EP1375173B1 - matériau d'enregistrement par jet d'encre - Google Patents

matériau d'enregistrement par jet d'encre Download PDF

Info

Publication number
EP1375173B1
EP1375173B1 EP20020100755 EP02100755A EP1375173B1 EP 1375173 B1 EP1375173 B1 EP 1375173B1 EP 20020100755 EP20020100755 EP 20020100755 EP 02100755 A EP02100755 A EP 02100755A EP 1375173 B1 EP1375173 B1 EP 1375173B1
Authority
EP
European Patent Office
Prior art keywords
ink
ink jet
jet recording
group
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20020100755
Other languages
German (de)
English (en)
Other versions
EP1375173A1 (fr
Inventor
Stefaan Lingier
Johan Loccufier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert NV
Agfa Gevaert AG
Original Assignee
Agfa Gevaert NV
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV, Agfa Gevaert AG filed Critical Agfa Gevaert NV
Priority to EP20020100755 priority Critical patent/EP1375173B1/fr
Priority to DE2002618991 priority patent/DE60218991T2/de
Priority to US10/413,342 priority patent/US20040005417A1/en
Priority to JP2003180705A priority patent/JP2004050831A/ja
Publication of EP1375173A1 publication Critical patent/EP1375173A1/fr
Application granted granted Critical
Publication of EP1375173B1 publication Critical patent/EP1375173B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5227Macromolecular coatings characterised by organic non-macromolecular additives, e.g. UV-absorbers, plasticisers, surfactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5218Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5254Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers

Definitions

  • the present invention relates to an ink jet recording material having an improved stabilization of the finished image against color fading due to light.
  • ink jet printing has become a technology of choice.
  • a recent survey on progress and trends in ink jet printing technology is given by Hue P. Le in Journal of Imaging Science and Technology Vol. 42 (1), Jan/Febr 1998.
  • tiny drops of ink fluid are projected directly onto an ink receptor surface without physical contact between the printing device and the receptor.
  • the printing device stores the printing data electronically and controls a mechanism for ejecting the drops image-wise. Printing is accomplished by moving the print head across the paper or vice versa.
  • Early patents on ink jet printers include US 3,739,393, US 3,805,273 and US 3,891,121.
  • the jetting of the ink droplets can be performed in several different ways.
  • a continuous droplet stream is created by applying a pressure wave pattern. This process is known as continuous ink jet printing.
  • the droplet stream is divided into droplets that are electrostatically charged, deflected and recollected, and into droplets that remain uncharged, continue their way undeflected, and form the image.
  • the charged deflected stream forms the image and the uncharged undeflected jet is recollected.
  • several jets are deflected to a different degree and thus record the image (multideflection system).
  • the ink droplets can be created “on demand” (“DOD” or “drop on demand” method) whereby the printing device ejects the droplets only when they are used in imaging on a receiver thereby avoiding the complexity of drop charging, deflection hardware, and ink recollection.
  • DOD on demand
  • the ink droplet can be formed by means of a pressure wave created by a mechanical motion of a piezoelectric transducer (so-called “piezo method”), or by means of discrete thermal pushes (so-called “bubble jet” method, or “thermal jet” method).
  • Ink compositions for ink jet typically include following ingredients : dyes or pigments, water and/or organic solvents, humectants such as glycols, detergents, thickeners, polymeric binders, preservatives, etc.. It will be readily understood that the optimal composition of such an ink is dependent on the ink jetting method used and on the nature of the substrate to be printed.
  • the ink compositions can be roughly divided in :
  • a particular problem is the stability of the color densities of the finished color ink jet image when exposed to light for a longer period ("light-fastness").
  • the light fading of colorants is mainly due to an oxidative decomposition of the colorant catalyzed by light, in particular by the UV spectral part. Therefore, there is a permanent need of more effective compounds which stabilize the colorants of the ink jet image against fading by light (in short, better "light-stabilizers” or better "antioxidants”).
  • the present invention seeks to realize an improvement in light-fastness of the colorants of the finished image obtained by ink jet printing.
  • an ink jet recording material comprising a support and a porous ink receiving layer comprising a binder, a pigment and a compound according to following general formula (I) : wherein R 1 represents a hydrogen atom, a hydroxyl group, an oxyradical group, an aliphatic group, an acyl group, an aliphatic oxy group or an acyloxy group; and R 2 represents an aliphatic group having at least three carbon atoms and at least two hydroxyl groups.
  • the support for use in the present invention can be chosen from paper type and polymeric type supports well-known from photographic technology.
  • Paper types include plain paper, cast coated paper, polyethylene coated paper and polypropylene coated paper.
  • Polymeric supports include cellulose acetate propionate or cellulose acetate butyrate, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyamides, polycarbonates, polyimides, polyolefins, poly(vinylacetals), polyethers and polysulfonamides.
  • Other examples of useful high-quality polymeric supports for the present invention include opaque white polyesters and extrusion blends of polyethylene terephthalate and polypropylene. Polyester film supports and especially polyethylene terephthalate are preferred because of their excellent properties of dimensional stability.
  • a subbing layer may be employed to improve the bonding of the ink-receiving layer to the support.
  • Useful subbing layers for this purpose are well known in the photographic art and include, for example, polymers of vinylidene chloride such as vinylidene chloride /acrylonitrile /acrylic acid terpolymers or vinylidene chloride /methyl acrylate /itaconic acid terpolymers.
  • the porous ink receiving layer contains, apart from a binder and a pigment, a light-stabilizer according to general formula (I) as shown above.
  • the 4-acylamino-2,2,6,6-tetramethylpiperazine derivatives according to this general formula (I) are known from US 6,232,469. However, their particular advantage as light-stabilizers in a particular type of ink jet recording material was not recognized in the latter disclosure.
