EP1373927A1 - Radarsensorplattform - Google Patents

Radarsensorplattform

Info

Publication number
EP1373927A1
EP1373927A1 EP02729800A EP02729800A EP1373927A1 EP 1373927 A1 EP1373927 A1 EP 1373927A1 EP 02729800 A EP02729800 A EP 02729800A EP 02729800 A EP02729800 A EP 02729800A EP 1373927 A1 EP1373927 A1 EP 1373927A1
Authority
EP
European Patent Office
Prior art keywords
parking space
radar sensor
sensor platform
vehicle
processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02729800A
Other languages
English (en)
French (fr)
Inventor
Bernhard Mattes
Rainer Moritz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1373927A1 publication Critical patent/EP1373927A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/10Automatic or semi-automatic parking aid systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9314Parking operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9315Monitoring blind spots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9317Driving backwards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/932Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles for parking operations
    • G01S2015/933Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles for parking operations for measuring the dimensions of the parking space when driving past
    • G01S2015/936Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles for parking operations for measuring the dimensions of the parking space when driving past for measuring parking spaces extending transverse or diagonal to the driving direction, i.e. not parallel to the driving direction

Definitions

  • the invention is based on a radar sensor platform according to the type of the independent claim.
  • the radar sensor platform according to the invention with the features of the independent claim has the advantage that the minimum width of a parking bay or parking space is measured precisely. This measurement result is displayed digitally to the driver. This advantageously eliminates subjective width estimation errors from parking spaces. Acoustic and / or visual warning signals can inform a driver instead of a direct display whether the parking space is for him suitable is. The intensity of the warning may increase as parking spaces become narrower.
  • the horizontal opening angle which is used for the parking space width measurement, is at least 170 p . This ensures that an exact measurement of the parking space is made possible.
  • a vehicle-specific threshold value for the parking space in width can be stored in the memory, which can be connected to the processor, and this threshold value with the measured width of the parking space, the output by means of the acoustic and / or optical output certainly.
  • the measured parking space width is shown on a display, so that a driver can use this information directly.
  • This can advantageously be expanded by also displaying the gaps next to the vehicle.
  • the acoustic and optical outputs are controlled by the processor in such a way that centered parking is possible. This can be expanded by ensuring that optimal use of the parking space is ensured by specifying distances to be observed from the neighboring vehicles.
  • the radar sensor platform at least in the front or in the vehicle The rear of the vehicle is installed, so that the radar sensor platform works optimally.
  • FIG. 1 schematically shows a parking situation
  • FIG. 2 shows a block diagram of the radar sensor platform according to the invention
  • FIG. 3 shows a flow diagram of a method according to the invention.
  • a radar sensor platform which is used for measuring the distance of a parking space from a vehicle.
  • four radar sensors are used here, the outer radar sensors in particular being used to increase the horizontal opening angle to at least 170 °. This is particularly advantageous for measuring the parking spaces.
  • the radar sensor used here works at a frequency of 24 gigahertz, which is particularly suitable for short-range selection, since this frequency has a high level of attenuation in the atmosphere. These radar sensors are therefore also referred to as short range radar sensors.
  • the vertical opening angle of these radar sensors is here, as is usually the case, 20 °. Usually, for example for the pre-crash sensor technology uses a horizontal opening angle of 140 °.
  • FIG. 1 shows schematically a parking situation.
  • a driver of a vehicle which has four radar sensors 6 on the front of the vehicle, wants to park and has chosen the parking space 2 for this purpose.
  • Parking space 2 is located between the parked vehicles 3 and 4.
  • the radar sensors 6 are oriented such that they cover a horizontal opening angle of 170 °, which is indicated by the dashed lines.
  • the dashed lines are delimited by an arc that defines the range of the radar sensors.
  • a processor in the vehicle 1 Based on the measurement of the radar sensors 6, a processor in the vehicle 1 recognizes that the parking space 2 is too narrow. Therefore, the vehicle 1 cannot park here. Valuable time is saved and a parking attempt that may result in damage is not initiated at all.
  • the opening angle which is normally 140 ° for the pre-crash sensor system, can be increased to 170 ° in particular by means of an electronic setting.
  • FIG. 2 shows a block diagram of the radar sensor platform according to the invention with connected devices.
  • a radar sensor platform 27 has four radar sensors 6, to which control modules 7, 8, 9 and 10 are connected. These control modules 7, 8, 9 and 10 provide both electrical and electromechanical control.
  • the electromechanical control applies in particular to changing the horizontal opening angle.
  • the electrical control includes the provision of the microwave len, which are required for radar sensing, and also the reception of the microwaves reflected by the obstacle.
  • the control modules 7, 8, 9 and 10 are connected to a first, second, third and fourth data input / output of a processor 11 via respective data inputs / outputs.
  • a bus connection is also possible here.
  • the processor 11 is connected via a fifth data input / output to a memory 12, which is used for the temporary storage of results, but also as a permanent memory for threshold values.
  • the processor 11 is connected via a first data output to a control 13 which is connected to an input of a display 14.
  • the processor 11 is connected via a second data output to an audio control 15, which is connected to an input of a loudspeaker 16.
  • the control 13 ensures that data coming from the processor 11 are correspondingly shown on a display 14.
  • the audio control 15 converts the signals from the processor into analog audio signals, amplifies them and then uses the
  • Loudspeaker 16 for acoustic reproduction The processor 11 is connected via a data input to a signal processing unit 28, to which an input device 29 / " is in turn connected.
  • the input device 29 is / in the passenger compartment of the vehicle 1 and via this input device 29 a driver indicates that he is measuring a parking space This is then forwarded to the processor 11 via the signal processing 28.
  • buttons or a voice control can serve as the input device 29.
  • the processor 11 controls the radar sensors 6 via the controls 7, 8, 9 and 10, in order to possibly adjust the horizon when parking space is measured. len opening angle of the radar sensors 6 to increase.
  • the processor 11 outputs signals to the driver via the display 14 and the loudspeaker 16.
  • the pulse radar method is used here as the measuring principle. However, a Doppler method is also possible. The pulse radar method measures the time that has elapsed between a transmitted pulse and its return after a reflection on the object. The distance to the object can then be determined from this. More than four radar sensors 6 are also possible, which may improve the resolution. If the processor 11 has determined the parking space which the radar sensors 6 have measured, the processor 11 can use this to determine the distance to the vehicles 3 and 4. This results in a width of the parking space that is smaller than the vehicle width of the vehicle 1 that the
  • Processor 11 recognizes by a comparison with a vehicle-specific threshold value stored in the memory 12, then the driver is warned via the loudspeaker 16 and the display 14 that parking is not possible here. However, if the parking space is wide enough, the driver can use the input device 29 to choose to park in the center. The processor 11 then helps him by measuring with the radar sensors 6 and output via the loudspeaker 16 and the display 14 by the processor 11 using appropriate optical and acoustic signals
  • Driver indicates that he always stays in the middle between vehicles 3 and 4. This creates a control loop in which the driver is the signal box and the radar sensor platform is the measuring unit.
  • FIG. 3 shows a flow diagram of the method according to the invention.
  • a driver switches on the parking space width measurement with the input device 29.
  • the processor 11 sets the radar sensors 6 to a wider horizontal opening angle of 170 °, and the processor 11 loads the algorithm for parking space measurement.
  • This algorithm is located in the memory 12.
  • the corresponding vehicle-specific threshold values which indicate the parking space into which the vehicle 1 can still park.
  • the distances are measured by the radar sensors 6 and the evaluation of the radar sensor signals by the processor 11. The distances in the parking space are then known.
  • step 20 the width of the parking space is then determined.
  • this width is compared with the minimum width for parking with the vehicle 1 with the vehicle-specific threshold value. If the width is greater than this threshold value, then method step 23 continues with the display that the vehicle 1 can be parked in the parking space 2. This also includes minimum distances of, for example, 0.5 meters to vehicles 3 and 4 parked to the side. However, if the parking space is too narrow, then it is indicated in method step 22 that the parking space 2 is not for the
  • Parking with vehicle 1 is suitable. It is possible to enter a number that allows the driver to still try to park if the vehicle fits and the side distances to vehicles 3 and 4 decrease below half a meter.
  • method step 24 when parking is indicated as possible in method step 21, a query is made as to whether the driver wishes to have centered parking. He then inputs this using the input device 29, with the driver then in method step 25 using the loudspeaker 16 and the display 14 is helped to park centered in the parking space. If the driver does not want centered parking, then this function is not used in method step 26. The driver is then warned when parking by minimal distances to vehicles 3 and 4.

