EP1368867A2 - Structure d'amplification optique realisee en optique integree et boitier d'amplification integrant une telle structure - Google Patents

Structure d'amplification optique realisee en optique integree et boitier d'amplification integrant une telle structure

Info

Publication number
EP1368867A2
EP1368867A2 EP02713022A EP02713022A EP1368867A2 EP 1368867 A2 EP1368867 A2 EP 1368867A2 EP 02713022 A EP02713022 A EP 02713022A EP 02713022 A EP02713022 A EP 02713022A EP 1368867 A2 EP1368867 A2 EP 1368867A2
Authority
EP
European Patent Office
Prior art keywords
amplification
wave
microguide
light wave
amplified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02713022A
Other languages
German (de)
English (en)
Inventor
Jacob Philipsen
Denis Barbier
Cédric CASSAGNETTES
Serge Valette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teem Photonics SA
Original Assignee
Teem Photonics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teem Photonics SA filed Critical Teem Photonics SA
Publication of EP1368867A2 publication Critical patent/EP1368867A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06704Housings; Packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • H01S3/0637Integrated lateral waveguide, e.g. the active waveguide is integrated on a substrate made by Si on insulator technology (Si/SiO2)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers

Definitions

  • the present invention relates to an optical amplification structure produced in integrated optics as well as an amplification housing integrating such a structure. It applies to all fields requiring amplification of a light wave and in particular in the field of optical telecommunications by optical fibers.
  • FIG. 1 represents a block diagram of a conventional amplification structure produced in integrated optics.
  • optical amplification structures produced in integrated optics comprise two parts in which optical guides are produced.
  • An optical guide is made up of a central part generally called the heart and surrounding media located all around the heart and which may be identical to each other or different.
  • the guide can be a planar guide, when the confinement of light is in a plane - or a microguide, when the confinement of light is also carried out laterally.
  • the guide to its central part or core.
  • all or part of the surrounding media will be called a substrate, it being understood that when the guide is not or only slightly buried, one of the surrounding media may be outside the substrate and be, for example, air.
  • the substrate can be monolayer or multilayer.
  • an optical guide in a substrate can be more or less buried in this substrate and in particular comprise guide portions buried at variable depths. This is especially true in ion exchange technology in glass.
  • the first part of the amplification structure receives at the input, on the one hand the light wave S of power P e to be amplified and, on the other hand, a pump wave L issuing usually from a laser source.
  • S and L waves are transported respectively in two microguides 5 and 4 to a coupler 3.
  • the latter is produced by microguides 5 and 4 which are separated by a distance such that the S wave is injected into microguide 4 carrying l 'L wave.
  • the coupler 3 there remains only the microguide 4 which then carries the S and L waves. This first part only has the role of coupling the two waves.
  • the second part of the amplification structure which is referenced 2 in FIG.
  • this second part receives at the input of a microguide 6, the coupled S and L waves from the first part.
  • the purpose of this second part is to amplify the initial power S wave P e from the pump wave L.
  • the amplification in this second part is carried out in the microguide 6.
  • the light wave S at the output of the microguide 6 then has a power P s greater than the power P e .
  • the first part is for example silicate and the second part is for example phosphate glass doped with erbium. These two parts are usually glued together.
  • the output of these amplification structures does not, however, only deliver the amplified light wave S. Indeed, at the exit of the microguide 6, the resulting light wave always comprises a residual component of the pump wave L. Although attenuated in the microguide S, this residual component is liable to deteriorate the components or the systems receiving 1 light wave leaving the amplification structure.
  • the present invention relates to an optical amplification structure produced in integrated optics, not presenting the limitations and the difficulties of the devices described above.
  • An object of the invention is in particular to produce an amplification structure making it possible to eject the pump wave as much as possible, after amplification of the light wave, in order to obtain an amplified light wave free as much as possible from any disturbances related to the pump wave.
  • Another object of the invention is to achieve this ejection of the pump wave by integrated optical means produced on the same substrate as the rest of the amplification structure in order to obtain a fully integrated amplification structure and therefore compact.
  • Another object of the invention is to integrate this amplification structure into an amplification box, making it possible to offer a compact and autonomous amplification system.
  • the amplification structure of the invention makes it possible to amplify at least one light wave S and comprises in a substrate for each wave to be amplified an amplification assembly composed of: a first microguide capable of receiving the light wave S to be amplified, a second microguide capable of receiving a pump wave L, a multiplexing device associated with the first and second microguide, capable of providing a light wave composed of the S wave and the L wave, a amplification device connected to an output of the multiplexing device and capable of amplifying the light wave S by absorption at least partial of the pump wave L, the amplification device being able to supply on an output, the amplified light wave S, a third microguide connected to the output of the amplification device, able to convey the light wave Amplified S, and - a demultiplexing device associated with the third microguide, capable of demultiplexing the pump wave L, of the amplified S wave, and of providing an output on an fourth microguide, an amplified light wave S,
  • the use as substrate of two distinct parts, one of which is passive and the other is active makes it possible to carry out all the functions of the amplification structure in integrated optics whereas if these functions had been carried out in a homogeneous substrate such as all active substrate, then certain passive functions such as a multiplexer could not have been achieved with good optical performance.
  • the shape of the amplification device is adapted to allow its output to be on the same side as the output of the. multiplexing device.
  • the amplification device forms a loop, or even a spiral allowing a return of the amplified wave in the passive part.
  • Purification of the pump wave means the elimination of all or part of the pump wave. The less the amplified S wave is associated with residual components of the pump wave, at the output of the amplification structure, the better the characteristics of the structure.
  • the light wave S can be at one wavelength as well as at several wavelengths ⁇ i with integer i, ranging for example from 1 to n. In the particular field of telecommunications, the light wave makes it possible to convey information.
  • the pump wave L is a light wave which can also be at one or more wavelengths ⁇ p with p integer ranging for example from 1 to k; it brings energy to the structure so that the amplification device amplifies the power of the light wave S.
  • the first part is silicate glass and the second part is phosphate glass doped for example with erbium. These two parts are either glued together or attached to a common support but in in all cases, they form a single substrate although not homogeneous.
  • the various elements of the amplification structure of the invention are produced on said substrate with preferably the same technology, which makes it possible to have a structure which is easy to implement, the elements of the structure being able to be produced simultaneously or almost simultaneously by the use of appropriate masks.
  • the first part is made of silica on silicon and the second part is doped phosphate glass.
  • the multiplexing device it is chosen from a multiplexer, a coupler.
  • the demultiplexing device it is chosen from a demultiplexer, a coupler.
  • the amplification device it is formed by a microguide capable of amplifying the light wave S by at least partial absorption of the pump wave L.
  • the microguide generally comprises doping appropriate at least from the core of the microguide. The longer the microguide of the amplification device, the better the amplification.
  • the microguide forms a spiral of 1 to several turns. Whatever the number of turns, they are preferably wound so as never to cut.
  • the amplification assembly further comprises a first device for sampling a part of the light wave S associated with the first microguide and / or a second device for sampling a part of the light wave S associated with the fourth microguide, these sampling devices being able to be connected respectively to a processing device.
  • the first sampling device makes it possible to extract a small percentage of the light wave S injected into the structure of the invention and the second sampling device makes it possible to extract a small percentage of the amplified light wave S.
  • a processing device for example a power detector and / or a regulation system.
  • an element for measuring and controlling the output signal for example a photodiode
  • possibly adjusting the pump power via for example an electronic servo.
  • the first and second sampling devices are preferably produced in integrated optics on the same substrate as the rest of the amplification structure.
  • the first and / or the second sampling device is produced for example by a bypass component, such as an asymmetric coupler or a asymmetrical Y junction, able to take a small fraction (for example 1%) of the light signal.
  • a bypass component such as an asymmetric coupler or a asymmetrical Y junction
  • the structure When the amplification structure of the invention must amplify several light waves S j with j an integer ranging from 1 to m, the structure comprises m amplification assemblies as defined above, these assemblies are produced on the same substrate and are nested into each other to achieve a compact structure.
