EP1372274B1 - Optische Übertragungseinrichtung und optisches Übertragungsverfahren für ein Burst-Funksignal - Google Patents

Optische Übertragungseinrichtung und optisches Übertragungsverfahren für ein Burst-Funksignal Download PDF

Info

Publication number
EP1372274B1
EP1372274B1 EP03012993A EP03012993A EP1372274B1 EP 1372274 B1 EP1372274 B1 EP 1372274B1 EP 03012993 A EP03012993 A EP 03012993A EP 03012993 A EP03012993 A EP 03012993A EP 1372274 B1 EP1372274 B1 EP 1372274B1
Authority
EP
European Patent Office
Prior art keywords
signal
circuit
voltage
section
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03012993A
Other languages
English (en)
French (fr)
Other versions
EP1372274A3 (de
EP1372274A2 (de
Inventor
Tsutomu Niiho
Hiroyuki Sasai
Kouichi Masuda
Kenji Miyanaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of EP1372274A2 publication Critical patent/EP1372274A2/de
Publication of EP1372274A3 publication Critical patent/EP1372274A3/de
Application granted granted Critical
Publication of EP1372274B1 publication Critical patent/EP1372274B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre

Definitions

  • the present invention relates to an optical transmission device transmitting and receiving a radio band signal in a burst manner by an optical fiber, and a radio communication system using the above-described optical transmission device.
  • FIG. 27 is a block diagram showing the structure of the mobile communication system using the ROF technique.
  • the system shown in FIG. 27 includes a center station 1, antenna side base stations 2, optical fibers 3, and mobile phones 4, and allows the mobile phone 4 to perform bi-directional communications with another mobile phone 4 in the system.
  • Radio communications are performed between the antenna side base station 2 and the mobile phone 4.
  • the optical fiber 3 interconnects the center station 1 and the antenna side base station 2, and optical communications are performed therebetween.
  • the center station 1 is connected to other center stations (not shown). In order to allow the mobile phone 4 to perform bi-directional communications with another mobile phone 4 in the system, the center station 1 receives a signal transmitted from the mobile phone 4, and transmits the received signal to the antenna side base station 2 or other center stations.
  • the center station 1 When transmitting a signal to the mobile phone 4, the center station 1 converts a transmission signal into a radio signal. Then, the center station 1 converts the obtained radio signal into an optical signal, and sends the obtained optical signal to the optical fiber 3.
  • the antenna side base station 2 converts the optical signal transmitted over the optical fiber 3 into an electric signal, and transmits an electric wave based on the obtained electric signal.
  • the electric wave transmitted from the antenna side base station 2 is received by the mobile phone 4.
  • an electric wave transmitted from the mobile phone 4 is received by the antenna side base station 2.
  • the antenna side base station 2 obtains a radio band reception signal based on the received electric wave, converts the obtained reception signal into an optical signal, and sends the obtained optical signal to the optical fiber 3.
  • the center station 1 reconstructs the radio band reception signal by converting the optical signal transmitted over the optical fiber 3 into an electric signal, and obtains a reception signal by demodulating the reconstructed radio band reception signal.
  • FIG. 28 is a block diagram showing the structure of a conventional optical transmission device and a conventional radio communication system. Note that, in the radio communication system, FIG. 28 shows only a downlink system from a center station 100 to an antenna side base station 200.
  • a radio transmission signal 182 is a transmission signal to be transmitted to the mobile phone 4, the transmission signal is converted into a radio signal.
  • a transmission timing signal 181 is a signal indicating whether the radio communication system is in a transmission state or in a non-transmission state, that is, indicating whether or not the radio transmission signal 182 is generated. As shown in FIG. 29, the transmission timing signal 181 is frequency multiplexed with the radio transmission signal 182, and transmitted from the center station 100 to the antenna side base station 200.
  • a modulation section 101 modulates the transmission timing signal 181 using these methods such as ASK (Amplitude Shift Keying) or PSK (Phase Shift Keying).
  • a multiplexing section 102 frequency multiplexes the signal output from the modulation section 101 with the radio transmission signal 182.
  • a light emitting section 104 obtains a supply of a fixed bias current from a bias circuit 103, and sends an optical signal, whose intensity is modulated based on the signal output from the multiplexing section 102, to a downlink optical fiber 3a.
  • a light receiving section 201 converts the optical signal, which is output from the light emitting section 104 and transmitted over the downlink optical fiber 3a, into an electric signal.
  • a high frequency amplification section 204 amplifies one signal demultiplexed by the demultiplexing section 202 by a fixed amplification factor, and supplies the amplified signal to an antenna switch 205.
  • a demodulation section 203 demodulates the other signal demultiplexed by the demultiplexing section 202, and outputs a transmission timing signal 281 varying in a manner similar to the transmission timing signal 181.
  • the antenna switch 205 changes the function of an antenna 206 in accordance with the transmission timing signal 281.
  • the antenna 206 either transmits an electric wave based on the signal amplified by the high frequency amplification section 204, or receives an electric wave.
  • the antenna switch 205 outputs the radio band reception signal received by the antenna 206 to a terminal 207.
  • An uplink system (not shown) from the antenna side base station 200 to the center station 100 is connected to the terminal 207.
  • the signal output from the terminal 207 is transmitted from the antenna side base station 200 to the center station 100 by the above-described uplink system.
  • TDMA Time Division Multiple Access
  • TDD Time Division Duplex
  • data is transmitted based on time division transmission technique, whereby a radio signal is transmitted in a burst manner.
  • the antenna side base station has to be provided with an automatic power control circuit (hereinafter, referred to as APC circuit) stabilizing the power of the electric wave emitted from the antenna.
  • APC circuit an automatic power control circuit
  • the antenna side base station included in the mobile communication system using TDMA or TDD has to be provided with the APC circuit for a radio signal transmitted in a burst manner (hereinafter, referred to as a burst radio signal).
  • an APC circuit for the burst radio signal
  • an APC circuit (FIG. 30) disclosed in Japanese Patent Laid-Open Publication No. 2002-16506 is known.
  • a variable gain circuit 301 and a power amplification circuit 302 amplify a modulated transmission signal.
  • a switch circuit 303 is controlled based on a transmission control signal so as to be switched between an ON state and an OFF state, and outputs the amplified transmission signal intermittently.
  • the transmission signal output from the switch circuit 303 is transmitted from an antenna 305 as an electric wave.
  • a directional coupler 304 branches the transmission signal output from the switch circuit 303.
  • a detection circuit 306 finds a power level of the transmission signal branched by the directional coupler 304.
  • a detection hold circuit 307 In a transmission state, a detection hold circuit 307 outputs a detected output from the detection circuit 306. In a non-transmission state, on the other hand, the detection hold circuit 307 holds the detected output in the previous transmission state and outputs the held output.
  • a gain control circuit 308 compares a level of the signal output from the detection hold circuit 307 with a pre-set reference level, and controls a gain of the variable gain circuit 301 so as to reduce the difference between the above-described two levels.
  • the detection hold circuit 307 outputs, to the gain control circuit 308, the signal whose level is substantially equal to the above-described reference level irrespective of whether it is in the transmission state or in the non-transmission state.
  • the gain control circuit 308 outputs a gain control signal whose level is substantially constant.
  • the above-described conventional optical transmission device and the conventional radio communication system have the following problems.
  • noise such as relative intensity noise (RIN) caused in the light emitting section or thermal noise caused in the light receiving section is amplified in the high frequency amplification section of the antenna side base station.
  • RIN relative intensity noise
  • the antenna produces extraneous emissions, or noise in the downlink system has an adverse effect on the uplink system in the antenna side base station, thereby degrading the sensitivity of the uplink system in the non-transmission state of the radio signal.
  • the transmission timing signal is frequency multiplexed with the radio transmission signal and transmitted, which results in the high cost of the device due to the complicated circuits of the center station and the antenna side base station.
  • a change in signal power with a change in optical power fluctuates in proportion to the square of the optical power.
  • the APC circuit has to be able to control the gain over a wide range of the optical power. As a result, there arises a problem that the APC circuit has to be provided with a high-performance variable attenuation circuit or variable amplification circuit.
  • an object of the present invention is to provide an optical transmission device which is capable of reducing noise caused in the antenna side base station in the non-transmission state of a radio signal and transmitting the transmission timing signal with a simple structure, and a radio communication system using the above-described optical transmission device. Also, another object of the present invention is to provide an optical transmission device including a simple structured APC circuit for a burst radio signal and a radio communication system using the above-described optical transmission device.
  • FIG. 1 is a block diagram showing the structure of an optical transmission device and a radio communication system according to a first embodiment of the present invention.
  • the radio communication system shown in FIG. 1 includes a bias circuit 11, a light emitting section 12, an uplink light receiving section 13, a light receiving section 21, a received photocurrent detection section 22, a high frequency amplification section 23, a transmission timing signal reconstruction section 24, an antenna switch 25, an antenna 26, an uplink light emitting section 27, a downlink optical fiber 3a, and an uplink optical fiber 3b.
  • the bias circuit 11, the light emitting section 12, and the uplink light receiving section 13 are provided in a center station 10, and the light receiving section 21, the received photocurrent detection section 22, the high frequency amplification section 23, the transmission timing signal reconstruction section 24, the antenna switch 25, the antenna 26, and the uplink light emitting section 27 are provided in an antenna side base station 20.
  • the center station 10 is connected with the antenna side base station 20 using the downlink optical fiber 3a and the uplink optical fiber 3b so as to be capable of performing bi-directional communications therebetween.
  • the center station 10 and the antenna side base station 20 shown in FIG. 1 correspond to the center station 1 and the antenna side base station 2 shown in FIG. 27, respectively
  • the downlink optical fiber 3a and the uplink optical fiber 3b shown in FIG. 1 correspond to the optical fiber 3 shown in FIG. 27.
  • an optical transmission device 5 includes the bias circuit 11, the light emitting section 12, the light receiving section 21, the received photocurrent detection section 22, the high frequency amplification section 23, the transmission timing signal reconstruction section 24, and the downlink optical fiber 3a.
  • the detailed structure of the optical transmission device 5 is described with reference to FIG. 1.
  • a transmission timing signal 81 and a radio transmission signal 82 are input into the optical transmission device 5.
  • the radio transmission signal 82 is a radio signal to be transmitted to the mobile phone 4, the radio signal modulated using ASK or PSK, etc.
  • the transmission timing signal 81 is a control signal indicating whether the radio communication system is in a transmission state or in a non-transmission state, that is, indicating whether or not the radio transmission signal 82 to be transmitted is generated.
  • a value of the transmission timing signal 81 is 1 when the radio communication system is in the transmission state, and a value thereof is 0 when the radio communication system is in the non-transmission state.
  • the radio transmission signal 82 is transmitted in a burst manner in accordance with the transmission timing signal 81.
  • the bias circuit 11 and the light emitting section 12 are included in a variable light emitting section outputting an optical signal having an intensity corresponding to the transmission timing signal 81 and modulated based on the radio transmission signal 82.
