EP1387319B1 - Bildverarbeitungsvorrichtung - Google Patents
Bildverarbeitungsvorrichtung Download PDFInfo
- Publication number
- EP1387319B1 EP1387319B1 EP20030250945 EP03250945A EP1387319B1 EP 1387319 B1 EP1387319 B1 EP 1387319B1 EP 20030250945 EP20030250945 EP 20030250945 EP 03250945 A EP03250945 A EP 03250945A EP 1387319 B1 EP1387319 B1 EP 1387319B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- samples
- colour
- colour component
- image
- detail
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012935 Averaging Methods 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 27
- 230000001965 increasing effect Effects 0.000 claims description 17
- 238000001914 filtration Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 230000002708 enhancing effect Effects 0.000 claims description 5
- 230000002123 temporal effect Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 2
- 239000004973 liquid crystal related substance Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 239000003086 colorant Substances 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000013500 data storage Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/04—Changes in size, position or resolution of an image
- G09G2340/0407—Resolution change, inclusive of the use of different resolutions for different screen areas
- G09G2340/0428—Gradation resolution change
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/02—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
Definitions
- the present invention relates to image processing apparatus and methods for enhancing colour images.
- colour images require at least a representation of the red, green and blue (RGB) components of the image to be communicated or stored in order to provide a faithful representation of the original colour of the image.
- RGB red, green and blue
- Next generation mobile radiotelephones may require a facility to receive and display colour images over a wireless link for display on a screen provided as part of the telephone.
- PDA Personal Digital Assistants
- the colour images may be either received in compressed form or compressed when received in order to reduce an amount of data, which is required in order to communicate or store the image.
- One technique for reducing an amount of information, which is required in order to store a representation of a colour image is to reduce a dynamic range of the RGB signal samples by reducing a number of bits that are used to represent the RGB components. For example, if each pixel is represented as 18-bits, each RGB component will be allocated a 6-bit value providing a range of 64 possible colour values for each component, producing 262144 different colours. If the number of bits used to represent each component is reduced to 4-bits, each pixel can be represented as 12-bits providing a 33% reduction in the size of a memory required to store the colour image.
- Bit Depth (Stephen Canning) is an article describing how it is possible to reduce the amount of data required to store a digital image by decreasing its bit field depth.
- the concept of bit field depth is explained, a list showing how varying the bit field depth changes the number of colours that can be represented per pixel is given, and it is pointed out that an alteration in bit field depth can be achieved by saving an image as a GIF file.
- an image processing apparatus operable to process input colour component signal samples representative of an input colour image to produce output colour component signal samples representing an enhanced version of the input colour image.
- the apparatus comprises an enhancing processor operable to increase the dynamic range of the input colour component samples, a low pass filter operable to filter the increased dynamic range colour samples to form the output colour component samples, and a detection processor.
- the detection processor is operable to detect input colour component samples associated with a representation of detail appearing in the input colour image. Consequent upon detection of the detail in the image, the detection processor is operable to adjust the bandwidth of the low pass filter in correspondence with the detected detail.
- Embodiments of the present invention are arranged to provide a facility for reducing an amount of data which is required to represent a colour image, whilst improving or at least maintaining the quality of the image when reproduced.
- an image processor embodying the present invention is provided with a colour enhancing processor which is arranged to improve a dynamic range with which the colour components of the image are represented by increasing a number of bits used to represent the RGB colour component samples.
- the increased dynamic range samples are then filtered with a low pass filter in order to provide a smooth transition between the colours of the reproduced image.
- a detection processor is arranged to detect signal samples representative of the detail within the image and to adjust the band width of the low pass filter in correspondence with the detected detail.
- the samples representing the detail are arranged to bypass the low pass filter.
- a likelihood of losing detail in the image is reduced, whilst reducing a likelihood of contour effects which may appear in the image as a result of a reduced colour palette caused by a low dynamic range of the colour component signal samples.
- the image processor providing the enhanced dynamic range colour samples may be implemented with a small number of components, providing a cost effective implementation.
- FIG. 1 provides an illustration of a typical LCD display module such as that which would be used within a mobile radiotelephone or a personal digital assistant.