Abstract

Es ist eine Radarsensorplattform zur Abstandsmessung in einem Fahrzeug vorgeschlagen, die wenigstens vier Radarsensoren aufweist, wobei dann mit einer Eingabevorrichtung.gegebenenfalls eingegeben wird, dass eine Vermessung einer Parklückenbreite gewünscht wird und dass dann die vier Radarsensoren ihren horizontalen Öffnungswinkel vergrössern und die Mittel zur akustischen und/oder optischen Ausgabe in Abhängigkeit von der Messung der Parklückenbreite ein Signal ausgeben. Dieses Signal ist beispielsweise die Parklückenbreite oder eine Warnung. Der horizontale Öffnungswinkel für die Parklückenvermessung beträgt wenigstens 170°. Es können auch die Seitenabstände des Fahrzeugs in der Parklücke angezeigt werden. Weiterhin ist durch die akustischen und optischen Hi1fen ein zentriertes Einparken möglich. Die Radarsensorplattform ist vorteilhafterweise entweder in der Fahrzeugvorder und/oder Fahrzeugrückseite eingebaut.

Description

Radarsensorplattform
Stand der Technik
Die Erfindung geht aus von einer Radarsensorplattform nach der Gattung des unabhängigen Patentanspruchs.
Es ist bereits bekannt, eine 24 Gigahertz-Pulsradar- Sensorplattform für die Erfassung von Objekten in kurzer Entfernung einzusetzen, die für eine Precrash Sensierung, eine Einparkhilfe für das automatische Abstandsradar, für eine tote Winkelerkennung und für eine Fußgängererkennung sowie für eine Parklückenvermessung beim seitlichen Vorbeifahren ausgelegt sein kann.
Vorteile der Erfindung
Die erfindungsgemäße Radarsensorplattform mit den Merkmalen des unabhängigen Patentanspruchs hat demgegenüber den Vorteil, dass die Mindestbreite einer Parkbucht bzw. Parklücke genau vermessen wird. Dieses Meßergebnis wird dem Fahrer digital angezeigt. Somit entfallen vorteilhafterweise subjektive Breitenschätzungsfehler von Parklücken. Akustische und/oder optische Warnsignale können statt einer direkten Anzeige einen Fahrer informieren, ob die Parklücke für ihn geeignet ist. Dabei kann sich bei einer zunehmenden Parklük- kenschmalheit die Intensität der Warnung steigern.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnah- men und Weiterbildungen sind vorteilhafte Verbesserungen der im unabhängigen Patentanspruch angegebenen Radarsensorplattform möglich.
Besonders vorteilhaft ist, dass der horizontale Öffnungswin- kel, der für die Parklückenbreitenvermessung verwendet wird, wenigstens 170p beträgt. Damit ist gewährleistet, dass eine exakte Vermessung der Parklücke ermöglicht wird.
Darüber hinaus ist es von Vorteil, dass in dem Speicher, der mit dem Prozessor verbindbar ist, ein fahrzeugspezifischer Schwellwert für die Parklücke an Breite abspeicherbar ist und dieser Schwellwert mit der gemessenen Breite der Parklücke die Ausgabe durch die Mittel der akustischen und/oder optischen Ausgabe bestimmt.
Weiterhin ist es von Vorteil, dass die gemessene Parklückenbreite auf einer Anzeige dargestellt wird, so dass ein Fahrer diese Information direkt verwerten kann. Dies kann vorteilhafterweise dadurch erweitert werden, dass die Lücken neben dem Fahrzeug ebenfalls angezeigt werden.
Des weiteren ist es von Vorteil, dass die akustischen und optischen Ausgaben derart von dem Prozessor angesteuert werden, dass ein zentriertes Einparken möglich ist. Dies kann dadurch erweitert werden, dass durch Vorgabe von Abständen, die einzuhalten sind, zu den benachbarten Fahrzeugen, eine optimale Parkplatzausnutzung gewährleistet wird.
Schließlich ist es auch von Vorteil, dass die Radarsensor- plattform wenigstens in der Fahrzeugvorder- oder in der Fahrzeugrückseite eingebaut ist, so dass eine optimale Wirkungsweise der Radarsensorplattform ermöglicht wird.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigt Figur 1 schematisch eine Einparksituation, Figur 2 ein Blockschaltbild der erfindungsgemäßen Radarsensorplattform und Figur 3 ein Flußdiagramm eines erfindungsgemäßen Verfahrens.
Beschreibung
Da das optimale Einparken aufgrund einer zunehmenden Zahl von Kraftfahrzeugen bei einer mehr oder weniger gleich bleibenden Größe der verfügbaren Parkräume ein immer schwierigeres Unterfangen wird, ist es notwendig, einem Fahrer eine automatische Hilfe beim Einparken zur Verfügung zu stellen, um den Parkvorgang sicherer und effizienter zu gestalten. Erfindungsgemäß wird eine Radarsensorplattform vorgeschlagen, die zur Äbstandsmessung einer Parklücke von einem Fahrzeug verwendet wird. Dabei werden hier insbesondere vier Radarsensoren verwendet, wobei vor allem die äußeren Radar- sensoren dazu eingesetzt werden, um den horizontalen Öffnungswinkel auf wenigstens 170° zu erhöhen. Dies ist für die Ausmessung der Parklücken besonders vorteilhaft.