  • the transmission timing signal 81 is input into the bias circuit 11, and the radio transmission signal 82 is input into the light emitting section 12.
  • the bias circuit 11 generates a bias current to be supplied to the light emitting section 12. More specifically, when the value of the transmission timing signal 81 is 1 (transmission state), the bias circuit 11 generates a first bias current.
  • the bias circuit 11 when the value of the transmission timing signal 81 is 0 (non-transmission state), the bias circuit 11 generates a second bias current smaller than the first bias current.
  • a value of the first bias current is set so that an intensity of the optical signal output from the light emitting section 12 is adequate for performing optical transmission
  • a value of the second bias current is set so that the intensity of the optical signal output from the light emitting section 12 is substantially equal to zero.
  • the light emitting section 12 emits light at an intensity corresponding to the radio transmission signal 82. In other words, the light emitting section 12 outputs the optical signal whose intensity is modulated by the radio transmission signal 82. Also, the light emitting section 12 obtains a supply of a bias current changing with the transmission timing signal 81 from the bias circuit 11. Therefore, when the value of the transmission timing signal 81 is 1 (transmission state), the variable light emitting section including the bias circuit 11 and the light emitting section 12 outputs the optical signal whose intensity is modulated based on the radio transmission signal 82. On the other hand, when the value of the transmission timing signal 81 is 0 (non-transmission state), the above-described variable light emitting section outputs the optical signal whose intensity is substantially equal to zero. In other words, the above-described variable light emitting section outputs no optical signal in the non-transmission state.
  • the optical signal output from the light emitting section 12 passes through the downlink optical fiber 3a, and reaches the light receiving section 21.
  • the light receiving section 21 receives the optical signal output from the light emitting section 12 and transmitted over the downlink optical fiber 3a, and converts the received optical signal into an electric signal.
  • the electric signal obtained as described above is output to the high frequency amplification section 23.
  • the received photocurrent detection section 22 detects an intensity of the optical signal received by the light receiving section 21. More specifically, the received photocurrent detection section 22 obtains an intensity of the optical signal by detecting a current (received photocurrent) passing through the light receiving section 21 when the optical signal is received by the light receiving section 21.
  • the light intensity obtained by the received photocurrent detection section 22 is output to the high frequency amplification section 23 and the transmission timing signal reconstruction section 24.
  • the electric signal output from the light receiving section 21 and the light intensity detected by the received photocurrent detection section 22 are input into the high frequency amplification section 23.
  • the high frequency amplification section 23 amplifies the electric signal output from the light receiving section 21. More specifically, the high frequency amplification section 23 having a threshold value T1 with respect to a light intensity amplifies the electric signal by a first amplification factor when the input light intensity exceeds the threshold value T1, and amplifies the electric signal by a second amplification factor smaller than the first amplification factor when the above-described intensity is equal to or smaller than the threshold value T1.
  • the threshold value T1 is set at a value allowing a time period when the value of the transmission timing signal 81 is 1 (transmission state) and a time period when the value thereof is 0 (non-transmission state) to be distinguished.
  • the high frequency amplification section 23 amplifies the electric signal output from the light receiving section 21 by the first amplification factor.
  • the transmission timing signal 81 is 0 (non-transmission state)
  • the high frequency amplification section 23 outputs no signal.
  • a circuit connected to a following stage of the high frequency amplification section 23 is isolated from the high frequency amplification section 23 in terms of the signal flow, thereby becoming unaffected by the optical signal received by the light receiving section 21.
  • the transmission timing signal reconstruction section 24 Based on the intensity of the optical signal received by the light receiving section 21, the transmission timing signal reconstruction section 24 reconstructs a transmission timing signal 91 varying in a manner similar to the transmission timing signal 81. More specifically, as in the case of the high frequency amplification section 23, the transmission timing signal reconstruction section 24, having a threshold value T2 with respect to a light intensity, outputs a value 1 indicating the transmission state when the input light intensity exceeds the threshold value T2, and outputs a value 0 indicating the non-transmission state when the light intensity is equal to or smaller than the threshold value T2. Note that, in a typical antenna side base station, the threshold value T1 of the high frequency amplification section 23 coincides with the threshold value T2 of the transmission timing signal reconstruction section 24, but the above-described two threshold values are not necessarily required to coincide with each other.
  • the optical transmission device 5 of the present embodiment when the radio communication system is in the non-transmission state, the optical signal is not transmitted from the center station 10 to the antenna side base station 20, and the level of the signal output from the high frequency amplification section 23 is substantially equal to zero.
  • the noise level of the antenna side base station 20 in the non-transmission state is reduced.
  • the light receiving section 21 does not receive the optical signal in the non-transmission state, thereby reducing the adverse effects of the relative intensity noise on the light receiving section 21 and reducing the noise level of the antenna side base station 20 in the non-transmission state.
  • the bias circuit 11, the received photocurrent detection section 22, and the transmission timing signal reconstruction section 24 are used in place of a modulation section, a multiplexing section, a demultiplexing section, and a demodulation section, which are necessary components in the conventional optical transmission device, whereby the optical transmission device 5 having a simpler structure than that of the conventional optical transmission device can reconstruct the transmission timing signal in the antenna side base station 20.
  • FIG. 2. is a circuit diagram showing the detailed structure of the light emitting section 12.
  • the light emitting section 12 shown in FIG. 2 includes a capacitor 121, an inductor 122, and a semiconductor laser 123 that is a light emitting element.
  • One terminal of the semiconductor laser 123 is connected to the bias circuit 11 via the inductor 122, and the other terminal thereof is grounded.
  • a laser bias is supplied to the semiconductor laser 123 by the bias circuit 11, and the semiconductor laser 123 emits light when a bias current supplied by the bias circuit 11 exceeds a predetermined value.
  • the radio transmission signal 82 is applied, via the capacitor 121, to a junction point P between the inductor 122 and the semiconductor laser 123. As a result, a potential of the junction point P and an intensity of the optical signal output from the semiconductor laser 123 are changed with a change in the radio transmission signal 82.
  • FIG. 3 is a circuit diagram showing the detailed structure of the light receiving section 21 and the received photocurrent detection section 22.
  • the light receiving section 21 includes a photodiode 211 that is a light receiving element and a capacitor 212
  • the received photocurrent detection section 22 includes a resistance 221 and a differential amplification circuit 222.
  • the photodiode 211 and the resistance 221 are connected in series.
  • a predetermined bias current V1 is applied to one terminal of a circuit including the above-described two elements connected in series, and the other terminal is grounded.
  • a junction point Q between the photodiode 211 and the resistance 221 is connected to an input terminal of the high frequency amplification section 23 via the capacitor 212.
  • Two input terminals of the differential amplification circuit 222 are connected to the respective ends of the resistance 221.
  • a current corresponding to an intensity of the optical signal passes through the photodiode 211.
  • a potential of the junction point Q is changed with a change in an intensity of the input optical signal, and an electric signal varying in the same manner as the radio transmission signal 82 is supplied to the high frequency amplification section 23.
  • the current passing through the resistance 221 is changed with a change in an intensity of the input optical signal.
  • the differential amplification circuit 222 measures the current passing through the resistance 221 by comparing the potential of one end of the resistance 221 with the potential of the other end thereof, and outputs the measured current as an intensity of the received optical signal.
  • FIG. 4 is a circuit diagram showing the detailed structure of the high frequency amplification section 23.
  • the high frequency amplification section 23 shown in FIG. 4 includes a transistor 231 and an amplification circuit 232.
  • the transistor 231 functions as a switch for performing switching between a state of supplying a bias current V2 to the amplification circuit 232 and a state of supplying no bias current V2 thereto.
  • An intensity of the optical signal received by the light receiving section 21 is input into a control terminal of the transistor 231 from the received photocurrent detection section 22.
  • the transistor 231 conducts, and the bias voltage V2 is supplied to the amplification circuit 232.
  • the amplification circuit 232 amplifies the electric signal output from the light receiving section 21 by a predetermined amplification factor.
  • the transistor 231 does not conduct, and the bias voltage V2 is not supplied to the amplification circuit 232.
  • the amplification circuit 232 outputs a signal whose level is substantially equal to zero.
  • FIG. 5 is a signal waveform diagram in the case where an ASK modulated carrier is transmitted using the optical transmission device 5.
  • data to be transmitted is three bit data ("101"), and a vertical scaling factor is appropriately adjusted in order to facilitate an understanding of the drawing.
  • the value of the transmission timing signal 81 (a signal in the second line of FIG. 5) is 1 when there is data to be transmitted, and the value thereof is 0 when there is no data to be transmitted. In this example, the value of the transmission timing signal 81 is 1 only during a time period when the three bit data "101" is transmitted.
  • the radio transmission signal 82 (a signal in the third line of FIG.
  • the radio transmission signal 82 is changed only during the time period when the value of the transmission timing signal 81 is 1 (transmission state).
  • An intensity of the optical signal (a signal in the fourth line of FIG. 5) passing through the downlink optical fiber 3a is changed with respect to a predetermined level L when the value of the transmission timing signal 81 is 1 (transmission state) .
  • the intensity is substantially equal to zero when the value of the transmission timing signal 81 is 0 (non-transmission state).
  • the transmission timing signal 91 (a signal in the fifth line of FIG. 5), which is output from the transmission timing signal reconstruction section 24, varies in a manner similar to the transmission timing signal 81.
  • a radio transmission signal 92 (a signal in the bottom line of FIG. 5), which is output from the high frequency amplification section 23, varies in a manner similar to the radio transmission signal 82.
  • the optical transmission device 5 allows the transmission timing signal and the ASK modulated radio transmission signal which have been input at the center station 10 to be correctly reconstructed at the antenna side base station 20.
  • the optical transmission device 5 has the above-described features irrespective of what type of modulation method has been applied to the radio transmission signal 82.
  • FIG. 6 is a signal waveform diagram in the case where a PSK modulated carrier is transmitted using the optical transmission device 5. Comparison between FIGS. 5 and 6 shows that FIG. 6 differs from FIG. 5 only in the waveforms of the radio transmission signals 82 and 92.
  • the optical transmission device 5 allows the transmission timing signal and the PSKmodulated radio transmission signal which have been input at the center station 10 to be correctly reconstructed at the antenna side base station 20.
  • the transmission timing signal 81 when the transmission timing signal 81 is changed from the value 0 (non-transmission state) to the value 1 (transmission state), a timing of the above-described change does not have to coincide exactly with a timing of the appearance of the modulated radio transmission signal 82.
  • the transmission timing signal 81 may be changed from the value 0 to the value 1 before the appearance of the modulated radio transmission signal 82 by a predetermined time.