- 3G third generation
- a typical display module for this application is an LCD display panel and as shown in Figure 1, such a module comprises a display memory 1 which is arranged to store signal samples representative of a digital image which is to be displayed on an LCD display panel 2. Pixels which are representative of the colour image to be displayed are received on a connecting channel 4 and written into the display memory 1 using write address logic 8.
- the signal samples, stored in the memory 1 are read by read address logic 10 and converted into the analogue domain by a digital to analogue converter 12 before being displayed on the LCD panel 2.
- the present invention provides a facility for reducing the amount of data storage, that is the size of the display memory 1 for the present example, whilst maintaining the quality of the image to be displayed on, for example the LCD panel 2.
- the reduction in the amount of data storage is achieved by reducing the dynamic range of the signal samples representing the colour components.
- the colour image may be received with component signal samples having a reduced dynamic range as a result of being truncated, which may be required to communicate the image.
- the RGB components will be truncated by the same amount.
- an image processor embodying the present invention is arranged to improve a representation of the received or stored colour image. As will be explained, the improvement can facilitate a faithful or at least improved reproduction of the original image with a reduced likelihood of contour effects, which may appear in the image.
- FIG. 2 shows the LCD display module of Figure 1 in combination with an image processing circuit 20.
- the pixels of the colour image as received on channel 4 are represented as only 12 bits rather than 18 bits as shown in Figure 1.
- the reduction in the resolution of the signal samples may be provided by a colour truncating processor 15.
- the colour truncating processor 15 may reduce the dynamic range of the signal samples by truncating the signal samples from 18-bits to 12-bits by discarding the two least significant bits of each RGB component.
- the RGB colour components are represented as 4 bits rather than 6 bits, resulting in a 33% reduction in a storage requirement of the display memory 1.
- a result of reducing the dynamic range of the colour signal samples by truncating from 6 bits to 4 bits is to reduce the colour palette available for displaying the reproduced image.
- a colour image may suffer a reduction in quality which can cause contours or apparent flat sections to appear in the reproduced image.
- An example of such a colour image suffering from contour effects as a result of a reduced colour palette is shown in Figure 3.
- the display module is provided with an image processor 20.
- the image processor 20 is arranged to increase the dynamic range of the colour component signal samples, which are read out of the display memory 1. As shown in Figure 2, for the example embodiment illustrated, the number of bits, which are used to represent each pixel, is increased from 4-bits to 6-bits.
- the image processor 20 is shown in more detail in Figure 4.
- the image processor 20 receives the 4 bit RGB colour component signal samples on a connecting channel 22 from the read address logic 10.
- the colour component signal samples are fed to a colour dynamic range converter 30 and a detection processor 34 in parallel.
- the dynamic range converter 30 is arranged to increase the number of bits, which are used to represent the colour component signal samples from 4 bits to 6 bits.
- the enhanced colour component signal samples are then fed to a low pass filter 36 after which the enhanced signal samples are fed to an output channel 24.
- the enhanced signal samples are fed to a digital to analogue converter 12 as shown in Figure 4.
- the detection processor 34 is arranged to generate a filter selection control signal, which is fed on a channel 38 to the low pass filter 36.
- the values of the 4-bit signal samples can be scaled to reflect the enhanced dynamic range provided by increasing the number of bits to six.
- the values of the input signal samples are multiplied by again factor G.
- the gain factor G is applied by copying the two most significant bits from the 4 bit input sample into the two least significant bits appended to the 6-bit output sample.
- the 4 bit input signal sample is represented as the letters A B C D which are stored in a four stage register 40.
- a six stage register 42 is provided for forming the output signal sample.
- Connecting the four stage register to the six stage register are connecting channels 44.
- the connecting channels arrange for the 2 bit values A, B in the first two stages of the shift register 40 to be copied into the last two stages of the register 42.
- the values of the two least significant bits of the output signal sample are formed from the most significant bits of the input signal samples.
- Figure 6 provides a table illustrating all possible values of the 4-bit input signal samples with respect to the gain required to adjust the signal sample values from 4-bits to 6-bits, to take advantage of the increased dynamic range.
- the gain as calculated by the above formula, is shown with respect to the gain, which is provided by bit replication in accordance with the arrangement of registers shown in Figure 5.
- the bit replication arrangement provides a good approximation to the calculated gain factor G but has an advantage of not requiring any multiplier components, thus reducing implementation costs.