  • the amplification device of each assembly is formed by a spiral microguide, the m spiral microguides of the structure form a spiral with m microguides.
  • the device or devices for amplifying the structure of the invention are formed in the part of the substrate called the active part and the other elements of the structure are formed in the other part of the substrate called the passive part.
  • the invention also relates to an amplification box grouping together the amplification structure in integrated optics of the invention as defined above and components associated with this structure, this box thus making it possible to offer an amplification system which can be compact. and autonomous.
  • the set of associated components includes: a first optical fiber optically connected to the first microguide capable of transporting the light wave S to be amplified, a second optical fiber optically connected to the fourth microguide capable of carrying the amplified light wave S, a source of the pump wave P , optically connected to the second microguide.
  • this set of components further comprises a first S wave processing device optically connected to the first sampling device when it exists and / or a second S wave processing device optically connected to the second device where it exists.
  • the optical link can be provided directly between each processing device and the corresponding sampling device, in this case the processing device is attached directly to the substrate of the amplification structure, for example by bonding.
  • This connection can also be carried out indirectly via, for example, a fiber held between the two devices by mechanical elements such as ferrules.
  • the optical connection between the source of the pump wave and the second microguide is either direct, for example by bonding the source to the structure, or indirect, for example via a fiber held between the source and the structure by mechanical elements. such as ferrules.
  • the first and the second fibers are connected respectively to the first and to the fourth microguide by connection means chosen from a ferrule, a block of V.
  • the connection means of the second fiber further comprise a optical isolator able to avoid reflections which can disturb the light signal and introduce noise.
  • FIG. 1 already described, schematically represents a known amplification structure
  • FIG. 2 schematically represents an amplification structure according to the invention, for a light wave S to amplify
  • FIG. 3 schematically represents an amplification structure according to the invention, for several light waves to be amplified
  • FIG. 4 schematically represents a housing integrating the amplification structure of the invention and associated components.
  • FIG. 2 schematically represents an amplification structure according to the invention, for a light wave S to be amplified.
  • a section of the substrate in which the structure is produced according to a plane containing the different directions of propagation of light waves in the microguides, it being understood that according to the technologies used these directions are not in practice necessarily contained in the same plane.
  • the amplification structure shown in this figure makes it possible to amplify a light wave S and therefore comprises in a substrate 5 a single amplification assembly.
  • This set is made up of: a first microguide 7 capable of receiving the light wave S to be amplified, a second microguide 9 capable of receiving a pump wave L, a multiplexing device 11 associated with the first and second microguide, capable of providing a light wave composed of the S wave and the L wave, - of an amplification device 13 connected to an output of the multiplexing device and capable of amplifying the light wave S and capable of supply on an output, the amplified light wave S, with a third microguide 15 connected to the output of the amplification device, capable of conveying the amplified light wave S, and with a demultiplexing device 19 associated with the third microguide , capable of demultiplexing the pump wave L, of the amplified S wave, and of providing on a fourth microguide 17, an amplified light wave S, purified from the pump wave.
  • ⁇ i is always greater than the 'or the lengths of wave ⁇ p (generally in the vicinity of 980 nm (at + or - 5nm)) of the pump wave.
  • the evanescent wave associated with the propagation mode of the S wave has a greater lateral penetration distance than that of the pump wave for given guide profiles.
  • the coupler 11 and the coupler 19 in this exemplary embodiment of the invention use this property to perform respectively a multiplexing and a demultiplexing of the S wave and of the L wave, in integrated optics.
  • the coupler 11 is produced by a part of the microguides 9 and 7 which are spaced from one another in said part by a distance d a sufficient and over a sufficient length to allow the S wave alone to be transferred from guide 7, to guide 9, without the L wave undergoing any propagation modification in the coupler.
  • This distance d a must be greater than the lateral penetration distance of the evanescent part of the L wave in the guide 9 and less than the lateral penetration distance of the evanescent part of the S wave in the guide 7, so that the S wave can be transferred over a reasonable length (for example a few mm).
  • the microguide 9 remains which is connected to the amplification device 13 and in which the S and -L waves are grouped.
  • the coupler 19 is formed by a part of the microguides 15 and 17 which are spaced from each other in said part, by a distance d b sufficient and over a sufficient length to allow the wave coming from the amplification device and comprising the amplified S wave and residues of the pump wave L, of demultiplexing the light wave S which passes through the microguide 17, of the pump wave L which remains in the microguide 15.
  • This distance d b must be greater than the lateral penetration distance of the evanescent part of the L wave in the guide 15 and less than the lateral penetration distance of the evanescent part of the S wave in the guide 15, so that the S wave can be transferred into the guide 17, over a reasonable length.
  • the amplification device 13 shown in FIG. 2 is formed by a spiral microguide.
  • the number of turns of the device depends on the size of the substrate in which the device is made but also on the length of the microguide.
  • the structure can comprise a device 21 for taking a part of the light wave S introduced into the microguide 7.
  • the structure can also include a device 23 for taking a part of the wave amplified light S conveyed by the microguide 19.
  • These sampling devices 21, 23 are produced in this example by microguides connected respectively to .microguides 7 and 17 so as to form a Y junction.
  • microguides 21 and 23 are for example of smaller sections than those of microguides 7 and 17.
  • These sampling devices could also be produced by a coupler whose interaction length is short so that the levy is low.
  • the light waves sampled by the devices 21 and 23 are referenced respectively d x and d 2 and are available at the output of the structure to be processed and allow for example to have a monitoring of the input power of the S wave and of the output power of this wave and possibly of regulating these powers.
  • the amplification device 13 is formed in a part of the substrate called second part B or active part and the other elements of the structure are formed in another part of the substrate called first part A or passive part.
  • the first part is silicate glass and the second part is phosphate glass.
  • FIG. 3 schematically represents an amplification structure according to the invention, for several light waves to be amplified. In this example, four light waves Si, S 2 , S 3 , S are shown.
  • This structure therefore comprises four amplification assemblies produced on the same substrate and nested one inside the other to produce a compact structure.
  • Each assembly is represented with a microguide (7) 3 , into which the light wave S- is injected, to be amplified, a microguide (9) : into which the pump wave L-, is introduced, a coupler (11) - to combine these two waves, an amplification device (13) 3 to amplify the S wave 3 , a microguide (15) -, receiving the amplified S- j wave, a demultiplexer (19) -, to purify the amplified wave, of the pump wave and a microguide (17) -, to recover the S wave, amplified and purified.
  • j ranges from 1 to 4.
  • the four amplification devices of the structure are spirals together thus forming a spiral with four microguides in the active part B of the substrate.
  • the other elements are made in the passive part A of the substrate.
  • the different pump waves L- can come for example from a matrix or from a strip of laser photodiodes.
  • FIG. 4 schematically represents an amplification box according to the invention.
  • This box combines the optical amplification structure integrated of the invention, referenced 30 without any details of the elements which compose it, and of the components associated with this structure.
  • the structure integrated in the housing comprises only one amplification assembly, it being understood that structures with several assemblies can also be integrated.
  • the set of components associated with the structure in this example includes:
  • an optical fiber 31 optically connected to the microguide 7 of the structure 30 and capable of carrying the light wave S to be amplified
  • an optical fiber 33 optically connected to the microguide 17 of the structure 30 and capable of carrying the amplified light wave S
  • a source 35 of the pump wave L optically connected to the microguide 9 of the structure 30,
  • a device 37 for processing the wave di taken from the S wave to be amplified optically connected to the device 21 for sampling the structure
  • optical connection between, on the one hand the processing devices and the source and, on the other hand, the structure can be ensured directly, with a mechanical connection, for example by bonding, which is carried out between each of these components and the structure amplification 30.
  • This optical connection can also be made indirectly as shown in this figure, via mechanical and optical elements 47, 45, 49, for example a fiber held between the component and the structure by ferrules.
  • the fibers 31 and 33 are connected respectively to the structure, for example by ferrules 41 and 43.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