  • Effects of the optical transmission device 5 will be described in a quantitative manner.
  • a level of noise output from the light receiving section is -165dBm/Hz due to influences of relative intensity noise in the light emitting section, shot noise in the light receiving section, and thermal noise, and a gain value of the high frequency amplification section is 60dB
  • the noise level of the output signal of the high frequency amplification section comes to -105dBm/Hz.
  • the optical transmission device 5 in the non-transmission state of the radio signal, the high frequency amplification section 23 outputs a signal whose level is substantially equal to zero.
  • the noise level of the radio transmission signal 92 in the non-transmission state is equal to the level of the thermal noise, that is, in the vicinity of -174dBm/Hz.
  • the optical transmission device 5 allows the noise level of the radio transmission signal 92 in the non-transmission state to be reduced significantly.
  • the variable light emitting section including the bias circuit and the light emitting section outputs an optical signal having an intensity corresponding to the transmission timing signal and modulated based on the radio band transmission signal.
  • the received photocurrent detection section detects an intensity of an optical signal received by the light receiving section. Based on the above-described intensity, the high frequency amplification section amplifies the electric signal output from the light receiving section, and the transmission timing signal reconstruction section reconstructs the transmission timing signal. As a result, it is possible to reduce the noise in the antenna side base station in the non-transmission state of the radio signal, and provide a simple structured optical transmission device that can transmit the transmission timing signal.
  • the radio transmission signal 92 output from the high frequency amplification section 23 and the transmission timing signal 91 output from the transmission timing signal reconstruction section 24 are input into the antenna switch 25 connected to a following stage of the high frequency amplification section 23.
  • the antenna switch 25 changes the function of the antenna 26 based on the transmission timing signal 91.
  • the antenna 26 transmits an electric wave based on the radio transmission signal 92.
  • An electric wave transmitting and receiving section including the antenna switch 25 and the antenna 26 transmits an electric wave when the light intensity detected by the received photocurrent detection section 22 exceeds the threshold value T2, and receives an electric wave when the intensity is equal to or smaller than the threshold value T2.
  • the antenna switch 25 When the antenna 26 receives an electric wave, the antenna switch 25 outputs the received radio band signal to the uplink light emitting section 27 as a radio reception signal 93.
  • the uplink light emitting section 27 sends the optical signal modulated based on the radio reception signal to the uplink optical fiber 3b.
  • the optical signal output from the uplink light emitting section 27 passes through the uplink optical fiber 3b, and reaches the uplink light receiving section 13.
  • the uplink light receiving section 13 receives the optical signal output from the uplink light emitting section 27 and transmitted over the uplink optical fiber 3b, converts the received optical signal into an electric signal, and outputs the electric signal as a radio reception signal 83.
  • the radio communication system of the present embodiment has a simple but adequate structure for transmitting the transmission timing signal to the antenna side base station, and can change the function of the electric wave transmitting and receiving section including the antenna switch and the antenna using the above-described transmission timing signal.
  • the radio communication system when the radio communication system is in the non-transmission state, no optical signal is transmitted from the center station to the antenna side base station, and the level of the signal output from the high frequency amplification section is substantially equal to zero.
  • the antenna switch is isolated from the high frequency amplification section in terms of the signal flow, thereby becoming unaffected by the optical signal received by the light receiving section.
  • FIG. 7 is a block diagram showing the structure of an optical transmission device and a radio communication system according to a second embodiment of the present invention.
  • the radio communication system shown in FIG. 7 differs from the radio communication system according to the first embodiment in that a radio demodulation section 28 is additionally included.
  • Any components of the second embodiment that function in similar manners to their counterparts of the first embodiment are denoted by like numerals, with the descriptions thereof omitted.
  • the radio reception signal 93 output from the antenna switch 25 is input into the radio demodulation section 28.
  • the radio demodulation section 28 obtains a baseband signal by demodulating the input radio reception signal 93.
  • the uplink light emitting section 27 sends, to the uplink optical fiber 3b, the optical signal whose intensity is modulated based on the signal demodulated by the radio demodulation section 28.
  • the optical signal output from the uplink light emitting section 27 passes through the uplink optical fiber 3b, and reaches the uplink light receiving section 13.
  • the uplink light receiving section 13 receives the optical signal output from the uplink light emitting section 27 and transmitted over the uplink optical fiber 3b, converts the received optical signal into an electric signal, and outputs the electric signal.
  • the radio band signal received by the antenna 2 6 is demodulated so as to obtain the baseband signal by the radio demodulation section 28.
  • a reception signal 84 obtained by demodulating the radio band reception signal is output from the uplink light receiving section 13.
  • a feature of the radio communication system according to the present embodiment is to use baseband optical communications in the uplink system in place of the ROF technique. As such, even if the baseband optical communications are used in the uplink system, it is possible to produce the same effect as the first embodiment by utilizing the advantage of the optical transmission device 5.
  • optical transmission device and the radio communication system may be structured as follows.
  • an arbitrary communication method may be used in place of the ROF technique or the baseband optical communications.
  • the use of the above-described optical transmission device 5 in the downlink system allows the same effect as the above-described embodiments to be produced irrespective of the communication method in the uplink system.
  • the optical transmission device 5 may be used in an optical transmission system other than the radio communication system (for example, an optical transmission network system interconnecting a multi-staged optical fibers). Also in this case, it is possible to produce the same effect as the above-described embodiments.
  • the transmission timing signal reconstruction section may be united with a component connected to a following stage of the high frequency amplification section (for example, the antenna switch).
  • the variable light emitting section may control an intensity of an optical signal to be output by causing the optical signal modulated based on the radio transmission signal to pass through an optical switch circuit controlled by the transmission timing signal.
  • the light emitting section may perform frequency modulation or phase modulation in place of intensity modulation. In the case where the light emitting section performs frequency modulation or phase modulation, it is possible to produce the same effect as the above-described embodiments by controlling an intensity of the optical signal based on the transmission timing signal before or after performing the frequency modulation or the phase modulation.
  • FIG. 8 is a block diagram showing the structure of an optical transmission device according to a third embodiment of the present invention.
  • the optical transmission device shown in FIG. 8 is used as a downlink system of the radio communication system.
  • the above-described optical transmission device includes the bias circuit 11, the light emitting section 12, the light receiving section 21, the received photocurrent detection section 22, a high frequency amplification section 29, and the downlink optical fiber 3a.
  • the optical transmission device of the third embodiment differs from optical transmission device of the first embodiment only in that the high frequency amplification section 29 is included in place of a high frequency amplification section 23.
  • the optical transmission device may include a transmission timing signal reconstruction section for reconstructing the transmission timing signal based on an intensity of an received optical signal.
  • the high frequency amplification section 29 amplifies a radio transmission signal 71 output from the light receiving section 21 so as to obtain a signal having predetermined power by controlling an amplification factor based on a received photocurrent detection signal 70 output from the received photocurrent detection section 22.
  • the high frequency amplification section 29 includes an amplification circuit 40, a first power control circuit 50, and a second power control circuit 60.
  • the amplification circuit 40 amplifies the radio transmission signal 71 by a predetermined amplification factor, and outputs the amplified signal as a radio transmission signal 72.
  • the first power control circuit 50 performs automatic power control for the radio transmission signal 72, and outputs the power controlled signal as a radio transmission signal 73.
  • the second power control circuit 60 performs further automatic power control for the radio transmission signal 73, and outputs the power controlled signal as a radio transmission signal 94.
  • the radio transmission signal 94 is supplied to an antenna switch (not shown) connected to a following stage of the optical transmission device.
  • the automatic power control in the first power control circuit 50 is performed for accommodating a change in power of the radio transmission signal 94, the change caused by a change in optical power.
  • the automatic power control in the second power control circuit 60 is performed for accommodating a change in power of the radio transmission signal 94, the change caused by other than a change in optical power. More specifically, the first power control circuit 50 attenuates the radio transmission signal 72 so as to keep the power of the radio transmission signal 94 substantially constant even if a voltage level of the received photocurrent detection signal 70 is changed.
  • the second power control circuit 60 performs feedback control, and attenuates the radio transmission signal 73 so as to bring the power of the radio transmission signal 94 to a pre-set value.
  • the power of the radio transmission signal 94 may be changed by other than a change in optical power, for example, by a change in an amplification factor of the amplification circuit 40, which is caused by a change in a temperature.
  • FIG. 9 is a block diagram showing the detailed structure of the first power control circuit 50.
  • a first power control circuit 50a shown in FIG. 9 includes a comparison circuit 51, a voltage generation circuit 52a, a switch circuit 53, a control voltage output circuit 54, and a variable attenuation circuit 55.
  • the comparison circuit 51 determines whether or not an intensity of the optical signal received by the light receiving section 21 is greater than a predetermined value. More specifically, the comparison circuit 51 has a predetermined threshold value T3 with respect to a light intensity, and outputs a signal indicating whether or not a voltage level of the received photocurrent detection signal 70 exceeds the threshold value T3, as a control signal for the switch circuit 53.
  • the value of the above-described control signal is 1, which indicates a transmission state.
  • the value of the above-described control signal is 0, which indicates a non-transmission state.
  • the voltage generation circuit 52a fixedly generates a predetermined voltage Vc which is substantially equal to a voltage corresponding to a light intensity to be detected by the received photocurrent detection section 22 in the transmission state (that is, an expected value of the light intensity in the transmission state). More specifically, the voltage generation circuit 52a generates the voltage Vc which is substantially equal to a voltage level of the received photocurrent detection signal 70, the voltage level to be detected when the radio transmission signal 82 is input into the optical transmission device.
  • the switch circuit 53 selects either the received photocurrent detection signal 70 or the output signal of the voltage generation circuit 52a, and outputs the selected signal. More specifically, when the value of the output signal of the comparison circuit 51 is 1 (transmission state), the switch circuit 53 selects the received photocurrent detection signal 70. On the other hand, when the value of the output signal of the comparison circuit 51 is 0 (non-transmission state), the switch circuit 53 selects the output signal of the voltage generation circuit 52a.
