker 36 when the control signal Co of the inverter 38 is in the low state, and vice versa.
  • the processor 28 reverses the command of the adder / subtractor 46 to effect a negative accumulation (-1) and thus maintain the same direction of the phase ramp.
  • FIG. 4a represents a modulation signal Um of the phase modulator 5 of the gyrometer of FIG. 3 according to the invention and FIG. 4b the control signal Co of the inverter 38 of states of the clock 30.
  • the signal of Um modulation applied to phase modulator 5 generates the phase ramp, with a slope proportional to ( ⁇ 0/1 0 ) and peak-to-peak amplitude equal to 2 ⁇ radians, combined with the phase modulation signal of + ⁇ / 4 and - ⁇ / 4 at the frequency 1/2 t 0 .
  • adder / subtractor 46 will for example perform the following sum:
  • the servo function is not modified since the sign of the cumulative phase error signal in the first accumulator is not affected by the double inversion. Only the sign of the error of the offset of the electronics voltages is alternated because this error is not modified by the first inversion (phase inversion) whereas it is not the second inversion (of sign).
  • the operation sequence performed by the adder / subtractor 46 shows that at each transition of the clock f, a sample x of the signal Ud has been omitted.
  • the average rate of operation of the adder / subtractor 46 is equal to FO-f. This can be translated in the event of constant sign rotation by a systematic error of relative value f / FO. In order to correct this error, it is possible to store the average value of addition / subtraction preceding the transition of the clock f and by an additional circuit or logic operator to add / subtract half of this average value to compensate the missing half sample.
  • the operating device of the gyrometer according to the invention makes it possible both to use an analog-digital conversion which is not necessarily at the frequency of the optical phase modulation, which reduces the consumption of electronics, improves noise immunity and compensates for the offset faults, or “offset” in English, of the analog part of the electronics, in particular the voltage shifts of the differential amplifiers.
  • FIG. 5 shows the block diagram of a variant of the gyrometer of FIG. 3 according to the invention correcting the scale factor of the phase ramp of the phase modulator 5.
  • the operating device of the gyrometer comprises four sampler-blockers.
  • a first group of two blocker samplers 70, 72 drives the two inputs of a first differential amplifier 74, the assembly forming a first synchronous detector 75, the first differential amplifier 74 providing the difference of the samples taken by the first group of sample and hold.
  • the first and the second group of sampler-blockers are respectively controlled by a first 82 and a second 84 clock through respective inverters 86, 88 of the states of the clocks according to the operation described in the case of the gyrometer of FIG. 3.
  • the first and the second group of sampler-blockers operate as a synchronous detector in the same way as in the case of the gyrometer in FIG. 3 described above.
  • the processor 28 controls simultaneously depending on whether one operates with a phase modulation deviation of ⁇ / 2 or 3 ⁇ / 2:
  • a first switch 88 selecting either the output of the first differential amplifier 74 from the first group of sample and hold units, or the output of the second differential amplifier 80 from the first group of sampler-blockers, for driving the analog-digital converter 42 of the operating electronic device;
  • a second switch 92 of the same type as the first switch 88 providing information to the digital / analog converter 50 on the basis of the information G1 and G2 at the output of the first and of the second group of sampler-blockers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
EP02732844A 2001-05-15 2002-04-30 Optischer faserkreisel Withdrawn EP1390694A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0106396 2001-05-15
FR0106396A FR2824905B1 (fr) 2001-05-15 2001-05-15 Gyrometre a fibre optique
PCT/FR2002/001503 WO2002093110A1 (fr) 2001-05-15 2002-04-30 Gyrometre a fibre optique

Publications (1)

Publication Number Publication Date
EP1390694A1 true EP1390694A1 (de) 2004-02-25

Family

ID=8863302

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02732844A Withdrawn EP1390694A1 (de) 2001-05-15 2002-04-30 Optischer faserkreisel

Country Status (5)

Country Link
US (1) US7187448B2 (de)
EP (1) EP1390694A1 (de)
CA (1) CA2446706A1 (de)
FR (1) FR2824905B1 (de)
WO (1) WO2002093110A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295322B2 (en) * 2005-04-13 2007-11-13 Litton Systems, Inc. Optical power measurement of a closed loop fiber optic gyroscope
US7515272B2 (en) * 2006-03-17 2009-04-07 Honeywell International Inc. Digital feedback systems and methods for optical gyroscopes
FR2899681B1 (fr) * 2006-04-11 2008-08-22 Ixsea Soc Par Actions Simplifi Procede et dispositif de mesure a fibre optique, et gyrometre asservis en puissance
CN103777084B (zh) * 2012-10-25 2016-04-27 英业达科技有限公司 信号时间边限分析方法
JP7062498B2 (ja) * 2018-04-12 2022-05-06 東芝テック株式会社 コードシンボル読取装置およびプログラム
US10837778B2 (en) 2018-04-12 2020-11-17 Nufern Large-dynamic-range fiber optic gyroscope
CN115628756B (zh) * 2022-10-14 2024-07-26 西安中科华芯测控有限公司 一种光纤陀螺标度因数自适应补偿方法