- the enhanced colour component signal samples are filtered by a low pass filter 36 in order to provide a smooth transition between colour values. Filtering the signal sample values has the effect of reducing the likelihood of contour effects, which may appear in the reproduced image.
- the low pass filter 36 is implemented as a moving averaging filter having an impulse response as shown in Figure 7.
- Figure 7 illustrates an impulse response of an eight tap moving averaging filter providing an effective width of T W .
- a moving averaging filter effectively forms an output signal sample from the average values of the input signal samples within a window formed by the impulse response of the moving averaging filter.
- the filter is arranged to form a smoothing effect on the contours of the image caused by the limited dynamic range of the resolution of each signal sample.
- the low pass filter 36 includes a four tap moving averaging filter and a two tap moving averaging filter. These are used to provide an increase in the pass bandwidth of the low pass filter as the samples representing detail move towards a centre tap of the eight-tap filter. This provides a more gradual amount of filtering to the enhanced signal samples, where the detection processor determines that these signal samples represent detail.
- FIG 8 provides an illustration of the low pass filter 36 according to one example embodiment.
- the low pass filter 36 has three moving averaging filters, which include the eight-tap filter having an impulse response shown in Figure 7.
- an eight-tap delay 50 is used to delay the input signal samples by eight samples.
- adders 52, 54 are used to form the output sample in combination with a one-stage register 56.
- the filter 36 shown in Figure 8 implements a moving averaging filter by accumulating the last eight signal sample values as performed by the adder 54 whilst subtracting the last value to pass thorough and fall outside the eight tap window as implemented by the adder 52.
- the adders 52, 54 and the register 56 therefore form an accumulation unit 58 to provide the calculation of the moving average output.
- the accumulation unit 58 shown in Figure 8 implements a moving averaging filter without a requirement for summing and dividing all the signal sample components within an eight tap window to calculate every output signal sample.
- the circuit shown in Figure 8 therefore provides an advantage in reducing the number of components required to implement the moving averaging filter and for which no multipliers are necessary.
- second and third accumulation units 58', 58" form output signal samples representing the four-tap and two-tap moving averaging filters.
- the second accumulator 58' is arranged to receive samples from the second stage and the sixth stage to form the four-tap moving averaging filter
- the third accumulator 58" is arranged to receive samples from the third stage and fifth stage.
- the control signal is received from the channel 38 by a selection processor 59.
- the selection processor 59 has four input channels 51, 53, 55, 57.
- the four input channels 51, 53, 55, 57 are arranged to receive the output sample from the eight tap moving averaging filter 51, the output sample from the four tap moving averaging filter 53, the output sample from the two tap moving averaging filter 55, and the signal sample from the fourth stage of the shift register 50, respectively.
- the selection of the output from either the two tap, the four tap, or the eight tap output, or the bypass sample from the fourth stage of the shift register is determined in accordance with the control signal received from the detection processor 34.
- the detection processor is used to detect such detail.
- the detection processor then generates a control signal in order to select output samples from either the eight-tap, four-tap or two-tap moving averaging filter, or the bypass sample. Effectively, the selection signal adjusts the bandwidth of the low pass filter in accordance with the relative position of pixels representing detail with respect to the centre tap.
- Figure 9 provides an example implementation of the detection processor 34. As shown in Figure 9 the detection processor 34 comprises a shift register 60 having eight stages which correspond to the stages of the shift register 50 used in the low pass filter 36.
- an adder 62 is arranged to receive an input signal sample and a signal sample of the output of the second stage of the shift register 60.
- the adder 62 is arranged to subtract the newly received signal sample from the signal sample present in the second stage to form a difference at an output 64.
- a threshold processor 66 then compares the difference between the signal samples with a predetermined threshold and if the difference is greater than the threshold, the processor 66 produces a control signal on the control channel 38.
- the threshold is determined so that detail is detected if all of the three RGB signal samples are greater than the corresponding values of the RGB samples of a pixel from two sample periods earlier.
- a further adder 68 is arranged to calculate a difference between the output of the fourth stage and the second stage, which is also fed to the threshold processor 66.
- the operation of the detection processor is represented by the flow chart in Figure 10. As shown in Figure 9 the latest signal sample is compared with the contents of the second previous signal sample as performed by the adder 62.
