EP1378582B1 - Procédé pour le traitement thermique des alliages de TiAl - Google Patents

Procédé pour le traitement thermique des alliages de TiAl Download PDF

Info

Publication number
EP1378582B1
EP1378582B1 EP03253539A EP03253539A EP1378582B1 EP 1378582 B1 EP1378582 B1 EP 1378582B1 EP 03253539 A EP03253539 A EP 03253539A EP 03253539 A EP03253539 A EP 03253539A EP 1378582 B1 EP1378582 B1 EP 1378582B1
Authority
EP
European Patent Office
Prior art keywords
titanium aluminide
aluminide alloy
temperature
alpha
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03253539A
Other languages
German (de)
English (en)
Other versions
EP1378582A1 (fr
Inventor
Dawei Hu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Publication of EP1378582A1 publication Critical patent/EP1378582A1/fr
Application granted granted Critical
Publication of EP1378582B1 publication Critical patent/EP1378582B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the present invention relates to a method of heat-treating titanium aluminide and in particular to a method of heat-treating.
  • first long term soak at a sub alpha transus temperature and a second short term soak at a temperature just above the alpha transus temperature followed by furnace or air cooling of a titanium aluminide alloy as disclosed by Yang J, Wang JN, Wang Y, Xia QF and Zhang B in Intermetallics 2001, 9, 369.
  • first long term soaking temperature has to be as close to the alpha transus temperature as possible in order to minimise the soaking time.
  • the original lamellar microstructure transforms into granular gamma and alpha with a high volume fraction of the alpha phase.
  • the remaining gamma grains act as pinning points to prevent the rapid growth of alpha phase.
  • the second short term soaking temperature has to be above the alpha transus temperature and as close as possible to the alpha transus temperature and the second short term soaking should be as short as possible.
  • This heat treatment requires precision control and rapid heating to the second short term soaking temperature.
  • the aim is to leave the titanium aluminide alloy in the alpha phase field for the shortest possible time to prevent excessive alpha grain growth but this is difficult to realise in a production environment.
  • US-A-5 746 846 discloses a method to produced a fine grained gamma phase, nearly lamellar, microstructure by hot working the alloy in the range of 700°C to T alpha +20°C followed by annealing at T alpha -20°C to T alpha -1°C.
  • the present invention seeks to provide a novel method of heat-treating titanium aluminide alloy which reduces, preferably overcomes, the above-mentioned problems.
  • the present invention provides a method of heat-treating titanium aluminide alloy, the titanium aluminide alloy having a single alpha phase field and being capable of producing a massively transformed gamma microstructure, the method comprising the steps of
  • the predetermined time period is up to 2 hours.
  • the predetermined time period is up to 4 hours.
  • step (d) comprises heating the titanium aluminide alloy to a temperature about 30°C to 60°C below the alpha transus temperature.
  • step (a) comprises heating the titanium aluminide alloy to a temperature of about 20°C to 30°C above the alpha transus temperature.
  • step (f) comprises air-cooling or furnace cooling.
  • step (c) comprises air-cooling or oil cooling.
  • the titanium aluminide alloy consists of at least 46at% aluminium.
  • the titanium aluminide alloy may comprise 48at% aluminium, 2at% chromium, 2at% niobium and the balance titanium and incidental impurities.
  • the alpha transus temperature is about 1360°C
  • step (a) comprises heating to a temperature of 1380°C
  • step (b) comprises maintaining the titanium aluminide alloy at a temperature of about 1380°C for about 1 hour
  • step (c) comprises oil cooling the titanium aluminide alloy from a temperature of 1380°C to produce a massively transformed gamma microstructure
  • steps (d) and (e) comprise heating the titanium aluminide alloy to a temperature of about 1320°C for about 2 hours to precipitate alpha plates in the massively transformed gamma microstructure such that a refined microstructure is produced in the titanium aluminide alloy
  • step (f) comprises air cooling the titanium aluminide alloy to ambient temperature.
  • the titanium aluminide alloy may comprise 46at% aluminium, 8at% niobium, up to 0.07at% carbon and the balance titanium and incidental impurities.
  • the alpha transus temperature is about 1335°C
  • step (a) comprises heating to a temperature of 1360°C
  • step (b) comprises maintaining the titanium aluminide alloy at a temperature of about 1360°C for about 1 hour