L'invention concerne une structure d'amplification optique apte à amplifier au moins une onde lumineuse S, comportant dans un substrat pour chaque onde à amplifier un ensemble d'amplification composé de: un premier microguide (7) apte à recevoir l'onde lumineuse S à amplifier; un deuxième microguide (9) apte à recevoir une onde de pompe L; un dispositif de multiplexage (11) associé au premier et au deuxième microguide, apte à fournir une onde lumineuse couplée, composée de l'onde S et de l'onde L; un dispositif d'amplification (13) relié à une sortie du dispositif de multiplexage et apte à amplifier l'onde lumineuse S par absorption au moins partielle de l'onde de pompe L; un troisième microguide (15) relié à la sortie du dispositif d'amplification, à véhiculer l'onde lumineuse S amplifiée; et un dispositif de démultiplexage (19) associé au troisième microguide, apte à démultiplexer l'onde de pompe L, de l'onde S amplifiée.

Description

STRUCTURE D'AMPLIFICATION OPTIQUE REALISEE EN OPTIQUE INTEGREE ET BOITIER D'AMPLIFICATION INTEGRANT UNE TELLE
STRUCTURE
Domaine technique
La présente invention concerne une structure d'amplification optique réalisée en optique intégrée ainsi qu'un boîtier d'amplification intégrant une telle structure . Elle s'applique à tous les domaines nécessitant une amplification d'une onde lumineuse et en particulier dans le domaine des télécommunications optiques par fibres optiques.
Etat de la technique
La figure 1 représente un schéma de principe d'une structure classique d'amplification réalisée en optique intégrée.
Pour amplifier une onde lumineuse, actuellement les structures d'amplification optique réalisées en optique intégrée, comprennent deux parties dans lesquelles sont réalisés des guides optiques.
Un guide optique se compose d'une partie centrale appelée généralement cœur et de milieux environnants situés tout autour du cœur et qui peuvent être identiques entre eux ou différents .
Pour permettre le confinement de la lumière dans le cœur, l'indice de réfraction du milieu composant le cœur doit être différent et dans la plupart des cas supérieur à ceux des milieux environnants. Le guide peut être un guide planaire, lorsque le confinement de la lumière se fait dans un plan - ou un microguide, lorsque le confinement de la lumière est réalisé aussi latéralement.
Pour simplifier la description, on assimilera le guide à sa partie centrale ou coeur. Par ailleurs, on appellera tout ou partie des milieux environnants, substrat, étant bien entendu que lorsque le guide est pas ou peu enterré, un des milieux environnants peut être extérieur au substrat et être par exemple de l'air.
Suivant le type de technique utilisé, le substrat peut être monocouche ou multicouche .
En outre, suivant les applications, un guide optique dans un substrat peut être plus ou moins enterré dans ce substrat et en particulier comporter des portions de guide enterrées à des profondeurs variables. Ceci est particulièrement vrai dans la technologie d'échange d'ions dans du verre.
La première partie de la structure d'amplification, qui est référencée 1 sur la figure 1, reçoit en entrée, d'une part l'onde lumineuse S de puissance Pe à amplifier et, d'autre part, une onde pompe L issue généralement d'une source laser. Les ondes S et L sont transportées respectivement dans deux microguides 5 et 4 vers un coupleur 3. Ce dernier est réalisé par les microguides 5 et 4 qui sont séparés d'une distance telle que l'onde S est injectée dans le microguide 4 transportant l'onde L. En sortie du coupleur 3, il ne reste que le microguide 4 qui transporte alors les ondes S et L. Cette première partie n'a pour rôle que le couplage des deux ondes. La deuxième partie de la structure d'amplification, qui est référencée 2 sur la figure 1, reçoit en entrée d'un microguide 6 , les ondes S et L couplées de la première partie. Cette deuxième partie a pour but d'amplifier l'onde S de puissance initiale Pe à partir de l'onde de pompe L. L'amplification dans cette deuxième partie est réalisée dans le microguide 6. L'onde lumineuse S en sortie du microguide 6 présente alors une puissance Ps supérieure à la puissance Pe .
Dans la technologie d'échange d'ions dans du verre, la première partie est par exemple du silicate et la deuxième partie est par exemple du verre phosphate dopé à l'erbium. Ces deux parties sont généralement collées ensemble.
La sortie de ces structures d'amplification ne délivre pas cependant uniquement l'onde lumineuse S amplifiée. En effet, à la sortie du microguide 6, l'onde lumineuse résultante comporte toujours une composante résiduelle de l'onde de pompe L. Bien qu'atténuée dans le microguide S, cette composante résiduelle est susceptible de détériorer les composants ou les systèmes recevant 1 ' onde lumineuse sortant de la structure d'amplification.
Exposé de l'invention et brève description des figures :
La présente invention a pour objet une structure d'amplification optique réalisée en optique intégrée, ne présentant pas les limitations et les difficultés des dispositifs décrits ci-dessus. Un but de l'invention est en particulier de réaliser une structure d'amplification permettant d'éjecter au maximum l'onde de pompe, après amplification de l'onde lumineuse, afin d'obtenir une onde lumineuse amplifiée exempte au maximum de toutes perturbations liées à l'onde de pompe.
Un autre but de l'invention est de réaliser cette éjection de l'onde de pompe par des moyens d'optique intégrée réalisés sur un même substrat que le reste de la structure d'amplification pour obtenir une structure d'amplification complètement intégrée et donc compacte .
Un autre objet de l'invention est' d'intégrer cette structure d'amplification dans un boîtier d'amplification, permettant d'offrir un système d'amplification compact et autonome.