- the threshold processor 66 determines whether detail has been detected between these two compared signal samples, which is represented in Figure 10 as step S2.
- the threshold processor 66 also receives a comparison between the output of the second stage of the shift register and an output of the fourth stage of the shift register as performed by an adder 68. Therefore, at step S4 in the flow diagram the threshold processor determines whether the detail has been detected between effectively a latest signal sample and the second previous signal sample within a four tap window provided by sample values at the outputs of the third, fourth, fifth and sixth register stages.
- the threshold processor determines that detail has not been detected within the four-tap filter, but is present in the eight-tap filter, from a comparison of the contents of the second and fourth stage of the eight tap delay, then at step S4 the threshold processor determines that the four tap filter should be selected to produce the output pixel samples, at step S5. If the threshold detection processor determines that the detail samples is within the four tap filter but just before the two centre taps forming the two-tap filter the processing proceeds to step S8.
- step S8 the value of the signal sample in the fourth stage is also compared with a second threshold formed between the threshold value for detecting detail and a predetermined offset value, as expressed below: Threshold ⁇ sample value ⁇ ( Threshold + offset )
- the control signal is generated on the channel 38 to select the output of the two-tap moving averaging filter 55, as performed by the step S10. If however the value of the signal sample is greater than the threshold plus the offset value, then the bypass sample is selected from the output of the fourth-tap of the shift register 50.
- step S2 If detail is not detected at either step S2 or S4 then the processing proceeds via the loop S6 to the beginning of step S2 and the control signal is generated to select the output from the eight tap filter.
- a further advantage is provided by selecting either the four-tap output or the two tap output independence upon the relative position of a sample representing detail in the colour image and the value of the samples representing the colour image.
- the threshold processor is adjusting the bandwidth of the low pass filter in accordance with the relative frequency bandwidth of the pixels samples passing through the filter. Accordingly, as the detail pixels sample are detected within the eight tap window, but just before the four tap window, then the four tap output is selected. If the detail pixel samples are detected within the four taps window but just before the two-tap window, then the output from the two-tap window is selected. Otherwise the output samples from the eight tap moving averaging filter are selected.
- the two tap moving averaging filter is used to produce output samples, when samples representing detail in the colour image are determined to fall between the threshold and the threshold value plus the predetermined offset.
- the predetermined offset value is set to detect sample values which exceed the threshold value by a relatively small amount. It has been discovered that filtering such sample values with a two tap moving averaging filter provides an improvement in the reproduced colour image. This is because these sample values which just exceed the threshold but not the offset represent intermediate detail in the reproduced image which requires some limited degree of filtering with respect to the two immediately surrounding samples. Therefore as illustrated by step S7, S8 and S10, if the difference between signal samples is greater than the threshold plus the offset, then the filter is bypassed and the centre sample that is that contained in the fourth stage of the register 60 is passed to the output of the filter.
- the low pass filter is arranged to filter only one-dimensional signal samples
- a two-dimensional filter may be used to provide a further improvement in the reproduced image. It will be appreciated therefore that the filter could be arranged to filter vertical or horizontal component samples of the image.
- a colour image may be compressed by representing the colour samples with an even smaller number of bits.
- the colour image may then be recovered by increasing the resolution of the bits as the colour signal samples are read out from the memory, to the original resolution in accordance with the embodiments described above.
- resolutions other than 12 bits for storing the colour image, and the enhanced resolution samples of 18 bits are envisaged.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
- Processing Of Color Television Signals (AREA)
- Color Image Communication Systems (AREA)
Claims (17)
- Bildverarbeitungsvorrichtung, die betreibbar ist, zum Verarbeiten eingangsseitiger Farbkomponentensignalproben, die ein eingangsseitiges Farbbild repräsentieren, um ausgangsseitige Farbkomponentensignalproben zu erzeugen, die eine erweiterte Version des eingangsseitigen Farbbildes darstellen, wobei die Vorrichtung aufweist:einen Erweiterungsprozessor (20), der betreibbar ist den dynamischen Bereich der Farbkomponentensignalproben durch Erhöhung der Anzahl der zur Repräsentation einer jeden Probe verwendeten Bits auszuweiten,ein Tiefpassfilter (36), das zum Filtern der Farbsignalproben mit dem erweiterten dynamischen Bereich betreibbar ist, um die ausgangsseitigen Farbkomponentenproben zu formen, undeinen Detektorprozessor (34), der zum Erfassen von Farbkomponentensignalproben betreibbar ist, die einer in dem eingangsseitigen Farbbild erscheinenden Detailrepräsentation zugeordnet sind, wobei der Detektorprozessor entsprechend der Erfassung des Details derart betreibbar ist, dass die Bandbreite des Tiefpassfilters (36) in Übereinstimmung mit dem erkannten Detail einstellbar ist.
