EP1368805A2 - Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals - Google Patents

Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals

Info

Publication number
EP1368805A2
EP1368805A2 EP02718164A EP02718164A EP1368805A2 EP 1368805 A2 EP1368805 A2 EP 1368805A2 EP 02718164 A EP02718164 A EP 02718164A EP 02718164 A EP02718164 A EP 02718164A EP 1368805 A2 EP1368805 A2 EP 1368805A2
Authority
EP
European Patent Office
Prior art keywords
tonality
signal
measure
spectral
spectral components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02718164A
Other languages
English (en)
French (fr)
Other versions
EP1368805B1 (de
Inventor
Eric Allamanche
Jürgen HERRE
Oliver Hellmuth
Bernhard FRÖBA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M2any GmbH
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1368805A2 publication Critical patent/EP1368805A2/de
Application granted granted Critical
Publication of EP1368805B1 publication Critical patent/EP1368805B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0033Recording/reproducing or transmission of music for electrophonic musical instruments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0008Associated control or indicating means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/031Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal
    • G10H2210/081Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal for automatic key or tonality recognition, e.g. using musical rules or a knowledge base
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2240/00Data organisation or data communication aspects, specifically adapted for electrophonic musical tools or instruments
    • G10H2240/011Files or data streams containing coded musical information, e.g. for transmission
    • G10H2240/046File format, i.e. specific or non-standard musical file format used in or adapted for electrophonic musical instruments, e.g. in wavetables
    • G10H2240/061MP3, i.e. MPEG-1 or MPEG-2 Audio Layer III, lossy audio compression
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2240/00Data organisation or data communication aspects, specifically adapted for electrophonic musical tools or instruments
    • G10H2240/121Musical libraries, i.e. musical databases indexed by musical parameters, wavetables, indexing schemes using musical parameters, musical rule bases or knowledge bases, e.g. for automatic composing methods
    • G10H2240/131Library retrieval, i.e. searching a database or selecting a specific musical piece, segment, pattern, rule or parameter set
    • G10H2240/135Library retrieval index, i.e. using an indexing scheme to efficiently retrieve a music piece
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/131Mathematical functions for musical analysis, processing, synthesis or composition
    • G10H2250/215Transforms, i.e. mathematical transforms into domains appropriate for musical signal processing, coding or compression
    • G10H2250/235Fourier transform; Discrete Fourier Transform [DFT]; Fast Fourier Transform [FFT]
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/541Details of musical waveform synthesis, i.e. audio waveshape processing from individual wavetable samples, independently of their origin or of the sound they represent
    • G10H2250/571Waveform compression, adapted for music synthesisers, sound banks or wavetables
    • G10H2250/601Compressed representations of spectral envelopes, e.g. LPC [linear predictive coding], LAR [log area ratios], LSP [line spectral pairs], reflection coefficients

Definitions

  • the present invention relates to the characterization of audio signals with regard to their content and in particular to a concept for classifying or indexing audio pieces with regard to their content in order to enable such multimedia data to be researched.
  • features which represent important characteristic content properties of the signal of interest. are based Similarities or similarities between the audio signals can be derived from such features or combinations of such features. This process is generally carried out by comparing or relating the extracted feature values from different signals, which are also to be referred to here as “pieces”.
  • U.S. Patent No. 5,918,223 discloses a method for content-based analysis, storage, retrieval and segmentation of audio information. Analysis of audio data generates a set of numerical values, also referred to as a feature vector, which can be used to classify and rank the similarity between individual audio pieces that are typically stored in a multimedia database or on the World Wide Web organize.
  • the analysis also enables the description of custom classes of audio pieces based on an analysis of a set of audio pieces that are all members of a user-defined class.
  • the system is able to find individual sections of sound within a longer piece of sound, which enables the audio recording to be automatically segmented into a series of shorter audio segments.
  • the characteristics of the characterization or classification of audio pieces with regard to their content are the loudness of a piece, the bass content of a piece, the pitch, the brightness, the bandwidth and the so-called mel frequency cepstral coefficients (MFCCs ) at periodic intervals in the audio piece.
  • the values per block or frame are stored and subjected to a first derivation.
  • specific statistical quantities are calculated, such as the mean value or the standard deviation, each of these features, including the first derivatives thereof, to describe a variation over time.
  • This set of statistical quantities forms the feature vector.
  • the feature vector of the audio piece is stored in a database in association with the original file, and a user can access the database in order to call up corresponding audio pieces.
  • the database system is able to quantify the distance in an n-dimensional space between two n-dimensional vectors. It is also possible to create classes of audio pieces by specifying a set of audio pieces that belongs in a class. Example classes are chirping birds, rock music, etc.
  • the user is enabled to search the audio track database using specific procedures. The result of a search is a list of sound files listed in order of their distance from the specified n-dimensional vector.
  • the user can search the database for similarity features, for acoustic or psychoacoustic features, for subjective features or for special sounds, e.g. Bee buzz, search.
  • Time-domain features or frequency-domain features are proposed as features for classifying the content of a multimedia piece. These include the volume, the pitch as the basic frequency of an audio signal form, spectral features such as the energy content of a band in relation to the total energy content, cutoff frequencies in the spectral curve etc.