  • Useful substances include following light-stabilizers (LS-1 to 13) without being limited thereto.
  • a preferred effective compound is light-stabilizer LS-4.
  • the light-stabilizers are preferably added to the coating solution of the ink receiving layer as aqueous solutions.
  • the amount of the antioxidant in the layer (or in the coating composition ? ) is preferably comprised between 0.5 and 3 g/m 2 .
  • the binder can be chosen from a list of compounds well-known in the art including hydroxyethyl cellulose; hydroxypropyl cellulose; hydroxyethylmethyl cellulose; hydroxypropyl methyl cellulose; hydroxybutylmethyl cellulose; methyl cellulose; sodium carboxymethyl cellulose; sodium carboxymethylhydroxethyl cellulose; water soluble ethylhydroxyethyl cellulose; cellulose sulfate; polyvinyl alcohol; vinylalcohol copolymers; polyvinyl acetate; polyvinyl acetal; polyvinyl pyrrolidone; polyacrylamide; acrylamide/acrylic acid copolymer; polystyrene, styrene copolymers; acrylic or methacrylic polymers; styrene/acrylic copolymers; ethylene-vinylacetate copolymer; vinylmethyl ether/maleic acid copolymer; poly(2-acrylamido-2-methyl propane sulf
  • a preferred binder for the practice of the present invention is a polyvinylalcohol (PVA), a vinylalcohol copolymer or modified polyvinyl alcohol.
  • PVA polyvinylalcohol
  • the polyvinyl alcohol is a cationic type polyvinyl alcohol, such as the cationic polyvinyl alcohol grades from Kuraray, such as POVAL C506, POVAL C118, and from Nippon Goshei.
  • Mixtures of two or more binders can be used.
  • the pigment used in the ink receiving layer is preferably an inorganic pigment, which can be chosen from neutral, anionic and cationic pigment types.
  • Useful pigments include e.g. silica, talc, clay, hydrotalcite, kaolin, diatomaceous earth, calcium carbonate, magnesium carbonate, basic magnesium carbonate, aluminosilicate, aluminum trihydroxide, aluminum oxide (alumina), titanium oxide, zinc oxide, barium sulfate, calcium sulfate, zinc sulfide, satin white, alumina hydrate such as boehmite, zirconium oxide or mixed oxides.
  • the pigment is a cationic type pigment selected from alumina hydrates, aluminum oxides, aluminum hydroxides, aluminum silicates, and cationically modified silicas.
  • a preferred type of alumina hydrate is crystalline boehmite, or ⁇ -AlO(OH).
  • Useful types of boehmite include, in powder form, DISPERAL, DISPERAL HP14 and DISPERAL 40 from Sasol, MARTOXIN VPP2000-2 and GL-3 from Martinswerk GmbH.; liquid boehmite alumina systems, e.g. DISPAL 23N4-20, DISPAL 14N-25, DISPERAL AL25 from Sasol.
  • Patents on alumina hydrate include EP 500021, EP 634286, US 5,624,428, EP 742108, US 6,238,047, EP 622244, EP 810101, etc..
  • Useful cationic aluminum oxide (alumina) types include ⁇ -Al 2 O 3 types, such as NORTON E700, available from Saint-Gobain Ceramics & Plastics, Inc, and ⁇ -Al 2 O 3 types, such as ALUMINUM OXID C from Degussa; other aluminum oxide grades, such as BAIKALOX CR15 and CR30 from Baikowski Chemie; DURALOX grades and MEDIALOX grades from Baikowski Chemie, BAIKALOX CR80, CR140, CR125, B105CR from Baikowski Chemie; CAB-O-SPERSE PG003 trademark from Cabot, CATALOX GRADES and CATAPAL GRADES from from Sasol, such as PLURALOX HP14/150; colloidal Al 2 O 3 types, such as A
  • cationic inorganic pigments include aluminum trihydroxides such as Bayerite, or ⁇ -Al(OH) 3 , such as PLURAL BT, available from Sasol, and Gibbsite, or ⁇ -Al(OH) 3 , such as MARTINAL grades from Martinswerk GmbH, MARTIFIN grades, such as MARTIFIN OL104, MARTIFIN OL 107 and MARTIFIN OL111 from Martinswerk GmbH , MICRAL grades, such as MICRAL 1440, MICRAL 1500; MICRAL 632; MICRAL 855; MICRAL 916; MICRAL 932; MICRAL 932CM; MICRAL 9400 from JM Huber company; HIGILITE grades, e.g.
  • HIGILITE H42 or HIGILITE H43M from Showa Denka K.K.
  • Another useful type of cationic pigment is zirconium oxide such as NALCO OOSS008 trademark of ONDEO Nalco, acetate stabilized ZrO 2 , ZR20/20, ZR50/20, ZR100/20 and ZRYS4 trademarks from Nyacol Nano Technologies.
  • Useful mixed oxides are SIRAL grades from Sasol, colloidal metal oxides from Nalco such as Nalco 1056, Nalco TX10496, Nalco TX11678.
  • Another preferred type of inorganic pigment is silica which can be used as such in its anionic form or after cationic modification.
  • Silica as pigment in ink receiving elements is disclosed in numerous old and recent patents, e.g. US 4,892,591, US 4,902,568, EP 373573, EP 423829, EP 487350, EP 493100, EP 514633, etc.
  • the silica can be chosen from different types, such as crystalline silica, amorphous silica, precipitated silica, fumed silica, silica gel, spherical and non-spherical silica.
  • the silica may contain minor amounts of metal oxides from the group Al, Zr, Ti.