- Bildverarbeitungsvorrichtung nach Anspruch 1, wobei der Detektorprozessor (34) betreibbar ist um die Bandbreite des Tiefpassfilters (36) durch die Auswahl der das Detail repräsentierenden Farbproben mit dem erweiterten dynamischen Bereich einzustellen, ohne durch das Tiefpassfilter (36) zu treten.
- Bildverarbeitungsvorrichtung nach Anspruch 1 oder 2, wobei die eingansseitigen Farbsignalproben als eine vorgegebene Anzahl n von Bits repräsentiert sind und der Erweiterungsprozessor (20) betreibbar ist zum Erhöhen der Auflösung der eingangsseitigen Farbkomponentenproben durch Hinzufügen einer vorbestimmten Anzahl l von zusätzlichen niedrigstwertigen Bits zu den eingangsseitigen Farbsignalproben und durch Kopieren der entsprechenden Anzahl l von höchstwertigen Bits des eingangsseitigen Komponentensignalproben in die 1 niedrigstwertigen Bits.
- Bildverarbeitungsvorrichtung nach Anspruch 1, 2 oder 3, wobei das Tiefpassfilter (36) ein bewegliches Mittelwertfilter beinhaltet, der eine vorgegebene Anzahl von Taps d aufweist.
- Bildverarbeitungsvorrichtung nach Anspruch 4, wobei die eingangsseitigen Farbkomponentenproben durch das bewegliche Mittelwertfilter treten, um die ausgangsseitigen Farbkomponentenproben zu formen, wobei der Erfassung des Details folgend die Proben der eingangsseitigen Farbkomponentenproben, welche diesem Detail zugeordnet sind, zu dem Ausgang treten, wenn die zugeordneten Proben einen zentralen Tap des beweglichen Mittelwertfilters erreichen.
- Bildverarbeitungsvorrichtung nach einem der vorhergehenden Ansprüche, wobei das Tiefpassfilter (36) eine Mehrzahl von Tiefpassfiltern umfasst, von welchen jedes mit einer unterschiedlichen Bandbreite ausgestattet ist, und der Detektorprozessor betreibbar ist, um die Bandbreite des Tiefpassfilters durch die Auswahl des Ausgangssignals eines dieser Tiefpassfilter einzustellen.
- Bildverarbeitungsvorrichtung nach Anspruch 6, wobei jedes der Tiefpassfilter ein bewegliches Mittelwertfilter umfasst, von welchen jedes eine unterschiedliche Anzahl von Taps hat, wobei jedes der beweglichen Mittelwertfilter eine andere Fensterlänge der eingangsseitigen Signalproben bereitstellt, die in Bezug auf eine gemeinsame temporäre Probenposition zentriert ist, und der Detektorprozessor zum Erfassen von Proben betreibbar ist, die für das Detail unter Berücksichtigung der gemeinsamen temporären Referenz repräsentativ sind, und, der Erfassung folgend, die ausgangsseitige Signalprobe von einem zugeordneten beweglichen Mittelwertfilter auszuwählen, bevor die Detailproben in das Fenster des Filters eingetreten sind.
- Bildverarbeitungsvorrichtung nach Anspruch 6 oder 7, wobei der Detektorprozessor (34) zum Erfassen der dem Detail zugeordneten Proben durch Vergleich aufeinanderfolgender, in den Taps der beweglichen Mittelwertfilter vorhandener Proben betreibbar ist.
