EP1385926B1 - Lubricating oil composition comprising an additive combination of a carboxylic acid and an amine as ant-rust agent - Google Patents

Lubricating oil composition comprising an additive combination of a carboxylic acid and an amine as ant-rust agent Download PDF

Info

Publication number
EP1385926B1
EP1385926B1 EP02745288A EP02745288A EP1385926B1 EP 1385926 B1 EP1385926 B1 EP 1385926B1 EP 02745288 A EP02745288 A EP 02745288A EP 02745288 A EP02745288 A EP 02745288A EP 1385926 B1 EP1385926 B1 EP 1385926B1
Authority
EP
European Patent Office
Prior art keywords
lubricating oil
oil composition
carboxylic acid
carbon atoms
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02745288A
Other languages
German (de)
French (fr)
Other versions
EP1385926A1 (en
Inventor
Yoshiharu Baba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of EP1385926A1 publication Critical patent/EP1385926A1/en
Application granted granted Critical
Publication of EP1385926B1 publication Critical patent/EP1385926B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/30Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 7 or less carbon atoms
    • C10M129/36Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 7 or less carbon atoms containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/38Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
    • C10M129/40Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/56Acids of unknown or incompletely defined constitution
    • C10M129/58Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/76Esters containing free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/20Thiols; Sulfides; Polysulfides
    • C10M135/22Thiols; Sulfides; Polysulfides containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M135/26Thiols; Sulfides; Polysulfides containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • C10M137/105Thio derivatives not containing metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/124Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms containing hydroxy groups; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/146Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings having carboxyl groups bound to carbon atoms of six-membeered aromatic rings having a hydrocarbon substituent of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/288Partial esters containing free carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/062Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • C10M2215/122Phtalamic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/085Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/102Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/108Phenothiazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/049Phosphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/10Phosphatides, e.g. lecithin, cephalin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/044Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids

Definitions

  • the present invention relates to a lubricating oil composition which has excellent anti-rust properties in severe operating environments in which water or seawater is admixed, and which also exhibits excellent properties in terms of both the lubricating properties and anti-corrosion properties in various types of machinery.
  • Anti-rust agents are added to lubricating oils to protect the mechanical parts from rusting when water or seawater is admixed.
  • anti-rust agents are strongly adsorbed on the metal surface to form a rustproof film on the metal surface, thus preventing direct contact between the metal and water from occurring and thereby inhibiting the formation of rust.
  • EP-A-0744456 describes a lubricant which comprises at least one oil of lubricating viscosity and at least (a) at least one oil-soluble metal-free sulphur-containing anti-wear and/or extreme pressure agent having a copper corrosion test activity of not more than 65; (b) at least one oil soluble metal-free phosphorus- and nitrogen-containing antiwear and/or extreme pressure agent; (c) at least one oil-soluble organic carboxylic acid; and (d) at least one oil-soluble organic amine.
  • US-A-5152908 discloses a gear lubricant comprising a major amount of an oil of lubricating viscosity and a minor amount of an additive package which is comprised of (a) a treated zinc dithiophosphate, (b) an overbased carboxylate which is preferably borated, (c) an alkylamine and (d) a sulphurised olefin.
  • WO-A-00/11122 discloses a lubricating oil composition
  • a lubricating oil composition comprising (I) 100 parts by weight of a base Oil for a lubricating oil; (II) as an anti-wear agent, (i) (a) from 0.05 to 10 parts by weight of a phosphorothionate as described therein, and (b) from 0.01 to 1.0 part by weight of an amine salt of a phosphorus compound which phosphorus compound is as described therein, and/or (ii) from 0.05 to 10 parts by weight of a dithiophosphate as described therein; (III) as a rust preventing agent, from 0.01 to 1.0 part by weight of a polyalkylene polyamide obtained by reacting (a) a polyalkylene polyamine as described therein, and (b) a carboxylic acid having from 4 to 30 carbon atoms.
  • EP-A-0434464 describes a lubricant composition which comprises (a) a metal-free anti-wear or load carrying additive containing sulphur and/or phosphorus, and (b) a corrosion inhibitor in the form of an amino succinate ester of formula R 1 OOC(CR 3 R 4 )CR 5 (NR 6 R 7 )COOR 2 in which R 1 and R 2 are each alkyl of 1 to 30 carbon atoms, R 3 , R 4 and R 5 are each hydrogen or alkyl of 1 to 4 carbon atoms, and R 6 and R 7 are each hydrogen, alkyl of 1 to 30 carbon atoms, or an acyl group derived from a saturated or unsaturated carboxylic acid of up to 30 carbon atoms, at least one of R 6 and R 7 being an acyl group.
  • R 1 and R 2 are each alkyl of 1 to 30 carbon atoms
  • R 3 , R 4 and R 5 are each hydrogen or alkyl of 1 to 4 carbon atoms
  • R 6 and R 7
  • the present invention provides a lubricating oil composition comprising a minor amount of an additive combination comprising
  • major amount in the present invention is meant at least 50 wt. %, with respect to the total weight of the lubricating oil composition.
  • Said composition comprises from 0.001 to 0.5 part by weight of the carboxylic acid-based or carboxylic acid ester-based anti-rust agent; and from 0.001 to 0.05 part by weight of the at least one type of amine, per 100 parts by weight of lubricating oil base oil.
  • said composition comprises from 0.001 to 0.05 part by weight of the carboxylic acid-based or carboxylic acid ester-based anti-rust agent, per 100 parts by weight of lubricating oil base oil. More preferably, said composition comprises from 0.005 to 0.05 part by weight of said anti-rust agent, per 100 parts by weight of lubricating oil base oil.
  • Said extreme pressure additive of formula (3) is preferably present in an amount in the range of from 0.001 to 0.5 part by weight, more preferably from 0.001 to 0.02 part by weight, per 100 parts by weight of lubricating oil base oil.
  • Said extreme pressure additive of formula (4) is preferably present in an amount in the range of from 0.05 to 5 parts by weight, more preferably from 0.05 to 0.5 part by weight, per 100 parts by weight of lubricating oil base oil.
  • Said extreme pressure additive of formula (5) is preferably present in an amount in the range of from 0.01 to 0.5 part by weight, more preferably from 0.01 to 0.1 part by weight, per 100 parts by weight of lubricating oil base oil.
  • the lubricating oil composition of the present invention may optionally comprise one or more of compounds of formulae (3) to (5) as extreme pressure additives.
  • the lubricating oil base oil from which the lubricating oil composition of the present invention is constituted is not subject to any particular limitation, provided that it comprises petroleum-based oil and/or synthetic hydrocarbon-based oil.
  • Lubricating oil base oils having a kinematic viscosity of from 2 to 680 mm 2 /s (40°C), preferably of from 5 to 320 mm 2 /s (40°C), and most preferably of from 8 to 220 mm 2 /s (40°C); a total sulphur content (wt. %) of from 0 to 1 wt. %, and preferably of from 0 to 0.3 wt. %; a total nitrogen content (wt. ppm) of from 0 to 100 ppm, and preferably of from 0 to 30 ppm; and an aniline point of from 80 to 130°C, and preferably of from 100 to 125°C, are preferred.
  • the petroleum-based lubricating oil base oils which can be used in the present invention may be, for example, individual solvent refined base oils, hydrogenation refined base oils or highly hydrogenated and cracked base oils, or mixtures of such oils.
  • Highly hydrogenated cracked base oils are lubricating oil base oils which have a viscosity index of at least 130 (typically from 145 to 155) obtained with a slack wax which has been cracked and solvent de-waxed as the raw material by isomerizing the linear chain paraffins to branched paraffins by hydrogenation cracking in the presence of a catalyst (contact cracking), or lubricating base oils which have a viscosity index of at least 130 (typically from 145 to 155) obtained using heavy linear chain paraffins which have been obtained by Fischer-Tropsch polymerization using the carbon monoxide and hydrogen obtained by a gasification process (partial oxidation) of a natural gas (such as methane) and subjecting this to catalytic cracking and isomerization in the same way as above
  • the synthetic hydrocarbon-based base oils which may be used in the present invention include the olefin oligomers obtained by the homopolymerization or copolymerization of monomers which have been selected from among the linear chain and branched olefinic hydrocarbons which have from 3 to 15 carbon atoms, and preferably from 4 to 12 carbon atoms.
  • the petroleum based lubricating oil base oils and synthetic hydrocarbon based base oils can be used individually or in the form of mixtures.
  • the carboxylic acid based or carboxylic acid ester-based anti-rust agents which can be used in the present invention have a carboxylic acid or carboxylic acid ester group in the anti-rust agent molecule and they are widely used generally in lubricating oils.
  • Said anti-rust agents include, for example, monocarboxylic acids which have from 8 to 30 carbon atoms, alkyl or alkenyl succinates or partial esters thereof, hydroxy-fatty acids which have from 12 to 30 carbon atoms and derivatives thereof, sarcosines which have from 8 to 24 carbon atoms and derivatives thereof, amino acids and derivatives thereof, naphthenic acid and derivatives thereof, lanolin fatty acid, mercapto-fatty acids and paraffin oxides.
  • anti-rust agents are indicated below.
  • Caprylic acid pelargonic acid, decanoic acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, behenic acid, cerotic acid, montanic acid, melissic acid, oleic acid, docosanic acid, erucic acid, eicosenic acid, beef tallow fatty acid, soy bean fatty acid, coconut oil fatty acid, linolic acid, linoleic acid, tall oil fatty acid, 12-hydroxystearic acid, laurylsarcosinic acid, myritsylsarcosinic acid, palmitylsarcosinic acid, stearylsarcosinic acid, oleylsarcosinic acid, alkylated (C8 - C20) phenoxyacetic acids, lanolin fatty acid and C8 - C24 mercapto-fatty acids.
  • R 7 and R 8 each independently represent hydrogen or a group selected from among the C1 to C30 alkyl groups, the C1 to C30 acyl groups and the alkyloxide groups
  • R 9 to R 13 each independently represent hydrogen or a group selected from among the C1 to C30 alkyl groups.
  • Examples of the aforementioned alkylamines represented by general formula (1) include primary amines such as laurylamine, coconut-amine, n-tridecylamine, myristylamine, n-pentadecylamine, palmitylamine, n-heptadecylamine, stearylamine, n-nonadecylamine, n-eicosylamine, n-heneicosylamine, n-docosylamine, n-tricosylamine, n-pentacosylamine, oleylamine, beef tallow-amine, hydrogenated beef tallow-amine and soy bean-amine.
  • primary amines such as laurylamine, coconut-amine, n-tridecylamine, myristylamine, n-pentadecylamine, palmitylamine, n-heptadecylamine, stearylamine, n-nonadecylamine, n-
  • secondary amines examples include dilaurylamine, di-coconut-amine, di-n-tridecylamine, dimyristylamine, di-n-pentadecylamine, dipalmitylamine, di-n-pentadecylamine, distearylamine, di-n-nonadecylamine, di-n-eicosylamine, di-n-heneicosylamine, di-n-docosylamine, di-n-tricosylamine, di-n-pentacosylamine, dioleylamine, di-beef tallow-amine, dihydrogenated beef tallow-amine and di-soy bean-amine.
  • N-alkylpolyalkyenediamines which can be represented by general formula (2) include ethylenediamines such as laurylethylenediamine, coconut ethylenediamine, n-tridecylethylenediamine, myristylethylenediamine, n-pentadecylethylenediamine, palmitylethylenediamine, n-heptadecylethylenediamine, stearylethylenediamine, n-nonadecylethylenediamine, n-eicosylethylenediamine, n-heneicosylethylenediamine, n-docosylethylendiamine, n-tricosylethylenediamine, n-pentacosylethylenediamine, oleylethylenediamine, beef tallow-ethylenediamine, hydrogenated beef tallow-ethylenediamine and soy bean-ethylenediamine; propylenediamines such as laurylpropylenediamines such as
  • supplementary additives of the various types which are generally used can be added to the lubricating oil composition of the present invention, as required, in order to further improve the performance thereof.
  • Supplementary additives that may be added to the lubricating oil composition of the present invention include the known lubricating oil additives such as antioxidants, metal deactivators, extreme pressure additives, antifoaming agents, viscosity index increasing agents, flow-point reducing agents, cleaning and dispersing agents, anti-rust agents and anti-emulsification agents.
  • amine-based antioxidants include dialkyldiphenylamines such as p,p'-dioctyldiphenylamine (manufactured by the Seiko Kagaku Co. under the trade designation "Nonflex OD-3"), p,p'-di- ⁇ -methylbenzyldiphenylamine and N-p-butylphenyl-N-p'-octylphenylamine; monoalkyldiphenylamines such as mono-t-butyldiphenylamine, and monooctyldiphenylamine; bis(dialkylphenyl)amines such as di(2,4-diethylphenyl)amine and di(2-ethyl-4-nonylphenyl)amine; alkylphenyl-1-naphthylamines such as octylphenyl-1-naphthylamine and N-t-dodecylphenyl-1-nap
  • sulphur-based antioxidants include dialkylsulphides such as didodecylsulphide and dioctadecylsulphide; thiodipropionic acid esters such as didodecyl thiodipropionate, dioctadecyl thiodipropionate, dimyristyl thiodipropionate and dodecyloctadecyl thiodipropionate, and 2-mercaptobenzimidazole.
  • phenol-based antioxidants examples include 2-t-butylphenol, 2-t-butyl-4-methylphenol, 2-t-butyl-5-methylphenol, 2,4-di-t-butylphenol, 2,4-dimethyl-6-t-butylphenol, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,5-di-t-butjrlhydroquinone (manufactured by the Kawaguchi Kagaku Co.
  • Antage DBH 2,6-di-t-butylphenol and 2,6-di-t-butyl-4-alkylphenols such as 2,6-di-t-butyl-4-methylphenol and 2,6-di-t-butyl-4-ethylphenol; 2,6-di-t-butyl-4-alkoxyphenols such as 2,6-di-t-butyl-4-methoxyphenol and 2,6-di-t-butyl-4-ethoxyphenol, 3,5-di-t-butyl-4-hydroxybenzylmercaptooctyl acetate, alkyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionates such as n-octyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate (manufactured by the Yoshitomi Seiyaku Co.
  • Yonox SS n-dodecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate and 2'-ethylhexyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate; 2,6-di-t-butyl- ⁇ -dimethylamino-p-cresol, 2,2'-methylenebis(4-alkyl-6-t-butylphenol) compounds such as 2,2'-methylenebis(4-methyl-6-t-butylphenol) (manufactured by the Kawaguchi Kagaku Co.
  • At-400 under the trade designation "Antage W-400" and 2,2'-methylenebis(4-ethyl-6-t-butylphenol) (manufactured by the Kawaguchi Kagaku Co. under the trade designation "Antage W-500”); bisphenols such as 4,4'-butylidenebis(3-methyl-6-t-butylphenol) (manufactured by the Kawaguchi Kagaku Co.
  • phosphorus-based antioxidants include triaryl phosphites such as triphenyl phosphite and tricresyl phosphite, trialkyl phosphites such as trioctadecyl phosphite and tridecyl phosphite, and tridodecyl trithiophosphite.
  • antioxidants can be used individually or in the form of mixtures, conveniently in amounts within the range of from 0.01 to 2.0 parts by weight, per 100 parts by weight of base oil.
  • the metal deactivating agents which can be used in the lubricating oil a composition of the present invention include benzotriazole and the 4-alkylbenzotriazoles such as 4-methylbenzotriazole and 4-ethylbenzotriazole; 5-alkylbenzotriazoles such as 5-methylbenzotriazole, 5-ethylbenzotriazole; 1-alkylbenzotriazoles such as 1-dioctylaminomethyl-2,3-benzotriazole; benzotriazole derivatives such as the 1-alkyltolutriazoles, for example, 1-dioctylaminomethyl-2,3-tolutriazole; benzimidazole and benzimidazole derivatives such as 2-(alkyldithio)-benzimidazoles, for example, such as 2-(octyldithio)-benzimidazole, 2-(decyldithio)benzimidazole and 2-(dodecyld
  • metal deactivating agents can be used individually or in the form of mixtures, conveniently in an amount within the range of from 0.01 to 0.5 parts by weight, per 100 parts by weight of base oil.
  • the materials which can be used as anti-foaming agents include, for example, dimethylpolysiloxane, organosilicates such as diethylsilicate, the fluorosilicones, and non-silicone based anti-foaming agents such as poly(alkylene acrylate). These can be added and used individually or in the form of mixtures, conveniently in an amount of from 0.0001 to 0.1 part by weight, per 100 parts by weight of base oil.
  • the viscosity index increasing agents which can be used include, for example, polymethacrylates and ethylene/propylene copolymers, other non-dispersion type viscosity index increasing agents such as olefin copolymers like styrene/diene copolymers, and dispersible type viscosity index increasing agents where a nitrogen containing monomer has been copolymerized in such materials. These materials can be added and used individually or in the form of mixtures, conveniently in an amount within the range of from 0.05 to 20 parts by weight per 100 parts by weight of base oil.
  • flow-point reducing agents examples include polymethacrylate based polymers. These materials can be added and conveniently used in an amount within the range from 0.01 to 5 parts by weight per 100 parts by weight of base oil.
  • cleaning and dispersing agents examples include metal-based detergents such as the neutral and basic alkaline earth metal sulphonates, alkaline earth metal phenates and alkaline earth metal salicylates alkenylsuccinimide and alkenylsuccinimide esters and their borohydrides, and ashless dispersing agents which have been modified with sulphur compounds. These agents can be added and used individually or in the form of mixtures, conveniently in an amount within the range of from 0.01 to 1 part by weight per 100 parts by weight of base oil.
  • extreme pressure additives include sulphur-based extreme pressure additives such as dialkyl sulphides, dibenzyl sulphide, dialkyl polysulphides, dibenzyl disulphide, alkyl mercaptans, dibenzothiophene and 2,2'-dithiobis(benzothiazole); phosphorus-based extreme pressure additives such as trialkyl phosphates, triaryl phosphates, trialkyl phosphonates, trialkyl phosphites, triaryl phosphites and dialkylhydrozine phosphites, and phosphorus- and sulphur-based extreme pressure additives such as zinc dialkyldithiophosphates, dialkylthiophosphoric acid, trialkyl thiophosphate esters, acidic thiophosphate esters and trialkyl trithiophosphates.
  • These extreme pressure additives can be used individually or in the form of mixtures, conveniently in an amount within the range from 0.1 to 2 parts by weight,
  • the known anti-emulsifying agents which are generally used as lubricating oil additives can also be used. These agents may be conveniently added and used in an amount within the range from 0.0005 to 0.5 part by weight, per 100 parts by weight of the base oil.
  • anti-emulsifying agents include polyalkylene glycol-based non-ionic surfactants, for example, polyoxyethylenealkyl ethers, polyoxyethylene alkylphenyl ethers and polyoxyethylene alkylnaphthyl ethers.
  • the lubricating oil composition of the present ivnention is useful as a hydraulic oil composition, a compressor oil composition, a turbine oil composition, a bearing oil composition and/or a gear oil composition.
  • Sample oils were prepared by compounding extreme pressure additives and carboxylic acid based and carboxylic acid ester-based anti-rust agents and amines at various concentrations as shown in Table 1 in a hydrogenation refined base oil of kinematic viscosity 31 mm 2 /s at 40°C with a viscosity index of 107, a sulphur content of less than 5 ppm, a nitrogen content of less than 1 ppm and an aniline point of 112°C as the base oil.
  • the effect of the invention was investigated in terms of the anti-rust agent performance and the extreme pressure performance.
  • test methods used for assessing performance in the Examples and Comparative Examples were as indicated below.
  • the A test gear wheels were used in accordance with ISO/WD14635-1 and the gears were run for 15 minutes at each loading stage at an initial oil temperature of 90°C and a motor speed of 1450 rpm. The loading stage at which scorching occurred on the tooth surfaces of the test gear wheel as the load was being increased in stages was observed.
  • compositions and test results are shown in Tables 1 to 3.
  • Comparative Example 1 had only the extreme pressure additive compounded therein. Whilst said example and exhibited good extreme pressure performance in the gear wheel test, rust formed in the anti-rust test as no anti-rust agent and amine had been added thereto.
  • the lubricating oil compositions of the present invention are virtually free, or completely free, of metals which are harmful in respect of both the environment and safety and they maintain a good anti-rust performance whilst also having good extreme pressure performance to match the increased speeds, higher pressures, more compact nature and improvement in durability requirements of modern industrial machinery.
  • the amount of anti-rust agent added can be reduced by means of the present invention and lubricating oil compositions which have excellent performance can be provided more cheaply.
  • the lubricating oil compositions of the present invention are useful as lubricating oil compositions where both anti-rust performance and extreme pressure performance are required and they can be used as hydraulic working oils, gear wheel oils, compressor oils, turbine oils and bearing oils.