  • Useful types include AEROSIL OX50 (BET surface area 50 ⁇ 15 m 2 /g, average primary particle size 40 nm, SiO 2 content > 99.8%, Al 2 O 3 content ⁇ 0.08%), AEROSIL MOX170 (BET surface area 170 g/m 2 , average primary particle size 15 nm, SiO 2 content > 98.3%, Al 2 O 3 content 0.3-1.3%), AEROSIL MOX80 (BET surface area 80 ⁇ 20 g/m 2 , average primary particle size 30 nm, SiO 2 content > 98.3%, Al 2 O 3 content 0.3-1.3%), or other hydrophilic AEROSIL grades available from Degussa-Hüls AG, which may give aqueous dispersions with a small average particle size ( ⁇ 500 nm).
  • AEROSIL OX50 BET surface area 50 ⁇ 15 m 2 /g, average primary particle size 40 nm, SiO 2 content > 99.8%, Al 2 O 3
  • Cationically modified silica can be prepared by following methods, without meaning to be limitative :
  • the pigment may be chosen from organic particles such as polystyrene, polymethyl methacrylate, silicones, melamine-formaldehyde condensation polymers, urea-formaldehyde condensation polymers, polyesters and polyamides. Mixtures of inorganic and organic pigments can be used. However, most preferably the pigment is an inorganic pigment. The pigment must be present in a sufficient coverage in order to render the ink receiving layer sufficiently porous. For obtaining glossy ink receiving layers the particle size of the pigment should preferably be smaller than 500 nm. In order to obtain a porous glossy layer which can serve as an ink receiving layer for fast ink uptake the pigment/binder ratio should be at least 4.
  • the binder is no longer able to fill up all pores and voids created by the pigments in the coating.
  • the pore volume of these highly pigmented coatings should be higher than 0.1 ml/g of coated solids. This pore volume can be measured by gas adsorption (nitrogen) or by mercury diffusion.
  • a cationic substance acting as mordant may be present in the ink receiving layer.
  • Such substances increase the capacity of the layer for fixing and holding the dye of the ink droplets.
  • a particularly suited compound is a poly(diallyldimethylammonium chloride) or, in short, a poly(DADMAC). These compounds are commercially available from several companies, e.g. Aldrich, Nalco, CIBA, Nitto Boseki Co., Clariant, BASF and EKA Chemicals.
  • DADMAC copolymers such as copolymers with acrylamide, e.g NALCO 1470 trade mark of ONDEO Nalco or PAS-J-81, trademark of Nitto Boseki Co., such as copolymers of DADMAC with acrylates, such as Nalco 8190, trademark of ONDEO Nalco; copolymers of DADMAC with SO 2 , such as PAS-A-1 or PAS-92, trademarks of Nitto Boseki Co., copolymer of DADMAC with maleic acid, e.g.
  • PAS-410 trademark of Nitto Boseki Co., copolymer of DADMAC with diallyl(3-chloro-2-hydroxypropyl)amine hydrochloride, eg. PAS-880, trademark of Nitto Boseki Co., dimethylamine-epichlorohydrine copolymers, e.g.
  • Nalco 7135 trademark of ONDEO Nalco or POLYFIX 700, trade name of Showa High Polymer Co.
  • other POLYFIX grades which could be used are POLYFIX 601, POLYFIX 301, POLYFIX 301A, POLYFIX 250WS, and POLYFIX 3000 ;
  • NEOFIX E-117 trade name of Nicca Chemical Co., a polyoxyalkylene polyamine dicyanodiamine, and REDIFLOC 4150, trade name of EKA Chemicals, a polyamine;
  • MADQUAT methacryloxyethyltrimethylammonium chloride
  • CYPRO 514/515/516, SUPERFLOC 507/521/567 cationic acrylic polymers, such as ALCOSTAT 567, trademark of CIBA, cationic cellulose derivatives such as CELQUAT L-200, H-100, SC-240C, SC-230M, trade names of Starch & Chemical Co., and QUATRISOFT LM200, UCARE polymers JR125, JR400, LR400, JR30M, LR30M and UCARE polymer LK; fixing agents from Chukyo Europe: PALSET JK-512, PALSET JK512L, PALSET JK-182, PALSET JK-220, WSC-173, WSC-173L, PALSET JK-320, PALSET JK-320L and PALSET JK-350; polyethyleneimine and copolymers, e.g.
  • LUPASOL trade name of BASF AG
  • triethanolaminetitanium-chelate e.g. TYZOR, trade name of Du Pont Co.
  • copolymers of vinylpyrrolidone such as VIVIPRINT 111, trade name of ISP, a methacrylamido propyl dimethylamine copolymer; with dimethylaminoethylmethacrylate such as COPOLYMER 845 and COPOLYMER 937, trade names of ISP
  • vinylimidazole e.g.
  • LUVIQUAT CARE, LUVITEC 73W, LUVITEC VPI55 K18P, LUVITEC VP155 K72W, LUVIQUAT FC905, LUVIQUAT FC550, LUVIQUAT HM522, and SOKALAN HP56 all trade names of BASF AG; polyamidoamines, e.g. RETAMINOL and NADAVIN, trade marks of Bayer AG; phosphonium compounds such as disclosed in EP 609930 and other cationic polymers such as NEOFIX RD-5, trademark of Nicca Chemical Co.
  • the ink receiving layer, and an optional auxiliary layer, such as a backing layer for anti-curl purposes, may further contain well-known conventional ingredients, such as surfactants serving as coating aids, hardening agents, plasticizers, whitening agents and matting agents.
  • surfactants may be incorporated in the layers of the recording element of the present invention. They can be any of the cationic, anionic, amphoteric, and non-ionic ones as described in JP-A 62-280068 (1987).
  • surfactants are N-alkylamino acid salts, alkylether carboxylic acid salts, acylated peptides, alkylsulfonic acid salts, alkylbenzene and alkylnaphthalene sulfonic acid salts, sulfosuccinic acid salts, ⁇ -olefin sulfonic acid salts, N-acylsulfonic acid salts, sulfonated oils, alkylsulfonic acid salts, alkylether sulfonic acid salts, alkylallylethersulfonic acid salts, alkylamidesulfonic acid salts, alkylphosphoric acid salts, alkyletherphosphoric acid salts, alkylallyletherphosphoric acid salts, alkyl and alkylallylpolyoxyethylene ethers, alkylallylformaldehyde condensed acid salts, alkylallylethersulfonic acid salts, alkyl