  • step (c) comprises oil cooling, or air cooling, the titanium aluminide alloy from a temperature of 1360°C to produce a massively transformed gamma microstructure
  • steps (d) and (e) comprise heating the titanium aluminide alloy to a temperature of about 1300°C for about 4 hours to precipitate alpha plates in the massively transformed gamma microstructure such that a refined microstructure is produced in the titanium aluminide alloy
  • step (f) comprises air cooling the titanium aluminide alloy to ambient temperature.
  • the present invention is applicable to a gamma titanium aluminide alloy consisting of 45-46at% aluminium, 8at% niobium, up to 0.07at% carbon and the balance titanium and incidental impurities, for example 45.5at% aluminium, 8at% niobium and the balance titanium and incidental impurities.
  • the present invention is also applicable to a gamma titanium aluminide alloy consisting of 45-46at% aluminium, 2-6at% niobium, 2-6at% hafnium and the balance titanium and incidental impurities, for example 46at% aluminium, 4at% niobium, 4at% hafnium and the balance titanium and incidental impurities.
  • the titanium aluminide alloy may be a cast titanium aluminide component.
  • the method may comprise hot isostatic pressing of the cast titanium aluminide alloy component.
  • the hot isostatic pressing of the cast titanium aluminide alloy component is concurrent with step (e) .
  • the hot isostatic pressing comprises applying a pressure of about 150Mpa for about 4 hours.
  • the titanium aluminide alloy may be a compressor blade or a compressor vane.
  • a method of heat-treating a titanium aluminide alloy according to the present invention is described with reference to figure 1.
  • the present invention is concerned with heat-treating gamma titanium aluminide alloys with at least 46at% aluminium and a single alpha phase field.
  • the heat treatment process comprises heating the gamma titanium aluminide to a temperature T 1 above the alpha transus temperature T ⁇ .
  • the gamma titanium aluminide alloy is then maintained at a temperature T 1 above the alpha transus temperature T ⁇ in the single alpha phase field for a predetermined time period t 1 .
  • the gamma titanium aluminide is quenched, for example air cooled, or oil cooled, from the single alpha phase field at temperature T 1 to produce a massively transformed gamma microstructure.
  • the gamma titanium aluminide alloy is then heated to a temperature T 2 below the alpha transus temperature T ⁇ .
  • the gamma titanium aluminide alloy is maintained at the temperature T 2 in the alpha and gamma phase field for a predetermined time period t 2 to precipitate alpha plates in the massively transformed gamma microstructure such that a refined microstructure is produced in the titanium aluminide alloy.
  • the gamma titanium aluminide is cooled, for example air cooled, or furnace cooled, to ambient temperature.
  • Figure 2 illustrates a very fine duplex microstructure of a gamma titanium aluminide alloy treated according to the present invention.
  • differently orientated alpha plates precipitated in a massive gamma phase matrix effectively reduce the grain size of the gamma titanium aluminide alloy and these are produced by the massive gamma to alpha + gamma phase transformation.
  • FIG 4 illustrates a coarse lamellar microstructure of a gamma titanium aluminide alloy treated according to a prior art method.
  • the coarse lamellar microstructure is produced by the alpha to alpha + gamma phase transformation.
  • the gamma titanium aluminide is heated to a temperature T 1 about 20°C to 30°C above the alpha transus temperature T ⁇ .
  • the gamma titanium aluminide alloy is maintained at the temperature T 1 for up to 2 hours.
  • the gamma titanium aluminide alloy is then quenched, for example air cooled, or oil cooled, at a rate sufficient to induce a massively transformed gamma microstructure.
  • the gamma titanium alloy is heated to a temperature T 2 about 30°C to 60°C below the alpha transus temperature T ⁇ .
  • the gamma titanium aluminide alloy is maintained at the temperature T 2 for up to 4 hours to precipitate fine alpha plates with different orientations in the massively transformed gamma microstructure due to the massive gamma to alpha + gamma phase transformation. This gives rise to a very fine duplex microstructure.
  • the differently orientated alpha plates precipitated in the massive gamma phase matrix effectively reduce the grain size of the gamma titanium aluminide.
  • the gamma titanium aluminide alloy is then cooled, for example air cooled, or furnace cooled, to ambient temperature.