  • spectral features such as the energy content of a band in relation to the total energy content, cutoff frequencies in the spectral curve etc.
  • long-term sizes are also proposed that relate to a longer period of the audio piece.
  • Audio pieces e.g. Animal sounds, bell sounds, crowd sounds, laughter, machine sounds, musical instruments, male language, female language, telephone sounds or water sounds.
  • a problem with the selection of the features used is that the computational effort to extract a feature should be moderate in order to achieve rapid characterization, but at the same time the feature should be characteristic of the audio piece in such a way that two different pieces also have distinguishable features ,
  • the robustness of the feature is also problematic. For example, robustness criteria are not dealt with in the concepts mentioned. If an audio piece is characterized immediately after its generation in the recording studio and provided with an index that represents the feature vector of the piece and forms the essence of the piece, the probability of recognizing this piece is relatively high if the same, undistorted version of this piece follows the same procedure is subjected to, i.e. the same features are extracted and the feature vector is then compared in the database with a large number of feature vectors of different pieces.
  • U.S. Patent No. 5,510,572 discloses an apparatus for analyzing and harmonizing a melody using results of a melody analysis.
  • a melody in the form of a sequence of notes, as played by a keyboard, is read in and broken down into melody segments.
  • a melody segment, ie a phrase, e.g. B. includes four bars of the melody.
  • a tonality analysis is performed on each phrase to determine the key of the melody in that phrase. This is done by determining the pitch of a note in the phrase and then determining a pitch difference between the note being viewed and the previous note.
  • a pitch difference between the current note and the subsequent note is also determined.
  • a previous coupling coefficient and a subsequent coupling coefficient are determined on the basis of the pitch differences.
  • the coupling coefficient for the current grade then results from the previous coupling coefficient and the subsequent coupling coefficient and the note length. This process is repeated for each note of the melody in the phrase to determine the key of the melody or a candidate for the key of the melody.
  • the key of the phrase is used to drive a grade type classifier to interpret the meaning of each note in a phrase.
  • the sound Art information obtained by the tonality analysis is also used to control a transpose module which transposes a chord progression stored in a reference key in a database into the key determined by the tonality analysis for a melody phrase under consideration.
  • the object of the present invention is to provide an improved concept for characterizing or indexing a signal which has audio content.
  • This object is achieved by a method for characterizing a signal according to claim 1, by a method for generating an indexed signal according to claim 16, by a device for characterizing a signal according to claim 20 or by a device for generating an indexed signal according to claim 21.
  • the present invention is based on the finding that when selecting the feature for characterizing or indexing a signal, particular attention must be paid to the robustness against distortions of the signal.
  • the usefulness of features or combinations of features depends on how strongly they are affected by irrelevant changes, e.g. B. be changed by an MP3 coding.
  • the tonality of the signal is used as a feature for characterizing or indexing signals. It has been found that the tonality of a signal, ie the property of a signal to have a rather flat spectrum with pronounced lines or rather a spectrum with lines of the same height, is robust against distortions of the usual type, such as distortions caused by a lossy coding method, such as MP3. To a certain extent, its spectral appearance is taken as the essence of the signal, and related to the individual spectral lines or groups of spectral lines. The tonality also provides a high degree of flexibility with regard to the computational effort to be used in order to determine the tonality measure.
  • the tonality measure can be derived from the tonality of all spectral components of a piece, or from the tonality of groups of spectral components, etc.
  • tonalities from successive short-term spectra of the examined signal can be used either individually or weighted or statistically evaluated.
  • the tonality in the sense of the present application depends on the audio content. If the audio content or the signal under consideration with the audio content is noise-like, it has a different tonality than a less noise-like signal.
  • a noise-like signal typically has a lower tonality value than a less noise-like, i.e. H. more tonal, signal. The latter signal has a higher tonality value.
  • the tonality i.e. H.
  • the noise or tonality of a signal is a variable that depends on the content of the audio signal and is largely unaffected by various types of distortion.
  • a concept based on a tonality measure for characterizing or indexing signals therefore provides robust recognition, which manifests itself in that the tonality essence of a signal is not changed beyond recognition if the signal is distorted.
  • Distortion is, for example, a transmission of the signal from a loudspeaker via an air transmission channel to a microphone.
  • the robustness property of the tonality feature is significant with regard to lossy compression methods. It has been found that the tonality measure of a signal is not or is hardly influenced by lossy data compression, for example according to one of the MPEG standards. In addition, a recognition feature based on the tonality of the signal provides a sufficiently good essence for the signal, so that two different audio signals also provide sufficiently different tonality measures. The content of the audio signal is thus strongly correlated with the tonality measure.
  • the main advantage of the present invention is thus that the tonality measure of the signal compared to disturbed, i. H. distorted, signals is robust. This robustness is particularly in relation to filtering, i. H. Equalization, dynamic compression, lossy data reduction, such as MPEG-1/2 Layer 3, an analog transmission, etc.
  • the tonality property of a signal provides a high correlation to the content of the signal.