Der hier verwendete Radarsensor arbeitet bei einer Frequenz von 24 Gigahertz, die insbesondere für die Nahbereichsele tion geeignet ist, da diese Frequenz in der Atmosphäre eine hohe Dämpfung aufweist. Diese Radarsensoren werden daher auch als Short Range Radarsensoren bezeichnet. Der vertikale Öffnungswinkel dieser Radarsensoren beträgt hier wie auch sonst üblicherweise 20°. Normalerweise, beispielsweise für die Precrash Sensorik wird ein horizontaler Öffnungswinkel von 140° verwendet.
Figur 1 zeigt schematisch eine Einparksituation. Ein Fahrer eines Fahrzeugs 1, das vier Radarsensoren 6 auf der Fahrzeugvorderseite aufweist, möchte einparken und hat sich dazu die Parklücke 2 ausgesucht. Parklücke 2 befindet sich zwischen den parkenden Fahrzeugen 3 und 4. Die Radarsensoren 6 sind so ausgerichtet, dass sie einen horizontalen Öffnungs- winkel von 170° abdecken, der durch die gestrichelten Linien angedeutet ist. Die gestrichelten Linien sind durch einen Kreisbogen begrenzt, der die Reichweite der Radarsensoren definiert. Aufgrund der Messung der Radarsensoren 6 erkennt ein Prozessor in dem Fahrzeug 1, dass die Parklücke 2 zu schmal ist. Daher kann das Fahrzeug 1 hier nicht einparken. Wertvolle Zeit wird damit gewonnen und ein eventuell in einer Beschädigung endender Einparkversuch wird erst gar nicht initiiert.
Es ist möglich, dass nicht nur die äußeren Radarsensoren 6, sondern auch die anderen Radarsensoren 6 in der Mitte einstellbar sind. Insbesondere durch eine elektronische Einstellung kann der Öffnungswinkel, der normalerweise für die Precrash Sensorik 140° beträgt, auf 170° vergrößert werden.
Figur 2 zeigt als Blockschaltbild die erfindungsgemäße Radarsensorplattform mit angeschlossenen Geräten. Eine Radarsensorplattform 27 weist vier Radarsensoren 6 auf, an die jeweils Ansteuerungsmodule 7, 8, 9 und 10 angeschlossen sind. Diese Ansteuerungsmodule 7, 8. 9 und 10 sorgen sowohl für eine elektrische als auch elektromechanische Ansteue- rung. Die elektromechanische Ansteuerung gilt insbesondere zur Veränderung des horizontalen Öffnungswinkels. Die elektrische Ansteuerung umfaßt die Bereitstellung der Mikrowel- len, die für die Radarsensierung benötigt werden, und auch den Empfang der am Hindernis reflektierten Mikrowellen.
Über jeweilige Daten-Ein/Ausgänge sind die Ansteuerungsmodu- le 7, 8, 9 und 10 mit einem ersten, zweiten, dritten und vierten Daten-Ein/Ausgang eines Prozessors 11 verbunden. Hier ist auch eine Busverbindung möglich. Über einen fünften Daten-Ein/Ausgang ist der Prozessor 11 mit einem Speicher 12 verbunden, der zur Zwischenspeicherung von Ergebnissen dient, aber auch als Permanentspeicher für Schwellwerte. Über einen ersten Datenausgang ist der Prozessor 11 mit einer Ansteuerung 13 verbunden, die an einen Eingang einer Anzeige 14 angeschlossen ist. Über einen zweiten Datenausgang ist der Prozessor 11 mit einer Audioansteuerung 15 verbunden, die an einen Eingang eines Lautsprechers 16 angeschlossen ist. Die Ansteuerung 13 sorgt dafür, dass Daten, die vom Prozessor 11 kommen, entsprechend auf einer Anzeige 14 dargestellt werden. Hier ist es der Wert 3 Meter. Die Audioansteuerung 15 setzt die Signale vom Prozessor in ana- löge Audiosignale um, verstärkt diese und nutzt dann den
Lautsprecher 16 zur akustischen Wiedergabe. Über einen Dateneingang ist der Prozessor 11 mit einer Signalverarbeitung 28 verbunden, an die wiederum eine Eingabevorrichtung 29 /"angeschlossen ist. Die Eingabevorrichtung 29 befindet sich / in der Fahrgastzelle des Fahrzeugs 1 und über diese Eingabevorrichtung 29 gibt ein Fahrer an, dass er eine Parklückenvermessung durchzuführen wünscht. Dies wird dann über die Signalverarbeitung 28 an den Prozessor 11 weitergeleitet. Als Eingabevorrichtung 29 können dabei Taster oder auch eine Sprachsteuerung dienen.