  • the holding at temperature T 1 for a time period t 1 also acts a homogenisation process for cast titanium aluminide alloys.
  • a gamma titanium aluminide alloy consisting of 48at% aluminium, 2at% chromium, 2at% niobium and the balance titanium plus incidental impurities was heat treated according to the present invention.
  • the gamma titanium aluminide alloy was oil cool quenched.
  • the gamma titanium aluminide alloy was air cooled to ambient temperature.
  • the microstructure of the gamma titanium aluminide alloy is shown in figure 3.
  • a gamma titanium aluminide alloy consisting of 46at% aluminium, 8at% niobium, up to 0.07at% carbon and the balance titanium plus incidental impurities was heat treated according to the present invention.
  • the gamma titanium aluminide alloy was oil quenched.
  • the gamma titanium aluminide alloy was air cooled to ambient temperature.
  • the present invention is applicable to a gamma titanium aluminide alloy consisting of 46at% aluminium, 5at% niobium, 0.3at% boron, 0.2at% carbon and the balance titanium plus incidental impurities.
  • the present invention is applicable to a gamma titanium aluminide alloy consisting of 47at% aluminium, 2at% niobium, 1at% tungsten, 1at% chromium, 1at% boron, 0.2at% silicon and the balance titanium plus incidental impurities.
  • the present invention is applicable to gamma titanium aluminide alloy consisting of 47at% aluminium, 2at% tantalum, 1at% chromium, 1at% manganese, 1at% boron, 0.2at% silicon and the balance titanium plus incidental impurities.
  • the present invention is also applicable to gamma titanium aluminide alloy consisting of 46at% aluminium, 5at% niobium, 1at% tungsten and the balance titanium plus incidental impurities.
  • the present invention is applicable to a gamma titanium aluminide alloy consisting of 45-46at% aluminium, 8at% niobium, up to 0.07at% carbon and the balance titanium and incidental impurities, for example 45.5at% aluminium, 8at% niobium and the balance titanium and incidental impurities.
  • the present invention is also applicable to a gamma titanium aluminide alloy consisting of 45-46at% aluminium, 2-6at% niobium, 2-6at% hafnium and the balance titanium and incidental impurities, for example 46at% aluminium, 4at% niobium, 4at% hafnium and the balance titanium and incidental impurities.
  • the present invention may be used to refine the microstructure of titanium aluminide alloys without the need for hot working.
  • the present invention has the advantage of simplicity and practicality over the prior art previously discussed.
  • the heat treatment at temperature T 1 for time t 1 in the single alpha phase field and does not have a rigid holding time and this allows the process to be carried out in conventional heat treatment facilities.
  • the gamma titanium aluminide alloys must be capable of producing massively transformed gamma microstructures.
  • the cooling rate during the quenching is not excessive and most gamma titanium aluminide alloys with at least 46at% aluminium and with at least 4at% refractory alloying elements may be quenched in air or oil depending on the size of the gamma titanium aluminide alloy component.
  • the temperature range for heat treatment at temperature T 2 for time t 2 is relatively wide and is not close to the alpha transus temperature T ⁇ , which reduces the technical requirement of the heat treatment facilities and makes the heat treatment process easier.
  • the present invention is particularly useful for gamma titanium aluminide alloy castings in which hot working is not possible.
  • the present invention refines the microstructure of gamma titanium aluminide alloy castings and reduces the scatter in mechanical properties and improves the room temperature ductility.
  • the cast gamma titanium aluminide alloy component may be hot isostatically pressed (HIP) to remove the porosity.
  • the hot isostatic pressing preferably occurs at the same time as the heat treatment temperature T 2 and for the time period of about 4 hours at a pressure of about 150Mpa and this is beneficial because this dispenses with the requirement for a separate hot isostatic pressing step.
  • the present invention is particularly suitable for gamma titanium aluminide gas turbine engine compressor blades as illustrated in figure 5.
  • the compressor blade 10 comprises a root 12, a shank 14, a platform 16 and an aerofoil 18.
  • the present invention is also suitable for gamma titanium aluminide gas turbine engine compressor vanes or other gamma titanium aluminide gas turbine engine components.
  • the present invention may also be suitable for gamma titanium aluminide components for other engine, machines or applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (20)