  • FIG. 1 shows a basic block diagram of a device according to the invention for characterizing a signal
  • FIG. 2 shows a basic block diagram of a device according to the invention for indexing a signal
  • 3 shows a basic block diagram of a device for calculating the tonality measure from the tonality per spectral component
  • 4 shows a basic block diagram for determining the tonality measure from the spectral flatness measure (SFM)
  • FIG. 5 shows a basic block diagram of a pattern recognition system in which the tonality measure can be used as a feature.
  • the device comprises an input 10 into which the signal to be characterized can be entered, the signal to be characterized being subjected to lossy audio coding, for example, compared to an original signal.
  • the signal to be characterized is fed into a device 12 for determining a measure of the tonality of the signal.
  • the measure of the tonality for the signal is fed via a connecting line 14 to a device 16 for making a statement about the content of the signal.
  • the device 16 is designed to make this statement on the basis of the measure for the tonality of the signal transmitted by the device 12 and provides this statement about the content of the signal at an output 18 of the system.
  • FIG. 2 shows a device according to the invention for generating an indexed signal which has audio content.
  • the signal for example an audio piece as it was generated in the recording studio and stored on a compact disc, is fed via an input 20 into the device shown in FIG. 2.
  • a device 22, which can basically be constructed in exactly the same way as the device 12 of FIG. 12, determines a measure of the tonality of the signal to be indexed and delivers this measure via a connecting line 24 to a device 26 for recording the measure as an index for the signal.
  • the signal fed in at the input 20 can then be output together with a tonality index.
  • the device shown in FIG. 2 provides an index for the signal, the index being assigned to the signal and indicating the audio content of the signal.
  • a database of indices for audio pieces is gradually created, which can be used, for example, for the pattern recognition system outlined in FIG. 5.
  • the database optionally contains the audio pieces themselves.
  • the pieces can be easily searched for their tonality properties in order to identify and classify a piece by means of the device shown in FIG. 1, specifically with regard to the tonality property or with regard to of similarities to other pieces or distances between two pieces.
  • the device shown in FIG. 2 provides a possibility for generating pieces with an associated meta description, i.e. H. the tonality index. It is therefore possible to e.g. to index and search according to given tonality indices, so that according to the present invention an efficient search and retrieval of multimedia pieces is possible.
  • a time signal to be characterized by means of a device 30 can be converted into the spectral range in order to generate a block of spectral coefficients from a block of temporal samples.
  • a separate tonality value can be determined for each spectral coefficient or for each spectral component, in order to classify, for example, by means of a yes / no determination whether a spectral component is tonal or not.
  • the tonality measure for the signal can then be calculated in a variety of different ways by means of a device 34.
  • a quantitative tonality measure is obtained, for example, from the concept described in FIG. 3, it is also possible to specify distances or similarities between two tonality-indexed pieces, pieces being classified as similar if their tonality measures differ only by a difference less than a predetermined threshold, while other pieces can be classified as dissimilar if their tonality indices differ by a difference that is greater than a dissimilarity threshold.
  • other quantities can be used to determine the tonality distance between two pieces, such as. B. the difference between two absolute values, the square of a difference, the quotient between two tonality measures less than one, the correlation between two tonality measures, the distance metric between two tonality measures, which are n-dimensional vectors, etc.
  • the quantized spectral values were generated from the original spectral values by quantization, the quantization being chosen such that the quantization noise introduced by the quantization lies below the psychoacoustic masking threshold.
  • the coded MP3 data stream can be used directly, for example to calculate the spectral values by means of an MP3 decoder (device 40 in FIG. 4). It is not necessary to convert into the time domain and then again into the spectral domain before determining the tonality, but instead the spectral values calculated within the MP3 decoder can be taken directly to determine the tonality per spectral component or, as described in FIG.
  • the measure for spectral flatness (SFM) is calculated using the following equation.
  • X (n) stands for the absolute square of a spectral component with the index n
  • N stands for the total number of spectral coefficients of a spectrum.
  • the arithmetic mean and the geometric mean are only the same if all X (n) are identical, which corresponds to a completely atonal, ie noise-like or pulse-like signal.
  • the SFM will have a value close to 0, which indicates a very tonal signal.
  • the SFM is described in "Digital Coding of Waveforms", Englewood Cliffs, NJ, Prentice-Hall, N. Jayant, P. Noll, 1984, and was originally defined as a measure of the maximum coding gain that can be achieved from a redundancy reduction.
  • the tonality measure can then be determined from the SFM by means 44 for determining the tonality measure.
  • a further possibility for determining the tonality of the spectral values is to determine peaks in the power density spectrum of the audio signal, as is described in MPEG-1 Audio ISO / IEC 11172-3, Annex D1 "Psychoacoustic Model 1".
  • the level of a spectral component is determined.
  • the levels of two spectral components surrounding a spectral component are then determined.
  • the spectral component is classified as tonal if the level of the spectral component is greater by a predetermined factor is as a level of a surrounding spectral component of 7dB in the art, however, any other predetermined thresholds may be used for the present invention.
  • the tonality measure can then be specified by the device 34 of FIG. 3 using the tonality values for the individual components and the energy of the spectral components.