Abstract

A lubricating oil composition is provided containing a major amount of a lubricating oil base oil and a minor amount of an additive combination containing (i) a carboxylic acid-based or carboxylic acid ester based anti-rust agent; (ii) at least one type of amine selected from among the group comprising (A) the alkyl amines which can be represented by general formula (1) (R<1>)nNH3-n (1) wherein R<1 >represents a saturated or unsaturated alkyl group which has from 12 to 30 carbon atoms, and n is an integer of value 1 or 2; and (B) the N-alkylpolyalkylenediamines which can be represented by general formula (2) R<2>NH(CH2)mNH2 (2) wherein R<2 >represents a saturated or unsaturated alkyl group which has from 12 to 30 carbon atoms, and m is an integer of value from 2 to 5.

Description

  • The present invention relates to a lubricating oil composition which has excellent anti-rust properties in severe operating environments in which water or seawater is admixed, and which also exhibits excellent properties in terms of both the lubricating properties and anti-corrosion properties in various types of machinery.
  • Anti-rust agents are added to lubricating oils to protect the mechanical parts from rusting when water or seawater is admixed. In general, anti-rust agents are strongly adsorbed on the metal surface to form a rustproof film on the metal surface, thus preventing direct contact between the metal and water from occurring and thereby inhibiting the formation of rust.
  • On the other hand, the wear surfaces of equipment are being subjected to ever more severe conditions as a result of increased running speeds, increased loads and increases in efficiency which have arisen in recent times, and scorching of the wear surfaces is likely to: occur as a result of the breakdown of the lubricating oil film.
  • Consequently, extreme pressure additives, which react with the metal surface and maintain the lubricating properties at the wear surface, are added in suitable amounts to the lubricating oils which are used under such severe conditions in order to prevent sticking of the wear surfaces.
  • EP-A-0744456 describes a lubricant which comprises at least one oil of lubricating viscosity and at least (a) at least one oil-soluble metal-free sulphur-containing anti-wear and/or extreme pressure agent having a copper corrosion test activity of not more than 65; (b) at least one oil soluble metal-free phosphorus- and nitrogen-containing antiwear and/or extreme pressure agent; (c) at least one oil-soluble organic carboxylic acid; and (d) at least one oil-soluble organic amine.
  • US-A-5152908 discloses a gear lubricant comprising a major amount of an oil of lubricating viscosity and a minor amount of an additive package which is comprised of (a) a treated zinc dithiophosphate, (b) an overbased carboxylate which is preferably borated, (c) an alkylamine and (d) a sulphurised olefin.
  • WO-A-00/11122 discloses a lubricating oil composition comprising (I) 100 parts by weight of a base Oil for a lubricating oil; (II) as an anti-wear agent, (i) (a) from 0.05 to 10 parts by weight of a phosphorothionate as described therein, and (b) from 0.01 to 1.0 part by weight of an amine salt of a phosphorus compound which phosphorus compound is as described therein, and/or (ii) from 0.05 to 10 parts by weight of a dithiophosphate as described therein; (III) as a rust preventing agent, from 0.01 to 1.0 part by weight of a polyalkylene polyamide obtained by reacting (a) a polyalkylene polyamine as described therein, and (b) a carboxylic acid having from 4 to 30 carbon atoms.
  • EP-A-0434464 describes a lubricant composition which comprises (a) a metal-free anti-wear or load carrying additive containing sulphur and/or phosphorus, and (b) a corrosion inhibitor in the form of an amino succinate ester of formula R1OOC(CR3R4)CR5(NR6R7)COOR2 in which R1 and R2 are each alkyl of 1 to 30 carbon atoms, R3, R4 and R5 are each hydrogen or alkyl of 1 to 4 carbon atoms, and R6 and R7 are each hydrogen, alkyl of 1 to 30 carbon atoms, or an acyl group derived from a saturated or unsaturated carboxylic acid of up to 30 carbon atoms, at least one of R6 and R7 being an acyl group.
  • However, it is known that the compounding of an anti-rust agent impedes the reaction between the metal surface and an extreme pressure additive at the wear surface and that the effect of the extreme pressure additive is to a large extent lost as a result.
  • It is therefore desirable to provide ashless lubricating oil compositions which contain no metal and which, from the viewpoints of the lubrication performance and the anti-rust performance of the lubricating oil, maintain excellent extreme pressure performance even under severe lubrication conditions and at the same time have excellent anti-rust properties.
  • It has now been surprisingly discovered that the amount of anti-rust agent added can be greatly reduced by combining specific alkylamines with the anti-rust agents, with the result that the reduction in the extreme pressure performance caused by the anti-rust agent can be suppressed to a minimum level.
  • The present invention provides a lubricating oil composition comprising a minor amount of an additive combination comprising
    • (i) a carboxylic acid-based or carboxylic acid ester-based anti-rust agent;
    • (ii) at least one type of amine selected from among the group comprising (A) the alkyl amines which can be represented by general formula (1),

              (R1)nNH3-n     (1)

      wherein R1 represents a saturated or unsaturated alkyl group which has from 12 to 30 carbon atoms, and n is an integer of value 1 or 2; and (B) the N-alkylpolyalkylenediamines which can be represented by general formula (2),