  1. Procédé pour traiter thermiquement un alliage d'aluminure de titane, l'alliage d'aluminure de titane ayant un domaine de phase alpha unique et étant capable de produire une microstructure gamma massivement transformée, le procédé comprenant les étapes de :
    (a) chauffer un alliage d'aluminure de titane à une température au-delà de la température de transus alpha,
    (b) maintenir l'alliage d'aluminure de titane à la température au-delà de la température de transus alpha dans le domaine de phase alpha unique pour une période de temps prédéterminée,
    (c) refroidir l'alliage d'aluminure de titane à partir du domaine de phase alpha unique pour produire une microstructure gamma massivement transformée,
    (d) chauffer l'alliage d'aluminure de titane à une température inférieure à la température de transus alpha dans le domaine de phase alpha et gamma,
    (e) maintenir l'alliage d'aluminure de titane à la température inférieure à la température de transus alpha pendant une période de temps prédéterminée pour précipiter des plaques alpha dans la microstructure gamma massivement transformée de telle sorte qu'une microstructure raffinée est produite dans l'alliage d'aluminure de titane,
    (f) refroidir l'alliage d'aluminure de titane à la température ambiante.
  2. Procédé selon la revendication 1, dans lequel dans l'étape (b) la période de temps prédéterminée va jusqu'à 2 heures.
  3. Procédé selon la revendication 1 ou la revendication 2, dans lequel dans l'étape (e) la période de temps prédéterminée va jusqu'à 4 heures.
  4. Procédé selon la revendication 1, la revendication 2 ou la revendication 3, dans lequel l'étape (d) comprend de chauffer l'alliage d'aluminure de titane à une température située d'environ 30°C à 60°C en dessous de la température de transus alpha.
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l'étape (a) comprend de chauffer l'alliage d'aluminure de titane à une température d'environ 20°C à 30°C au-dessus de la température de transus alpha.
  6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel l'étape (f) comprend un refroidissement à air ou un refroidissement à four.
  7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel l'étape (c) comprend un refroidissement à air ou un refroidissement à huile.
  8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel l'alliage d'aluminure de titane comprend au moins 46% atomique d'aluminium.
  9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel l'alliage d'aluminure de titane comprend 48% atomique d'aluminium, 2% atomique de chrome, 2% atomique de niobium et le reste de titane et d'impuretés incidentes.
  10. Procédé selon la revendication 9, dans lequel la température de transus alpha est d'environ 1360°C, l'étape (a) comprend de chauffer à une température de 1380°C, l'étape (b) comprend de maintenir l'alliage d'aluminure de titane à une température d'environ 1 380°C pendant environ 1 heure, l'étape (c) comprend un refroidissement à huile de l'alliage d'aluminure de titane à partir d'une température de 1380°C pour produire une microstructure gamma massivement transformée, les étapes (d) et (e) comprennent de chauffer l'alliage d'aluminure de titane à une température d'environ 1 320°C pendant environ 2 heures pour précipiter des plaques alpha dans la microstructure gamma massivement transformée de telle sorte qu'une microstructure raffinée est produite dans l'alliage d'aluminure de titane, et l'étape (f) comprend de refroidir par air l'alliage d'aluminure de titane à la température ambiante.