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2266932B1 (de) * 1973-03-02 1977-09-02 Thomson Brandt
FR2222665B1 (de) * 1973-03-21 1975-10-31 Thomson Brandt
FR2235448B1 (de) * 1973-06-29 1976-05-07 Thomson Brandt
FR2271590B1 (de) * 1974-01-15 1978-12-01 Thomson Brandt
FR2271617B1 (de) * 1974-05-15 1976-10-15 Thomson Brandt
FR2275841A1 (fr) * 1974-06-21 1976-01-16 Thomson Brandt Support d'information lisible optiquement par transmission et procede de fabrication dudit support
FR2275843A1 (fr) * 1974-06-21 1976-01-16 Thomson Brandt Dispositif de protection permanente d'un disque souple d'enregistrement compatible avec une lecture optique
FR2280150B1 (fr) * 1974-07-26 1977-01-07 Thomson Brandt Dispositif de detection d'ecart de mise au point d'une tete de lecture optique par rapport a une surface de lecture
FR2306495A1 (fr) * 1975-04-04 1976-10-29 Thomson Brandt Systeme de lecture d'un enregistrement par exploration optique ponctuelle d'une piste diffractante
US4079247A (en) * 1975-05-16 1978-03-14 Claude Bricot Optical focussing device
FR2313716A1 (fr) * 1975-06-03 1976-12-31 Thomson Brandt Systeme optique de lecture par reflexion d'un support d'information
FR2321711A1 (fr) * 1975-08-19 1977-03-18 Thomson Brandt Dispositif optique a mise au point automatique et lecteur optique comportant un tel dispositif
FR2325953A1 (fr) * 1975-09-29 1977-04-22 Thomson Brandt Senseur optique de focalisation et dispositif de focalisation comportant un tel senseur
FR2325987A1 (fr) * 1975-09-29 1977-04-22 Thomson Brandt Dispositif de lecture optique d'un enregistrement
FR2325951A1 (fr) * 1975-09-29 1977-04-22 Thomson Brandt Procede de diminution de bruit optique et dispositif mettant en oeuvre un tel procede
FR2358797A1 (fr) * 1976-07-16 1978-02-10 Thomson Brandt Systeme de correction automatique du facteur de forme de l'onde porteuse issue de la lecture d'un support d'information
FR2359476A1 (fr) * 1976-07-23 1978-02-17 Thomson Csf Procede de lecture optique d'un support d'information et lecteur optique mettant en oeuvre un tel procede de lecture
FR2366636A1 (fr) * 1976-10-01 1978-04-28 Thomson Brandt Dispositif d'enregistrement optique d'information sur un support avec asservissement de la position de la tache d'enregistrement sur le support d'information
FR2368779A1 (fr) * 1976-10-22 1978-05-19 Thomson Brandt Support thermosensible destine a l'enregistrement d'information et procede d'enregistrement d'information sur un tel support
FR2389192A1 (fr) * 1977-04-29 1978-11-24 Thomson Csf Systeme optique d'enregistrement-lecture sur bande
FR2396379A1 (fr) * 1977-07-01 1979-01-26 Thomson Brandt Lecteur optique de disque d'information muni d'un dispositif d'acces automatique aux informations
FR2405536A1 (fr) * 1977-10-07 1979-05-04 Thomson Csf Dispositif d'enregistrement-lecture d'une information sur une boucle de ruban magnetique enroule dans une cassette sans fin
FR2437668A1 (fr) * 1978-09-29 1980-04-25 Thomson Csf Disque optique protege
FR2443733A1 (fr) * 1978-12-08 1980-07-04 Thomson Csf Tete de lecture magnetique et lecteur muni d'une telle tete
FR2470391A1 (fr) * 1979-11-21 1981-05-29 Thomson Csf Dispositif optique stigmatique d'emission-reception de rayonnements coherents et tete optique d'enregistrement-lecture comprenant un tel dispositif
FR2472298A1 (fr) * 1979-12-21 1981-06-26 Thomson Csf Dispositif permettant de deplacer longitudinalement un moteur de rotation, et lecteur de video-disque comprenant un tel dispositif
FR2474223A1 (fr) * 1980-01-23 1981-07-24 Thomson Csf Procede d'inscription thermo-optique d'information et support d'information destine a la mise en oeuvre de ce procede
FR2523345A1 (fr) * 1982-03-12 1983-09-16 Thomson Csf Procede et dispositif de generation de signaux de synchronisation dans un appareil optique d'ecriture-lecture de support d'information
FR2524186B1 (fr) * 1982-03-23 1989-02-24 Thomson Csf Disque optique protege comprenant un element souple de fermeture
FR2566133B1 (fr) * 1984-06-14 1986-08-29 Thomson Csf Dispositif de mesure d'un dephasage non reciproque engendre dans un interferometre en anneau
FR2582862B1 (fr) * 1985-05-30 1987-07-17 Thomson Csf Capteur a effet magneto-resistif lineaire, son procede de realisation et son application dans un detecteur de domaines magnetiques
FR2585495B1 (fr) * 1985-07-26 1989-10-20 Thomson Csf Dispositif d'enregistrement magnetique a tete tournante
FR2588406B1 (fr) * 1985-10-04 1994-03-25 Thomson Csf Tete d'enregistrement thermomagnetique et procede de realisation