  • a current block of samples of the signal to be characterized is converted into a spectral representation in order to obtain a current block of spectral components
  • the spectral components of the current block of spectral components are then predicted using information from samples of the signal to be characterized, which precedes the current block, that is to say using historical information, and a prediction error is then determined, from which a tonality measure can then be derived.
  • Both of these approaches suppress slow changes between adjacent amounts of spectral components while highlighting abrupt changes between adjacent amounts of spectral components in the spectrum.
  • Slow changes between adjacent amounts of spectral components indicate atonal signal components, while abrupt changes indicate tonal signal components.
  • the logarithmically compressed and differentially filtered spectral components or the quotients can then in turn be used to calculate a tonality measure for the spectrum under consideration.
  • a tonality value is calculated per spectral component
  • Any type of additive grouping of amount squares or amounts of spectral components can be used to calculate tonality values for more than one spectral component.
  • Another way to determine the tonality of a spectral component is to measure the level of a spectral component. component to be compared with an average of levels of spectral components in a frequency band.
  • One possibility, for example, is to choose a narrow band.
  • the band could also be chosen broadly, or from a psychoacoustic point of view. This can reduce the influence of brief drops in performance in the spectrum.
  • the tonality of an audio signal was determined in the foregoing on the basis of its spectral components, this can also be done in the time domain, that is to say using the samples of the audio signal.
  • an LPC analysis of the signal could be carried out in order to estimate a prediction gain for the signal.
  • the prediction gain is inversely proportional to the SFM and is also a measure of the tonality of the audio signal.
  • the tonality measure is a multidimensional vector of tonality values.
  • the short-term spectrum can be divided into four adjoining and preferably non-overlapping areas or frequency bands, with a tonality value being determined for each frequency band, for example by means 34 of FIG. 3 or means 44 of FIG. 4.
  • a 4-dimensional tonality vector is thus obtained for a short-term spectrum of the signal to be characterized.
  • n stands for the number of tonality components per frame or block of samples
  • m stands for the number of blocks or short-term spectra under consideration.
  • the tonality measure would then, as stated, be a 16-dimensional vector.
  • the tonality can thus be calculated from parts of the entire spectrum. It is thus possible to determine the tonality / noise nature of a sub-spectrum or a number of sub-spectra and thus to achieve a finer characterization of the spectrum and thus of the audio signal.
  • short-term statistics can be derived from tonality values, e.g. Mean, variance and central moments of higher order are calculated as a measure of tonality. These are determined using statistical techniques on the basis of a temporal sequence of tonality values or tonality vectors and thus provide an essence over a longer section of a piece.
  • differences of temporally successive tonality vectors or linearly filtered tonality values can also be used, it being possible, for example, to use IIR filters or FIR filters as linear filters.
  • IIR filters or FIR filters as linear filters.
  • FIG. 5 shows a schematic overview of a pattern recognition system in which the present invention can be used advantageously.
  • a distinction is made in a pattern recognition system shown in FIG. 5 between two operating modes, namely training mode 50 and classification mode 52.
  • data is “trained”, i.e. added to the system and then recorded in a database 54.
  • the classification mode an attempt is made to compare and order a signal to be characterized with the entries available in the database 54.
  • the device according to the invention shown in FIG. 1 can be used in the classification mode 52 if there are tonality indices of other pieces with which the tonality index of the current piece can be compared in order to make a statement about the piece.
  • the device shown in FIG. 2, on the other hand, is advantageously used in training mode 50 of FIG. 5 in order to gradually fill the database.
  • the pattern recognition system comprises a device 56 for signal preprocessing, a downstream device 58 for feature extraction, a device 60 for feature processing, a device 62 for cluster generation, and means 64 for performing a classification, for example, as a result of the classification mode 52, to make such a statement about the content of the signal to be characterized that the signal is identical to the signal xy that was trained in a previous training mode is.
  • Block 56 together with block 58, forms a feature extractor, while block 60 represents a feature processor.
  • Block 56 converts an input signal to a uniform target format, such as. B. the number of channels, the sampling rate, the resolution (in bits per sample) etc. This is useful and necessary because no requirements should be made about the source from which the input signal originates.
  • the feature extraction device 58 serves to restrict the usually large amount of information at the exit of the device 56 to a small amount of information.
  • the signals to be examined usually have a high data rate, ie a high number of samples per time period.
  • the restriction to a small amount of information must take place in such a way that the essence of the original signal, that is, the peculiarity of it, is not lost.
  • predetermined characteristic properties such as generally loudness, fundamental frequency, etc. and / or, according to the present invention, tonality features or the SFM, are extracted from the signal.
  • the tonality features obtained in this way are said to contain the essence of the signal under investigation.
  • the previously calculated feature vectors can be processed in block 60.
  • the vectors are normalized in a simple manner.
  • Possible feature processing is linear transformations, such as the Karhunen-Loeve transformation (KLT) or the linear discriminant analysis (LDA), which are known in the art. Further in particular also non-linear transformations can also be used for feature processing
  • the class generator is used to combine the processed feature vectors into classes. These classes correspond to a compact representation of the associated signal.