  • the control voltage output circuit 54 Based on the output signal of the switch circuit 53, the control voltage output circuit 54 obtains a control voltage to be supplied to the variable attenuation circuit 55.
  • the variable attenuation circuit 55 is an attenuation circuit which can control its attenuation factor.
  • the variable attenuation circuit 55 attenuates the radio transmission signal 72 by an attenuation factor corresponding to the control voltage output from the control voltage output circuit 54, and outputs the attenuated signal as the radio transmission signal 73.
  • FIG. 10 is a block diagram showing the detailed structure of the control voltage output circuit 54.
  • the control voltage output circuit 54 includes an averaging circuit 541, a reference voltage generation circuit 542, a difference detection circuit 543, and a logarithmic amplifier 544.
  • the averaging circuit 541 obtains a moving average of a voltage level of the output signal of the previous stage circuit (in FIG. 9, the switch circuit 53).
  • the reference voltage generation circuit 542 fixedly generates a reference voltage Vr1 which is a reference for a voltage level of the output signal of the previous stage circuit.
  • the difference detection circuit 543 obtains a difference between the moving average value obtained by the averaging circuit 541 and the reference voltage Vr1.
  • the logarithmic amplifier 544 applies a logarithmic transformation to the voltage difference obtained by the difference detection circuit 543, and outputs the log-transformed voltage to a circuit (in FIG. 9, the variable attenuation circuit 55) connected to a following stage of the control voltage output circuit 54.
  • a logarithmic value of the voltage difference is supplied to the variable attenuation circuit 55 as a control voltage, thereby controlling the amount of attenuation in the variable attenuation circuit 55 in proportion to optical power.
  • a voltage level of the received photocurrent detection signal 70 (a signal in the first line of FIG. 11) is assumed to be a first voltage Va in a transmission state of the radio transmission signal 82, and the voltage level thereof is assumed to be a second voltage Vb which is substantially equal to zero in a non-transmission state of the radio transmission signal 82.
  • a value smaller than the first voltage Va and greater than the second voltage Vb is used as the threshold value T3 of the comparison circuit 51.
  • the value of the output signal of the comparison circuit 51 (a signal in the second line of FIG. 11) is 1, and the above-described value is 0 in the non-transmission state.
  • a voltage level of the output signal of the voltage generation circuit 52a (a signal in the third line of FIG. 11) is constant at the voltage Vc.
  • a voltage level of the output signal of the switch circuit 53 (a signal in the fourth line of FIG. 11) is the voltage Va in the transmission state of the radio transmission signal 82.
  • the above-described voltage level is the voltage Vc in the non-transmission state of the radio transmission signal 82.
  • the output signal of the control voltage output circuit 54 (a signal in the bottom line of FIG. 11) is changed with a change in the output signal of the switch circui.t 53.
  • the voltage Vc is determined so as to be substantially equal to the voltage Va, whereby a voltage level of the output signal of the control voltage output circuit 54 is a voltage Vd, which is substantially constant.
  • calculation of a moving average and a logarithmic transformation are performed in the control voltage output circuit 54.
  • the output signal of the control voltage output circuit 54 is changed slowly over a certain amount of time even if the output signal of the switch circuit 53 is changed instantaneously between the voltages Va and Vc.
  • the first voltage control circuit 50 fixedly generates the voltage Vc which is substantially equal to the voltage level of the received photocurrent detection signal 70 in the transmission state, and attenuates the radio transmission signal 72 by an attenuation factor corresponding to the voltage level of the received photocurrent detection signal 70 in the transmission state, or by an attenuation factor corresponding to the voltage Vc in the non-transmission state.
  • the use of the first voltage control circuit 50 allows a change in the power of the radio transmission signal 94, which is caused by a change in the optical power, to be accommodated.
  • the use of the first voltage control circuit 50 allows the power of the radio transmission signal 94 to be controlled at substantially the same level as that in the transmission state.
  • FIG. 12 is a block diagram showing the detailed structure of the second power control circuit 60.
  • a second power control circuit 60a shown in FIG. 12 includes a comparison circuit 61, a voltage generation circuit 62a, a switch circuit 63, a control voltage output circuit 64, a variable attenuation circuit 65, and an envelope detection circuit 67.
  • the second power control circuit 60a differs from the first power control circuit 50a in that the envelope detection circuit 67 is additionally included and feedback control is performed. However, the principle of operation of the second power control circuit 60a is substantially equal to that of the first power control circuit 50a.
  • the envelope detection circuit 67 performs envelope detection for the radio transmission signal 94 output from the variable attenuation circuit 65, and outputs a signal having a voltage corresponding to the power of the radio transmission signal 94.
  • the voltage generation circuit 62a fixedly generates a predetermined voltage Vf which is substantially equal to the voltage corresponding to the power to be obtained by the envelope detection circuit 67 in the transmission state (that is, an expected value of the power of the radio transmission signal 94 in the transmission state). More specifically, the voltage generation circuit 62a generates the voltage Vf which is substantially equal to a voltage level of the output signal of the envelope detection circuit 67, the voltage level to be detected when the radio transmission signal 82 is input into the optical transmission device.
  • the comparison circuit 61, the switch circuit 63, the control voltage output circuit 64, and the variable attenuation circuit 65 operate in similar manners to their counterparts included in the first power control circuit 50a. That is, the comparison circuit 61 outputs a signal indicating whether or not a voltage level of the received photocurrent detection signal 70 exceeds a threshold value T4, as a control signal for the switch circuit 63. When a value of the output signal of the comparison circuit 61 is 1 (transmission state), the switch circuit 63 selects the output signal of the envelope detection circuit 67. Otherwise, the switch circuit 63 selects the output signal of the voltage generation circuit 62a.
  • the control voltage output circuit 64 Based on the output signal of the switch circuit 63, the control voltage output circuit 64 obtains a control signal to be supplied to the variable attenuation circuit 65.
  • the variable attenuation circuit 65 attenuates the radio transmission signal 73 by an attenuation factor corresponding to the control voltage output from the control voltage output circuit 64, and outputs the attenuated signal as the radio transmission signal 94.
  • the above-described threshold value T4 typically coincides with the threshold value T3 of the comparison circuit 51, but the above-described two threshold values are not necessarily required to coincide with each other.
  • FIGS. 13 to 15 are block diagrams showing the detailed structure of the control voltage output circuit 64.
  • a control voltage output circuit 64a shown in FIG. 13 includes an averaging circuit 641, a reference voltage generation circuit 642, and a difference detection circuit 643.
  • the averaging circuit 641 obtains a moving average of a voltage level of the output signal of the previous stage circuit (in FIG. 12, the switch circuit 63).
  • the reference voltage generation circuit 642 fixedly generates a reference voltage Vr2 which is a reference for a voltage level of the output signal of the previous stage circuit.
  • the difference detection circuit 643 obtains a difference between the moving average value obtained by the averaging circuit 641 and the reference voltage Vr2, and outputs the obtained voltage difference to a circuit (in FIG.
  • the variable attenuation circuit 65 connected to a following stage of the control voltage output circuit 64.
  • the control voltage output circuit 64a supplies an average value of the voltage difference to the variable attenuation circuit 65 as a control voltage.
  • the use of the control voltage output circuit 64a allows a signal, for which automatic power control cannot be performed based on a peak value due to uncertainty in a peak level (for example, a CDMA signal), to be subjected to automatic power control.
  • a control voltage output circuit 64b shown in FIG. 14 the averaging circuit 641 of the control voltage output circuit 64a is replaced with a peak-hold circuit 644.
  • the peak-hold circuit 644 holds a peak value of the output signal of the previous stage circuit (in FIG. 12, the switch circuit 63).
  • the control voltage output circuit 64b supplies the peak value of the voltage difference to the variable attenuation circuit 65 as a control voltage.
  • the use of the control voltage output circuit 64b allows a signal, whose duty ratio varies depending on a bit pattern of data to be transmitted (for example, an ASK signal), to be subjected to automatic power control.
  • a control voltage output circuit 64c shown in FIG. 15 differs from the control voltage output circuit 64b shown in FIG. 14 in that the averaging circuit 641 and an output destination select circuit 645 are additionally included.
  • the output destination select circuit 645 outputs the output signal of the previous stage circuit (in FIG. 12, the switch circuit 63) to either the averaging circuit 641 or the peak-hold circuit 644.
  • the control voltage output circuit 64c operates in a manner identical to either the control voltage output circuit 64a or the control voltage output circuit 64b.
  • control voltage output circuit 64c allows a selection to be made in accordance with the mode select signal whether automatic power control is performed based on an average value of the output signal of the previous stage circuit or based on a peak value of the above-described signal, whereby it is possible to perform automatic power control for various types of radio transmission signals.
  • control voltage output circuit 64c causes either the averaging circuit 641 or the peak-hold circuit 644 to function effectively by switching an output destination of the output signal of the previous stage circuit in accordance with the mode select signal.
  • control voltage output circuit 64c may cause either one of the above-described circuits to function effectively by selecting either the output signal of the averaging circuit 641 or the output signal of the peak-hold circuit 644.
  • a voltage level of the received photocurrent detection signal 70 (a signal in the fourth line of FIG. 16) is assumed to be the first voltage Va in the transmission state of the radio transmission signal 82.
  • the above-described voltage level is assumed to be the second voltage Vb which is substantially equal to zero.
  • a peak value of a voltage level of the output signal of the envelope detection circuit 67 (a signal in the second line of FIG. 16) is assumed to be a voltage Ve.
  • a value smaller than the first voltage Va and greater than the second voltage Vb is used as the threshold value T4 of the comparison circuit 61.
  • a value of the output signal of the comparison circuit 61 (a signal in the fifth line of FIG. 16) is 1 in the transmission state of the radio transmission signal 82, and the above-described value is 0 in the non-transmission state of the radio transmission signal 82.
  • a voltage level of the output signal of the voltage generation circuit 62a (a signal in the third line of FIG. 16) is constant at the voltage Vf.
  • a voltage level of the output signal of the switch circuit 63 (a signal in the sixth line of FIG. 16) is the voltage Ve at the maximum in the transmission state of the radio transmission state 82. In the non-transmission state of the radio transmission signal 82, however, the above-described level is the voltage Vf.
  • the output signal of the control voltage output circuit 64 (a signal in the bottom line of FIG. 11) is changed with a change in the output signal of the switch circuit 63.
  • a voltage level of the output signal of the control voltage output circuit 64 is the voltage Ve during most of the time period when the radio transmission signal is transmitted.
  • the voltage Vf is determined so as to be substantially equal to the voltage Ve, whereby a voltage level of the output signal of the control voltage output circuit 64 is a substantially constant voltage Vg.
  • the second power control circuit 60 fixedly generates the voltage Vf which is substantially equal to a voltage level of the output signal of the envelope detection circuit 67 in the transmission state, and attenuates the radio transmission signal 73 by an attenuation factor corresponding to the voltage level of the output signal of the envelope detection circuit 67 in the transmission state, or by a factor corresponding to the voltage Vf in the non-transmission state.
  • the use of the second power control circuit 60 allows the power of the radio transmission signal 94 to be controlled so as to be closer to a pre-set value.