  11. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel l'alliage d'aluminure de titane comprend 46% atomique d'aluminium, 8% atomique de niobium, jusqu'à 0,07% atomique de carbone et le reste de titane et d'impuretés incidentes.
  12. Procédé selon la revendication 11, dans lequel la température de transus alpha est d'environ 1335°C, l'étape (a) comprend de chauffer à une température de 1360°C, l'étape (b) comprend de maintenir l'alliage d'aluminure de titane à une température d'environ 1 360°C pendant environ 1 heure, l'étape (c) comprend de refroidir par huile ou de refroidir par air, l'alliage d'aluminure de titane à partir d'une température de 1360°C pour produire une microstructure gamma massivement transformée, les étapes (d) et (e) comprennent de chauffer l'alliage d'aluminure de titane à une température d'environ 1 300°C pendant environ 4 heures pour précipiter des plaques alpha dans la microstructure gamma massivement transformée de telle sorte qu'une microstructure raffinée est produite dans l'alliage d'aluminure de titane, et l'étape (f) comprend de refroidir par air l'alliage d'aluminure de titane à la température ambiante.
  13. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel l'alliage d'aluminure de titane comprend 45-46% atomique d'aluminium, 8% atomique de niobium, jusqu'à 0,07% atomique de carbone et le reste de titane et d'impuretés incidentes.
  14. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel l'alliage d'aluminure de titane comprend 45-46% atomique d'aluminium, 2-6% atomique de niobium, 2-6% atomique d'hafnium et le reste de titane et d'impuretés incidentes.
  15. Procédé selon la revendication 14, dans lequel l'alliage d'aluminure de titane comprend 46% atomique d'aluminium, 4% atomique de niobium, 4% atomique d'hafnium et le reste de titane et d'impuretés incidentes.
  16. Procédé selon l'une quelconque des revendications 1 à 15, dans lequel l'alliage d'aluminure de titane est un composant d'alliage d'aluminure de titane de fonte.
  17. Procédé selon la revendication 16, comprenant de comprimer de manière isostatique à chaud le composant d'alliage d'aluminure de titane de fonte.
  18. Procédé selon la revendication 17, dans lequel la compression isostatique à chaud du composant d'alliage d'aluminure de titane de fonte est concomitante à l'étape (e).
  19. Procédé selon la revendication 17 ou la revendication 18, dans lequel la compression isostatique à chaud comprend d'appliquer une pression d'environ 150MPa pendant environ 4 heures.
  20. Procédé selon l'une quelconque des revendications 1 à 19, dans lequel l'alliage d'aluminure de titane est une pale de compresseur ou une aube de compresseur.
EP03253539A 2002-07-05 2003-06-04 Procédé pour le traitement thermique des alliages de TiAl Expired - Lifetime EP1378582B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0215563 2002-07-05
GBGB0215563.8A GB0215563D0 (en) 2002-07-05 2002-07-05 A method of heat treating titanium aluminide