  • the classifier 64 finally serves to assign a generated feature vector to a predefined class or a predefined signal.
  • the table shows recognition rates using a database (54) from FIG. 5 with a total of 305 pieces of music, of which the first 180 seconds were trained as reference data.
  • the detection rate gives a percentage of the number of correctly recognized pieces depending on the signal influence.
  • the second column shows the recognition rate when loudness is used as a characteristic.
  • the loudness was calculated in four spectral bands, then a logarithmization of the loudness values was carried out, and then a difference is formed from logarithmic loudness values for temporally successive corresponding spectral bands. The result obtained was used as a characteristic vector for the loudness.
  • the SFM was used as the feature vector for four bands.
  • tonality as a classification feature in accordance with the invention leads to a 100% recognition rate of MP-3 coded pieces when a section of 30 seconds is viewed, while the recognition rates for both the feature of the invention and the loudness decrease as a feature if shorter sections (e.g. 15 s) of the signal to be examined are used for detection.
  • the device shown in FIG. 2 can be used to train the detection system shown in FIG. 5. In general, however, the device shown in Figure 2 can be used to provide meta descriptions, i.e., for any multimedia data set.
  • H. Generate indices so that it is possible to search data records for their tonality values or to output data records from a database that have a specific tonality vector or are similar to a specific tonality vector.

Description

Verfahren und Vorrichtung zum Charakterisieren eines Signals und Verfahren und Vorrichtung zum Erzeugen eines indexierten
Signals
Beschreibung
Die vorliegende Erfindung bezieht sich auf das Charakterisieren von Audiosignalen hinsichtlich ihres Inhalts und insbesondere auf ein Konzept zum Klassifizieren bzw. Indexieren von Audiostücken hinsichtlich ihres Inhalts, um eine Recherchierbarkeit solcher Multimediadaten zu ermöglichen.
In den letzen Jahren ist die Verfügbarkeit multimedialen Datenmaterials, d. h. von Audiodaten, stark gestiegen. Diese Entwicklung wurde durch eine Reihe von technischen Faktoren bedingt. Diese technischen Faktoren umfassen beispielsweise die breite Verfügbarkeit des Internets, die breite Verfügbarkeit leistungsfähiger Rechner sowie die breite Verfügbarkeit leistungsfähiger Verfahren zur Datenkompression, d. h. Quellcodierung, von Audiodaten. Als Beispiel hierfür ist MPEG 1/2 Layer 3 genannt, das auch als MP3 bezeichnet wird.
Die riesigen Mengen audiovisueller Daten, die beispielsweise auf dem Internet weltweit verfügbar sind, verlangen nach Konzepten, die es ermöglichen, diese Daten nach inhaltlichen Kriterien zu beurteilen, zu katalogisieren oder zu verwalten. Es besteht der Bedarf, multimediale Daten gezielt durch Angabe sinnvoller Kriterien zu suchen und zu finden.
Dies erfordert den Einsatz sogenannter „inhaltsbasierter" Techniken, die aus den audiovisuellen Daten sogenannte Merkmale, die in der Technik auch als „Features" bezeichnet werden, extrahieren, die wichtige charakteristische Inhalts- Eigenschaften des interessierenden Signals darstellen. Basie- rend auf solchen Merkmalen bzw. Kombinationen solcher Merkmale können Ähnlichkeitsbeziehungen bzw. Gemeinsamkeiten zwischen den Audiosignalen hergeleitet werden. Dieser Vorgang erfolgt im allgemeinen durch Vergleich bzw. In-Beziehungsetzen der extrahierten Merkmalswerte aus verschiedenen Signalen, welche hier auch als „Stücke" bezeichnet werden sollen.
Das US-Patent Nr. 5,918,223 offenbart ein Verfahren für die Inhalts-basierte Analyse, Speicherung, Wiedergewinnung und Segmentierung von Audioinformationen. Eine Analyse von Audiodaten erzeugt einen Satz von numerischen Werten, der auch als Merkmalsvektor bezeichnet wird, und der dazu verwendet werden kann, um die Ähnlichkeit zwischen einzelnen Audiostücken, die typischerweise in einer Multimediadatenbank oder im World Wide Web gespeichert sind, zu klassifizieren und rangmäßig zu ordnen.
Die Analyse ermöglicht ferner die Beschreibung von benutzerdefinierten Klassen von Audiostücken basierend auf einer Analyse eines Satzes von Audiostücken, die alle Mitglieder einer Benutzer-definierten Klasse sind. Das System ist in der Lage, einzelne Tonabschnitte innerhalb eines längeren Tonstücks zu finden, was es ermöglicht, daß die Audioaufzeichnung automatisch in eine Serie von kürzeren Audiosegmenten segmentiert wird.