- Bildverarbeitungsvorrichtung nach Anspruch 8, wobei der Detektorprozessor (34) zum Erfassen der dem Detail zugeordneten Proben durch Vergleich einer jeden Farbkomponentenprobe eines Pixels mit der zugehörigen Farbkomponentenprobe eines nachfolgenden Pixels betreibbar ist, wobei wenn jede Farbkomponentenprobe des nachfolgenden Pixels sich geändert hat, das durch das nachfolgende Pixel repräsentierte Detail erfasst wird.
- Bildverarbeitungsvorrichtung nach Anspruch 8 oder 9, wobei die verglichenen Proben durch zwei Probenperioden getrennt sind.
- Anzeigevorrichtung beinhaltend ein Display (2), einen Displayspeicher (1) und eine Bildverarbeitungsvorrichtung nach einem der Ansprüche 1 bis 10, wobei eingangsseitige ein Farbbild repräsentierende Farbkomponentenproben in dem Displayspeicher (1) vor deren Anzeige gespeichert werden, und die eingangsseitigen Farbkomponentenproben aus dem Displayspeicher (1) ausgelesen und von der Bildverarbeitungsvorrichtung verarbeitet werden, bevor sie auf der Anzeigevorrichtung angezeigt werden.
- Anzeigevorrichtung nach Anspruch 11, umfassend
einen Komprimierungsprozessor, der betreibbar ist, um eingangsseitige Farbkomponentenproben zu empfangen und die Auflösung jeder Probe durch Verwerfen von zumindest einem niedrigstwertigen Bit jeder Probe zu reduzieren, wobei die Proben mit der reduzierten Auflösung in dem Speicher gespeichert werden, wobei die für die Speicherung des Farbbilds erforderliche Kapazität des Speichers entsprechend der Anzahl der verworfenen niedrigstwertigen Bits jeder Probe reduziert ist. - Anzeigevorrichtung nach Anspruch 11 oder 12, wobei das Display ein Flüssigkristall-Display (LCD) (2) ist.
- Anzeigevorrichtung nach Anspruch 11, 12 oder 13, wobei die erweiterten Farbkomponentensignalproben, die durch die Bildverarbeitungsvorrichtung erzeugt worden sind, in analoge Form durch einen Analog-Digital-Umsetzer (12) für die Anzeige auf dem LCD-Display umgesetzt werden. ,
- Rechner- oder Kommunikationsvorrichtung mit einer Anzeigevorrichtung nach einem der Ansprüche 11 bis 14.
- Mobiles Radiotelefon mit einer Anzeigevorrichtung nach einem der Ansprüche 11 bis 14.
- Verfahren zum Verarbeiten ein eingangsseitiges Farbbild repräsentierender eingangsseitiger Farbkomponentensignalproben, um eine erweiterte Version des eingangsseitigen Farbbildes repräsentierende ausgangsseitigen Farbkomponentensignalproben zu erzeugen, wobei das Verfahren aufweist:Erhöhen des dynamischen Bereichs der eingangsseitigen Farbkomponentensignalproben durch Erhöhung der Anzahl der zur Repräsentation einer jeden Probe verwendeten Bits,Tiefpassfiltern der Farbkomponentensignalproben mit den erweiterten dynamischen Bereich, um die ausgangsseitigen Farbkomponentenproben zu formen, undFassen von Farbkomponentenproben, die einer in dem eingangsseitigen Farbbild erscheinenden Detailrepräsentation zugeordnet sind, und der Erfassung folgend, das Einstellen der Bandbreite des Tiefpassfilters entsprechend dem erfassten Detail.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0204239A GB2385764A (en) | 2002-02-22 | 2002-02-22 | Increasing colour palette with preservation of detail |
GB0204239 | 2002-02-22 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1387319A2 EP1387319A2 (de) | 2004-02-04 |
EP1387319A3 EP1387319A3 (de) | 2004-10-27 |
EP1387319B1 true EP1387319B1 (de) | 2006-09-13 |
Family
ID=9931604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20030250945 Expired - Lifetime EP1387319B1 (de) | 2002-02-22 | 2003-02-17 | Bildverarbeitungsvorrichtung |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1387319B1 (de) |
CN (1) | CN1253016C (de) |
DE (1) | DE60308282T2 (de) |
GB (1) | GB2385764A (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100378674C (zh) * | 2004-06-10 | 2008-04-02 | 明基电通股份有限公司 | 检测电子显示装置分辨率的方法及显示装置 |