  • Useful cationic surfactants include N-alkyl dimethyl ammonium chloride, palmityl trimethyl ammonium chloride, dodecyldimethylamine, tetradecyldimethylamine, ethoxylated alkyl guanidine-amine complex, oleamine hydroxypropyl bistrimonium chloride, oleyl imidazoline, stearyl imidazoline, cocamine acetate, palmitamine, dihydroxyethylcocamine, cocotrimonium chloride, alkyl polyglycolether ammonium sulphate, ethoxylated oleamine, lauryl pyridinium chloride, N-oleyl-1,3-diaminopropane, stearamidopropyl dimethylamine lactate, coconut fatty amide, oleyl hydroxyethyl imidazoline, isostearyl ethylimidonium ethosulphate, lauramidopropyl PEG-d
  • These surfactants are commercially available from DuPont and 3M.
  • the concentration of the surfactant component in the ink-receiving layer is typically in the range of 0.1 to 2 %, preferably in the range of 0.4 to 1.5 % and is most preferably 0.75 % by weight based on the total dry weight of the layer.
  • the ink-receiving layer and the optional auxiliary layer(s) may be crosslinked to provide such desired features as waterfastness and non-blocking characteristics.
  • the crosslinking is also useful in providing abrasion resistance and resistance to the formation of fingerprints on the element as a result of handling.
  • crosslinking agents also known as hardening agents - that will function to crosslink film forming binders. Hardening agents can be used individually or in combination and in free or in blocked form.
  • a great many hardeners, useful for the present invention are known, including formaldehyde and free dialdehydes, such as succinaldehyde and glutaraldehyde, blocked dialdehydes, active esters, sulfonate esters, active halogen compounds, isocyanate or blocked isocyanates, polyfunctional isocyanates, melamine derivatives, s-triazines and diazines, epoxides, active olefins having two or more active bonds, carbodiimides, zirconium complexes, e.g.
  • BACOTE 20 ZIRMEL 1000 or zirconium acetate, trademarks of MEL Chemicals, titanium complexes, such as TYZOR grades from DuPont, isoxazolium salts subsituted in the 3-position, esters of 2-alkoxy-N-carboxy-dihydroquinoline, N-carbamoylpyridinium salts, hardeners of mixed function, such as halogen-substituted aldehyde acids (e.g.
  • mucochloric and mucobromic acids onium substituted acroleins and vinyl sulfones and polymeric hardeners, such as dialdehyde starches and copoly(acroleinmethacrylic acid), and oxazoline functional polymers, e.g. EPOCROS WS-500, and EPOCROS K-1000 series, and maleic anhydride copolymers, e.g. GANTREZ AN119
  • boric acid is a preferred crosslinker.
  • the ink-receiving layer and the optional auxiliary layer(s) may also comprise a plasticizer such as ethylene glycol, diethylene glycol, propylene glycol, polyethylene glycol, glycerol monomethylether, glycerol monochlorohydrin, ethylene carbonate, propylene carbonate, urea phosphate, triphenylphosphate, glycerolmonostearate, propylene glycol monostearate, tetramethylene sulfone, n-methyl-2-pyrrolidone, n-vinyl-2-pyrrolidone.
  • a plasticizer such as ethylene glycol, diethylene glycol, propylene glycol, polyethylene glycol, glycerol monomethylether, glycerol monochlorohydrin, ethylene carbonate, propylene carbonate, urea phosphate, triphenylphosphate, glycerolmonostearate, propylene glycol monostearate, tetramethylene
  • the different layers can be coated onto support by any conventional coating technique, such as dip coating, knife coating, extrusion coating, spin coating, slide hopper coating and curtain coating.
  • a coating liquid was prepared by adding 25 parts by solid weight of a 10% aqueous solution of the light-stabilizing compound LS-4 to 170 parts of water.
  • the porous materials (A and B) impregnated with stabiliser LS-4 show, especially for the magenta and the cyan ink, an important improvement in light-fastness.
  • Two ink jet recording media (inv. and comp.) were prepared by coating on a resin-coated paper an ink receiving layer which composition is shown in table 2.
  • the invention sample contained LS-4, the comparative sample not.
  • the coating weight of the inorganic pigment was 28.2 g/m 2 . Due to the high inorganic pigment / binder ratio, the ink receiving layers showed a porosity of 0.50 cc/g (measured by means of nitrogen adsorption).
  • This example compares non-porous media (not according to the invention) with and without light-stabilizer in the ink receiving layer.
  • Two ink jet recording medium were prepared by coating on a resin-coated paper an ink absorbing layer which composition is shown in table 4 (with and without LS-4).
  • the coating weight of the inorganic pigment was 20.0 g/m 2 . Due to the fact that the pigment / binder ratio was much lower than in the previous example , these ink receiving layers showed no measurable porosity.