Als Merkmale zur Charakterisierung bzw. Klassifizierung von Audiostücken hinsichtlich ihres Inhalts wird die Lautheit eines Stückes, der Baß-Gehalt eines Stückes, die Tonhöhe, die Tonhelligkeit („Brightness") , die Bandbreite und die sogenannten Mel-Frequenz-Cepstral-Koeffizienten (MFCCs) bei periodischen Intervallen in dem Audiostück verwendet. Die Werte pro Block oder Frame werden gespeichert und einer ersten Ableitung unterzogen. Hierauf werden spezifische statistische Größen berechnet, wie z.B. der Mittelwert oder die Standardabweichung, und zwar von jedem dieser Merkmale einschließlich der ersten Ableitungen derselben, um eine Variation über der Zeit zu beschreiben. Dieser Satz von statistischen Größen bildet den Merkmalsvektor. Der Merkmalsvektor des Audiostücks wird in einer Datenbank in Zuordnung zu der ürsprungsdatei gespeichert, wobei ein Benutzer auf die Datenbank zugreifen kann, um entsprechende Audiostücke abzurufen.
Das Datenbanksystem ist in der Lage, den Abstand in einem n- dimensionalen Raum zwischen zwei n-dimensionalen Vektoren zu quantifizieren. Es ist ferner möglich, Klassen von Audiostük- ken zu erzeugen, indem ein Satz von Audiostücken spezifiziert wird, der in eine Klasse gehört. Beispielsklassen sind Vogelgezwitscher, Rockmusik usw. Der Benutzer wird in die Lage versetzt, die Audiostück-Datenbank unter Verwendung spezifischer Verfahren zu durchsuchen. Das Ergebnis einer Suche ist eine Liste von Tondateien, die geordnet nach ihrem Abstand von dem spezifizierten n-dimensionalen Vektor aufgelistet sind. Der Benutzer kann die Datenbank hinsichtlich Ännlichkeits- Merkmalen, hinsichtlich akustischer bzw. psychoakustischer Merkmale, hinsichtlich subjektiver Merkmale oder hinsichtlich spezieller Geräusche, wie z.B. Bienensummen, durchsuchen.
Die Fachveröffentlichung „Multimedia Content Analysis", Yao Wang u.a., IEEE Signal Processing Magazine, November 2000, Seiten 12 bis 36, offenbart ein ähnliches Konzept, um Multimediastücke zu charakterisieren. Als Merkmale zum Klassifizieren des Inhalts eines Multimediastückes werden Zeitbereichsmerkmale oder Frequenzbereichsmerkmale vorgeschlagen. Diese umfassen die Lautstärke, die Tonhöhe als Grundfrequenz einer Audiosignalform, spektrale Merkmale, wie z. B. der Energieinhalt eines Bandes bezogen auf den Gesamtenergiegehalt, Grenzfrequenzen im Spekralverlauf etc. Neben Kurzzeitmerkmalen, die die genannten Größen pro Block von Abtastwerten des Audiosignals betreffen, werden auch Langzeitgrößen vorgeschlagen, die sich auf einen längeren Zeitraum des Audiostücks beziehen.
Zur Charakterisierung von Audiostücken werden verschiedene Kategorien vorgeschlagen, wie z.B. Tiergeräusche, Glockengeräusche, Geräusche einer Menschenmenge, Gelächter, Maschinengeräusche, Musikinstrumente, männliche Sprache, weibliche Sprache, Telefongeräusche oder Wassergeräusche.
Problematisch bei der Auswahl der verwendeten Merkmale ist, daß der Rechenaufwand zum Extrahieren eines Merkmals moderat sein soll, um eine zügige Charakterisierung zu erreichen, daß jedoch gleichzeitig das Merkmal für das Audiostück charakteristisch sein soll, derart, daß zwei unterschiedliche Stücke auch voneinander unterscheidbare Merkmale aufweisen.
Weiterhin problematisch ist die Robustheit des Merkmals. So wird bei den genannten Konzepten nicht auf Robustheitskriteri- en eingegangen. Wird ein Audiostück unmittelbar nach seiner Generierung im Tonstudio charakterisiert und mit einem Index versehen, der den Merkmalsvektor des Stücks darstellt und gewissermaßen die Essenz des Stücks bildet, so ist die Wahrscheinlichkeit relativ hoch, dieses Stück wiederzuerkennen, wenn dieselbe, unverzerrte Version dieses Stückes demselben Verfahren unterzogen wird, also dieselben Merkmale extrahiert werden und der Merkmalsvektor dann in der Datenbank mit einer Vielzahl von Merkmalsvektoren verschiedener Stücke verglichen wird.
Problematisch wird es jedoch dann, wenn ein Audiostück vor seiner Charakterisierung verzerrt wird, so daß das zu charakterisierende Signal nicht mehr identisch zum ursprünglichen Signal ist, jedoch denselben Inhalt hat. Ein Mensch, der beispielsweise ein Lied kennt, wird dieses Lied auch wiedererkennen, wenn es verrauscht ist, wenn es lauter oder leiser ist oder wenn es in einer anderen Tonhöhe gespielt wird als ursprünglich aufgenommen. Eine weitere Verzerrung könnte beispielsweise durch eine verlustbehaftete Datenkompression erreicht worden sein, beispielsweise mittels eines Codierverfahrens gemäß einem MPEG-Standard, wie z.B. MP3 oder AAC.