In Abhängigkeit von den Eingaben, die an der Eingabevorrichtung 29 vorgenommen werden, steuert der Prozessor 11 über die Ansteuerungen 7, 8, 9 und 10 die Radarsensoren 6 an, um gegebenenfalls bei einer Parklückenvermessung den horizonta- len Öffnungswinkel der Radarsensoren 6 zu erhöhen. In Abhängigkeit von den Meßsignalen gibt der Prozessor 11 über die Anzeige 14 und den Lautsprecher 16 Signale zum Fahrer aus. Als Meßprinzip wird hier das Pulsradarverfahren verwendet. Es ist jedoch auch ein Dopplerverfahren möglich. Bei dem Pulsradarverfahren wird die Zeit vermessen, die von einem abgesendeten Puls bis zu seinem Wiedereintreffen nach einer Reflexion an dem Objekt vergangen ist. Daraus ist dann die Entfernung zu dem Objekt bestimmbar. Es sind auch mehr als vier Radarsensoren 6 möglich, die gegebenenfalls die Auflösung verbessern. Hat der Prozessor 11 die Parklücke, die die Radarsensoren 6 vermessen haben, ermittelt, kann daraus der Prozessor 11 den Abstand zu den Fahrzeugen 3 und 4 bestimmen. Ergibt sich daraus eine Breite der Parklücke, die klei- ner ist als die Fahrzeugbreite des Fahrzeugs 1, das der
Prozessor 11 durch einen Vergleich mit einem fahrzeugspezifischen, im Speicher 12 abgelegten Schwellwert erkennt, dann wird der Fahrer über den Lautsprecher 16 und die Anzeige 14 gewarnt, dass hier ein Einparken nicht möglich ist. Ist jedoch die Parklücke breit genug, dann kann der Fahrer über die Eingabevorrichtung 29 wählen, dass er zentriert einparken möchte. Dabei hilft ihm dann der Prozessor 11 durch die Messung mit den Radarsensoren 6 und die Ausgabe über den Lautsprecher 16 und die Anzeige 14, indem der Prozessor 11 durch entsprechende optische und akustische Signale den
Fahrer darauf hinweist, dass er immer in der Mitte zwischen den Fahrzeugen 3 und 4 bleibt. Dadurch wird ein Regelkreis realisiert, bei dem der Fahrer das Stellwerk und die Radarsensorplattform die Meßeinheit ist.
Dem Fahrer ist es jedoch überlassen, auch anders, also nicht zentriert, einzuparken. Dabei werden über die Anzeige 14 dem Fahrer die Seitenabstände zu den Hindernissen 3 und 4 dargestellt . In Figur 3 ist ein Flußdiagramm des erfindungsgemäßen Verfahrens dargestellt. Im Verfahrensschritt 17 schaltet ein Fahrer mit der Eingabevorrichtung 29 die Parklückenbreiten- messung ein. In Verfahrensschritt 18 erfolgt dann über den Prozessor 11 die Einstellung der Radarsensoren 6 auf einen breiteren horizontalen Öffnungswinkel von 170°, und es wird vom Prozessor 11 der Algorithmus zur Parklückenvermessung geladen. Dieser Algorithmus befindet sich im Speicher 12. Ebenso die entsprechenden fahrzeugspezifischen Schwellwerte, die angeben, in welche Parklücke das Fahrzeug 1 noch einparken kann. In Verfahrensschritt 19 erfolgt die Messung der Abstände durch die Radarsensoren 6 und die Auswertung der Radarsensorsignale durch den Prozessor 11. Damit sind dann die Abstände in der Parklücke bekannt. In Verfahrensschritt 20 wird daraus dann die Breite der Parklücke bestimmt. In Verfahrensschritt 21 wird diese Breite mit der minimalen Breite für das Einparken mit dem Fahrzeug 1 mit dem fahrzeugspezifischen Schwellwert verglichen. Ist die Breite größer als dieser Schwellwert, dann wird in Verfahrens- schritt 23 mit der Anzeige fortgefahren, dass in die Parklücke 2 mit dem Fahrzeug 1 eingeparkt werden kann. Dabei werden auch Mindestabstände von beispielsweise 0,5 Metern zu den seitlich parkenden Fahrzeugen 3 und 4 mit eingerechnet. Ist jedoch die Parklücke zu eng, dann wird in Verfahrens- schritt 22 angegeben, dass die Parklücke 2 nicht für das
Parken mit dem Fahrzeug 1 geeignet ist. Eventuell wird dabei eine Zahlenangabe eingegeben, die es dem Fahrer erlaubt, eventuell dennoch einen Parkvorgang zu versuchen, falls das Fahrzeug hineinpaßt und die Seitenabstände zu den Fahrzeugen 3 und 4 unter einem halben Meter sinken. In Verfahrensschritt 24 wird dann, wenn das Parken in Verfahrensschritt 21 als möglich angezeigt wird, abgefragt, ob der Fahrer ein zentriertes Parken wünscht. Dies gibt er dann mittels der Eingabevorrichtung 29 ein, wobei dann in Verfahrensschritt 25 mit dem Lautsprecher 16 und der Anzeige 14 dem Fahrer geholfen wird, zentriert in die Parklücke einzuparken. Wünscht der Fahrer kein zentriertes Einparken, dann wird in Verfahrensschritt 26 diese Funktion nicht angewendet. Der Fahrer wird dann beim Einparken durch Minimalabstände zu den Fahrzeugen 3 und 4 gewarnt .