De façon plus précise, la structure d'amplification de l'invention permet d'amplifier au moins une onde lumineuse S et comporte dans un substrat pour chaque onde à amplifier un ensemble d'amplification composé de : un premier microguide apte à recevoir l'onde lumineuse S à amplifier, un deuxième microguide apte à recevoir une onde de pompe L, un dispositif de multiplexage associé au premier et au deuxième microguide, apte à fournir une onde lumineuse composée de l'onde S et de l'onde L, un dispositif d'amplification relié à une sortie du dispositif de multiplexage et apte à amplifier l'onde lumineuse S par absorption au moins partielle de l'onde de pompe L, le dispositif -d'amplification étant apte à fournir sur une sortie, l'onde lumineuse S amplifiée, un troisième microguide relié à la sortie du dispositif d'amplification, apte à véhiculer l'onde lumineuse S amplifiée, et - un dispositif de démultiplexage associé au troisième microguide, apte à démultiplexer l'onde de pompe L, de l'onde S amplifiée, et à fournir en sortie sur un quatrième microguide, une onde lumineuse S amplifiée, épurée de l'onde de pompe, caractérisée en ce que le substrat est composé d'une première partie dite passive et d'une deuxième partie dite active et en ce que les premier, deuxième, troisième et quatrième microguides ainsi que le dispositif de multiplexage et le dispositif de démultiplexage sont dans la partie passive tandis que le dispositif d'amplification est dans la partie active . On entend par partie passive, un milieu non apte à amplifier une onde lumineuse et, par opposition, on entend par partie active, un milieu apte à amplifier une onde lumineuse .
L'utilisation comme substrat de deux parties distinctes dont une est passive et l'autre est active permet de réaliser toutes les fonctions de la structure d'amplification en optique intégrée alors que si ces fonctions avaient été réalisées dans un substrat homogène tel qu'un substrat tout actif alors certaines fonctions passives telles qu'un multiplexeur n'auraient pu être réalisées avec de bonnes performances optiques. Pour permettre l'intégration desdites fonctions, la forme du dispositif d'amplification est adaptée pour permettre que sa sortie soit du même côté que la sortie du. dispositif de multiplexage. En particulier, le dispositif d'amplification forme une boucle, voire même une spirale permettant un retour de l'onde amplifiée dans la partie passive.
On entend par épuration de l'onde de pompe, l'élimination de tout ou partie de l'onde de pompe. Moins l'onde S amplifiée est associée à des composantes résiduelles de l'onde de pompe, en sortie de la structure d'amplification, meilleures sont les caractéristiques de la structure.
L'onde lumineuse S peut être aussi bien à une longueur d'onde qu'à plusieurs longueurs d'ondes λi avec i entier, allant par exemple de 1 à n. Dans le domaine particulier des télécommunications, l'onde lumineuse permet de véhiculer des informations.
L'onde de pompe L est une onde lumineuse qui peut également être à une ou plusieurs longueurs d'ondes λp avec p entier allant par exemple de 1 à k ; elle apporte de l'énergie à la structure afin que le dispositif d'amplification amplifie la puissance de l'onde lumineuse S. Selon un exemple de réalisation de l'invention, dans la technologie d'échange d'ions dans du verre, la première partie est du verre silicate et la deuxième partie est du verre phosphate dopé par exemple avec de l'erbium. Ces deux parties sont soit collées entre elles, soit rapportées sur un support commun mais dans tous les cas elles forment un substrat unique bien que non homogène .
Les différents éléments de la structure d'amplification de l'invention sont réalisés sur ledit substrat avec de préférence la même technologie, ce qui permet d'avoir une structure facile à mettre en œuvre, les éléments de la structure pouvant être réalisés simultanément ou quasi simultanément par l'utilisation de masques appropriés. Selon un autre exemple de réalisation, la première partie est en silice sur silicium et la deuxième partie est du verre phosphate dopé.
Selon un mode de réalisation du dispositif de multiplexage, celui-ci est choisi parmi un multiplexeur, un coupleur.
Selon un mode de réalisation du dispositif de démultiplexage, celui-ci est choisi parmi un démultiplexeur, un coupleur.
Selon un mode de réalisation du dispositif d'amplification, celui-ci est formé par un microguide apte à amplifier l'onde lumineuse S par absorption au moins partielle de l'onde de pompe L. Pour cela, le microguide comprend en général un dopage approprié au moins du cœur du microguide . Plus le microguide du dispositif d'amplification est long, meilleure est l'amplification. De préférence, pour avoir une structure d'amplification la plus compacte possible avec de bonnes performances d'amplification, le microguide forme une spirale de 1 à plusieurs spires. Quel que soit le nombre des spires, elles sont de préférence enroulées de façon à ne jamais se couper.
Selon un autre mode de réalisation, l'ensemble d'amplification comprend en outre un premier dispositif de prélèvement d'une partie de l'onde lumineuse S associé au premier microguide et/ou un deuxième dispositif de prélèvement d'une partie de l'onde lumineuse S associé au quatrième microguide, ces dispositifs de prélèvement étant aptes à être reliés respectivement à un dispositif de traitement. Le premier dispositif de prélèvement permet d'extraire un faible pourcentage de l'onde lumineuse S injectée dans la structure de l'invention et le deuxième dispositif de prélèvement permet d'extraire un faible pourcentage de l'onde lumineuse S amplifiée. Ces pourcentages prélevés de l'onde, sont transmis à un dispositif de traitement par exemple un détecteur de puissance et/ou un système de régulation.
A titre d'exemple, on peut utiliser un élément de mesure et de contrôle du signal de sortie (par exemple une photodiode) et ajuster éventuellement la puissance de pompe via par exemple un asservissement électronique.
Les premier et deuxième dispositifs de prélèvement sont réalisés de préférence en optique intégrée sur le même substrat que le reste de la structure d'amplification.
Le premier et/ou le deuxième dispositif de prélèvement est réalisé par exemple par un composant de dérivation, tel qu'un coupleur asymétrique ou une jonction Y asymétrique, apte à prélever une petite fraction (par exemple 1 %) du signal lumineux.
Lorsque la structure d'amplification de l'invention doit amplifier plusieurs ondes lumineuses Sj avec j entier allant de 1 à m, la structure comporte m ensembles d'amplification tels que définis précédemment, ces ensembles sont réalisés sur le même substrat et sont imbriqués les uns dans les autres pour réaliser une structure compacte. En particulier, lorsque le dispositif d'amplification de chaque ensemble est formé par un microguide spirale, les m microguides spirales de la structure forment une spirale à m microguides.