              R2NH(CH2)mNH2     (2)

      wherein R2 represents a saturated or unsaturated alkyl group which has from 12 to 30 carbon atoms, and m is an integer of value from 2 to 5; and a major amount of a lubricating oil base oil.
  • By "major amount" in the present invention is meant at least 50 wt. %, with respect to the total weight of the lubricating oil composition.
  • Said composition comprises from 0.001 to 0.5 part by weight of the carboxylic acid-based or carboxylic acid ester-based anti-rust agent; and from 0.001 to 0.05 part by weight of the at least one type of amine, per 100 parts by weight of lubricating oil base oil.
  • Preferably, said composition comprises from 0.001 to 0.05 part by weight of the carboxylic acid-based or carboxylic acid ester-based anti-rust agent, per 100 parts by weight of lubricating oil base oil. More preferably, said composition comprises from 0.005 to 0.05 part by weight of said anti-rust agent, per 100 parts by weight of lubricating oil base oil.
  • In a further embodiment of the present invention, the lubricating oil composition comprises, as an extreme pressure additive, a β-dithicphosphorylpropionic acid which can be represented by general formula (3),

            S=P(O-R3)2SCH2CH(R4)COOH     (3)

    wherein R3 represents a branched alkyl group which has from 3 to 8 carbon atoms, and R4 is a hydrogen atom or a group selected from among the linear chain or branched alkyl groups which have from 1 to 4 carbon atoms.
  • Said extreme pressure additive of formula (3) is preferably present in an amount in the range of from 0.001 to 0.5 part by weight, more preferably from 0.001 to 0.02 part by weight, per 100 parts by weight of lubricating oil base oil.
  • In a still further embodiment of the present invention, the lubricating oil composition comprises, as an extreme pressure additive, a triaryl phosphorothioate which can be represented by general formula (4),

            S=P(O-Ph-R5)3     (4)

    wherein Ph represents a phenyl group, and R5 is a hydrogen atom or a linear chain or branched alkyl group which has from 1 to 9 carbon atoms.
  • Said extreme pressure additive of formula (4) is preferably present in an amount in the range of from 0.05 to 5 parts by weight, more preferably from 0.05 to 0.5 part by weight, per 100 parts by weight of lubricating oil base oil.
  • In another embodiment of the present invention, the lubricating oil composition comprises, as an extreme pressure additive, an acidic phosphate ester which can be represented by general formula (5),

            O=P(OR6)3-r(OH)r     (5)

    wherein R6 is a linear chain or branched alkyl group which has from 3 to 13 carbon atoms, and r is an integer of value 1 or 2.
  • Said extreme pressure additive of formula (5) is preferably present in an amount in the range of from 0.01 to 0.5 part by weight, more preferably from 0.01 to 0.1 part by weight, per 100 parts by weight of lubricating oil base oil.
  • The lubricating oil composition of the present invention may optionally comprise one or more of compounds of formulae (3) to (5) as extreme pressure additives.
  • The lubricating oil base oil from which the lubricating oil composition of the present invention is constituted is not subject to any particular limitation, provided that it comprises petroleum-based oil and/or synthetic hydrocarbon-based oil.
  • Lubricating oil base oils having a kinematic viscosity of from 2 to 680 mm2/s (40°C), preferably of from 5 to 320 mm2/s (40°C), and most preferably of from 8 to 220 mm2/s (40°C); a total sulphur content (wt. %) of from 0 to 1 wt. %, and preferably of from 0 to 0.3 wt. %; a total nitrogen content (wt. ppm) of from 0 to 100 ppm, and preferably of from 0 to 30 ppm; and an aniline point of from 80 to 130°C, and preferably of from 100 to 125°C, are preferred.
  • The petroleum-based lubricating oil base oils which can be used in the present invention may be, for example, individual solvent refined base oils, hydrogenation refined base oils or highly hydrogenated and cracked base oils, or mixtures of such oils. Highly hydrogenated cracked base oils are lubricating oil base oils which have a viscosity index of at least 130 (typically from 145 to 155) obtained with a slack wax which has been cracked and solvent de-waxed as the raw material by isomerizing the linear chain paraffins to branched paraffins by hydrogenation cracking in the presence of a catalyst (contact cracking), or lubricating base oils which have a viscosity index of at least 130 (typically from 145 to 155) obtained using heavy linear chain paraffins which have been obtained by Fischer-Tropsch polymerization using the carbon monoxide and hydrogen obtained by a gasification process (partial oxidation) of a natural gas (such as methane) and subjecting this to catalytic cracking and isomerization in the same way as above.
  • Furthermore, the synthetic hydrocarbon-based base oils which may be used in the present invention include the olefin oligomers obtained by the homopolymerization or copolymerization of monomers which have been selected from among the linear chain and branched olefinic hydrocarbons which have from 3 to 15 carbon atoms, and preferably from 4 to 12 carbon atoms.
  • In the present invention, the petroleum based lubricating oil base oils and synthetic hydrocarbon based base oils can be used individually or in the form of mixtures.
  • The carboxylic acid based or carboxylic acid ester-based anti-rust agents which can be used in the present invention have a carboxylic acid or carboxylic acid ester group in the anti-rust agent molecule and they are widely used generally in lubricating oils.
  • Said anti-rust agents include, for example, monocarboxylic acids which have from 8 to 30 carbon atoms, alkyl or alkenyl succinates or partial esters thereof, hydroxy-fatty acids which have from 12 to 30 carbon atoms and derivatives thereof, sarcosines which have from 8 to 24 carbon atoms and derivatives thereof, amino acids and derivatives thereof, naphthenic acid and derivatives thereof, lanolin fatty acid, mercapto-fatty acids and paraffin oxides.
  • Particularly preferred anti-rust agents are indicated below.
  • Examples of Monocarboxylic Acids (C8 - C30)
  • Caprylic acid, pelargonic acid, decanoic acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, behenic acid, cerotic acid, montanic acid, melissic acid, oleic acid, docosanic acid, erucic acid, eicosenic acid, beef tallow fatty acid, soy bean fatty acid, coconut oil fatty acid, linolic acid, linoleic acid, tall oil fatty acid, 12-hydroxystearic acid, laurylsarcosinic acid, myritsylsarcosinic acid, palmitylsarcosinic acid, stearylsarcosinic acid, oleylsarcosinic acid, alkylated (C8 - C20) phenoxyacetic acids, lanolin fatty acid and C8 - C24 mercapto-fatty acids.
  • Examples of Polybasic Carboxylic Acids
  • The alkenyl (C20 - C100) succinic acids indicated in CAS No. 27859-58-1 and ester derivatives thereof, dimer acid, N-acyl-N-alkyloxyalkyl aspartic acid esters (US-A-5,275,749) which have the structural formula indicated below and the compounds of CAS No. 68906-34-3.
    Figure imgb0001