Claims

Ansprüche
1. Radarsensorplattform (27) zur Parklückenbreitemessung in einem Fahrzeug (1), wobei die wenigstens eine Radarsensorplattform (27) mit einem Prozessor (11) verbindbar ist, wobei zur Warnung Mittel (14, 16) zur akustischen und/oder optischen Ausgabe, die von dem Prozessor (11) ansteuerbar sind, vorhanden sind, dadurch gekenn- zeichnet, dass wenigstens vier Radarsensoren (6) auf der wenigstens einen Radarsensorplattform (27) vorhanden sind, dass eine Eingabevorrichtung (29) vorhanden ist, die zur Aktivierung einer Messung einer Parklük- kenbreite mit der wenigstens einen Radarsensorplattform (27) dient, und dass dann im Falle der Aktivierung die wenigstens vier Radarsensoren (6) ihren horizontalen Öffnungswinkel vergrößern und die Mittel (14, 16) zur akustischen und/oder optischen Ausgabe in Abhängigkeit von der Messung der Parklückenbreite ein Signal abge- ben.
2. Radarsensorplattform nach Anspruch 1, dadurch gekennzeichnet, dass der horizontale Öffnungswinkel wenigstens 170° beträgt.
3. Radarsensorplattform nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in einem Speicher (12) , der mit dem Prozessor (11) verbindbar ist, ein fahrzeugspezifischer Schwellwert für die Parklückenbreite abspeicher- bar ist und dass in Abhängigkeit von einem Vergleich des Schwellwerts mit der gemessenen Parklückenbreite die Mittel (14, 16) zur akustischen und/oder optischen Ausgabe das Signal ausgeben.
4. Radarsensorplattform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel zur akustischen und/oder optischen Ausgabe eine Anzeige (14) aufweisen, auf der als das Signal die gemessene Parklückenbreite angezeigt wird.
5. Radarsensorplattform nach Anspruch 4, dadurch gekennzeichnet, dass die Seitenabstände des Fahrzeugs (1) in der Parklücke anzeigbar sind.
6. Radarsensorplattform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Prozessor (11) so ausgebildet ist, dass der Prozessor (11) die Mittel (14, 16) zur akustischen und/oder optischen Ausgabe derart ansteuert, so dass ein zentriertes Einpar- ken möglich ist.
7. Radarsensorplattform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die wenigstens eine Radarsensorplattform (27) in der Fahrzeugvorder- und/oder der Fahrzeugrückseite eingebaut ist.
EP02729800A 2001-03-20 2002-03-16 Radarsensorplattform Ceased EP1373927A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10113323A DE10113323C2 (de) 2001-03-20 2001-03-20 Radarsensorplattform
DE10113323 2001-03-20
PCT/DE2002/000971 WO2002075354A1 (de) 2001-03-20 2002-03-16 Radarsensorplattform

Publications (1)

Publication Number Publication Date
EP1373927A1 true EP1373927A1 (de) 2004-01-02

Family

ID=7678112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02729800A Ceased EP1373927A1 (de) 2001-03-20 2002-03-16 Radarsensorplattform

Country Status (5)