Selon un mode préféré de réalisation, le ou les dispositifs d'amplification de la structure de l'invention sont formés dans la partie du substrat nommée partie active et les autres éléments de la structure sont formés dans l'autre partie du substrat nommée partie passive. L'invention concerne également un boîtier d'amplification regroupant la structure d'amplification en optique intégrée de l'invention telle que définie précédemment et des composants associés à cette structure, ce boîtier permettant d'offrir ainsi un système d'amplification pouvant être compact et autonome .
Pour chaque ensemble d'amplification d'une onde lumineuse S, l'ensemble des composants associés comporte : une première fibre optique reliée optiquement au -premier microguide apte à véhiculer l'onde lumineuse S à amplifier, une deuxième fibre optique reliée optiquement au quatrième microguide, apte à véhiculer l'onde lumineuse S amplifiée, une source de l'onde de pompe P, reliée optiquement au deuxième microguide.
De façon avantageuse, cet ensemble de composants comporte en outre un premier dispositif de traitement de l'onde S relié optiquement au premier dispositif de prélèvement lorsqu'il existe et/ou un deuxième dispositif de traitement de l'onde S relié optiquement au deuxième dispositif de prélèvement lorsqu'il existe.
La liaison optique peut être assurée directement entre chaque dispositif de traitement et le dispositif de prélèvement correspondant, dans ce cas le dispositif de traitement est rapporté directement sur le substrat de la structure d'amplification par exemple par collage. Cette liaison peut être aussi réalisée de façon indirecte via par exemple une fibre maintenue entre les deux dispositifs par des éléments mécaniques tels que des férules. De même, la liaison optique entre la source de l'onde de pompe et le deuxième microguide est soit directe par exemple par collage de la source sur la structure soit indirecte via par exemple une fibre maintenue entre la source et la structure par des éléments mécaniques tels que des férules. Selon un mode de réalisation la première et la deuxième fibres sont reliées respectivement au premier et au quatrième microguide par des moyens de liaisons choisis parmi une férule, un bloc de V. De préférence, les moyens de liaisons de la deuxième fibre comprennent en outre un isolateur optique apte à éviter des réflexions qui peuvent perturber le signal lumineux et introduire du bruit .
D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lumière de la description qui va suivre. Cette description porte sur des exemples de réalisation, donnés à titre explicatif et non limitatif. Elle se réfère par ailleurs à des dessins annexés sur lesquels : - la figure 1, déjà décrite, représente schématiquement une structure d'amplification connue , la figure 2 représente schématiquement une structure d'amplification selon l'invention, pour une onde lumineuse S à amplifier, la figure 3 représente schématiquement une structure d'amplification selon l'invention, pour plusieurs ondes lumineuses à amplifier, la figure 4 représente schématiquement un boîtier intégrant la structure d'amplification de l'invention et des composants associés.
Exposé détaillé de modes de réalisation :
La figure 2 représente schématiquement une structure d'amplification selon l'invention, pour une onde lumineuse S à amplifier. Sur ce schéma, on a représenté une coupe du substrat dans lequel est réalisée la structure, selon un plan contenant les différentes directions de propagation des ondes lumineuses dans les microguides, étant bien entendu que suivant les technologies utilisées ces directions ne sont pas en pratique forcément contenues dans un même plan.
La structure d'amplification représentée sur cette figure permet d'amplifier une onde lumineuse S et comporte donc dans un substrat 5 un seul ensemble d'amplification. Cet ensemble se compose : d'un premier microguide 7 apte à recevoir l'onde lumineuse S à amplifier, d'un deuxième microguide 9 apte à recevoir une onde de pompe L , d'un dispositif de multiplexage 11 associé au premier et au deuxième microguide, apte à fournir une onde lumineuse composée de l'onde S et de 1 ' onde L , - d'un dispositif d'amplification 13 relié à une sortie du dispositif de multiplexage et apte à amplifier l'onde lumineuse S et apte à fournir sur une sortie, l'onde lumineuse S amplifiée, d'un troisième microguide 15 relié à la sortie du dispositif d'amplification, apte à véhiculer l'onde lumineuse S amplifiée, et d'un dispositif de démultiplexage 19 associé au troisième microguide, apte à démultiplexer l'onde de pompe L , de l'onde S amplifiée, et à fournir sur un quatrième microguide 17, une onde lumineuse S amplifiée, épurée de l'onde de pompe. En général, quelle (s) que soi (en) t la ou les longueurs d'onde λi (généralement comprise (s) entre 1530 et 1560 nm) de l'onde lumineuse S, λi est toujours supérieure à la ' ou aux longueurs d'onde λp (généralement au voisinage de 980 nm (à + ou - 5nm) ) de 1 ' onde de pompe .
De ce fait, l'onde évanescente associée au mode de propagation de l'onde S a une distance de pénétration latérale plus grande que celle de l'onde de pompe pour des profils de guides donnés .
Le coupleur 11 et le coupleur 19 dans cet exemple de réalisation de l'invention utilisent cette propriété pour réaliser respectivement un multiplexage et un démultiplexage de l'onde S et de l'onde L, en optique intégrée.
Ainsi, le coupleur 11 est réalisé par une partie des microguides 9 et 7 qui sont écartés l'un de l'autre dans ladite partie d'une distance da suffisante et sur une longueur suffisante pour permettre à l'onde S seule d'être transférée du guide 7, au guide 9, sans que l'onde L ne subisse de modification de propagation dans le coupleur. Cette distance da doit être supérieure à la distance de pénétration latérale de la partie évanescente de l'onde L dans le guide 9 et inférieure à la distance de pénétration latérale de la partie évanescente de l'onde S dans le guide 7, pour que l'onde S puisse être transférée sur une longueur raisonnable (par exemple quelques mm) . En sortie du coupleur 11, dans l'exemple de cette figure, il ne subsiste que le microguide 9 qui est relié au dispositif d'amplification 13 et dans lequel les ondes S et -L sont regroupées .
