EP1377751A1 - Dispositif servant a comprimer un gaz grace a l'energie solaire et/ou a la chaleur ambiante - Google Patents

Dispositif servant a comprimer un gaz grace a l'energie solaire et/ou a la chaleur ambiante

Info

Publication number
EP1377751A1
EP1377751A1 EP02704469A EP02704469A EP1377751A1 EP 1377751 A1 EP1377751 A1 EP 1377751A1 EP 02704469 A EP02704469 A EP 02704469A EP 02704469 A EP02704469 A EP 02704469A EP 1377751 A1 EP1377751 A1 EP 1377751A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
gas
pressure
pressure heat
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02704469A
Other languages
German (de)
English (en)
Inventor
Peter Bammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1377751A1 publication Critical patent/EP1377751A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/02Devices for producing mechanical power from solar energy using a single state working fluid
    • F03G6/04Devices for producing mechanical power from solar energy using a single state working fluid gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/708Photoelectric means, i.e. photovoltaic or solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention relates to a device for compressing a gas by means of solar energy and / or ambient heat.
  • the system has a solar collector that is connected to a high-pressure heat exchanger.
  • the gas-filled high-pressure heat exchanger is connected to a heat exchanger via a turbine.
  • the gas is brought to a high temperature level in the high-pressure heat exchanger with the help of the solar collector (when the sun is shining) and fed into a turbine.
  • the gas in the turbine is completely expanded and further cooled in a heat exchanger that is not under high pressure. Due to the complete expansion, a pump is necessary with which the expanded gas can be compressed again and fed into the high-pressure heat exchanger.
  • the invention aims to provide a device in which it is not necessary to completely compress the gas for the high pressure heat exchanger again in each cycle and also to extract energy from the ambient air in order to use it e.g. to drive a car.
  • a device of the type described in the introduction in that a first high-pressure heat exchanger and a second high-pressure heat exchanger Shear are provided, the secondary side of which is a gas under pressure, the first.
  • Heat exchanger is exposed to solar radiation and / or the two heat exchangers are at different temperature levels, so that a compressor is provided which can be driven by a pneumatic cylinder, which uses the pressure difference between the two secondary sides, so that the compressor conveys gas into a store and that a pump is provided to pump the gas from the secondary side of the first heat exchanger into the secondary side of the second heat exchanger and vice versa after the pressure equalization.
  • the pressure difference between the two high pressure heat exchangers is converted into mechanical energy in the compressor. When the pressure is equalized, there is still a high gas pressure inside the two high-pressure heat exchangers compared to the atmospheric pressure in the environment.
  • the primary side of the second heat exchanger is additionally the gas which comes from the store after it has been expanded in a utility turbine. In this way, the expansion energy of the gas is used for the cooling of the second heat exchanger during the expansion.
  • the primary side of the first heat exchanger is the gas which is conveyed into the store by the compressor.
  • the compression heat generated in the compressor during gas compression is also fed to the first high-pressure heat exchanger. After the compressed gas flows through the primary side of the first high-pressure heat exchanger, the compressed gas is fed to the pressure reservoir.
  • At least one further compressor is provided for conveying further gas into the pressure accumulator, preferably via the primary side of the first heat exchanger or a further heat exchanger, which is generated by other energy, such as braking energy, wind energy or electrical energy obtained from photocells , drivable is. In this way it is possible to feed the braking energy back into the pressure accumulator through energy conversion.
  • the figure shows a schematic representation of the solar system according to the invention by means of high-pressure heat exchangers.
  • the system is described using an example for driving a passenger car.
  • the device comprises two high-pressure heat exchangers 1, 2, the secondary sides 1 ", 2" of which are connected to one another via a high-pressure pipeline.
  • the high-pressure heat exchanger 1 has a dark color coating 1 '' on its surface, since it serves as a solar collector.
  • the high-pressure heat exchanger 2 has heat sinks 2 '' on its surface for dissipating heat to the environment. In the case of a car, for example, the roof, the front and rear areas are large, one-piece surfaces for arranging the collector (high-pressure heat exchanger 1).
  • the high-pressure heat exchanger 2 which acts as a cooler for the system, is accommodated, for example, in the underbody of the vehicle.
  • the secondary sides 1 ", 2" of the high-pressure heat exchangers 1 and 2 are connected to a pneumatic cylinder 5 via pipes.
  • the secondary circuits 1 ", 2" of the two high-pressure heat exchangers 1, 2 and the pneumatic cylinder 5 have the same pressure, for example 500 bar. Valves 8, 9, 9 'and 31 are closed, valves 32, 33 are open. Due to the solar radiation on the high pressure heat exchanger shear 1, the medium inside heats up and the pressure rises.
  • the high pressure heat exchanger 2 is in the shade and has an ambient temperature. The rising temperature in the high-pressure heat exchanger 1 creates an overpressure that moves the piston of the pneumatic cylinder 5.
  • the piston rod of the pneumatic cylinder 5 is connected to the piston of a compressor 40. This movement also displaces the piston in the compressor 40.
  • valves 32 and 33 are closed.
  • the valves 32 'and 33' are opened and the piston of the pneumatic cylinder 5 is moved back to its starting position.
  • the pressure difference in the secondary circuit of the two high-pressure heat exchangers 1, 2 moves the piston of the pneumatic cylinder 5 back into its starting position.
  • fresh air is drawn into the compressor 40 via the check valve 37.
  • the valves 32 ', 33' are then closed again.
  • a pump 6 pumps the contents of the high-pressure heat exchangers 1 and 2 against one another after the valves 8 and 31 have been opened.
  • the pump 6 is driven either with unusable gas pressure from the pneumatic cylinder 5 or with stored gas pressure from a memory 11. If the pump 6 is operated with compressed air from the store 11, the valve 9 is opened for the pump running time. If the residual gas pressure from the pneumatic cylinder 5 is to be used, the valve 9 'is opened as an alternative (to valve 9).
  • the valves 8, 9 or 9 'and 31 are closed again.
  • the valves 32, 22 are opened again.
  • the medium in the high-pressure heat exchanger 1 is now warmed up again by the solar radiation and the medium in the high-pressure heat exchanger 2 is cooled in the shade.
  • the compressed gas heated by the compression in the compressor 40 is discharged through the check valve 36 through the pressure märseite 1 'of the high pressure heat exchanger 1, where the resulting compression heat is transferred to the secondary side 1 ".
  • the pressure obtained in the compressor 40 is stored in the memory 11.
  • the compressed air stored in the memory 11 can now be, for example, at a Turbine 12 can be converted into mechanical rotational energy.
  • the working pressure is between 40 and 200 bar.
  • the energy released relaxes the previously compressed medium and cools down.
  • This cold air flow is not released into the environment unused, but through the primary side 2 'of the high-pressure heat exchanger 2
  • the primary side 2 'of the high-pressure heat exchanger 2 gives off cold to the secondary side 2 "and, for this purpose, absorbs heat from the secondary side 2".
  • the gas emerging on the primary side 2' is heated and can be re-heated via a preheater 41 and a check valve 37 are sucked in by the compressor 40.
  • the warm-up time of the high pressure heat exchanger 1 or the cooling time of the high pressure heat exchanger 2 is shortened by the prevailing ambient temperatures or the temperature difference between the ambient air temperature on the sun side 19 and the ambient air temperature on the shadow side 14.
  • a typical temperature difference is 15 K.
  • the temperature difference of the ambient air between the sun and shade side creates a pressure difference between the secondary side 1 "of the high-pressure heat exchanger 1 and the secondary side 2" of the high-pressure heat exchanger 2, regardless of the solar radiation on the high-pressure heat exchanger 1. This pressure difference moves again the piston of the pneumatic cylinder 5 and the piston of the compressor 40.
  • the braking energy is recovered by feeding the mechanical energy into a gas compressor 21.
  • the gas compressor 21 can also be driven with other (for example renewable) forms of energy 23, for example wind energy.
  • the gas compressor 21 draws in fresh air and directs it in compressed form, in the line 20 through a non-return valve. til 24 via the primary side 1 'of the high-pressure heat exchanger 1 to the memory 11.
  • the compression heat of the compressor 21 is also conducted before the storage of the compressed air in the pressure accumulator 11 via the primary side 1' of the high-pressure heat exchanger 1 in order to heat it.
  • Compressor 40, pump 6, storage 11 can take the places of today's units in vehicles.
  • the drive unit in the vehicle can take place centrally via the existing drive train using a compressed air motor or turbine, or decentrally directly via the wheel hub.
  • the solar system is also suitable for stationary operation, e.g. on house roofs.
  • the energy obtained can be stored on site and does not have to be fed into a power grid.
  • the heat of compression can also be used via one or more high-pressure heat exchangers 1, 2. With appropriate stores 11, it is possible to store energy on site. The stored energy is used to cover peak loads if required. This also enables small wind power plants to be operated economically. Residual heat from can also be removed via the high pressure heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Wind Motors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