    wherein R7 and R8 each independently represent hydrogen or a group selected from among the C1 to C30 alkyl groups, the C1 to C30 acyl groups and the alkyloxide groups, and R9 to R13 each independently represent hydrogen or a group selected from among the C1 to C30 alkyl groups.)
  • Examples of the aforementioned alkylamines represented by general formula (1) include primary amines such as laurylamine, coconut-amine, n-tridecylamine, myristylamine, n-pentadecylamine, palmitylamine, n-heptadecylamine, stearylamine, n-nonadecylamine, n-eicosylamine, n-heneicosylamine, n-docosylamine, n-tricosylamine, n-pentacosylamine, oleylamine, beef tallow-amine, hydrogenated beef tallow-amine and soy bean-amine. Examples of the secondary amines include dilaurylamine, di-coconut-amine, di-n-tridecylamine, dimyristylamine, di-n-pentadecylamine, dipalmitylamine, di-n-pentadecylamine, distearylamine, di-n-nonadecylamine, di-n-eicosylamine, di-n-heneicosylamine, di-n-docosylamine, di-n-tricosylamine, di-n-pentacosylamine, dioleylamine, di-beef tallow-amine, dihydrogenated beef tallow-amine and di-soy bean-amine.
  • Examples of the aforementioned N-alkylpolyalkyenediamines which can be represented by general formula (2) include ethylenediamines such as laurylethylenediamine, coconut ethylenediamine, n-tridecylethylenediamine, myristylethylenediamine, n-pentadecylethylenediamine, palmitylethylenediamine, n-heptadecylethylenediamine, stearylethylenediamine, n-nonadecylethylenediamine, n-eicosylethylenediamine, n-heneicosylethylenediamine, n-docosylethylendiamine, n-tricosylethylenediamine, n-pentacosylethylenediamine, oleylethylenediamine, beef tallow-ethylenediamine, hydrogenated beef tallow-ethylenediamine and soy bean-ethylenediamine; propylenediamines such as laurylpropylenediamine, coconut propylenediamine, n-tridecylpropylenediamine, myristylpropylenediamine, n-pentadecylpropylenediamine, palmitylpropylenediamine, n-heptadecylpropylenediamine, stearylpropylenediamine, n-nonadecylpropylenediamine, n-eicosylpropylenediamine, n-heneicosylpropylenediamine, n-docosylpropylendiamine, n-tricosylpropylenediamine, n-pentacosylpropylenediamine, oleylpropylenediamine, beef tallow-propylenediamine, hydrogenated beef tallow-propylenediamine and soy bean-propylenediamine; butylenediamines such as laurylbutylenediamine, coconut butylenediamine, n-tridecylbutylenediamine, myristylbutylenediamine, n-pentadecylbutylenediamine, stearylbutylenediamine, n-eicosylbutylenediamine, n-heneicosylbutylenediamine, n-docosylbutylendiamine, n-tricosylbutylenediamine, n-pentacosylbutylenediamine, oleylbutylenediamine, beef tallow-butylenediamine, hydrogenated beef tallow-butylenediamine and soy bean butylenediamine; and pentylenediamines such as laurylpentylenediamine, coconut pentylenediamine, myristylpentylenediamine, palmitylpentylenediamine, stearylpentylenediamine, oleylpentylenediamine, beef tallow-pentylenediamine, hydrogenated beef tallow-pentylenediamine and soy bean pentylenediamine.
  • In addition to the aforementioned components, suitable amounts of supplementary additives of the various types which are generally used can be added to the lubricating oil composition of the present invention, as required, in order to further improve the performance thereof. Supplementary additives that may be added to the lubricating oil composition of the present invention include the known lubricating oil additives such as antioxidants, metal deactivators, extreme pressure additives, antifoaming agents, viscosity index increasing agents, flow-point reducing agents, cleaning and dispersing agents, anti-rust agents and anti-emulsification agents.
  • Examples of amine-based antioxidants include dialkyldiphenylamines such as p,p'-dioctyldiphenylamine (manufactured by the Seiko Kagaku Co. under the trade designation "Nonflex OD-3"), p,p'-di-α-methylbenzyldiphenylamine and N-p-butylphenyl-N-p'-octylphenylamine; monoalkyldiphenylamines such as mono-t-butyldiphenylamine, and monooctyldiphenylamine; bis(dialkylphenyl)amines such as di(2,4-diethylphenyl)amine and di(2-ethyl-4-nonylphenyl)amine; alkylphenyl-1-naphthylamines such as octylphenyl-1-naphthylamine and N-t-dodecylphenyl-1-naphthylamine; arylnaphthylamines such as 1-naphthylamine, phenyl-1-naphthylamine, phenyl-2-naphthylamine, N-hexylphenyl-2-naphthylamine and N-octylphenyl-2-naphthylamine, phenylenediamines such as N,N'-diisopropyl-p-phenylenediamine and N,N'-diphenyl-p-phenylenediamine, and phenothiazines such as phenothiazine (manufactured by the Hodogaya Kagaku Co.: Phenothiazine) and 3,7-dioctylphenothiazine.
  • Examples of sulphur-based antioxidants include dialkylsulphides such as didodecylsulphide and dioctadecylsulphide; thiodipropionic acid esters such as didodecyl thiodipropionate, dioctadecyl thiodipropionate, dimyristyl thiodipropionate and dodecyloctadecyl thiodipropionate, and 2-mercaptobenzimidazole.
  • Examples of phenol-based antioxidants include 2-t-butylphenol, 2-t-butyl-4-methylphenol, 2-t-butyl-5-methylphenol, 2,4-di-t-butylphenol, 2,4-dimethyl-6-t-butylphenol, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,5-di-t-butjrlhydroquinone (manufactured by the Kawaguchi Kagaku Co. under trade designation "Antage DBH"), 2,6-di-t-butylphenol and 2,6-di-t-butyl-4-alkylphenols such as 2,6-di-t-butyl-4-methylphenol and 2,6-di-t-butyl-4-ethylphenol; 2,6-di-t-butyl-4-alkoxyphenols such as 2,6-di-t-butyl-4-methoxyphenol and 2,6-di-t-butyl-4-ethoxyphenol, 3,5-di-t-butyl-4-hydroxybenzylmercaptooctyl acetate, alkyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionates such as n-octyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate (manufactured by the Yoshitomi Seiyaku Co. under the trade designation "Yonox SS"), n-dodecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate and 2'-ethylhexyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate; 2,6-di-t-butyl-α-dimethylamino-p-cresol, 2,2'-methylenebis(4-alkyl-6-t-butylphenol) compounds such as 2,2'-methylenebis(4-methyl-6-t-butylphenol) (manufactured by the Kawaguchi Kagaku Co. under the trade designation "Antage W-400") and 2,2'-methylenebis(4-ethyl-6-t-butylphenol) (manufactured by the Kawaguchi Kagaku Co. under the trade designation "Antage W-500"); bisphenols such as 4,4'-butylidenebis(3-methyl-6-t-butylphenol) (manufactured by the Kawaguchi Kagaku Co. under the trade designation "Antage W-300"), 4,4'-methylenebis(2,6-di-t-butylphenol) (manufactured by Laporte Performance Chemicals under the trade designation "Ionox 220AH"), 4,4'-bis(2,6-di-t-butylphenol), 2,2-(di-p-hydroxyphenyl)propane (Bisphenol A), 2,2-bis(3,5-di-t-butyl-4-hydroxyphenyl)propane, 4,4'-cyclohexylidenebis(2,6-di-t-butylphenol), hexamethyhene glycol bis[3,(3,5-di-t-butyl-4-hydroxyphenyl)propionate] (manufactured by the Ciba Speciality Chemicals Co. under the trade designation "Irganox L109"), triethylene glycol bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionate] (manufactured by the Yoshitomi Seiyaku Co. under the trade designation "Tominox 917"), 2,2'-thio[diethyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] (manufactured by the Ciba Speciality Chemicals Co. under the trade designation "Irganox L115"), 3,9-bis{1,1-dimethyl-2-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)-propionyloxy]ethyl}2,4,8,10-tetraoxaspiro[5,5]undecane (manufactured by the Sumitomo Kagaku Co. under the trade designation "Sumilizer GA80") and 4,4'-thiobis(3-methyl-6-t-butylphenol) (manufactured by the Kawaguchi Kagaku Co. under the trade designation "Antage RC"), 2,2'-thiobis(4,6-di-t-butylresorcinol); polyphenols such as tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionato]methane (manufactured by the Ciba Speciality Chemicals Co. under the trade designation "Irganox L101"), 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane (manufactured by the Yoshitomi Seiyaku Co. under the trade designation "Yoshinox 930"), 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene (manufactured by Ciba Speciality Chemicals under the trade designation "Irganox 1330"). bis[3,3'-bis(4'-hydroxy-3'-t-butylphenyl)butyric acid] glycol ester, 2-(3',5'-di-t-butyl-4-hydroxyphenyl)-methyl-4-(2",4"-di-t-butyl-3"-hydroxyphenyl)methyl-6-t-butylphenol and 2,6-bis(2'-hydroxy-3'-t-butyl-5'-methylbenzyl)-4-methylphenol; and phenol/aldehyde condensates such as the condensates of p-t-butylphehol and formaldehyde and the condensates of p-t-butylphenol and acetaldehyde.
  • Examples of phosphorus-based antioxidants include triaryl phosphites such as triphenyl phosphite and tricresyl phosphite, trialkyl phosphites such as trioctadecyl phosphite and tridecyl phosphite, and tridodecyl trithiophosphite.
  • These antioxidants can be used individually or in the form of mixtures, conveniently in amounts within the range of from 0.01 to 2.0 parts by weight, per 100 parts by weight of base oil.