De même, le coupleur 19 est formé par une partie des microguides 15 et 17 qui sont écartés l'un de l'autre dans ladite partie, d'une distance db suffisante et sur une longueur suffisante pour permettre à l'onde issue du dispositif d'amplification et comportant l'onde S amplifiée et des résidus de l'onde de pompe L, de démultiplexer l'onde lumineuse S qui passe dans le microguide 17, de l'onde de pompe L qui reste dans le microguide 15. Cette distance db doit être supérieure à la distance de pénétration latérale de la partie évanescente de l'onde L dans le guide 15 et inférieure à la distance de pénétration latérale de la partie évanescente de l'onde S dans le guide 15, pour que l'onde S puisse être transférée dans le guide 17, sur une longueur raisonnable. En sortie du coupleur 19, dans l'exemple de cette figure, il ne subsiste que le microguide 17. Le dispositif d'amplification 13 représenté sur la figure 2 est formé par un microguide spirale. Plus la spirale du microguide est longue, meilleures sont les performances d'amplification du dispositif. Le nombre de spires du dispositif est fonction de la dimension du substrat dans lequel le dispositif est réalisé mais aussi de la longueur du microguide.
De façon avantageuse, la structure peut comprendre un dispositif de prélèvement 21 d'une partie de l'onde lumineuse S introduite dans le microguide 7. De même, la structure peut comprendre également un dispositif de prélèvement 23 d'une partie de l'onde lumineuse S amplifiée véhiculée par le microguide 19. Ces dispositifs de prélèvement 21, 23 sont réalisés dans cet exemple par des microguides reliés respectivement aux .microguides 7 et 17 de façon à former une jonction Y. Pour ne prélever qu'un faible pourcentage des ondes lumineuses transportées par les microguides 7 et 17, les microguides 21 et 23 sont par exemple de sections plus petites que celles des microguides 7 et 17. On pourrait également réaliser ces dispositifs de prélèvement par un coupleur dont la longueur d'interaction est courte pour que le prélèvement soit faible .
Les ondes lumineuses prélevées par les dispositifs 21 et 23 sont référencées respectivement dx et d2 et sont disponibles en sortie de la structure pour être traitées et permettre par exemple d'avoir un suivi de la puissance d'entrée de l'onde S et de la puissance de sortie de cette onde et éventuellement de réaliser une régulation de ces puissances.
Dans cet exemple le dispositif d'amplification 13 est formé dans une partie du substrat nommé deuxième partie B ou partie active et les autres éléments de la structure sont formés dans une autre partie du substrat nommée première partie A ou partie passive. Dans la technologie d'échange d'ions dans du verre, la première partie est du verre silicate et la deuxième partie est du verre phosphate. Ces deux parties sont soit collées entre elles, soit rapportées sur un support commun mais dans tous les cas elles forment un substrat unique. La figure 3 représente schématiquement une structure d'amplification selon l'invention, pour plusieurs ondes lumineuses à amplifier. Dans cet exemple on a représenté quatre ondes lumineuses Si, S2, S3 , S .
Cette structure comporte donc quatre ensembles d'amplification réalisés sur le même substrat et imbriqués les uns dans les autres pour réaliser une structure compacte. Chaque ensemble est représenté avec un microguide (7)3, dans lequel est injectée l'onde lumineuse S-, à amplifier, un microguide (9): dans lequel est introduite l'onde de pompe L-, , un coupleur (11)-, pour regrouper ces deux ondes, un dispositif d'amplification (13)3 pour amplifier l'onde S3 , un microguide (15)-, recevant l'onde S-j amplifiée, un démultiplexeur (19)-, pour épurer l'onde amplifiée, de l'onde de pompe et un microguide (17)-, pour récupérer l'onde S-, amplifiée et épurée. Dans cet exemple j va de 1 à 4. On voit en particulier dans cet exemple que les quatre dispositifs d'amplification de la structure sont spirales ensemble formant ainsi une spirale à quatre microguides dans la partie active B du substrat . Les autres éléments sont réalisés dans la partie passive A du substrat.
Les différentes ondes de pompe L-, peuvent provenir par exemple d'une matrice ou d'une barrette de photodiodes lasers .
La figure 4 représente schématiquement un boîtier d'amplification selon l'invention. Ce boîtier regroupe la structure d'amplification en optique intégrée de l'invention, référencée 30 sans aucun détail des éléments qui la composent, et des composants associés à cette structure. Pour simplifier la description, on considère dans cet exemple que la structure intégrée dans le boîtier ne comporte qu'un seul ensemble d'amplification étant bien entendu que des structures à plusieurs ensembles peuvent être également intégrés .
L'ensemble des composants associé à la structure dans cet exemple comporte :
- une fibre optique 31 reliée optiquement au microguide 7 de la structure 30 et apte à véhiculer l'onde lumineuse S à amplifier, une fibre optique 33 reliée optiquement au microguide 17 de la structure 30 et apte à véhiculer l'onde lumineuse S amplifiée, une source 35 de l'onde de pompe L, reliée optiquement au microguide 9 de la structure 30,
- un dispositif de traitement 37 de l'onde di prélevée sur l'onde S à amplifier, relié optiquement au dispositif de prélèvement 21 de la structure,
- un dispositif de traitement 39 de l'onde d2 prélevée sur l'onde S amplifiée et relié optiquement au dispositif de prélèvement 23 de la structure .
La liaison optique entre, d'une part les dispositifs de traitement et la source et, d'autre part, la structure, peut être assurée directement, avec une liaison mécanique, par exemple par collage, qui est réalisée entre chacun de ces composants et la structure d'amplification 30. Cette liaison optique peut être aussi réalisée de façon indirecte comme représenté sur cette figure, via des éléments mécaniques et optiques 47, 45, 49, par exemple une fibre maintenue entre le composant et la structure par des férules.
De même les fibres 31 et 33 sont reliées respectivement à la structure par exemple par des férules 41 et 43.