Landscapes

  • Ink Jet (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)

Claims (7)

  1. Matériau d'enregistrement pour jet d'encre comprenant un support et une couche poreuse de réception d'encre comprenant un liant, un pigment et un composé répondant à la formule générale (I) ci-après :
    Figure imgb0018
    dans laquelle R1 représente un atome d'hydrogène, un groupe hydroxyle, un groupe possédant un radical oxy, un groupe aliphatique, un groupe acyle, un groupe oxy aliphatique ou un groupe acyloxy ; et R2 représente un groupe aliphatique contenant au moins trois atomes de carbone et au moins deux groupes hydroxyle.
  2. Matériau d'enregistrement pour jet d'encre selon la revendication 1, dans lequel ledit composé répondant à la formule générale (I) est :
    Figure imgb0019
  3. Matériau d'enregistrement pour jet d'encre selon la revendication 1 ou 2, dans lequel ledit pigment est un pigment inorganique.
  4. Matériau d'enregistrement pour jet d'encre selon la revendication 3, dans lequel ledit pigment inorganique est choisi parmi le groupe constitué par la silice, l'alumine, l'hydrate d'alumine, le silicate d'aluminium et le trihydroxyde d'aluminium.
  5. Matériau d'enregistrement pour jet d'encre selon l'une quelconque des revendications 1 à 4, dans lequel ledit liant et un alcool polyvinylique.
  6. Matériau d'enregistrement pour jet d'encre selon l'une quelconque des revendications 1 à 5, dans lequel le rapport de la quantité du pigment à la quantité du liant s'élève à au moins 4.
  7. Matériau d'enregistrement pour jet d'encre selon l'une quelconque des revendications 1 à 6, dans lequel le volume des pores de la couche de réception d'encre est supérieur à 0,1 ml/g de produits solides couchés, tel qu'on le mesure via le procédé d'adsorption d'azote.
EP20020100755 2002-06-27 2002-06-27 matériau d'enregistrement par jet d'encre Expired - Lifetime EP1375173B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20020100755 EP1375173B1 (fr) 2002-06-27 2002-06-27 matériau d'enregistrement par jet d'encre
DE2002618991 DE60218991T2 (de) 2002-06-27 2002-06-27 Tintenstrahlaufzeichnungsmaterial
US10/413,342 US20040005417A1 (en) 2002-06-27 2003-04-14 Ink jet image improved for light-fastness
JP2003180705A JP2004050831A (ja) 2002-06-27 2003-06-25 耐光性に関して改良されたインキジェット像

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20020100755 EP1375173B1 (fr) 2002-06-27 2002-06-27 matériau d'enregistrement par jet d'encre

Publications (2)

Publication Number Publication Date
EP1375173A1 EP1375173A1 (fr) 2004-01-02
EP1375173B1 true EP1375173B1 (fr) 2007-03-21

Family

ID=29716912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020100755 Expired - Lifetime EP1375173B1 (fr) 2002-06-27 2002-06-27 matériau d'enregistrement par jet d'encre

Country Status (3)