Country Link
US (1) US7095361B2 (de)
EP (1) EP1373927A1 (de)
JP (1) JP2004518983A (de)
DE (1) DE10113323C2 (de)
WO (1) WO2002075354A1 (de)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10206764A1 (de) * 2002-02-19 2003-08-28 Bosch Gmbh Robert Verfahren zum Einparken eines Fahrzeugs
DE10220837A1 (de) * 2002-05-08 2003-11-27 Daimler Chrysler Ag Vorrichtung zur Parklückensuche mittels Radar
WO2004059341A1 (de) * 2002-12-20 2004-07-15 Daimlerchrysler Ag Verfahren zum erfassen von umgebungsinformationen und zum bestimmen der lage einer parklücke
DE10339075A1 (de) * 2003-08-26 2005-03-24 Daimlerchrysler Ag Kraftfahrzeug
DE10339645A1 (de) * 2003-08-28 2005-04-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung von Größe und Position einer Parklücke
EP1720758B1 (de) * 2004-03-05 2016-06-29 Continental Teves AG & Co. oHG Einparkhilfe
DE102004055372A1 (de) * 2004-11-08 2006-05-11 Valeo Schalter Und Sensoren Gmbh Einparkhilfe für ein Fahrzeug und Einparkhilfeverfahren
US20060132349A1 (en) * 2004-12-22 2006-06-22 Stern Ari K Radar detector with signal source location determination and filtering
KR101115221B1 (ko) * 2005-01-07 2012-02-14 주식회사 현대오토넷 차량 근접 경고 시스템 및 방법
DE102005004334A1 (de) * 2005-01-31 2006-08-10 Robert Bosch Gmbh Verfahren zur akustischen Ausgabe einer Information
FR2888945B1 (fr) * 2005-07-22 2013-10-25 Johnson Controls Tech Co Dispositif de detection au moyen de faisceaux croises du franchissement d'une ligne delimitant une voie de circulation sur une surface
JP5000244B2 (ja) * 2005-09-15 2012-08-15 ヤマハ発動機株式会社 着岸支援装置およびそれを備えた船舶
US7389735B2 (en) * 2005-09-15 2008-06-24 Yamaha Hatsudoki Kubushiki Kaisha Docking supporting apparatus, and marine vessel including the apparatus
DE102005045259A1 (de) * 2005-09-22 2007-03-29 Valeo Schalter Und Sensoren Gmbh Parksystem für Kraftfahrzeuge
JP2007091046A (ja) * 2005-09-29 2007-04-12 Clarion Co Ltd 車両駐車支援装置
US7653487B2 (en) * 2006-10-06 2010-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. Object detection apparatus and method
US7679527B2 (en) * 2007-04-23 2010-03-16 Roland Edward Chemali Method and apparatus for automated parking assistance
US7737866B2 (en) * 2007-09-27 2010-06-15 Automotive Research & Testing Center Auto-parking device
US8451689B2 (en) * 2007-11-12 2013-05-28 Lite-On It Corporation Ultrasonic apparatus with an adjustable horn
US7973700B2 (en) * 2008-01-31 2011-07-05 Denso International America, Inc. Dual transmitting antenna system
DE102008028763A1 (de) * 2008-06-17 2009-12-24 Valeo Schalter Und Sensoren Gmbh Verfahren und Vorrichtung zur Unterstützung eines Einparkvorgangs eines Fahrzeugs
JP4766404B2 (ja) * 2008-10-28 2011-09-07 トヨタ自動車株式会社 レーダ装置
US20100152972A1 (en) * 2008-12-15 2010-06-17 Joe Charles Attard Parallel park assist
US9250315B2 (en) 2009-03-04 2016-02-02 Toyota Motor Engineering & Manufacturing North America, Inc. Collision avoidance system and method
WO2010132677A1 (en) * 2009-05-13 2010-11-18 Rutgers, The State University Vehicular information systems and methods
DE102009027820A1 (de) * 2009-07-20 2011-01-27 Robert Bosch Gmbh Vorrichtung und Verfahren zum unterstützten Einparken eines Fahrzeugs
DE102009060169A1 (de) 2009-12-23 2011-06-30 Volkswagen AG, 38440 Automatisches Vorwärtseinparken in Kopfparklücken
DE102010006979A1 (de) * 2010-02-05 2011-08-11 GM Global Technology Operations LLC, ( n. d. Ges. d. Staates Delaware ), Mich. Verfahren und Vorrichtung zur Einparkunterstützung
DE102010020208A1 (de) * 2010-05-12 2011-11-17 Volkswagen Ag Verfahren zum Einparken oder Ausparken eines Fahrzeugs sowie entsprechendes Assistenzsystem und Fahrzeug