Claims

REVENDICATIONS
1. Structure d'amplification optique apte à amplifier au moins une onde lumineuse S, comportant dans un substrat pour chaque onde à amplifier un ensemble d'amplification composé de : un premier microguide (7) apte à recevoir l'onde lumineuse S à amplifier, un deuxième microguide (9) apte à recevoir une onde de pompe L , - un dispositif de multiplexage (11) associé au premier et au deuxième microguide, apte à fournir une onde lumineuse composée de 1 ' onde S et de 1 ' onde L, un dispositif d'amplification (13) relié à une sortie du dispositif de multiplexage et apte à amplifier l'onde lumineuse S par absorption au moins partielle de l'onde de pompe L, le dispositif d'amplification étant apte à fournir sur une sortie, l'onde lumineuse S amplifiée, - un troisième microguide (15) relié à la sortie du dispositif d'amplification, apte à véhiculer l'onde lumineuse S amplifiée, et
- un dispositif de démultiplexage (19) associé au troisième microguide, apte à démultiplexer l'onde de pompe L, de l'onde S amplifiée, et à fournir en sortie sur un quatrième microguide (17) , une onde lumineuse S amplifiée, épurée de l'onde de pompe, caractérisée en ce que le substrat est composé d'une première partie dite passive et d'une deuxième partie dite active et en ce que les premier, deuxième, troisième et quatrième microguides ainsi que le dispositif de multiplexage et le dispositif de démultiplexage sont dans la partie passive tandis que le dispositif d'amplification est dans la partie active.
2. Structure d'amplification selon la revendication 1, caractérisée en ce que le dispositif de multiplexage est choisi parmi un multiplexeur, un coupleur.
3. Structure d'amplification selon la revendication 1, caractérisée en ce que le dispositif de démultiplexage est choisi parmi un démultiplexeur, un coupleur.
4. Structure d'amplification selon la revendication 1, caractérisée en ce que le dispositif de multiplexage (11) est réalisé par une partie des premier et deuxième microguides (9,7) qui sont écartés l'un de l'autre d'une distance suffisante et sur une longueur suffisante, pour permettre à l'onde lumineuse S seule de passer du premier microguide au deuxième microguide . v
5. Structure d'amplification selon la revendication 1, caractérisée en ce que le dispositif de démultiplexage (19) est réalisé par une partie des troisième et quatrième microguides (15 et 17) qui sont écartés l'un de l'autre d'une distance suffisante et sur une longueur suffisante, pour permettre à l'onde lumineuse S de passer dans le quatrième microguide (17) et à l'onde de pompe L de rester dans le troisième microguide (15) .
6. Structure. d'amplification selon la revendication 1, caractérisée en ce que le dispositif d'amplification comprend un microguide apte à amplifier l'onde lumineuse S.
7. Structure d'amplification selon la revendication 6, caractérisée en ce que le microguide du dispositif d'amplification forme une spirale d'une à plusieurs spires.
8. Structure d'amplification selon la revendication 7, caractérisée en ce que la spirale est à plusieurs spires enroulées de façon à ne jamais se couper .
9. Structure d'amplification selon la revendication 1, caractérisée en ce que l'ensemble d'amplification comprend en outre un premier dispositif de prélèvement (21) d'une partie de l'onde lumineuse S, associé au premier microguide et/ou un deuxième dispositif de prélèvement (23) d'une partie de l'onde lumineuse S, associé au quatrième microguide.
10. Structure d'amplification selon la revendication 9, caractérisée en ce que le premier et/ou le deuxième dispositif de prélèvement sont choisis parmi des coupleurs asymétriques ou des jonctions Y asymétriques.
11. Structure d'amplification selon l'une quelconque des revendications 1 à 10, caractérisée en ce que la partie passive est du verre silicate et la partie active du verre phosphate dopé.
12. Structure d'amplification selon l'une quelconque des revendications 1 à 11, caractérisée en ce que le dispositif d'amplification a une forme permettant que sa sortie soit du même côté que la sortie du dispositif de multiplexage.
13. Structure d'amplification apte à amplifier plusieurs ondes lumineuses Sj avec j allant de 1 à m, caractérisée en ce qu'elle comporte au moins m ensembles d'amplification selon l'une quelconque des revendications précédentes.
14. Structure d'amplification selon la revendication 10, caractérisée en ce que ces ensembles sont réalisés sur le même substrat et sont imbriqués les uns dans les autres.
15. Structure d'amplification selon la revendication 13, caractérisée en ce que le dispositif d'amplification de chaque ensemble est formé par un microguide spirale, les m microguides spirales de la structure forment une spirale à m microguides.
16. Boîtier d'amplification, caractérisé en ce qu'il regroupe la structure d'amplification (30) selon l'une quelconque des revendications précédentes et des composants associés à ladite structure, l'ensemble des composants' associés à chaque ensemble d'amplification d'une onde lumineuse. S comporte : - une première fibre optique (31) reliée optiquement au premier microguide, apte à véhiculer l'onde lumineuse S à amplifier, - une deuxième fibre optique (33) reliée optiquement au quatrième microguide, apte à véhiculer l'onde lumineuse S amplifiée, une source (35) de l'onde de pompe L, reliée optiquement au deuxième microguide .
17. Boîtier d'amplification selon la revendication 16, caractérisé en ce que l'ensemble de composants comporte en outre un premier dispositif de traitement (37) de l'onde S relié optiquement au premier dispositif de prélèvement et/ou un deuxième dispositif de traitement (39) de l'onde S relié optiquement au deuxième dispositif de prélèvement.
18. Boîtier d'amplification selon la revendication 17, caractérisé en ce que chaque dispositif de traitement est relié au dispositif de prélèvement correspondant par des moyens de liaisons optiques et mécaniques comprenant une fibre et au moins une férule .
19. Boîtier d'amplification selon la revendication 16, caractérisé en ce que la source de l'onde de pompe est reliée au deuxième microguide par des moyens de liaisons optiques et mécaniques comprenant une fibre et au moins une férule.
20. Boîtier , d'amplification selon la revendication 16, caractérisé en ce que la première et la deuxième fibre sont reliées respectivement au premier et au quatrième microguide par des moyens de liaisons choisis parmi une férule, un bloc de V.
21. Boîtier d'amplification selon la revendication 20, caractérisé en ce que les moyens de liaisons de la deuxième fibre comprennent en outre un isolateur optique.
EP02713022A 2001-03-16 2002-03-14 Structure d'amplification optique realisee en optique integree et boitier d'amplification integrant une telle structure Withdrawn EP1368867A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0103611 2001-03-16
FR0103611A FR2822304A1 (fr) 2001-03-16 2001-03-16 Structure d'amplification optique realisee en optique integree et boitier d'amplification integrant une telle structure
PCT/FR2002/000907 WO2002075864A2 (fr) 2001-03-16 2002-03-14 Structure d'amplification optique realisee en optique integree et boitier d'amplification integrant une telle structure