FR2597249B1 (fr) * 1986-04-11 1988-06-17 Thomson Csf Dispositif de lecture optique de support d'enregistrement optique
FR2605783B1 (fr) * 1986-10-28 1992-05-15 Thomson Csf T ete magnetique d'enregistrement/lecture en couches minces et son procede de realisation
FR2622338B1 (fr) * 1987-10-27 1990-01-26 Thomson Csf Tete magnetique d'enregistrement-lecture a couche anti-abrasion et procede de realisation
FR2630853B1 (fr) * 1988-04-27 1995-06-02 Thomson Csf Dispositif matriciel a tetes magnetiques notamment en couches minces
FR2630852B1 (fr) * 1988-04-27 1994-06-17 Thomson Csf Tete d'enregistrement thermomagnetique
FR2640393B1 (fr) * 1988-12-09 1992-10-16 Thomson Csf Dispositif optique pour l'observation d'un objet allonge
US5182781A (en) * 1988-12-09 1993-01-26 Thomson-Csf Optical device for the observation of an elongated object
FR2646000B1 (fr) * 1989-04-14 1995-07-21 Thomson Csf Tete magnetique statique de lecture
FR2646245B1 (fr) * 1989-04-25 1991-06-14 Thomson Csf Dispositif de lecture optique pour support d'enregistrement optique
FR2647940B1 (fr) * 1989-06-02 1994-03-04 Thomson Csf Circuit de commande de modulation du champ magnetique pour l'enregistrement d'une memoire magneto-optique
FR2649526B1 (fr) * 1989-07-04 1991-09-20 Thomson Csf Procede de fabrication de tetes magnetiques planaires par alveolage d'une plaquette non magnetique, et tetes magnetiques obtenues par un tel procede
US5272551A (en) * 1989-10-03 1993-12-21 Thomson-Csf Optical system for the reproduction of color video images
JPH0654236B2 (ja) * 1989-11-30 1994-07-20 日本航空電子工業株式会社 デジタルフェイズランプ方式光干渉角速度計
FR2657190B1 (fr) * 1990-01-18 1995-07-21 Thomson Csf Dispositif de lecture de segments oblongs d'un support en defilement.
FR2660448B1 (fr) * 1990-04-03 1992-06-05 Thomson Csf Dispositif de projection d'images.
FR2661769B1 (fr) * 1990-05-02 1995-04-21 Thomson Csf Systeme d'enregistrement optique de donnees sur disque, et procedes de lecture et ecriture correspondants.
FR2667972B1 (fr) * 1990-10-12 1992-11-27 Thomson Csf Dispositif de visualisation d'images en couleurs.
US5349400A (en) * 1990-11-30 1994-09-20 Thomson-Csf Back-projection display system and method for making a back-projection mirror
FR2674661B1 (fr) * 1991-03-26 1993-05-14 Thomson Csf Structure de commande matricielle pour ecran de visualisation.
FR2679059B1 (fr) * 1991-07-09 1993-09-24 Thomson Csf Systeme de lecture de disque optique.
FR2680268A1 (fr) * 1991-08-09 1993-02-12 Thomson Csf Tete de lecture magneto-optique.
FR2683063B1 (fr) * 1991-10-29 1998-02-06 Thomson Csf Procede de lecture d'informations enregistrees et systeme de lecture.
FR2685500B1 (fr) * 1991-12-20 1994-12-23 Thomson Csf Separateur optique de polarisations et application a un systeme de visualisation.
FR2699289B1 (fr) * 1992-12-15 1995-01-06 Thomson Csf Ecran de projection holographique et procédé de réalisation.
FR2707781B1 (fr) * 1993-07-16 1995-09-01 Idmatic Sa Carte souple équipée d'un dispositif de contrôle de validité.
FR2722319B1 (fr) * 1994-07-08 1996-08-14 Thomson Csf Dispositif de visualisation couleurs
FR2723242B1 (fr) * 1994-07-26 1996-08-30 Thomson Csf Tete magnetique a element saturable et dispositif matriciel comportant un ensemble de tetes magnetiques
FR2723243B1 (fr) * 1994-07-26 1996-09-06 Thomson Csf Dispositif d'enregistrement et/ou de lecture de tetes magnetiques et son procede de realisation
FR2724042B1 (fr) * 1994-08-30 1997-01-03 Thomson Csf Systeme d'ecriture/lecture optique d'un support d'enregistrement et application a un disque d'enregistrement
FR2727555B1 (fr) * 1994-11-25 1996-12-20 Thomson Csf Tete magnetique d'enregistrement/lecture et son procede de realisation
US5936484A (en) * 1995-02-24 1999-08-10 Thomson-Csf UHF phase shifter and application to an array antenna
FR2738657B1 (fr) * 1995-09-12 1997-10-03 Thomson Csf Tete magnetique d'enregistrement/lecture
FR2739965B1 (fr) * 1995-10-17 1997-11-07 Thomson Csf Dispositif emetteur-recepteur de lumiere et systeme de lecture optique
FR2751398B1 (fr) * 1996-07-16 1998-08-28 Thomson Csf Dispositif d'eclairage et application a l'eclairage d'un ecran transmissif
FR2754609B1 (fr) * 1996-10-15 1998-12-18 Sextant Avionique Panneau de visualisation avec compensation par films birefringents holographiques
FR2769119B1 (fr) * 1997-09-26 1999-12-03 Thomson Csf Disque d'enregistrement anti-piratage, procede de lecture et tete d'enregistrement
FR2793566B1 (fr) * 1999-05-11 2002-07-12 Thomson Csf Separateur de polarisations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02093110A1 *