  • the use of the second power control circuit 60 allows the power of the radio transmission signal 94 to be controlled at substantially the same level as that in the transmission state.
  • the center station outputs an optical signal having an intensity corresponding to the transmission timing signal and modulated based on the radio band transmission signal.
  • the antenna side base station determines whether it is in the transmission state or the non-transmission state based on an intensity of the received optical signal, and performs automatic power control for outputting, even in the non-transmission state, a signal whose power is substantially equal to that of a signal in the transmission state.
  • the antenna side base station can determine a transmission timing based on a light intensity and perform automatic power control even if the transmission signal is not received.
  • an optical transmission device including an automatic power control circuit (APC circuit) for a burst radio signal, the optical transmission device having a simple structure and capable of being realized at low cost.
  • automatic power control is divided into a first stage for accommodating a change in power of the radio transmission signal, the change caused by a change in optical power, and a second stage for accommodating a change in power of the radio transmission signal, the change caused by other than a change in optical power, whereby it is possible to narrow a dynamic range of an input signal in the second stage automatic power control.
  • automatic power control can be performed by a simple structure without using a high-performance variable amplification circuit or variable attenuation circuit.
  • first power control circuit 50 and the second power control circuit 60 are not limited to those described above.
  • the first power control circuit 50 may have the structure shown in FIG. 17, and the second power control circuit 60 may have the structure shown in FIG. 18.
  • a first power control circuit 50b shown in FIG. 17 differs from the aforementioned first power control circuit 50a (FIG. 9) in a connection order of the switch circuit 53 and the control voltage output circuit 54 and a level of a voltage generated by a voltage generation circuit 52b.
  • the voltage generation circuit 52b fixedly generates a voltage which is substantially equal to a voltage of the output signal of the control voltage output circuit 54 in the transmission state.
  • a second power control circuit 60b shown in FIG. 18 differs from the aforementioned second power control circuit 60a (FIG.
  • the voltage generation circuit 62b fixedly generates a voltage which is substantially equal to a voltage of the output signal of the control voltage output circuit 64 in the transmission state.
  • the optical transmission device of the fourth embodiment differs from that of the third embodiment only in the detailed structures of the first power control circuit 50 and the second power control circuit 60.
  • the detailed structures of the first power control circuit 50 and the second power control circuit 60 will be described.
  • Any components of the fourth embodiment that function in similar manners to their counterparts of the third embodiment are denoted by like numerals, with the descriptions thereof omitted.
  • FIG. 19 is a block diagram showing the detailed structure of the first power control circuit 50 according to the present embodiment.
  • a first power control circuit 50c shown in FIG. 19 includes the comparison circuit 51, a sample-hold circuit 56c, the control voltage output circuit 54, and the variable attenuation circuit 55.
  • the above-described components other than the sample-hold circuit 56c are equal to their counterparts included in the first power control circuit 50a (FIG. 9).
  • the sample-hold circuit 56c Based on the output signal of the comparison circuit 51, the sample-hold circuit 56c samples the received photocurrent detection signal 70 and holds the sampled signal. More specifically, during a time period when a value of the output signal of the comparison circuit 51 is 1 (transmission state), the sample-hold circuit 56c outputs a voltage of the received photocurrent detection signal 70 (that is, a voltage corresponding to an actual measured value of the light intensity in the transmission state) as it is.
  • the sample-hold circuit 56c samples the voltage of the received photocurrent detection signal 70, holds the sampled voltage, and outputs the held voltage during a time period when the value of the output signal of the comparison circuit 51 is 0 (non-transmission state).
  • the voltage generation circuit 52a fixedly generates the predetermined voltage Vc which is substantially equal to a voltage corresponding to an expected value of the light intensity in the transmission state.
  • the sample-hold circuit 56c according to the present embodiment outputs, in the non-transmission state, a voltage corresponding to an actual measured value of the light intensity in the previous transmission state.
  • what the sample-hold circuit 56c and the voltage generation circuit 52a have common is to output, in the non-transmission state, a voltage whose level is substantially equal to that of a voltage in the transmission state.
  • the sample-hold circuit 56c selects either the voltage of the received photocurrent detection signal 70 or the held voltage based on the output signal of the comparison circuit 51, and outputs the selected voltage.
  • the first power control circuit 50c operates in a manner similar to the first power control circuit 50a, and produces the same effect as the first power control circuit 50a.
  • FIG. 20 is a signal waveform diagram of the first power control circuit 50c, which is illustrated in a manner similar to the signal waveform diagram shown in FIG. 11.
  • FIG. 21 is a block diagram showing the detailed structure of the second power control circuit 60 according to the present embodiment.
  • a second power control circuit 60c shown in FIG. 21 includes the comparison circuit 61, a sample-hold circuit 66c, the control voltage output circuit 64, the variable attenuation circuit 65, and the envelope detection circuit 67.
  • the above-described components other than the sample-hold circuit 66c are equal to their counterparts included in the second power control circuit 60a (FIG. 12).
  • the sample-hold circuit 66c Based on the output signal of the comparison circuit 61, the sample-hold circuit 66c samples the output signal of the envelope detection circuit 67, and holds the sampled signal. More specifically, during a time period when a value of the output signal of the comparison circuit 61 is 1 (transmission state), the sample-hold circuit 66c outputs a voltage of the output signal of the envelope detection circuit 67 (that is, a voltage corresponding to an actual measured value of the power of the radio transmission signal 94 in the transmission state) as it is.
  • the sample-hold circuit 66c samples the voltage of the output signal of the envelope detection circuit 67, holds the sampled voltage, and outputs the held voltage during a time period when the value of the output signal of the comparison circuit 61 is 0 (non-transmission state).
  • the voltage generation circuit 62a fixedly generates the predetermined voltage Vf which is substantially equal to a voltage corresponding to an expected value of the power of the radio transmission signal 94 in the transmission state.
  • the sample-hold circuit 66c according to the present embodiment outputs, in the non-transmission state, a voltage corresponding to an actual measured value of the radio transmission signal 94 in the previous transmission state.
  • what the sample-hold circuit 66c and the voltage generation circuit 62a have common is to output, in the non-transmission state, a voltage whose level is substantially equal to that of a voltage in the transmission state.
  • the sample-hold circuit 66c selects either the voltage of the output signal of the envelope detection circuit 67 or the held voltage based on the output signal of the comparison circuit 61, and outputs the selected voltage.
  • the second power control circuit 60c operates in a manner similar to the second power control circuit 60a, and produces the same effect as the second power control circuit 60a.
  • FIG. 22 is a signal waveform diagram of the second power control circuit 60c, which is illustrated in a manner similar to the signal waveform diagram shown in FIG. 16.
  • the optical transmission device includes a sample-hold circuit for holding a voltage of a predetermined signal in the transmission state in place of a voltage generation circuit and a switch circuit. According to the above-described optical transmission device, it is possible to produce the same effect as the third embodiment.
  • the structures of the first power control circuit 50 and the second power control circuit 60 are not limited to those described above.
  • the first power control circuit 50 may have the structure shown in FIG. 23, and the second power control circuit 60 may have the structure shown in FIG. 24.
  • a first power control circuit 50d shown in FIG. 23 differs from the first power control circuit 50c (FIG. 19) in a connection order of a sample-hold circuit 56d and the control voltage output circuit 54 and a voltage held by the sample-hold circuit 56d.
  • the sample-hold circuit 56d holds the output signal of the control voltage output circuit 54 in the transmission state.
  • a second power control circuit 60d shown in FIG. 24 differs from the second power control circuit 60d (FIG.
  • the sample-hold circuit 66d holds the output signal of the control voltage output circuit 64 in the transmission state.
  • FIG. 25 is a block diagram showing the structure of an optical transmission device according to a fifth embodiment of the present invention.
  • a high frequency amplification section 291 included in the above-described optical transmission device includes the amplification circuit 40 and the first power control circuit 50, but does not include a second power control circuit.
  • the amplification circuit 40 amplifies the radio transmission signal 71 by a predetermined amplification factor.
  • the first power control circuit 50 performs automatic power control for the output signal of the amplification circuit 40, and outputs the power controlled signal as a radio transmission signal 95.
  • the automatic power control in the first power control circuit 50 is performed for accommodating a change in power of the radio transmission signal 95, the change caused by a change in optical power.
  • the first power control circuit 50 has the arbitrary structure described in the third and fourth embodiments.
  • FIG. 26 is a block diagram showing the structure of an optical transmission device according to a sixth embodiment of the present invention.
  • a high frequency amplification section 292 included in the above-described optical transmission device includes the amplification circuit 40 and the second power control circuit 60, but does not include a first power control circuit.
  • the amplification circuit 40 amplifies the radio transmission signal 71 by a predetermined amplification factor.
  • the second power control circuit 60 performs automatic power control for the output signal of the amplification circuit 40, and outputs the power controlled signal as a radio transmission signal 96.
  • the automatic power control in the second power control circuit 60 is performed for accommodating a change in power of the radio transmission signal 96, the change caused by other than a change in optical power.
  • the second power control circuit 60 has the arbitrary structure described in the third and fourth embodiments.
  • optical transmission devices of the fifth and sixth embodiments as is the case with the third and fourth embodiments, it is possible to provide an optical transmission device including an automatic power control circuit (APC circuit) for a burst radio signal, the optical transmission device having a simple structure and capable of being realized at low cost.
  • APC circuit automatic power control circuit
  • a position of the amplification circuit 40 is not limited to a position immediately after the light receiving section 21, and may be an arbitrary position in a following stage of the light receiving section 21.
  • the variable attenuation circuit included in the first power control circuit 50 and the second power control circuit 60 may be a variable attenuation circuit capable of controlling an amplification factor.
  • the first power control circuit 50 may include a filter circuit for removing switching noise caused in the switch circuit 53 (or the sample-hold circuit 56).
  • the insertion of the above-described filter circuit allows noise in a control voltage to be supplied to the variable attenuation circuit 55 to be reduced, whereby it is possible to prevent the quality of transmission of a radio transmission signal from being degraded due to switching noise caused in the switch circuit 53 (or the sample-hold circuit 56).
  • the second power control circuit 60 may include the same filter circuit as the first power control circuit 50. Also, any one of the first power control circuits 50a to 50d and any one of the second power control circuits 60a to 60dmaybe arbitrarily combined. Furthermore, a single comparison circuit may be used in place of the comparison circuit 51 included in the first power control circuit 50 and the comparison circuit 61 included in the second power control circuit 60.
  • the above-described variants of the optical transmission device can produce the same effect as the optical transmission devices of the other embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)