La présente invention concerne un dispositif servant à comprimer un gaz grâce à l'énergie solaire ou à la chaleur ambiante, ledit dispositif comprenant deux échangeurs thermiques haute pression (1, 2). Un échangeur thermique haute pression (1) sert de collecteur solaire et l'autre échangeur thermique haute pression (2) sert de dispositif de refroidissement. Les deux échangeurs thermiques haute pression (1, 2) sont reliés par des conduites tubulaires, des soupapes (8, 31, 32, 33) et un cylindre pneumatique (5). En raison des différents niveaux de température des deux échangeurs thermiques haute pression (1, 2) se forme une différence de pression qui déplace le cylindre pneumatique (5). Le cylindre pneumatique (5) agit sur un compresseur (40). Afin d'utiliser la chaleur de compression, la gaz comprimé est introduit dans la partie primaire de l'échangeur thermique haute pression (1) agissant en tant que collecteur. L'air pressurisé emmagasiné est utilisé pour entraîner une turbine (12). Le gaz détendu par une turbine (12) diminue fortement de température et est introduit dans la partie primaire de l'échangeur thermique haute pression (2) agissant en tant que dispositif de refroidissement. Un système d'échangeurs thermiques haute pression de ce type peut être utilisé pour entraîner des automobiles ou en tant qu'installation fixe, sur des toits de bâtiments par exemple.
EP02704469A 2001-03-16 2002-03-15 Dispositif servant a comprimer un gaz grace a l'energie solaire et/ou a la chaleur ambiante Withdrawn EP1377751A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT4112001 2001-03-16
AT0041101A AT410966B (de) 2001-03-16 2001-03-16 Vorrichtung zum verdichten eines gases mittels sonnenenergie und/oder umgebungswärme
PCT/AT2002/000084 WO2002075154A1 (fr) 2001-03-16 2002-03-15 Dispositif servant a comprimer un gaz grace a l'energie solaire et/ou a la chaleur ambiante