EP1770682B1 (de) * | 2005-09-28 | 2011-04-27 | Sony Ericsson Mobile Communications AB | Verfahren zum Erhöhen der Auflösung einer Farbdarstellung und Vorrichtung, die dieses Verfahren ausführt |
CN102622736B (zh) * | 2011-01-28 | 2017-08-04 | 鸿富锦精密工业(深圳)有限公司 | 影像处理系统及方法 |
KR102134030B1 (ko) * | 2014-10-23 | 2020-07-15 | 엘지디스플레이 주식회사 | 영상 변환 장치 및 이를 구비하는 디스플레이 장치 |
CN107154237B (zh) * | 2017-07-03 | 2019-08-23 | 江西厚普电子科技有限公司 | 基于pov-led屏的亮度自适应调节方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5012333A (en) * | 1989-01-05 | 1991-04-30 | Eastman Kodak Company | Interactive dynamic range adjustment system for printing digital images |
-
2002
- 2002-02-22 GB GB0204239A patent/GB2385764A/en not_active Withdrawn
-
2003
- 2003-02-17 EP EP20030250945 patent/EP1387319B1/de not_active Expired - Lifetime
- 2003-02-17 DE DE2003608282 patent/DE60308282T2/de not_active Expired - Fee Related
- 2003-02-24 CN CN 03105496 patent/CN1253016C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP1387319A2 (de) | 2004-02-04 |
EP1387319A3 (de) | 2004-10-27 |
CN1440001A (zh) | 2003-09-03 |
CN1253016C (zh) | 2006-04-19 |
GB2385764A (en) | 2003-08-27 |
GB0204239D0 (en) | 2002-04-10 |
DE60308282T2 (de) | 2007-04-05 |
DE60308282D1 (de) | 2006-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100463493C (zh) | 用于转换视频信号的分辨率的方法及其装置 | |
JP4556276B2 (ja) | 画像処理回路及び画像処理方法 | |
US8164662B2 (en) | Image-processing device for color image data and method for the image processing of color image data | |
EP0911795A2 (de) | Verfahren und Einrichtung zum Flüssigkristallanzeige | |
US20050259185A1 (en) | Gamma correction apparatus and method capable of preventing noise boost-up | |
US8189944B1 (en) | Fast edge-preserving smoothing of images | |
US20070182849A1 (en) | Apparatus and method for interpolating a pixel from an intermediate line of a field | |
US7408590B2 (en) | Combined scaling, filtering, and scan conversion | |
US6897897B2 (en) | Horizontal contour signal generation circuit in single chip color camera | |
US6008790A (en) | Image processing apparatus | |
EP0523924B1 (de) | Bildsignalverarbeitungsgerät | |
EP1387319B1 (de) | Bildverarbeitungsvorrichtung | |
US20080309817A1 (en) | Combined scaling, filtering, and scan conversion | |
US20040201722A1 (en) | Signal processing apparatus for eliminating ringing signal and method thereof, record medium, and program | |
US20060115152A1 (en) | Image processing apparatus and method | |
US7616830B2 (en) | Method and device for reducing blocking artifacts in a compressed digital image without reducing clarity of edges | |
JP4316217B2 (ja) | 画像処理装置 | |
JP2000069432A (ja) | 走査線変換装置 | |
US8346021B2 (en) | Content adaptive scaler based on a farrow structure | |
JP3331626B2 (ja) | 巡回型雑音低減装置 | |
US8588553B2 (en) | Scaling method and device for image signals | |
Lee et al. | A real time image processor for reproduction of gray levels in dark areas on plasma display panel (PDP) | |
US20090153741A1 (en) | Video filter and video processor and processing method using the same | |
JPH10173958A (ja) | 映像信号処理装置 | |
US12020408B2 (en) | Sharpening of images in non-linear and linear formats |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
17P | Request for examination filed |
Effective date: 20050412 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LEVINE, STUART JONATHAN Inventor name: CALDER, KEITH ROBERT Inventor name: CHAIBELAINE, NORDINE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60308282 Country of ref document: DE Date of ref document: 20061026 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070614 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090213 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090211 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090213 Year of fee payment: 7 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100217 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100217 |