Claims (24)

  1. Optische Übertragungsvorrichtung zum Übertragen eines optischen Signals, umfassend:
    eine Basisstation (10) um den Empfang eines bereitgestellten Funkfrequenzbandübertragungssignals (82) zu erhalten, welches stoßweise erzeugt wird, und ein Steuersignal (81), welches anzeigt, ob oder ob nicht das Übertragungssignal erzeugt wird, welches enthält:
    einen Vorspannungslieferungsabschnitt (11) zum Erzeugen eines Vorspannungsstroms gemäß dem Steuersignal; und
    einen Lichtemissionsabschnitt (12) zum Ausgeben eines optischen Signals, welches eine zum Vorspannungsstrom korrespondierende Intensität aufweist und von dem optischen Übertragungssignal (82) moduliert ist;
    eine antennenseitige Basisstation (20), welche enthält:
    einen Lichtempfangsabschnitt (21) zum Empfangen des optischen Signals, welches von der Basisstation (10) ausgegeben wird, und zum Umwandeln des empfangenen optischen Signals in ein elektrisches Signal;
    einen Lichtintensitätsdetektionsabschnitt (22) zum Detektieren der Intensität des optischen Signals, welches von dem Lichtempfangsabschnitt (21) basierend auf dem elektrischen Signal empfangen wird; und
    einen Hochfrequenzverstärkungsabschnitt (23, 29) zum Verstärken des elektrischen Signals, welches von dem Lichtempfangsabschnitt (21) mit einem ersten Verstärkungsfaktor ausgegeben wird, wenn die vom Lichtintensitätsdetektionsabschnitt (22) detektierte Lichtintensität einen vorbestimmten Schwellenwert übersteigt, und welcher das elektrische Signal mit einem zweiten Verstärkungsfaktor verstärkt, der kleiner als der erste Verstärkungsfaktor ist, wenn die Lichtintensität gleich oder kleiner als der vorbestimmte Schwellenwert ist.
  2. Optische Übertragungsvorrichtung nach Anspruch 1, wobei die Basisstation (10) ein optisches Signal ausgibt, dessen Intensität gleich Null ist, wenn der Wert des Steuersignals (81) anzeigt, dass das Übertragungssignal (82) nicht erzeugt wird.
  3. Optische Übertragungsvorrichtung nach Anspruch 1, wobei der zweite Verstärkungsfaktor gleich Null ist.
  4. Optische Übertragungsvorrichtung nach Anspruch 1, weiterhin umfassend einen Steuersignalwiederherstellungsabschnitt (24) zum Ausgeben eines Signals als wieder hergestelltes Steuersignal, welches anzeigt, ob die vom Lichtintensitätserkennungsabschnitt (22) detektierte Lichtintensität den vorbestimmten Schwellenwert überschreitet oder nicht.
  5. Optische Übertragungsvorrichtung nach Anspruch 1, wobei der Hochfrequenzverstärkungsabschnitt (29) das vom Lichtempfangsabschnitt ausgegebene elektrische Signal (71) verstärkt, um ein Signal (94, 95, 96) mit einer konstanten Leistung zu erhalten, indem ein Verstärkungsfaktor in Abhängigkeit von der vom Lichtintensitätsdetektionsabschnitt (22) detektierten Lichtintensität (70) gesteuert wird.
  6. Optische Übertragungsvorrichtung nach Anspruch 5, wobei der Hochfrequenzverstärkungsabschnitt (29) zumindest eines der Folgenden enthält:
    eine erste Leistungssteuerungsschaltung (50) zum Steuern, so dass die Leistung des verstärkten Signals auf einer konstanten Höhe bleibt, sogar wenn die Intensität des von der Lichtempfangssektion (21) empfangenen optischen Signals geändert wird; und
    eine zweite Leistungssteuerungsschaltung (60) zum Steuern, so dass die Leistung des verstärkten Signals durch Ausführen einer Rückkopplungssteuerung näher an einen vorbestimmten Wert gebracht wird.
  7. Optische Übertragungsvorrichtung nach Anspruch 6, wobei
    der Hochfrequenzverstärkungsabschnitt (29) weiterhin einen Verstärkungsabschnitt (40) zum Verstärken des von der Lichtempfangsstation (21) ausgegebenen elektrischen Signals enthält; und
    die erste Leistungssteuerungsschaltung (50a) enthält:
    eine variable Leistungssteuerungsschaltung (55) zum Steuern der Leistungshöhe des vom Verstärkungsabschnitt (40) in Übereinstimmung mit der gelieferten Steuerspannung ausgegebenen elektrischen Signals;
    eine Spannungserzeugungsschaltung (52a) zum Erzeugen einer vorbestimmten Spannung, welche gleich der Spannung ist, die der Lichtintensität entspricht, die von dem Lichtintensitätsdetektionsabschnitt zurzeit der Erzeugung des Übertragungssignals (82) detektiert wird;
    eine Wechselschaltung (53) zum Auswählen einer Spannung, welche der Lichtintensität entspricht, die von dem Lichtintensitätserkennungsabschnitt detektiert wird, wenn die Lichtintensität einen vorbestimmten Schwellenwert überschreitet, und zum Auswählen der von der Spannungserzeugungsschaltung erzeugten Spannung, wenn die Lichtintensität gleich oder kleiner als der vorbestimmte Schwellenwert ist; und
    eine erste Steuerspannungsausgabeschaltung (54) zum Erhalten einer Steuerspannung basierend auf der von der Wechselschaltung ausgewählten Spannung, und zum Ausgeben der erhaltenen Steuerspannung an die variable Leistungssteuerungsschaltung.
  8. Optische Übertragungsvorrichtung nach Anspruch 6, wobei
    der Hochfrequenzverstärkungsabschnitt (29) weiterhin einen Verstärkungsabschnitt (40) zum Verstärken der elektrischen Signalausgabe von dem Lichtempfangsabschnitt (21) enthält; und
    die erste Leistungssteuerungsschaltung (50b) enthält:
    eine variable Leistungssteuerungsschaltung (55) zum Steuern der Leistungshöhe der elektrischen Signalausgabe von dem Verstärkungsabschnitt (40) in Übereinstimmung mit einer gelieferten Steuerspannung;
    eine erste Steuerspannungsausgabeschaltung (54) zum Erlangen einer der variablen Leistungssteuerungsschaltung wahlweise zur Verfügung gestellten Spannung, welche auf einer Spannung basiert, die der vom Lichtintensitätsdetektionsabschnitt detektierten Lichtintensität entspricht;
    eine Spannungserzeugungsschaltung (52b) zum Erzeugen einer vorbestimmten Spannung, die gleich einer Spannung ist, welche von einer ersten Steuerspannungsausgabeschaltung zum Zeitpunkt der Erzeugung des Übertragungssignals (82) erlangt wird; und
    eine Wechselschaltung (53) zum Auswählen der von der ersten Steuerspannungsausgabeschaltung erlangten Spannung, wenn die vom Lichtintensitätserkennungsabschnitt detektierte Lichtintensität einen vorbestimmten Schwellenwert überschreitet, zum Auswählen der von der von der Spannungssteuerungsschaltung erzeugten Spannung, wenn die Lichtintensität gleich oder kleiner als der vorbestimmte Schwellenwert ist, und zum Ausgeben der ausgewählten Spannung an die variable Leistungssteuerungseinheit als Steuerspannung.
  9. Optische Übertragungsvorrichtung nach Anspruch 6, wobei
    der Hochfrequenzverstärkungsabschnitt (29) weiterhin einen Verstärkungsabschnitt (40) zum Verstärken des von dem Lichtempfangsabschnitt (21) ausgegebenen elektrischen Signals enthält; und
    die erste Leistungskontrollschaltung (50c) enthält:
    eine variable Leistungskontrollschaltung (55) zum Steuern der Leistungshöhe des vom Verstärkungsabschnitt (40) in Übereinstimmung mit der gelieferten Steuerspannung ausgegebenen elektrischen Signals;
    eine Testhalteschaltung (56c) zum Ausgeben einer Spannung entsprechend der Lichtintensität, die von dem Lichtintensitätsdetektionsabschnitt detektiert wird, wenn die Lichtintensität einen vorbestimmten Schwellenwert überschreitet, und zum Ausgeben einer gehaltenen Spannung, nachdem die Spannung entsprechend der Lichtintensität getestet wurde, während die Lichtintensität den vorbestimmten Schwellenwert überschreitet, wenn die Lichtintensität gleich oder kleiner als der vorbestimmte Schwellenwert ist; und
    eine erste Steuerspannungsausgabeschaltung (54) zum Erhalten einer auf der Spannungsausgabe basierenden Steuerspannung von der Testhalteschaltung, und zum Ausgeben der erhaltenen Steuerspannung an die variable Leistungssteuerungsschaltung.
  10. Optische Übertragungsvorrichtung nach Anspruch 6, wobei
    der Hochfrequenzverstärkungsabschnitt (29) weiterhin einen Verstärkungsabschnitt (40) zum Verstärken des vom Lichtempfangsabschnitt (21) ausgegebenen elektrischen Signals enthält; und
    die erste Steuerungsschaltung (50d) enthält:
    eine variable Leistungssteuerungsschaltung (55) zur Steuerung der Leistungshöhe des vom Verstärkungsabschnitt (40) in Übereinstimmung mit einer gelieferten Steuerspannung ausgegebenen elektrischen Signals;
    eine erste Steuerspannungsausgabeschaltung (54) zum Erhalten einer wahlweise der variablen Leistungssteuerungsschaltung zur Verfügung gestellten Spannung, welche auf einer Spannung basiert, die der vom Lichtintensitätsdetektionsabschnitt detektierten Lichtintensität entspricht; und
    eine Testhalteschaltung (56d) zum Ausgeben der von der ersten Steuerungsspannungsausgabeschaltung enthaltenen Spannung, wenn die von dem Lichtintensitätsdetektionsabschnitt detektierte Lichtintensität einen vorbestimmten Schwellenwert überschreitet, und zum Ausgeben einer gehaltenen Spannung nach Testen der von der ersten Steuerspannungsausgabeschaltung erhaltenen Spannung, während die Lichtintensität den vorbestimmten Schwellenwert überschreitet, wenn die Lichtintensität gleich oder kleiner als der vorbestimmte Schwellenwert ist, an die variable Leistungssteuerungsschaltung als Steuerspannung.
  11. Optische Übertragungsvorrichtung nach einem der Ansprüche 7 bis 10, wobei die erste Steuerspannungsausgabeschaltung (50) einen logarithmischen Verstärker (544) zum Ausgeben eines logarithmischen Wertes eines Eingangssignals enthält.
  12. Optische Übertragungsvorrichtung nach Anspruch 6, wobei
    der Hochfrequenzverstärkungsabschnitt (29) weiterhin einen Verstärkungsabschnitt (40) zum Verstärken des vom Lichtempfangsabschnitt (21) ausgegebenen elektrischen Signals enthält; und
    die zweite Leistungssteuerungsschaltung (60a) enthält:
    eine variable Leistungssteuerungsschaltung (65) zum Steuern der Leistungshöhe des vom Verstärkungsabschnitt (40) gemäß einer gelieferten Steuerspannung ausgegebenen elektrischen Signals;
    eine Umrissdetektionsschaltung (67) zum Erkennen des Umrisses der Signalausgabe der variablen Leistungssteuerungsschaltung, und zum Erhalten der Leistungshöhe des Signals;
    eine Spannungserzeugungsschaltung (62a) zum Erzeugen einer vorbestimmten Spannung, die gleich der Spannung ist, welche der von der Umrissdetektionsschaltung zum Zeitpunkt der Erzeugung des Übertragungssignals (82) erlangten Leistungshöhe entspricht;
    eine Wechselschaltung (63) zum Auswählen einer Spannung entsprechend der Leistungshöhe, die von der Umrissdetektionsschaltung erlangt wird, wenn die vom Lichtintensitätsdetektionsabschnitt detektierte Lichtintensität einen vorbestimmten Schwellenwert übersteigt, und zum Auswählen der von der Spannungserzeugungsschaltung erzeugten Spannung, wenn die Lichtintensität gleich oder kleiner als der vorbestimmte Schwellenwert ist; und
    eine zweite Steuerspannungsausgabeschaltung (64) zum Erhalten der Steuerspannung basierend auf der von der Wechselschaltung ausgewählten Spannung, und zum Ausgeben der erlangten Steuerspannung an die variable Leistungssteuerungsschaltung.
  13. Optische Übertragungsvorrichtung nach Anspruch 6, wobei