DE102011102916A1 (de) * 2011-05-31 2012-12-06 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren zum Betreiben eines Fahrerassistenzsystems eines Kraftfahrzeugs und Fahrerassistenzsystem für ein Kraftfahrzeug
US9279883B2 (en) * 2013-02-19 2016-03-08 Infineon Technologies Ag Method and device for radar applications
US9255988B2 (en) * 2014-01-16 2016-02-09 GM Global Technology Operations LLC Object fusion system of multiple radar imaging sensors
US10175352B2 (en) * 2015-05-12 2019-01-08 Maxlinear, Inc. Scalable architecture for an automotive radar system
US10817736B2 (en) * 2016-10-19 2020-10-27 Ford Motor Company System and methods for identifying unoccupied parking positions
EP3483630B1 (de) * 2017-11-10 2021-12-29 Veoneer Sweden AB Detektion einer parklückenkonfiguration basierend auf sich wiederholenden mustern
DE102018104243B3 (de) * 2018-02-26 2019-05-16 Autoliv Development Ab Verfahren und System zur Erkennung von für ein Fahrzeug geeigneten Parklücken
CN114537272B (zh) * 2022-02-15 2023-10-20 岚图汽车科技有限公司 一种驻车雷达预警方法和系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB230955A (en) 1924-01-21 1925-03-26 Henry Alfred Shelton Improvements in stair-rods and fasteners therefor
GB1290916A (de) * 1969-11-19 1972-09-27
US3707717A (en) * 1971-06-25 1972-12-26 Gen Signal Corp Boat berthing monitor incorporating sonar and doppler radar techniques
US4931930A (en) * 1988-04-19 1990-06-05 Industrial Technology Research Institute Automatic parking device for automobile
DE3844340A1 (de) * 1988-12-30 1990-07-05 Licentia Gmbh Einparkhilfe
GB8927905D0 (en) * 1989-12-09 1990-02-14 Lucas Ind Plc Detection device
US5432515A (en) * 1992-04-09 1995-07-11 O'conner; Joe S. Marine information system
US5274378A (en) * 1992-04-09 1993-12-28 Conner Joe S O Docking velocity indicator system
FR2716145B1 (fr) * 1994-02-14 1996-05-10 Valeo Vision Dispositif indicateur de distance libre, en particulier pour faciliter les manÓoeuvres d'un véhicule automobile.
DE4425419C1 (de) * 1994-07-19 1995-12-14 Daimler Benz Ag Kurzreichweitige Ultraschall-Abstandswarnanlage in einem Kraftfahrzeug, insbesondere als Einparkhilfe
JPH08166448A (ja) 1994-12-13 1996-06-25 Honda Motor Co Ltd 車両用周囲監視装置
US5734336A (en) * 1995-05-01 1998-03-31 Collision Avoidance Systems, Inc. Collision avoidance system
FR2740408B1 (fr) * 1995-10-25 1998-01-09 Peugeot Systeme d'aide a la conduite d'un vehicule automobile
GB9601691D0 (en) * 1996-01-27 1996-03-27 Rover Group A cruise control system for a motor vehicle
DE19616447C2 (de) * 1996-04-25 1999-06-10 Bosch Gmbh Robert Verfahren zur Ermittlung der Länge einer Parklücke und Parkhilfegerät
DE19755470A1 (de) * 1997-02-24 1998-09-24 Marius Dipl Ing Tegethoff Anzeigesystem für Fahrzeuge
DE19806150C1 (de) * 1998-02-14 1999-09-16 Daimler Chrysler Ag Fahrzeug mit Objekterfassungseinrichtung
US6069581A (en) * 1998-02-20 2000-05-30 Amerigon High performance vehicle radar system
EP0952459B1 (de) 1998-04-23 2011-05-25 Volkswagen Aktiengesellschaft Vorrichtung zur Objekterfassung für Kraftfahrzeuge
DE19847013A1 (de) * 1998-10-13 2000-04-20 Bosch Gmbh Robert Einparkhilfesystem
US6307622B1 (en) * 1999-02-17 2001-10-23 Infineon Technologies North America Corp. Correlation based optical ranging and proximity detector
DE10011263A1 (de) 2000-03-08 2001-09-13 Bosch Gmbh Robert Objektdetektionssystem
US6677889B2 (en) * 2002-01-22 2004-01-13 Raytheon Company Auto-docking system
US6707414B2 (en) * 2002-01-22 2004-03-16 Raytheon Company Docking information system for boats