Führt eine Verzerrung bzw. Datenkompression dazu, daß das Merkmal durch die Verzerrung bzw. Datenkompression ebenfalls stark beeinträchtigt wird, würde dies bedeuten, daß die Essenz verloren geht, während der Inhalt des Stücks für einen Menschen immer noch erkennbar ist.
Das US-Patent Nr. 5,510,572 offenbart eine Vorrichtung zum Analysieren und Harmonisieren einer Melodie unter Verwendung von Resultaten einer Melodieanalyse. Eine Melodie in Form einer Folge von Noten, wie sie von einem Keyboard gespielt wird, wird eingelesen und in Melodiesegmente zerlegt, wobei ein Melodiesegment, d.h. eine Phrase, z. B. vier Takte der Melodie umfaßt. Eine Tonalitätsanalyse wird mit jeder Phrase durchgeführt, um die Tonart der Melodie in dieser Phrase zu bestimmen. Hierzu wird die Tonhöhe einer Note in der Phrase bestimmt und daraufhin eine Tonhöhendifferenz zwischen der gegenwärtig betrachteten Note und der vorhergehenden Note bestimmt. Ferner wird eine Tonhöhendifferenz zwischen der gegenwärtigen Note und der nachfolgenden Note bestimmt. Aufgrund der Tonhöhendifferenzen wird ein vorhergehender Kopplungskoeffizient und ein anschließender Kopplungskoeffizient ermittelt. Der Kopplungskoeffizient für die aktuelle Note ergibt sich dann aus dem vorhergehenden Kopplungskoeffizient und dem nachfolgenden Kopplungskoeffizient und der Notenlänge. Dieser Prozess wird für jede Note der Melodie in der Phrase wiederholt, um die Tonart der Melodie bzw. einen Kandidaten für die Tonart der Melodie zu bestimmen. Die Tonart der Phrase wird verwendet, um eine Notentypklassifizierungseinrichtung zum Interpretieren der Bedeutung jeder Note in einer Phrase anzusteuern. Die Ton- art-Information, die durch die Tonalitätsanalyse erhalten worden ist, wird ferner dazu verwendet, um ein Transponiermodul anzusteuern, das eine in einer Referenztonart in einer Datenbank abgelegte Akkordfolge in die durch die Tonalitätsanalyse bestimmte Tonart für eine betrachtete Melodiephrase transponiert.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein verbessertes Konzept zum Charakterisieren bzw. Indexieren eines Signals, das einen Audioinhalt aufweist, zu schaffen.
Diese Aufgabe wird durch ein Verfahren zum Charakterisieren eines Signals nach Patentanspruch 1, durch ein Verfahren zum Erzeugen eines indexierten Signals nach Patentanspruch 16, durch eine Vorrichtung zum Charakterisieren eines Signals nach Patentanspruch 20 oder durch eine Vorrichtung zum Erzeugen eines indexierten Signals nach Patentanspruch 21 gelöst.
Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, daß bei der Auswahl des Merkmals zum Charakterisieren bzw. Indexieren eines Signals besonders auf die Robustheit gegenüber Verzerrungen des Signals geachtet werden muß. Die Nützlichkeit von Merkmalen bzw. Merkmalskombinationen hängt davon ab, wie stark sie durch irrelevante Veränderungen, wie z. B. durch eine MP3-Codierung, verändert werden.
Erfindungsgemäß wird als Merkmal zum Charakterisieren bzw. Indexieren von Signalen die Tonalität des Signals verwendet. Es hat sich herausgestellt, daß die Tonalität eines Signals, d. h. die Eigenschaft eines Signals, ein eher unflaches Spektrum mit ausgeprägten Linien oder eher ein Spektrum mit gleich hohen Linien zu haben, robust gegenüber Verzerrungen üblicher Art ist, wie z.B. Verzerrungen durch ein verlustbehaftetes Codierverfahren, wie z.B. MP3. Als Essenz des Signals wird gewissermaßen sein spektrales Erscheinungsbild genommen, und zwar bezogen auf die einzelnen Spektrallinien bzw. Gruppen von Spektrallinien. Die Tonalität liefert ferner eine hohe Flexibilität hinsichtlich des zu betreibenden Rechenaufwands, um das Tonalitätsmaß zu bestimmen. Das Tonalitätsmaß kann aus der Tonalität sämtlicher Spektralkomponenten eines Stücks abgeleitet werden, oder aber aus der Tonalität von Gruppen von Spektralkomponenten, usw. Darüber hinaus können Tonalitäten von aufeinander folgenden Kurzzeitspektren des untersuchten Signals entweder einzeln oder gewichtet oder statistisch ausgewertet verwendet werden.
Mit anderen Worten hängt die Tonalität im Sinne der vorliegenden Anmeldung von dem Audioinhalt ab. Ist der Audioinhalt bzw. das betrachtete Signal mit dem Audioinhalt rauschartig, so hat es eine andere Tonalität als ein weniger rauschartiges Signal. Ein rauschartiges Signal hat typischerweise einen niedrigeren Tonalitätswert als ein weniger rauschartiges, d. h. mehr tona- les, Signal. Das letztere Signal hat einen höheren Tonalitätswert .