  • The metal deactivating agents which can be used in the lubricating oil a composition of the present invention include benzotriazole and the 4-alkylbenzotriazoles such as 4-methylbenzotriazole and 4-ethylbenzotriazole; 5-alkylbenzotriazoles such as 5-methylbenzotriazole, 5-ethylbenzotriazole; 1-alkylbenzotriazoles such as 1-dioctylaminomethyl-2,3-benzotriazole; benzotriazole derivatives such as the 1-alkyltolutriazoles, for example, 1-dioctylaminomethyl-2,3-tolutriazole; benzimidazole and benzimidazole derivatives such as 2-(alkyldithio)-benzimidazoles, for example, such as 2-(octyldithio)-benzimidazole, 2-(decyldithio)benzimidazole and 2-(dodecyldithio)-benzimidazole; 2-(alkyldithio)-toluimidazoles such as 2-(octyldithio)-toluimidazole, 2-(decyldithio)-toluimidazole and 2-(dodecyldithio)-toluimidazole; indazole and indazole derivatives of toluimidazoles such as 4-alkylindazole, 5-alkylindazole; benzothiazole, 2-mercaptobenzothiazole derivatives (manufactured by the Chiyoda Kagaku Co. under the trade designation "Thiolite B-3100") and 2-(alkyldithio)benzothiazoles such as 2-(hexyldithio)benzothiazole and 2-(octyldithio)benzothiazole; 2-(alkyl-dithio)toluthiazoles such as 2-(benzyldithio)toluthiazole and 2-(octyldithio)toluthiazole, 2-(N,N-dialkyldithiocarbamyl)benzothiazoles such as 2-(N,N-diethyldithiocarbamyl)benzothiazole, 2-(N,N-dibutyldithiocarbamyl)benzotriazole and 2-N,N-dihexyl-dithiocarbamyl)benzotriazole; benzothiazole derivatives of 2-(N,N-dialkyldithiocarbamyl)toluthiazoles such as 2-(N,N-diethyldithiocarbamyl)toluthiazole, 2-(N,N-dibutyldithiocarbamyl)toluthiazole, 2-(N,N-dihexyl-dithiocarbamyl)toluthiazole; 2-(alkyldithio)benzoxazoles such as 2-(octyldithio)benzoxazole, 2-(decyldithio)-benzoxazole and 2-(dodecyldithio)benzoxazole; benzoxazole derivatives of 2-(alkyldithio)toluoxazoles such as 2-(octyldithio)toluoxazole, 2-(decyldithio)toluoxazole, 2-(dodecyldithio)toluoxazole; 2,5-bis(alkyldithio)-1,3,4-thiadiazoles such as 2,5-bis(heptyldithio)-1,3,4-thiadiazole, 2,5-bis-(nonyldithio)-1,3,4-thiadiazole, 2,5-bis(dodecyldithio)-1,3,4-thiadiazole and 2,5-bis-(octadecyldithio)-1,3,4-thiadiazole; 2,5-bis(N,N-dialkyl-dithiocarbamyl)-1,3,4-thiadiazoles such as 2,5-bis(N,N-diethyldithiocarbamyl)-1,3,4-thiadiazole, 2,5-bis(N,N-dibutyldithiocarbamyl)-1,3,4-thiadiazole and 2,5-bis(N,N-dioctyldithiocarbamyl)1,3,4-thiadiazole; thiadiazole derivatives of 2-N,N-dialkyldithiocarbamyl-5-mercapto-1,3,4-thiadiazoles such as 2-N,N-dibutyldithiocarbamyl-5-mercapto-1,3,4-thiadiazole and 2-N,N-dioctyl-dithiocarbamyl-5-mercapto-1,3,4-thiadiazole, and triazole derivatives of 1-alkyl-2,4-triazoles such as 1-dioctylaminomethyl-2,4-triazole.
  • These metal deactivating agents can be used individually or in the form of mixtures, conveniently in an amount within the range of from 0.01 to 0.5 parts by weight, per 100 parts by weight of base oil.
  • The materials which can be used as anti-foaming agents include, for example, dimethylpolysiloxane, organosilicates such as diethylsilicate, the fluorosilicones, and non-silicone based anti-foaming agents such as poly(alkylene acrylate). These can be added and used individually or in the form of mixtures, conveniently in an amount of from 0.0001 to 0.1 part by weight, per 100 parts by weight of base oil.
  • The viscosity index increasing agents which can be used include, for example, polymethacrylates and ethylene/propylene copolymers, other non-dispersion type viscosity index increasing agents such as olefin copolymers like styrene/diene copolymers, and dispersible type viscosity index increasing agents where a nitrogen containing monomer has been copolymerized in such materials. These materials can be added and used individually or in the form of mixtures, conveniently in an amount within the range of from 0.05 to 20 parts by weight per 100 parts by weight of base oil.
  • Examples of flow-point reducing agents include polymethacrylate based polymers. These materials can be added and conveniently used in an amount within the range from 0.01 to 5 parts by weight per 100 parts by weight of base oil.
  • Examples of the cleaning and dispersing agents which can be used include metal-based detergents such as the neutral and basic alkaline earth metal sulphonates, alkaline earth metal phenates and alkaline earth metal salicylates alkenylsuccinimide and alkenylsuccinimide esters and their borohydrides, and ashless dispersing agents which have been modified with sulphur compounds. These agents can be added and used individually or in the form of mixtures, conveniently in an amount within the range of from 0.01 to 1 part by weight per 100 parts by weight of base oil.
  • Examples of extreme pressure additives include sulphur-based extreme pressure additives such as dialkyl sulphides, dibenzyl sulphide, dialkyl polysulphides, dibenzyl disulphide, alkyl mercaptans, dibenzothiophene and 2,2'-dithiobis(benzothiazole); phosphorus-based extreme pressure additives such as trialkyl phosphates, triaryl phosphates, trialkyl phosphonates, trialkyl phosphites, triaryl phosphites and dialkylhydrozine phosphites, and phosphorus- and sulphur-based extreme pressure additives such as zinc dialkyldithiophosphates, dialkylthiophosphoric acid, trialkyl thiophosphate esters, acidic thiophosphate esters and trialkyl trithiophosphates. These extreme pressure additives can be used individually or in the form of mixtures, conveniently in an amount within the range from 0.1 to 2 parts by weight, per 100 parts by weight of the base oil.
  • The known anti-emulsifying agents which are generally used as lubricating oil additives can also be used. These agents may be conveniently added and used in an amount within the range from 0.0005 to 0.5 part by weight, per 100 parts by weight of the base oil.
  • Examples of anti-emulsifying agents include polyalkylene glycol-based non-ionic surfactants, for example, polyoxyethylenealkyl ethers, polyoxyethylene alkylphenyl ethers and polyoxyethylene alkylnaphthyl ethers.
  • The lubricating oil composition of the present ivnention is useful as a hydraulic oil composition, a compressor oil composition, a turbine oil composition, a bearing oil composition and/or a gear oil composition.
  • The present invention will now be described with reference to the following Examples which are not intended to limit the scope of the present invention in any way.
  • Illustrative Examples
  • Sample oils were prepared by compounding extreme pressure additives and carboxylic acid based and carboxylic acid ester-based anti-rust agents and amines at various concentrations as shown in Table 1 in a hydrogenation refined base oil of kinematic viscosity 31 mm2/s at 40°C with a viscosity index of 107, a sulphur content of less than 5 ppm, a nitrogen content of less than 1 ppm and an aniline point of 112°C as the base oil.
  • The effect of the invention was investigated in terms of the anti-rust agent performance and the extreme pressure performance.
  • The test methods used for assessing performance in the Examples and Comparative Examples were as indicated below.
  • Anti-rust Test
  • In order to evaluate the anti-rust performance of the sample oils, an anti-rust test was carried out for 24 hours at 60°C in the presence of artificial seawater in accordance with ASTM D665. It was investigated whether or not rust had formed on the steel specimen after the test.
  • FZG Gear Wheel Test
  • In order to evaluate the lubrication performance of the sample oils in gear wheel equipment, the A test gear wheels were used in accordance with ISO/WD14635-1 and the gears were run for 15 minutes at each loading stage at an initial oil temperature of 90°C and a motor speed of 1450 rpm. The loading stage at which scorching occurred on the tooth surfaces of the test gear wheel as the load was being increased in stages was observed.
  • Examples 1 to 9 and Comparative Examples 1 to 9
  • The compositions and test results are shown in Tables 1 to 3.
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
  • NOTES:
    1. 1. manufactured by the Lubrizol Co under the trade designation "Lubrizol 859".
    2. 2. manufactured by the Ciba Speciality Chemicals Co. under the trade designation "Sarcosil O".
    3. 3. manufactured by the Ciba Speciality Chemicals Co. under the trade designation "Irgacore NPA".
    4. 4. manufactured by the Colonial Chemical Co. under the trade designation "Korakoa 93".
    5. 5. CAS No. 68906-34-3, 27136-73-8.
    6. 6. manufactured by the King Industries Co. under the trade designation "K-CORR 100".
      Anti-rust agent disclosed in US-A-5,275,749.
  • Comparative Example 1 had only the extreme pressure additive compounded therein. Whilst said example and exhibited good extreme pressure performance in the gear wheel test, rust formed in the anti-rust test as no anti-rust agent and amine had been added thereto.
  • In contrast, in Comparative Examples 3 to 8 the minimum amount of carboxylic acid-based or carboxylic acid ester-based anti-rust agent had been added thereto and thus no rust formed in the anti-rust test. However, there was a marked fall in the durable load in the FZG gear wheel test as a result of the addition of the anti-rust agent.
  • Furthermore, only the amine had been added in Comparative Examples 2 and 9, with no carboxylic acid-based or carboxylic acid ester-based anti-rust agent also being added. Adequate anti-rust effect was not obtained.
  • With Examples 1 to 9, which are according to the present invention, the amount of carboxylic acid-based or carboxylic acid ester-based anti-rust agent required was greatly reduced as a result of the synergistic effect between the amine and the carboxylic acid-based or carboxylic acid ester-based anti-rust agent which are essential components of the invention, and there was a great improvement in respect of the fall in the extreme pressure performance which was caused by the anti-rust agent.
  • The lubricating oil compositions of the present invention are virtually free, or completely free, of metals which are harmful in respect of both the environment and safety and they maintain a good anti-rust performance whilst also having good extreme pressure performance to match the increased speeds, higher pressures, more compact nature and improvement in durability requirements of modern industrial machinery.
  • Furthermore, the amount of anti-rust agent added can be reduced by means of the present invention and lubricating oil compositions which have excellent performance can be provided more cheaply.
  • The lubricating oil compositions of the present invention are useful as lubricating oil compositions where both anti-rust performance and extreme pressure performance are required and they can be used as hydraulic working oils, gear wheel oils, compressor oils, turbine oils and bearing oils.