Publications (2)

Publication Number Publication Date
EP1378582A1 EP1378582A1 (fr) 2004-01-07
EP1378582B1 true EP1378582B1 (fr) 2004-10-20

Family

ID=9939892

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03253539A Expired - Lifetime EP1378582B1 (fr) 2002-07-05 2003-06-04 Procédé pour le traitement thermique des alliages de TiAl

Country Status (4)

Country Link
US (1) US20040003877A1 (fr)
EP (1) EP1378582B1 (fr)
DE (1) DE60300101T2 (fr)
GB (1) GB0215563D0 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0319061D0 (en) * 2003-08-14 2003-09-17 Rolls Royce Plc A method of heat treating titanium aluminide
GB0601662D0 (en) 2006-01-27 2006-03-08 Rolls Royce Plc A method for heat treating titanium aluminide
GB0616566D0 (en) * 2006-08-19 2006-09-27 Rolls Royce Plc An alloy and method of treating titanium aluminide
CA2696778A1 (fr) * 2010-03-17 2011-09-17 Ignis Innovation Inc. Procedes d'extraction des parametres d'uniformite de duree de vie
US8358417B2 (en) 2010-10-21 2013-01-22 Spectrasensors, Inc. Spectrometer with validation cell
US10006113B2 (en) 2012-08-21 2018-06-26 United Technologies Corporation Gamma titanium dual property heat treat system and method
CN104480347B (zh) * 2014-12-17 2017-03-29 南京理工大学 一种TiAl基合金及其热处理工艺
CN114150242B (zh) * 2021-11-25 2023-07-18 南京理工大学 一种抑制轻质高强TiAl合金片层粗化的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076858A (en) * 1989-05-22 1991-12-31 General Electric Company Method of processing titanium aluminum alloys modified by chromium and niobium
JP2903102B2 (ja) * 1994-03-02 1999-06-07 科学技術庁金属材料技術研究所長 高温高強度TiAl基合金
US5442847A (en) * 1994-05-31 1995-08-22 Rockwell International Corporation Method for thermomechanical processing of ingot metallurgy near gamma titanium aluminides to refine grain size and optimize mechanical properties
US5417781A (en) * 1994-06-14 1995-05-23 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties
US6231699B1 (en) * 1994-06-20 2001-05-15 General Electric Company Heat treatment of gamma titanium aluminide alloys
US5558729A (en) * 1995-01-27 1996-09-24 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties
USH1659H (en) * 1995-05-08 1997-07-01 The United States Of America As Represented By The Secretary Of The Air Force Method for heat treating titanium aluminide alloys
US5653828A (en) * 1995-10-26 1997-08-05 National Research Council Of Canada Method to procuce fine-grained lamellar microstructures in gamma titanium aluminides

Also Published As

Publication number Publication date
DE60300101D1 (de) 2004-11-25
US20040003877A1 (en) 2004-01-08
DE60300101T2 (de) 2005-03-03
EP1378582A1 (fr) 2004-01-07
GB0215563D0 (en) 2002-08-14

Similar Documents

Publication Publication Date Title
EP1612289B1 (fr) Procédé pour la production d'un article en alliage de titane du type alpha-bêta, bêta traité
US5653828A (en) Method to procuce fine-grained lamellar microstructures in gamma titanium aluminides
US7115175B2 (en) Modified advanced high strength single crystal superalloy composition
EP3822007A1 (fr) Procédé de fabrication d'un article en alliage de titane
US11780003B2 (en) Titanium alloys
US4612066A (en) Method for refining microstructures of titanium alloy castings
US7704339B2 (en) Method of heat treating titanium aluminide
SE462803B (sv) Riktat rekristalliserad nickelbassuperlegeringsplaat och saett att framstaella denna
US5417781A (en) Method to produce gamma titanium aluminide articles having improved properties
EP1786943A2 (fr) Produit moule traite thermiquement a base d'alliage de titane quasi beta
GB2440334A (en) A method of controlling the microstructure of a metal
EP1378582B1 (fr) Procédé pour le traitement thermique des alliages de TiAl
CN115572881A (zh) 一种TiZrHfNbTa体系难熔高熵合金的强韧性及失效模式调控方法
WO2017123186A1 (fr) Alliages à base de titane/aluminium ayant une meilleure résistance au fluage par renforcement de la phase gamma
US5015305A (en) High temperature hydrogenation of gamma titanium aluminide
EP1507017A1 (fr) Procédé pour le traitement thermique des alliages de TiAl
JP3926877B2 (ja) ニッケル基超合金の熱処理方法
EP0921207B1 (fr) Procédé pour améliorer des propriétés de résistance au fluage d'alliages de titane
JP3374553B2 (ja) Ti−Al系金属間化合物基合金の製造方法
WO2020235203A1 (fr) Procédé de production d'alliage tial et alliage tial
EP1889939B1 (fr) Alliage et procédé pour le traitement d'aluminure de titane
Jafari et al. The effects of solution treatment on the microstructure of the cast Ni-based IN100 superalloy
Sysoeva et al. High-strength granulated titanium alloys with the intermetallic type of hardening
Zheng et al. Microstructural control of duplex Ti–46.5 Al–2Cr–1.5 Nb–1V alloys
CN115679233A (zh) 一种物理场固态处理铸造钛合金的方法及得到的钛合金

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AKX Designation fees paid

Designated state(s): DE FR GB

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60300101

Country of ref document: DE

Date of ref document: 20041125

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050721

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190625

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190627

Year of fee payment: 17

Ref country code: GB

Payment date: 20190627

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60300101

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101