Country Link
EP (1) EP1375173B1 (fr)
JP (1) JP2004050831A (fr)
DE (1) DE60218991T2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4185467B2 (ja) 2004-03-25 2008-11-26 花王株式会社 毛髪化粧料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE790064A (fr) 1971-10-14 1973-02-01 Mead Corp Generateur de gouttes pour dispositif d'enregistrement.
US3891121A (en) 1972-08-04 1975-06-24 Mead Corp Method of operating a drop generator that includes the step of pre-pressurizing the liquid manifold
US3805273A (en) 1972-12-20 1974-04-16 Mead Corp Yoke mounted jet drop recording head
JPS60259487A (ja) * 1984-06-06 1985-12-21 Canon Inc 被記録材
JPS61146591A (ja) * 1984-12-20 1986-07-04 Mitsubishi Paper Mills Ltd インクジェット記録用紙
US5275867A (en) 1991-02-19 1994-01-04 Asahi Glass Company Ltd. Recording film and recording method
JPH06166770A (ja) * 1992-12-02 1994-06-14 Sumitomo Chem Co Ltd 有機材料の安定剤として有用なヒンダードピペリジン化合物
DE69402121T2 (de) 1993-07-14 1997-06-26 Asahi Glass Co Ltd Beschichtungsflüssigkeit aus Aluminasol und Aufzeichnungsblatt
US5691046A (en) 1995-05-12 1997-11-25 Asahi Glass Company Ltd. Recording medium
US5624428A (en) 1995-11-29 1997-04-29 Kimberly-Clark Corporation Absorbent article having a pantlike pull down feature
JP2000095760A (ja) 1998-09-21 2000-04-04 Fuji Photo Film Co Ltd 4−アシルアミノ−2,2,6,6−テトラメチルピペリジン誘導体及びそれを含有する抗酸化剤
JP2000238421A (ja) * 1999-02-24 2000-09-05 Asahi Glass Co Ltd 記録用シートおよび記録物

Also Published As

Publication number Publication date
JP2004050831A (ja) 2004-02-19
EP1375173A1 (fr) 2004-01-02
DE60218991T2 (de) 2007-11-29
DE60218991D1 (de) 2007-05-03

Similar Documents

Publication Publication Date Title
EP1419897B1 (fr) Matériau pour l'enregistrement par jet d'encre
US6924011B2 (en) Ink jet recording material
US20030180479A1 (en) Recording element for ink jet printing
EP1364800B1 (fr) Elément d'enregistrement amélioré pour l'impression au jet d'encre
US20050196554A1 (en) Ink jet recording material
US20030219553A1 (en) Recording element for ink jet printing
US20050196556A1 (en) Ink jet recording material
EP1346840B1 (fr) Element d'enregistrement amélioré pour l'impression à jet d'encre
US20040005417A1 (en) Ink jet image improved for light-fastness
EP1375173B1 (fr) matériau d'enregistrement par jet d'encre
EP1321300B1 (fr) Elément d' enregistrement amelioré pour l'impression par jet d'encre
EP1393922B1 (fr) Matériau pour l'enregistrement par jet d'encre
US20040142123A1 (en) Ink-jet recording material
US20030137571A1 (en) Recording element for ink jet printing
US20040191432A1 (en) Ink jet recording material improved for light-and gas-fastness
EP1398166B1 (fr) Matériau d'enregistrement par jet d'encre et photostabilisateur
EP1273455B1 (fr) Elément d'enregistrement par jet d'encre amélioré
EP1410921B1 (fr) Matériau d'enregistrement par jet d'encre et composé stabilisant à la lumière
EP1437230A1 (fr) Matériau pour l'enregistrement à jet d'encre
US20040265515A1 (en) Ink-receiving material
US6558779B1 (en) Ink jet recording element
JP2005014611A (ja) 改良されたインキ−受容材料
JP2004136682A (ja) 改良されたインキジェット記録材料
DE60311714T2 (de) Tintenstrahlaufzeichnungsmaterial und Lichtschutzmittel
EP1491352A2 (fr) Matériau récepteur d'encre amélioré

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040702

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B41M 5/52 20060101AFI20060918BHEP

RTI1 Title (correction)

Free format text: INKJET RECORDING MATERIAL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60218991

Country of ref document: DE

Date of ref document: 20070503

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090617

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090613

Year of fee payment: 8

Ref country code: GB

Payment date: 20090619

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100627

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100627