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02075354A1 *

Also Published As

Publication number Publication date
DE10113323C2 (de) 2003-04-03
US7095361B2 (en) 2006-08-22
US20030160717A1 (en) 2003-08-28
JP2004518983A (ja) 2004-06-24
DE10113323A1 (de) 2002-10-02
WO2002075354A1 (de) 2002-09-26

Similar Documents

Publication Publication Date Title
EP1373927A1 (de) Radarsensorplattform
EP2191293B1 (de) Objektklassifizierungsverfahren, einparkhilfeverfahren und einparkhilfesystem
EP1614585B1 (de) Verfahren und Vorrichtung zum Vermessen einer Parklücke für ein Einparkassistenzsystem eines Kraftfahrzeugs
DE102007055799B4 (de) Fahrzeugumgebungsüberwachungsgerät
EP3183152B1 (de) Verfahren zum warnen eines fahrers eines kraftfahrzeugs vor der anwesenheit eines objekts in der umgebung, fahrerassistenzsystem und kraftfahrzeug
EP0936476B1 (de) Hinderniserkennungssystem in einem Kraftfahrzeug
DE10206764A1 (de) Verfahren zum Einparken eines Fahrzeugs
EP2507648B1 (de) Verfahren zur anpassung der empfindlichkeit von ultraschallsensoren
DE10352800A1 (de) Vorrichtung zur Detektion von bewegten Objekten
EP1475765A2 (de) Vorrichtung zur Bestimmung einer Durchfahrtsmöglichkeit für ein Fahrzeug
WO2004090569A1 (de) Einparkhilfe für ein fahrzeug
DE102007035219A1 (de) Objektklassifizierungsverfahren und Einparkhilfesystem
EP2867065B1 (de) Verfahren zur unterstützung eines fahrers eines fahrzeugs mit einem fahrassistenzsystem
DE102005013335A1 (de) Auffahr-Warnsystem
DE102009000401A1 (de) Verfahren und Vorrichtung zum Vermeiden einer Kollision zwischen einem Fahrzeug und einem Objekt
DE102012211034A1 (de) Höhendetektion
DE102010025552A1 (de) Umfelderfassungsverfahren sowie Verfahren und Vorrichtung zum Einparken eines Kraftfahrzeugs
DE102012208302A1 (de) Verfahren zur Bereitstellung von Informationen über eine Umgebung eines Fahrzeugs
EP2322411A2 (de) Verfahren zur Erkennung einer zum Einparken eines Fahrzeugs geeigneten Parklücke
DE10351915A1 (de) Überwachungsvorrichtung für ein Kraftfahrzeug
WO2017108237A1 (de) Verfahren zum adaptieren eines echo-schwellwertverlaufs für einen ultraschallsensor eines kraftfahrzeugs
DE10330255A1 (de) Fahrerassistenzverfahren und -vorrichtung für ein Kraftfahrzeug
DE10305935A1 (de) Vorrichtung zur Erfassung von Objekten im Umfeld eines Kraftfahrzeugs
WO2018060171A1 (de) Verfahren zur überwachung eines totwinkelbereichs eines kraftfahrzeugs mithilfe eines ultraschallsensors, fahrerassistenzsystem sowie kraftfahrzeug
DE102018207274A1 (de) Ultraschallsensorsystem und Verfahren zum Erkennen von Objekten im Umfeld eines Fahrzeugs, sowie Fahrzeug mit einem Ultraschallsensorsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MATTES, BERNHARD

Inventor name: MORITZ, RAINER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20060211