Claims (10)

  1. Lubricating oil composition comprising a minor amount of an additive combination comprising
    (i) a carboxylic acid-based or carboxylic acid ester-based anti-rust agent;
    (ii) at least one type of amine selected from among the group comprising (A) the alkyl amines which can be represented by general formula (1),

            (R1)nNH3-n     (1)

    wherein R1 represents a saturated or unsaturated alkyl group which has from 12 to 30 carbon atoms, and n is an integer of value 1 or 2; and (B) the N-alkylpolyalkylenediamines which can be represented by general formula (2),

            R2NH(CH2)mNH2     (2)

    wherein R2 represents a saturated or unsaturated alkyl group which has from 12 to 30 carbon atoms, and m is an integer of value from 2 to 5; and a major amount of lubricating oil base oil, wherein said composition comprises from 0.001 to 0.5 part by weight of the carboxylic acid-based or carboxylic acid ester-based anti-rust agent; and from 0.001 to 0.05 part by weight of the at least one type of amine, per 100 parts by weight of lubricating oil base oil.
  2. Lubricating oil composition according to Claim 1 wherein said composition comprises from 0.001 to 0.05 part by weight of the carboxylic acid-based or carboxylic acid ester-based anti-rust agent, per 100 parts by weight of lubricating oil base oil.
  3. Lubricating oil composition according to Claim 1 or 2, which further comprises, as an extreme pressure additive, one or more compounds selected from a β-dithiophosphorylpropionic acid which can be represented by general formula (3),

            S=P(-O-R3)2SCH2CH(R4)COOH     (3)

    wherein R3 represents a branched alkyl group which has from 3 to 8 carbon atoms, and R4 is a hydrogen atom or a group selected from among the linear .chain or branched alkyl groups which have from 1 to 4 carbon atoms; a triaryl phosphorathiflate which can be represented by general formula (4)

            S=P(O-Ph-R5)3     (4)

    wherein Ph represents a phenyl group, and R5 is a hydrogen atom or a linear chain or branched alkyl group which has from 1 to 9 carbon atoms; and an acidic phosphate ester which can be represented by general formula (5),

            O=P(OR6)3-r(OH)r     (5)

    wherein R6 is a linear chain or branched alkyl group which has from 3 to 13 carbon atoms, and r is an integer of value 1 or 2.
  4. Lubricating oil composition according to any one of Claims 1 to 3, wherein the lubricating oil base oil is a petroleum based and/or synthetic hydrocarbon based oil.
  5. Lubricating oil composition according to any one of Claims 1 to 4, which is used as a hydraulic oil composition, a compressor oil composition, a turbine oil composition, a bearing oil composition and/or a gear oil composition.
  6. Use of a minor amount of (i) a carboxylic acid-based or carboxylic acid ester- based anti-rust agent; and (ii) at least one type of amine selected from among the group comprising (A) the alkyl amines which can be represented by general formula (1),

            (R1)nNH3-n     (1)

    wherein R1 represents a saturated or unsaturated alkyl group which has from 12 to 30 carbon atoms, and n is an integer of value 1 or 2; and (B) the N-alkylpolyalkylenediamines which can be represented by general formula (2),

            R2NH(CH2)mNH2     (2)

    wherein R2 represents a saturated or unsaturated alkyl group which has from 12 to 30 carbon atoms, and m is an integer of value from 2 to 5, as an anti-rust additive combination in a lubricating oil composition comprising a major amount of lubricating oil base oil.
  7. Use according to Claim 6, wherein said lubricating oil composition comprises from 0.001 to 0.5 part by weight of the carboxylic acid-based or carboxylic acid ester-based anti-rust agent; and from 0.001 to 0.2 part by weight of the at least one type of amine, per 100 parts by weight of lubricating oil base oil
  8. Use according to Claim 6 or 7, wherein the lubricating oil composition comprises from 0.001 to 0.05 part by weight of the at least one type of amine, per 100 parts by weight of lubricating oil base oil composition.
  9. Use according to any one of Claims 6 to 8, wherein the lubricating oil composition further comprises, as an extreme pressure additive one or more compounds selected from a β-dithiophosphorylpropionic acid which can be represented by general formula (3),

            S=P(-O-R3)2SCH2CH(R4)COOH     (3)

    wherein R3 represents a branched alkyl group which has from 3 to 8 carbon atoms, and R4 is a hydrogen atom or a group selected from among the linear chain or branched alkyl groups which have from 1 to 4 carbon atoms; a triaryl phosphorothioate which can be represented by general formula (4)

            S=P(O-Ph-R5)3     (4)

    wherein Ph represents a phenyl group, and R5 is a hydrogen atom or a linear chain or branched alkyl group which has from 1 to 9 carbon atoms; and an acidic phosphate esters which can be represented by general formula (5),

            O=P(OR6)3-r(OH)r     (5)

    wherein R6 is a linear chain or branched alkyl group which has from 3 to 13 carbon atoms, and r is an integer of value 1 or 2.
  10. Use according to any one of Claims 6 to 9, wherein the lubricating oil composition is a hydraulic oil composition, a compressor oil composition, a turbine oil composition, a bearing oil composition and/or a gear oil composition.
EP02745288A 2001-05-11 2002-05-07 Lubricating oil composition comprising an additive combination of a carboxylic acid and an amine as ant-rust agent Expired - Lifetime EP1385926B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001142228 2001-05-11
JP2001142228A JP4608129B2 (en) 2001-05-11 2001-05-11 Lubricating oil composition
PCT/EP2002/005066 WO2002092735A1 (en) 2001-05-11 2002-05-07 Lubricating oil composition comprising an additive combination of a carboxylic acid and an amine as ant-rust agent

Publications (2)

Publication Number Publication Date
EP1385926A1 EP1385926A1 (en) 2004-02-04
EP1385926B1 true EP1385926B1 (en) 2006-03-01

Family

ID=18988568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02745288A Expired - Lifetime EP1385926B1 (en) 2001-05-11 2002-05-07 Lubricating oil composition comprising an additive combination of a carboxylic acid and an amine as ant-rust agent

Country Status (11)

Country Link
US (1) US20040214733A1 (en)
EP (1) EP1385926B1 (en)
JP (1) JP4608129B2 (en)
KR (1) KR100866811B1 (en)
CN (1) CN1325620C (en)
AT (1) ATE318881T1 (en)
CA (1) CA2447044A1 (en)
DE (1) DE60209497T2 (en)
DK (1) DK1385926T3 (en)
ES (1) ES2259375T3 (en)
WO (1) WO2002092735A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013016387A1 (en) * 2011-07-25 2013-01-31 Mccreery David Corrosion-inhibiting lubricant and methods therefor