Publications (1)

Publication Number Publication Date
EP1377751A1 true EP1377751A1 (fr) 2004-01-07

Family

ID=3673765

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02704469A Withdrawn EP1377751A1 (fr) 2001-03-16 2002-03-15 Dispositif servant a comprimer un gaz grace a l'energie solaire et/ou a la chaleur ambiante

Country Status (16)

Country Link
EP (1) EP1377751A1 (fr)
JP (1) JP2004522898A (fr)
KR (1) KR20030084976A (fr)
CN (1) CN1498310A (fr)
AT (1) AT410966B (fr)
AU (1) AU2002238276B2 (fr)
BR (1) BR0208107A (fr)
CA (1) CA2440459A1 (fr)
EA (1) EA005229B1 (fr)
HR (1) HRP20030738A2 (fr)
MX (1) MXPA03008305A (fr)
NO (1) NO20034116L (fr)
NZ (1) NZ528439A (fr)
PL (1) PL363542A1 (fr)
WO (1) WO2002075154A1 (fr)
YU (1) YU72503A (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT414268B (de) * 2004-06-08 2006-10-15 Int Innovations Ltd Wärmekraftmaschine
DE102005053857B4 (de) * 2005-11-11 2008-11-13 Manfred Carlguth Anlage zur Umwandlung solarthermischer Energie in mechanische Energie
MD3918G2 (ro) * 2008-02-26 2009-12-31 Институт Энергетики Академии Наук Молдовы Instalaţie cu pompă de căldură pentru sistemul de alimentare cu căldură
CN101302945B (zh) * 2008-07-10 2011-04-27 张中和 通过流体温差产生能量的设备
ITNA20080071A1 (it) * 2008-12-23 2010-06-24 Connecta S R L Sistema di generazione di energia da solare termico.
MD148Z (ro) * 2009-03-27 2010-10-31 Борис ЛАЗАРЕНКУ Panou solar
CN101968040A (zh) * 2009-07-27 2011-02-09 黄得锋 一种热能转换装置及其配套的一种集能装置
GB2490082A (en) 2010-02-24 2012-10-17 Isentropic Ltd Improved heat storage system
GB201003105D0 (en) * 2010-02-24 2010-04-14 Isentropic Ltd Improved heat storage system
AT511637B1 (de) 2011-06-20 2013-08-15 Innova Gebaeudetechnik Gmbh Technische anlage zur gasverdichtung mittels temperatur- und druckunterschieden
AT511077B1 (de) * 2011-08-16 2012-09-15 Seyfried Andrea Mag Hochdruck-gas-antriebseinheit
CN104061029B (zh) * 2014-05-16 2015-12-30 张中和 一种太阳能集热流体温差空气增压发电设备
CN109654632B (zh) * 2018-12-02 2020-12-18 江苏科兴电器有限公司 一种多能互补综合能量管理系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB205504A (en) * 1922-10-12 1925-01-12 Tito Romagnoli Solar heat actuated pumping units
US4295342A (en) * 1977-10-27 1981-10-20 James Parro Heat exchange method using natural flow of heat exchange medium
US4150923A (en) * 1978-04-20 1979-04-24 Wardman John C Reciprocating pump powered by solar and wind energy
EP0267992A1 (fr) * 1986-11-17 1988-05-25 Michael Andrew Minovitch Moteur atmosphérique à condensation et procédé pour faire fonctionner ce moteur
GB2158215A (en) * 1984-04-26 1985-11-06 Fook Chong Chai Cooling plant
US5259363A (en) * 1991-12-23 1993-11-09 Lolar Logistics, Inc. Solar roofing system
AUPM859994A0 (en) * 1994-10-04 1994-10-27 Thermal Energy Accumulator Products Pty Ltd Apparatus and method relating to a thermovolumetric motor
US5622057A (en) * 1995-08-30 1997-04-22 Carrier Corporation High latent refrigerant control circuit for air conditioning system
DE19545308A1 (de) * 1995-12-05 1997-06-12 Asea Brown Boveri Konvektiver Gegenstromwärmeübertrager