    der Hochfrequenzverstärkungsabschnitt (29) weiterhin einen Verstärkungsabschnitt (40) zur Verstärkung des vom Lichtempfangsabschnitt (21) ausgegebenen elektrischen Signals; und
    die zweite Leistungssteuerungsschaltung (60b) enthält:
    eine variable Leistungssteuerungsschaltung (65) zum Steuern der Leistungshöhe vom Verstärkungsabschnitt (40) gemäß der gelieferten Steuerspannung ausgegebenen elektrischen Signals;
    eine Umrissdetektionsschaltung (67) zum Erkennen des Umrisses für eine Signalausgabe von der variablen Leistungssteuerungsschaltung, und zum Erhalten der Leistungshöhe des Signals;
    eine zweite Steuerspannungsausgabeschaltung (64) zum Erhalten einer Spannung, welche auf einer der Leistungshöhe entsprechenden Spannung basiert, die von der Umrissdetektionsschaltung erhalten wird, die wahlweise an die variable Leistungssteuerungsschaltung geliefert wird;
    eine Spannungserzeugungsschaltung (62b) zum Erzeugen einer vorbestimmten Spannung, die gleich einer Spannung ist, die von der zweiten Steuerspannungsausgabeschaltung zum Zeitpunkt der Erzeugung des Übertragungssignals (82) erhalten wird; und
    eine Wechselschaltung (63) zum Auswählen einer Spannung, die von der zweiten Steuerspannungsausgabeschaltung erhalten wird, wenn die vom Lichtintensitätsdetektionsabschnitt (22) detektierte Lichtintensität einen vorbestimmten Schwellenwert übersteigt, und zum Auswählen der von der Spannungserzeugungsschaltung erzeugten Spannung, wenn die Lichtintensität gleich oder kleiner als der vorbestimmte Schwellenwert ist, und zum Ausgeben der ausgewählten Spannung an die variable Leistungssteuerungsschaltung.
  14. Optische Übertragungsvorrichtung nach Anspruch 6, wobei
    der Hochfrequenzverstärkungsabschnitt (29) weiterhin einen Verstärkungsabschnitt (40) zur Verstärkung des elektrischen Signalausgangs von dem Lichtempfangsabschnitt (21) enthält; und
    die zweite Leistungssteuerungsschaltung (60c) enthält:
    eine variable Leistungssteuerungsschaltung (65) zum Steuern der Leistungshöhe des vom Verstärkungsabschnitt (40) gemäß einer gelieferten Steuerspannung ausgegebenen elektrischen Signals;
    eine Umrissdetektionsschaltung (67) zum Detektieren des Umrisses der Signalausgabe von der variablen Leistungssteuerungsschaltung und zum Erhalten einer Leistungshöhe des Signals;
    eine Musterhalteschaltung (66c) zum Ausgeben einer Spannung entsprechend der Leistungshöhe, die von dem Umrissdetektionsabschnitt detektiert wird, wenn die vom Lichtintensitätsdetektionsabschnitt (22) detektierte Lichtintensität einen vorbestimmten Schwellenwert überschreitet, und zum Ausgeben einer gehaltenen Spannung, nachdem die Spannung entsprechend der Leistungshöhe getestet wird, die von der Umrissdetektionsschaltung erlangt wird, während die Lichtintensität den vorbestimmten Schwellenwert überschreitet, wenn die Lichtintensität gleich oder kleiner als der vorbestimmte Schwellenwert ist; und
    eine zweite Steuerspannungsausgabeschaltung (64) zum Erhalten der auf der Spannungsausgabe von der Musterhalteschaltung basierenden Steuerspannung, und zum Ausgeben der erhaltenen Steuerspannung an die variable Leistungssteuerungsschaltung.
  15. Optische Übertragungsvorrichtung nach Anspruch 6, wobei
    der Hochfrequenzverstärkungsabschnitt (29) weiterhin einen Verstärkungsabschnitt (40) zur Verstärkung der elektrischen Signalausgabe von dem Lichtempfangsabschnitt (21) enthält; und
    die zweite Leistungssteuerungsschaltung (60d) enthält:
    eine variable Leistungssteuerungsschaltung (65) zum Steuern der Leistungshöhe des Verstärkungsabschnitts (40) gemäß einer gelieferten Steuerspannung ausgegebenen elektrischen Signals;
    eine Umrissdetektionsschaltung (67) zum Detektieren eines Umrisses für eine Signalausgabe von der variablen Leistungssteuerungsschaltung, und zum Erhalten einer Leistungshöhe des Signals;
    eine zweite Steuerspannungsausgabeschaltung (64) zum Erlangen einer Spannung, welche auf einer der Leistungshöhe entsprechenden Spannung basiert, die von der Umrissdetektionsschaltung erhalten wird, die wahlweise an die variable Leistungssteuerungsschaltung geliefert wird; und
    eine Musterhalteschaltung (66d) zum Ausgeben der Spannung, die von der zweiten Steuerspannungsausgabeschaltung erhalten wird, wenn die vom Lichtintensitätsdetektionsabschnitt detektierte Lichtintensität einen vorbestimmten Schwellenwert überschreitet, und zum Ausgeben der gehaltenen Spannung nach dem Testen der Spannung, die von der zweiten Steuerspannungsausgabeschaltung erhalten wird, während die Lichtintensität den vorbestimmten Schwellenwert überschreitet, wenn die Lichtintensität gleich oder kleiner als der vorbestimmte Schwellenwert ist, an die variable Leistungssteuerungsschaltung als Steuerspannung.
  16. Optische Übertragungsvorrichtung nach einem der Ansprüche 12 bis 15, wobei die zweite Steuerspannungsausgabeschaltung (64) eine Durchschnittsschaltung (641) zum Ausgeben eines Durchschnittswerts eines Eingabesignals enthält.
  17. Optische Übertragungsvorrichtung nach einem der Ansprüche 12 bis 15, wobei die zweite Steuerspannungsausgabeschaltung (64) eine Maximalwerthalteschaltung (644) zum Halten des Maximalwerts des Eingangssignals enthält.
  18. Optische Übertragungsvorrichtung nach Anspruch 17, wobei die zweite Steuerspannungsausgabeschaltung (64) weiterhin enthält:
    eine Durchschnittsschaltung (641) zum Ausgeben eines Durchschnittswerts des Eingabesignals; und
    eine Auswahlschaltung (645) um entweder die Maximalwerthalteschaltung oder die Durchschnittsschaltung zu veranlassen wirksam zu arbeiten, entsprechend einem gelieferten Auswahlsignal.
  19. Optisches Übertragungsverfahren zur Übertragung eines optischen Signals, welches die folgenden Schritte enthält:
    Erhalten eines bereitgestellten Funkfrequenzbandübertragungssignals, welches stoßweise erzeugt wird und eines Steuersignals (81), welches anzeigt, ob oder ob nicht das Übertragungssignal erzeugt wird;
    Erzeugen eines Vorspannungsstroms entsprechend dem Steuersignal (81);
    Ausgeben eines optischen Signals, welches eine zum Vorspannungsstrom korrespondierende Intensität aufweist und durch das Übertragungssignal (82) moduliert ist;
    Empfangen des optischen Signals und Umwandeln des empfangenen optischen Signals in ein elektrisches Signal;
    Detektieren der Intensität des empfangenen optischen Signals basierend auf dem elektrischen Signal; und
    Verstärken des elektrischen Signals durch einen ersten Verstärkungsfaktor, wenn die vom ersten Lichtintensitätsdetektionsabschnitt detektierte Lichtintensität einen vorbestimmten Schwellenwert überschreitet, und Verstärken des elektrischen Signals mit einem zweiten Verstärkungsfaktor, welcher kleiner als der erste Verstärkungsfaktor ist, wenn die Lichtintensität gleich oder kleiner als der vorbestimmte Schwellenwert ist.
  20. Optisches Übertragungsverfahren nach Anspruch 19, wobei der Schritt des Verstärkens des elektrischen Signals das elektrische Signal so verstärkt, dass ein Signal mit konstanter Leistung erhalten wird, indem ein Verstärkungsfaktor gemäß der detektierten Lichtintensität gesteuert wird.
  21. Funkkommunikationssystem zum Senden und Empfangen eines Funksignals, umfassend:
    eine Basisstation (10) zum Empfangen eines bereitgestellten Funkfrequenzsignals (82), welches stoßweise erzeugt wird, und eines Steuersignals (81), welches anzeigt, ob oder ob nicht das Übertragungssignal erzeugt wird, welche enthält:
    einen Vorspannungslieferungsabschnitt (11) zum Erzeugen eines Vorspannungsstroms gemäß dem Steuersignal; und
    einen Lichtemissionsabschnitt (12) zum Ausgeben eines optischen Signals, welches eine zum Vorspannungsstrom korrespondierende Intensität aufweist, und von dem optischen Übertragungssignal (82) moduliert ist;
    eine antennenseitige Basisstation (20), welche enthält:
    einen Lichtempfangsabschnitt (21) zum Empfangen der optischen Signalausgabe von der Basisstation (10) und zum Umwandeln des empfangenen Signals in ein elektrisches Signal;
    einen Lichtintensitätsdetektionsabschnitt (22) zum Detektieren der Intensität des optischen Signals, welches von dem Lichtempfangsabschnitt (21) basierend auf dem elektrischen Signal empfangen wird;
    einen Hochfrequenzverstärkungsabschnitt (23, 29) zum Verstärken des elektrischen Signals, welches von dem Lichtempfangsabschnitt mit einem ersten Verstärkungsfaktor ausgegeben wird, wenn die vom Lichtintensitätserkennungsabschnitt detektierte Lichtintensität einen vorbestimmten Schwellenwert übersteigt, und welcher das elektrische Signal mit einem zweiten Verstärkungsfaktor verstärkt, der kleiner als der erste Verstärkungsfaktor ist, wenn die Lichtintensität gleich oder kleiner als der vorbestimmte Schwellenwert ist;
    einen elektrischen Wellenübertragungs- und Empfangsabschnitt (25, 26) mit der Aufgabe zum Senden einer elektrischen Welle, basierend auf dem elektrischen Signal, welches von dem Hochfrequenzverstärkungsabschnitt verstärkt wird, und eine Funktion zum Empfangen einer elektrischen Welle und zum Ausgeben eines Funkbandempfangssignals;
    einen Sendeabschnitt (27, 28) zum Senden des Empfangssignals; und
    einen Empfangsabschnitt (13) zum Empfangen des Empfangssignals, welches von dem Sendeabschnitt gesendet wird.
  22. Funkkommunikationssystem nach Anspruch 21, wobei der elektrische Wellenübertragungs- und Empfangsabschnitt (25, 26) die elektrische Welle überträgt, wenn die vom Lichtintensitätsdetektionsabschnitt erkannte Lichtintensität einen vorbestimmten Schwellenwert übersteigt, und die elektrische Welle empfängt, falls die Lichtintensität gleich oder kleiner als der vorbestimmte Schwellenwert ist.
  23. Funkkommunikationssystem nach Anspruch 21, wobei
    der Übertragungsabschnitt einen Uplink Lichtemissionsabschnitt (27) zum Ausgeben eines optischen Signals enthält, welches von dem Empfangssignal moduliert wird, und
    der Empfangsabschnitt einen Uplink Lichtempfangsabschnitt (13) zum Empfangen der optischen Signalausgabe von dem Uplink Lichtemissionsabschnitt, und zum Ausgeben des Empfangssignals als elektrisches Signal enthält.
  24. Funkkommunikationssystem nach Anspruch 21, wobei
    der Übertragungsabschnitt einen Funkdemodulationsabschnitt (28) zum Demodulieren des Empfangssignals, und einen Uplink Lichtemissionsabschnitt (27) zum Ausgeben eines optischen Signals, welches von der Signalausgabe des Funkdemodulationsabschnitts moduliert wird, enthält, und
    der Empfangsabschnitt einen Uplink Lichtempfangsabschnitt (13) zum Empfangen der optischen Signalausgabe von dem Uplink Lichtemissionsabschnitt, und zum Ausgeben des Empfangssignals als elektrisches Signal enthält.
EP03012993A 2002-06-10 2003-06-10 Optische Übertragungseinrichtung und optisches Übertragungsverfahren für ein Burst-Funksignal Expired - Fee Related EP1372274B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002168755 2002-06-10
JP2002169077 2002-06-10
JP2002169077 2002-06-10
JP2002168755 2002-06-10