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524101B2 (en) * 2003-12-25 2010-08-11 新日本石油株式会社 Gas turbine apparatus and gas turbine apparatus lubrication method
WO2005093020A1 (en) * 2004-03-25 2005-10-06 Nippon Oil Corporation Lubricating oil composition for industrial machinery and equipment
JP2005307203A (en) * 2004-03-25 2005-11-04 Nippon Oil Corp Lubricating oil composition
JP2005307202A (en) * 2004-03-25 2005-11-04 Nippon Oil Corp Lubricating oil composition
JP2005290182A (en) * 2004-03-31 2005-10-20 Nippon Oil Corp Gear oil composition
JP4641381B2 (en) * 2004-03-31 2011-03-02 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for paper machine
JP2005290181A (en) * 2004-03-31 2005-10-20 Nippon Oil Corp Gear oil composition
US20050272614A1 (en) * 2004-06-07 2005-12-08 Walker Johnny B Novel multi-purpose rust preventative and penetrant
CN101090958B (en) * 2004-11-24 2011-12-21 新日本石油株式会社 Lubricating oil composition
JP4778254B2 (en) * 2005-03-30 2011-09-21 Jx日鉱日石エネルギー株式会社 Refrigerator oil composition
US20070232505A1 (en) * 2006-03-31 2007-10-04 Marc-Andre Poirier Method for reducing deposit formation in lubricant compositions
JP5096703B2 (en) * 2006-07-04 2012-12-12 日本精工株式会社 Water-resistant grease composition and vehicle hub unit bearing
JP5166783B2 (en) * 2006-07-19 2013-03-21 昭和シェル石油株式会社 Lubricating oil composition for turbine equipment provided with compressor and speed increasing gear device
EP2041250A1 (en) * 2006-07-19 2009-04-01 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
CN101511984A (en) * 2006-09-11 2009-08-19 昭和砚壳石油株式会社 Lubricating oil composition
JP5255243B2 (en) * 2006-09-11 2013-08-07 昭和シェル石油株式会社 Lubricating oil composition
ES2384584T3 (en) * 2006-09-28 2012-07-09 Idemitsu Kosan Co., Ltd. Lubricating oil composition
JP5110843B2 (en) * 2006-10-05 2012-12-26 日本精工株式会社 Grease composition for bearing with rubber seal and hub unit bearing with rubber seal for vehicle
JP5180466B2 (en) * 2006-12-19 2013-04-10 昭和シェル石油株式会社 Lubricating oil composition
JP5237562B2 (en) * 2007-01-23 2013-07-17 昭和シェル石油株式会社 Lubricating oil composition for ceramic ball rolling bearing
JP5426829B2 (en) * 2007-02-07 2014-02-26 昭和シェル石油株式会社 Lubricating oil composition for chattering, vibration and squealing of hydraulic cylinders
JP5280668B2 (en) * 2007-11-16 2013-09-04 出光興産株式会社 Lubricating oil composition
WO2009074664A1 (en) * 2007-12-12 2009-06-18 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
JP5475984B2 (en) * 2007-12-12 2014-04-16 昭和シェル石油株式会社 Lubricating oil composition
JP5475981B2 (en) * 2007-12-12 2014-04-16 昭和シェル石油株式会社 Lubricating oil composition
US8394746B2 (en) 2008-08-22 2013-03-12 Exxonmobil Research And Engineering Company Low sulfur and low metal additive formulations for high performance industrial oils
US8476205B2 (en) 2008-10-03 2013-07-02 Exxonmobil Research And Engineering Company Chromium HVI-PAO bi-modal lubricant compositions
US20100105585A1 (en) * 2008-10-28 2010-04-29 Carey James T Low sulfur and ashless formulations for high performance industrial oils
KR20110111283A (en) * 2008-12-04 2011-10-10 바스프 에스이 Method for producing shaped elements from sheet steel galvanized on one or both sides
JP2010163611A (en) * 2008-12-19 2010-07-29 Showa Shell Sekiyu Kk Lubricating oil composition
JP5427457B2 (en) * 2009-04-02 2014-02-26 パイロットインキ株式会社 Water-based ink composition for ballpoint pen and ballpoint pen incorporating the same
JP6091042B2 (en) * 2009-06-29 2017-03-08 Jxエネルギー株式会社 Rust prevention oil composition
JP2011140642A (en) * 2009-12-10 2011-07-21 Showa Shell Sekiyu Kk Lubricating oil composition
JP5702589B2 (en) * 2009-12-10 2015-04-15 昭和シェル石油株式会社 Lubricating oil composition
US8642523B2 (en) 2010-02-01 2014-02-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8748362B2 (en) 2010-02-01 2014-06-10 Exxonmobile Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed gas engines by reducing the traction coefficient
US8759267B2 (en) 2010-02-01 2014-06-24 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8598103B2 (en) 2010-02-01 2013-12-03 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low, medium and high speed engines by reducing the traction coefficient
US8728999B2 (en) 2010-02-01 2014-05-20 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
JP5731170B2 (en) * 2010-11-19 2015-06-10 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for sliding part provided with aluminum material and lubricating method
AU2013302656A1 (en) 2012-08-14 2015-03-05 Basf Se Lubricant composition comprising acyclic hindered amines
JP5961097B2 (en) * 2012-11-13 2016-08-02 出光興産株式会社 Lubricating oil composition
WO2015085083A1 (en) * 2013-12-06 2015-06-11 Basf Se Composition and method of forming the same
JP5970735B2 (en) * 2014-02-03 2016-08-17 フックス ペトロループ ソシエタ ヨーロピア Additive composition and industrial processing fluid
JP6666691B2 (en) * 2015-11-04 2020-03-18 シェルルブリカンツジャパン株式会社 Lubricating oil composition
WO2017171020A1 (en) * 2016-03-31 2017-10-05 出光興産株式会社 Lubricating oil composition, and precision reduction gear using same
CN112126495B (en) * 2020-09-01 2022-08-19 珠海格力节能环保制冷技术研究中心有限公司 Refrigerating machine oil composition

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3931022A (en) * 1974-09-16 1976-01-06 Texaco Inc. Turbine lubricant and method
US5152908A (en) * 1987-05-07 1992-10-06 Tipton Craig D Gear lubricant package containing a synergistic combination of components
US5049290A (en) * 1987-05-11 1991-09-17 Exxon Chemical Patents Inc. Amine compatibility aids in lubricating oil compositions
GB8929096D0 (en) * 1989-12-22 1990-02-28 Ethyl Petroleum Additives Ltd Metal free lubricants
US5275749A (en) * 1992-11-06 1994-01-04 King Industries, Inc. N-acyl-N-hydrocarbonoxyalkyl aspartic acid esters as corrosion inhibitors
IL107927A0 (en) * 1992-12-17 1994-04-12 Exxon Chemical Patents Inc Oil soluble ethylene/1-butene copolymers and lubricating oils containing the same
DE69519690T2 (en) * 1994-02-11 2001-06-28 Lubrizol Corp Metal-free hydraulic fluid with amine salt
JP4142115B2 (en) * 1994-11-09 2008-08-27 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Lubricating oil composition
GB2301113A (en) * 1995-05-22 1996-11-27 Ethyl Petroleum Additives Ltd Extreme pressure gear lubricant
ES2157549T3 (en) * 1996-07-15 2001-08-16 Ciba Sc Holding Ag PROPIONIC ACIDS BETA-DITIOFOSFORILADOS IN LUBRICANTS.
JPH10298575A (en) * 1997-04-24 1998-11-10 Cosmo Sogo Kenkyusho:Kk Rust-preventive composition
AU746879B2 (en) * 1998-08-20 2002-05-02 Shell Internationale Research Maatschappij B.V. Lubricating oil composition useful in hydraulic fluids
JP4836298B2 (en) * 1998-08-20 2011-12-14 昭和シェル石油株式会社 Lubricating oil composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013016387A1 (en) * 2011-07-25 2013-01-31 Mccreery David Corrosion-inhibiting lubricant and methods therefor

Also Published As

Publication number Publication date
CA2447044A1 (en) 2002-11-21
KR20030096370A (en) 2003-12-24
JP2002338983A (en) 2002-11-27
ATE318881T1 (en) 2006-03-15
DE60209497T2 (en) 2006-11-16
CN1325620C (en) 2007-07-11
DK1385926T3 (en) 2006-07-10
CN1522295A (en) 2004-08-18
WO2002092735A1 (en) 2002-11-21
KR100866811B1 (en) 2008-11-04
ES2259375T3 (en) 2006-10-01
US20040214733A1 (en) 2004-10-28
EP1385926A1 (en) 2004-02-04
JP4608129B2 (en) 2011-01-05
DE60209497D1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
EP1385926B1 (en) Lubricating oil composition comprising an additive combination of a carboxylic acid and an amine as ant-rust agent
JP4836298B2 (en) Lubricating oil composition
KR100850654B1 (en) Lubricating oil composition
JP4083392B2 (en) Lubricating oil composition
JP5237562B2 (en) Lubricating oil composition for ceramic ball rolling bearing
AU2002224973A1 (en) Lubricating oil composition
JP2010528154A (en) Lubricating compositions containing sulfur-free, phosphorus-free and ashless antiwear agents and amine-containing friction modifiers
KR20010099626A (en) Lubricating oil composition useful in hydraulic fluids
JP2008214618A (en) Lubricant composition
JP2005139451A (en) Ashless additive formulation suitable for hydraulic oil application
JP2013514425A (en) Additive composition for engine oil
JP2008195952A (en) Wear-resistant lubricating oil composition
JP5249683B2 (en) Lubricating oil composition in contact with silver-containing material
KR102124103B1 (en) Lubricant composition having improved antiwear properties
GB2444845A (en) Lubricating compositions
GB2444640A (en) Lubricating composition
JP5225343B2 (en) Lubricating oil composition
WO2019046252A1 (en) Transmission lubricant composition
AU2002316899B2 (en) Lubricating oil composition comprising an additive combination of a carboxylic acid and an amine as ant-rust agent
AU2002316899A1 (en) Lubricating oil composition comprising an additive combination of a carboxylic acid and an amine as ant-rust agent
JP2021080339A (en) Lubricating oil composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60209497

Country of ref document: DE

Date of ref document: 20060427

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060801

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2259375

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20090414

Year of fee payment: 8

Ref country code: ES

Payment date: 20090521

Year of fee payment: 8

Ref country code: NL

Payment date: 20090528

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090515

Year of fee payment: 8

Ref country code: FI

Payment date: 20090515

Year of fee payment: 8

Ref country code: FR

Payment date: 20090330

Year of fee payment: 8

Ref country code: IT

Payment date: 20090423

Year of fee payment: 8

Ref country code: SE

Payment date: 20090409

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090430

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090518

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090417

Year of fee payment: 8

BERE Be: lapsed

Owner name: *SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.

Effective date: 20100531

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100507

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100507

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100507

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100508

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100507

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210413

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60209497

Country of ref document: DE