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02075154A1 *

Also Published As

Publication number Publication date
AT410966B (de) 2003-09-25
WO2002075154A1 (fr) 2002-09-26
MXPA03008305A (es) 2004-10-15
JP2004522898A (ja) 2004-07-29
NO20034116L (no) 2003-11-17
EA200301021A1 (ru) 2004-02-26
CA2440459A1 (fr) 2002-09-26
PL363542A1 (en) 2004-11-29
NZ528439A (en) 2004-07-30
BR0208107A (pt) 2004-03-02
KR20030084976A (ko) 2003-11-01
AU2002238276B2 (en) 2006-05-25
ATA4112001A (de) 2003-01-15
EA005229B1 (ru) 2004-12-30
NO20034116D0 (no) 2003-09-16
HRP20030738A2 (en) 2005-06-30
CN1498310A (zh) 2004-05-19
YU72503A (sh) 2004-09-03

Similar Documents

Publication Publication Date Title
AT410966B (de) Vorrichtung zum verdichten eines gases mittels sonnenenergie und/oder umgebungswärme
EP2265453B1 (fr) Ensemble de refroidissement et procédé de refroidissement d'un groupe sensible à la température sur un véhicule automobile
EP2574739A1 (fr) Installation de stockage d'énergie thermique et son procédé de fonctionnement
EP2823156B1 (fr) Installation pour le stockage et le dépôt d'énergie thermique
DE202005003611U1 (de) Wärmekraftwerk mit Druckluftspeichervorrichtung zum Ausgleich fluktuierender Energieeinspeisung aus regenerativen Energiequellen
DE102012206296A1 (de) Anlage zur Speicherung und Abgabe thermischer Energie und Verfahren zu deren Betrieb
EP1759116B1 (fr) Machine thermique
DE102019007992A1 (de) Vorrichtung und Verfahren zur Energierückgewinnung für ein elektrisch angetriebenes Kraftfahrzeug
DE102012217142A1 (de) Verfahren zum Laden und Entladen eines Speichermediums in einem Wärmespeicher und Anlage zur Durchführung dieses Verfahrens
WO2013045437A1 (fr) Installation de stockage d'énergie thermique
DE102007034025A1 (de) Hydraulischer Hybridantrieb für ein Fahrzeug
DE102009024776A1 (de) Fahrzeug mit einem geschlossenen Fluidkreislauf
EP2336680A2 (fr) Dispositif de climatisation doté d'un dispositif de transmission de pression et procédé de fonctionnement d'un dispositif de climatisation
DE1149573B (de) Waermekraftanlage mit einer aus Verdichter, Brennkammer und Gasturbine bestehenden Gasturbinenanlage
DE102004008093B4 (de) Verfahren zum Betreiben eines Druckgasmotors
DE102013211398A1 (de) Abwärmerückgewinnungssystem für eine Brennkraftmaschine
DE102009030146A1 (de) Vorrichtung und Verfahren zur Energiespeicherung und -bereitstellung
DE102011108067A1 (de) Elektrische Energiegewinnung aus Umweltwärme durch einen kombinierten Wärmepumpen-ORC-Prozess, mit Kondensationswärmerückgewinnung im ORC-Prozess und Kältemitteltemperaturanhebung im Wärmepumpenkreislauf
DE2304783A1 (de) Waermekraftanlage
CH708686A2 (de) Druckgasantrieb.
DE102016010272A1 (de) System und verfahren zur wiedergewinnung von thermischer energie für einen verbrennungsmotor
DE102014002335A1 (de) Verfahren und Vorrichtung zur Bereitstellung von Druckluft
DE2826396A1 (de) Antrieb fuer nebenaggregate an kraftfahrzeugen
DE102005038615A1 (de) Vorrichtung und Verfahren zur Energieumwandlung mittels Druckluftspeicher als permanente Energiespeicher und der Kopplung leistungssteigernder Module
EP4379875A1 (fr) Dispositif et procédé de régulation de température d'un véhicule à hydrogène

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051001