Publications (3)

Publication Number Publication Date
EP1372274A2 EP1372274A2 (de) 2003-12-17
EP1372274A3 EP1372274A3 (de) 2005-09-21
EP1372274B1 true EP1372274B1 (de) 2006-11-29

Family

ID=29586043

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03012993A Expired - Fee Related EP1372274B1 (de) 2002-06-10 2003-06-10 Optische Übertragungseinrichtung und optisches Übertragungsverfahren für ein Burst-Funksignal

Country Status (4)

Country Link
US (1) US7212747B2 (de)
EP (1) EP1372274B1 (de)
KR (1) KR20030095336A (de)
DE (1) DE60309969T2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100526550B1 (ko) * 2003-06-30 2005-11-03 삼성전자주식회사 광섬유를 기반으로 고속 광 무선 네트워크 시스템을구축하기 위한 액세스 포인트
WO2005112309A1 (en) * 2004-04-15 2005-11-24 Alloptic, Inc. Radio frequency burst mode optical to electrical converter for passive optical networks
JP2005354336A (ja) * 2004-06-10 2005-12-22 Matsushita Electric Ind Co Ltd 信号伝送システムおよび信号伝送方法
KR100590486B1 (ko) * 2004-07-29 2006-06-19 에스케이 텔레콤주식회사 Tdd 방식과 ofdm 변조 방식을 이용하는 이동통신망의 광중계기에서 전송 신호를 분리하는 스위칭타이밍 신호 생성 방법 및 시스템
KR100819308B1 (ko) * 2005-09-02 2008-04-03 삼성전자주식회사 안정적인 tdd 방식의 무선 서비스가 가능하도록 하는rof 링크 장치
JP2009516849A (ja) * 2005-11-23 2009-04-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 混濁媒体の内部のイメージングのための方法及びデバイス
KR100735291B1 (ko) * 2006-01-26 2007-07-03 삼성전자주식회사 양방향 무선 통신을 위한 광 네트워크
KR100762637B1 (ko) * 2006-05-03 2007-10-01 삼성전자주식회사 Tdd 방식의 무선 시스템 신호 전송을 위한 단일 파장양방향 rof 링크 장치
KR100842533B1 (ko) * 2006-12-13 2008-07-01 삼성전자주식회사 시분할 듀플렉싱 방식 무선광섬유 링크 장치
TWI467936B (zh) * 2012-11-22 2015-01-01 Ind Tech Res Inst 光載無線通訊系統中抑制干擾的方法與裝置
EP3342068A1 (de) * 2015-08-24 2018-07-04 Telefonaktiebolaget LM Ericsson (PUBL) Steuerung eines optischen senders in einem funk-über-faser-system
US9647752B2 (en) * 2015-10-13 2017-05-09 Telefonaktiebolaget Lm Ericsson (Publ) Antenna switch control method for analog radio over fiber systems
US10656207B2 (en) * 2015-12-29 2020-05-19 Eaton Intelligent Power Limited Circuit interrupter diagnostic system
KR102554150B1 (ko) 2016-11-21 2023-07-12 삼성전자주식회사 수신기
US10250957B2 (en) * 2017-05-01 2019-04-02 Teradyne, Inc. DC-coupled switching in an AC-coupled environment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2897492B2 (ja) 1991-10-24 1999-05-31 日本電気株式会社 移動通信装置
JPH05136724A (ja) 1991-11-15 1993-06-01 A T R Koudenpa Tsushin Kenkyusho:Kk 移動体無線通信システム
US5268916A (en) * 1992-06-15 1993-12-07 Alcatel Network Systems, Inc. Laser bias and modulation circuit
US5402433A (en) 1994-01-05 1995-03-28 Alcatel Network Systems, Inc. Apparatus and method for laser bias and modulation control
EP0674452B1 (de) * 1994-03-24 2002-07-03 Hitachi Kokusai Electric Inc. Relaisstation für ein Funkrufsystem
JPH08172236A (ja) * 1994-12-15 1996-07-02 Nec Corp Apc回路
US5631757A (en) * 1995-06-07 1997-05-20 Lucent Technologies Inc. Full-duplex data communication system using different transmit and receive data symbol lengths
JPH09331095A (ja) * 1996-06-10 1997-12-22 Fujitsu Ltd 光増幅器の光サージ防止制御方式
US5963570A (en) 1997-05-12 1999-10-05 At&T Corp. Current control for an analog optical link
JP4271349B2 (ja) 2000-06-29 2009-06-03 パナソニック株式会社 無線送信装置及び路側用無線通信装置

Also Published As

Publication number Publication date
US7212747B2 (en) 2007-05-01
DE60309969D1 (de) 2007-01-11
DE60309969T2 (de) 2007-09-20
KR20030095336A (ko) 2003-12-18
US20030228151A1 (en) 2003-12-11
EP1372274A3 (de) 2005-09-21
EP1372274A2 (de) 2003-12-17

Similar Documents

Publication Publication Date Title
EP1372274B1 (de) Optische Übertragungseinrichtung und optisches Übertragungsverfahren für ein Burst-Funksignal
EP1693974A1 (de) Faseroptisches funkübertragungssystem, sendeeinrichtung und empfangseinrichtung
KR100367270B1 (ko) 기지국 장치 및 이동국 장치
US6327299B1 (en) Method and system for measuring and adjusting the quality of an orthogonal transmit diversity signal in a wireless communications system
EP3917037A1 (de) Optische empfängervorrichtung
US20040013429A1 (en) Power equalization in optical switches
US6628929B1 (en) Transmission power control for use in a transmitting apparatus in a CDMA communication system
JPH0846466A (ja) 送信機の飽和防止方法及び電力制御回路
KR20020026593A (ko) 무선 주파수 증폭기에 대한 적응성 프리리미터
JP2008148293A (ja) 送信回路及びシステム
US5502810A (en) Optical transmission system
EP1515455A1 (de) Gruppenantennen-empfängereinrichtung
US20100150561A1 (en) Optical receiver, optical line terminal and method of recovering received signals
US7177659B2 (en) Power amplification system and method
KR101539196B1 (ko) 코히어런트 광통신 시스템의 수신 장치 및 방법
JP2004147009A (ja) 中継増幅装置
US20010019102A1 (en) Light reception circuit capable of receiving large level optical signal
JP2004072729A (ja) バースト無線信号を伝送する光伝送装置および光伝送方法
AU769962B2 (en) Transmitter for mobile terminal with carrier leak suppressing circuit
EP1117196B1 (de) Verfahren zur Erzeugung eines BasisbanSignals über die gesendete Hochfrequenz-Leistung, entsprechende Vorrichtung und Sendesstation
JPH11122190A (ja) 光伝送装置
JP3426991B2 (ja) 送信電力制御回路
JPS63313932A (ja) スペクトラム拡散通信装置
JPH0787422B2 (ja) 多チャンネル周波数多重信号パワーコントロール方式
JP2008135821A (ja) 光伝送システム

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20051123

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60309969

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090617

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090604

Year of fee payment: 7

Ref country code: GB

Payment date: 20090610

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100610

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090611

Year of fee payment: 7