Publications (1)

Publication Number Publication Date
EP1368867A2 true EP1368867A2 (fr) 2003-12-10

Family

ID=8861220

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02713022A Withdrawn EP1368867A2 (fr) 2001-03-16 2002-03-14 Structure d'amplification optique realisee en optique integree et boitier d'amplification integrant une telle structure

Country Status (7)

Country Link
US (1) US20040076372A1 (fr)
EP (1) EP1368867A2 (fr)
JP (1) JP2004526317A (fr)
AU (1) AU2002244813A1 (fr)
CA (1) CA2440911A1 (fr)
FR (1) FR2822304A1 (fr)
WO (1) WO2002075864A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020186949A1 (en) * 2001-06-08 2002-12-12 Photon-X, Inc. Integrated rare earth doped optical waveguide amplifier array
EP1291642A1 (fr) * 2001-09-05 2003-03-12 Linde Medical Sensors AG Système de capteur pour la détection de substances chimiques comprenant un guide intégré d'ondes lumineuses
GB0317530D0 (en) 2003-07-26 2003-08-27 Qinetiq Ltd Optical circuit for a fibre amplifier
JP5117082B2 (ja) * 2007-03-08 2013-01-09 アンリツ株式会社 光変調器
FR2950708B1 (fr) * 2009-09-29 2012-03-09 Univ Paris Sud Modulateur optique compact a haut debit en semi-conducteur sur isolant.
EP2951628B1 (fr) * 2013-02-01 2018-11-14 The Board of Trustees of the Leland Stanford Junior University Guides d'ondes couplés pour applications de capteur de lumière lente
US10663662B1 (en) 2017-10-12 2020-05-26 National Technology & Engineering Solutions Of Sandia, Llc High density optical waveguide using hybrid spiral pattern
KR102336256B1 (ko) * 2021-04-09 2021-12-08 (주)웨이옵틱스 마흐젠더 간섭계를 이용한 복수 채널 멀티플렉서 및 디멀티플렉서

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2303819A1 (fr) * 1975-03-11 1976-10-08 Thomson Csf Procede de fabrication d'une resine negative sensible aux electrons, application de ladite resine en optique integree, et guides de lumiere comportant ladite resine
JPH0371115A (ja) * 1989-08-11 1991-03-26 Nippon Telegr & Teleph Corp <Ntt> 光増幅用光回路
US5128801A (en) * 1991-01-30 1992-07-07 Corning Incorporated Integrated optical signal amplifier
DE19518021A1 (de) * 1995-05-17 1996-11-21 Sel Alcatel Ag Optischer Verstärker
NL1005263C2 (nl) * 1996-03-06 1997-09-09 Nederland Ptt Optisch pakket-geschakeld transmissie-netwerk.
JPH1084154A (ja) * 1996-09-09 1998-03-31 Fujitsu Ltd 光増幅装置
US5778132A (en) * 1997-01-16 1998-07-07 Ciena Corporation Modular optical amplifier and cassette system
US6661567B2 (en) * 2000-12-06 2003-12-09 Bookham Technology Plc Optical amplifier, optical amplifier hybrid assembly and method of manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02075864A3 *

Also Published As

Publication number Publication date
FR2822304A1 (fr) 2002-09-20
WO2002075864A2 (fr) 2002-09-26
CA2440911A1 (fr) 2002-09-26
US20040076372A1 (en) 2004-04-22
AU2002244813A1 (en) 2002-10-03
WO2002075864A3 (fr) 2002-12-12
JP2004526317A (ja) 2004-08-26

Similar Documents

Publication Publication Date Title
CA2066549C (fr) Amplificateur optique dans le domaine spectral 1,26 a 1,34 .mu.m
EP1368867A2 (fr) Structure d&#39;amplification optique realisee en optique integree et boitier d&#39;amplification integrant une telle structure
CA2170316C (fr) Amplificateur optique a fibre a pompage bidirectionnel
FR2734648A1 (fr) Source de longueurs d&#39;onde multiples
US7104700B2 (en) Gain flattening filter and gain flattened optical fiber amplifier employing the same
EP1111742B1 (fr) Amplificateur optique en bandes C et L
FR2773647A1 (fr) Dispositif amplicateur optique bidirectionnel
FR2657731A1 (fr) Amplificateur optique integre.
FR2768267A1 (fr) Amplificateur optique
FR2752068A1 (fr) Systeme d&#39;amplification optique ayant plusieurs unites de derivation et procede d&#39;amplification optique
FR2747527A1 (fr) Procede et dispositif d&#39;amplification de canaux extraits d&#39;un multiplex de longueurs d&#39;onde
FR2776441A1 (fr) Dispositif d&#39;amplification optique avec fonction d&#39;egalisation du gain
EP2692032B1 (fr) Systeme d&#39;emission de signal optique
FR2756993A1 (fr) Systeme de transmission a amplification/repetition optique et amplificateur optique
EP2685574B1 (fr) Système d&#39;émission de signal optique
EP1433229A2 (fr) Amplificateur optique hybride comportant un filtre de pompe integre et matrice de tels amplificateurs
EP1442508A2 (fr) Dispositif de pompe optique a plusieurs voies de sortie et utilisation du dispositif de pompe dans un dispositif d amplificat ion
EP1074074A1 (fr) Amplificateur optique a fibre dopee pour la bande a 1600 nm
FR2834150A1 (fr) Amplificateur optique a double pompage optique comportant un dispositif d&#39;attenuation des residus de pompes
WO2000059080A1 (fr) Amplificateur a fibre optique monobande
CA2094596A1 (fr) Dispositif separateur-melangeur de frequences pour ondes optiques guidees
FR2856849A1 (fr) Dispositif d&#39;amplification de signaux optiques par pompage monomode d&#39;un guide d&#39;onde optique monomode dope
WO2003005506A1 (fr) Element de couplage optique actif
EP1089402A1 (fr) Amplificateur optique à fibre optique
EP1183757A1 (fr) Amplificateur optique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030821

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VALETTE, SERGE

Inventor name: CASSAGNETTES, CEDRIC

Inventor name: BARBIER, DENIS

Inventor name: PHILIPSEN, JACOB

17Q First examination report despatched

Effective date: 20050704

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060117