Also Published As

Publication number Publication date
US20040246487A1 (en) 2004-12-09
FR2824905A1 (fr) 2002-11-22
WO2002093110A1 (fr) 2002-11-21
FR2824905B1 (fr) 2003-08-29
US7187448B2 (en) 2007-03-06
CA2446706A1 (fr) 2002-11-21

Similar Documents

Publication Publication Date Title
EP0168292B1 (de) Vorrichtung zur Messung einer nichtreziproken Fasenverschiebung in einem Ringinterferometer
EP0430747B1 (de) Fiberoptische Messeinrichtung, Gyroskop und Einrichtung zur Navigation und Stabilisation
EP0455530B1 (de) Faseroptische Messeinrichtung, Gyrometer, Navigations- und Stabilisierungssystem, Stromsensor
Hotate et al. Resonator fiber optic gyro using digital serrodyne modulation
FR2555739A1 (fr) Dispositif de mesure d'un dephasage non reciproque engendre dans un interferometre en anneau
EP0068949B1 (de) Verfahren zur optischen Analog-/Digitalumwandlung und entsprechender Wandler
EP0457668B1 (de) Fiberoptische Messeinrichtung, Gyroskop, Stabilisierungssystem und Strom- oder Magnetfeldsensor
EP0738873B1 (de) Mehrachsiger faseroptischer Kreisel
EP0030891B1 (de) Vorrichtung und Verfahren zur Messung der Phasendifferenz der in einem Ring-Interferometer umlaufenden Wellen
JP2007132941A (ja) 光ファイバ・ジャイロスコープの非同期復調
EP2841877B1 (de) Faseroptische messvorrichtung, wendekreisel sowie trägheitsstabilisierungs- und navigationseinheit
EP2817590B1 (de) Faseroptische messungsvorrichtung, gyrometer und navigations- sowie trägheitsstabilisierungssystem
CN115077567A (zh) 一种基于波导复位误差的标度因数补偿系统及方法
EP1390694A1 (de) Optischer faserkreisel
JPH1018U (ja) 光ファイバジャイロスコープの位相制御フィードバック装置
JPH0654236B2 (ja) デジタルフェイズランプ方式光干渉角速度計
EP0359666B2 (de) Fiberoptische Messeinrichtung, Gyrometer, Navigations- und Stabilisationssystem
JP4520560B2 (ja) 光ファイバジャイロの縞数を決定するための方法および装置
US4573797A (en) Analog fiber gyro with extended linear range
EP0509511A2 (de) Optischer Faserkreisel vom Phasenmodulationstyp
FR2701315A1 (fr) Gyromètre à fibre optique à domaine de mesure étendu et procédé s'y rapportant.
EP0524885A1 (de) Interferometrischer Kreisel mit elektrooptischem Modulator
JPH09304082A (ja) 光干渉角速度計
JPH04369421A (ja) 光ファイバジャイロ
JPH07128074A (ja) 光ファイバジャイロ信号処理方式

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090428