Die Tonalität, d. h. die Rausch- bzw. Tonartigkeit eines Signals, ist eine vom Inhalt des Audiosignals abhängige Größe, die weitestgehend unbeeinflußt von verschiedenen Verzerrungsarten ist. Ein auf einem Tonalitätsmaß aufbauendes Konzept zum Charakterisieren bzw. Indexieren von Signalen liefert daher eine robuste Wiedererkennung, was sich dahingehend äußert, daß die Tonalitäts-Essenz eines Signals nicht bis zur Unkenntlichkeit verändert wird, wenn das Signal verzerrt wird.
Eine Verzerrung ist beispielsweise eine Übertragung des Signals von einem Lautsprecher über einen Luftübertragungskanal zu einem Mikrofon.
Bedeutsam ist die Robustheitseigenschaft des Tonalitätsmerk- mals im Hinblick auf verlustbehaftete Kompressionsverfahren. Es hat sich herausgestellt, daß das Tonalitätsmaß eines Signals durch eine verlustbehaftete Datenkompression wie beispielsweise nach einem der MPEG-Standards nicht oder nur kaum beeinflußt wird. Darüber hinaus liefert ein Erkennungsmerkmal auf der Basis der Tonalität des Signals eine ausreichend gute Essenz für das Signal, so daß zwei voneinander unterschiedliche Audiosignale auch ausreichend unterschiedliche Tonalitäts- maße liefern. Der Inhalt des Audiosignals ist somit stark mit dem Tonalitätsmaß korreliert.
Der wesentliche Vorteil der vorliegenden Erfindung besteht somit darin, daß das Tonalitätsmaß des Signals gegenüber gestörten, d. h. verzerrten, Signalen robust ist. Diese Robustheit besteht insbesondere gegenüber einer Filterung, d. h. Equali- sierung, Dynamikkompression, einer verlustbehafteten Datenreduktion, wie z.B. MPEG-1/2 Layer 3, einer analogen Übertragung, etc. Darüber hinaus liefert die Tonalitätseigenschaft eines Signals eine hohe Korrelation zum Inhalt des Signals.
Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen detailliert erläutert. Es zeigen:
Fig. 1 ein Prinzipblockschaltbild einer erfindungsgemäßen Vorrichtung zum Charakterisieren eines Signals;
Fig. 2 ein Prinzipblockschaltbild einer erfindungsgemäßen Vorrichtung zum Indexieren eines Signals;
Fig. 3 ein Prinzipblockschaltbild einer Vorrichtung zum Berechnen des Tonalitätsmaßes aus der Tonalität pro Spektralkomponente; Fig. 4 ein Prinzipblockschaltbild zum Bestimmen des Tonali- tätsmaßes aus der Spectral Flatness Measure (SFM) ; und
Fig. 5 ein Prinzipblockschaltbild eines Mustererkennungssystems, in dem das Tonalitätsmaß als Merkmal (Feature) verwendet werden kann.
Fig. 1 zeigt ein Prinzipblockschaltbild einer erfindungsgemäßen Vorrichtung zum Charakterisieren eines Signals, das einen Audioinhalt darstellt. Die Vorrichtung umfaßt einen Eingang 10, in dem das zu charakterisierende Signal eingegeben werden kann, wobei das zu charakterisierende Signal gegenüber einem ursprünglichen Signal beispielsweise einer verlustbehafteten Audiocodierung unterzogen worden ist. Das zu charakterisierende Signal wird in eine Einrichtung 12 zum Ermitteln eines Maßes für die Tonalität des Signals eingespeist. Das Maß für die Tonalität für das Signal wird über eine Verbindungsleitung 14 einer Einrichtung 16 zum Treffen einer Aussage über den Inhalt des Signals zugeführt. Die Einrichtung 16 ist ausgebildet, um diese Aussage aufgrund des von der Einrichtung 12 übermittelten Maßes für die Tonalität des Signals zu treffen und liefert diese Aussage über den Inhalt des Signals an einem Ausgang 18 des Systems.
Fig. 2 zeigt eine erfindungsgemäße Vorrichtung zum Erzeugen eines indexierten Signals, das einen Audioinhalt aufweist. Das Signal, beispielsweise ein Audiostück, wie es im Tonstudio erzeugt worden ist und auf einer Compact Disc gespeichert ist, wird über einen Eingang 20 in die in Fig. 2 gezeigte Vorrichtung eingespeist. Eine Einrichtung 22, die grundsätzlich genauso wie die Einrichtung 12 von Fig. 12 aufgebaut sein kann, ermittelt ein Maß für die Tonalität des zu indexierenden Signals und liefert dieses Maß über eine Verbindungsleitung 24 zu einer Einrichtung 26 zum Aufzeichnen des Maßes als Index für das Signal. An einem Ausgang der Einrichtung 26, der gleichzeitig der Ausgang 28 der in Fig. 2 gezeigten Vorrichtung zum Erzeugen eines indexierten Signals ist, kann dann das am Eingang 20 eingespeiste Signal zusammen mit einem Tonalitätsindex ausgegeben werden. Alternativ könnte die in Fig. 2 gezeigte Vorrichtung so ausgestaltet sein, daß an dem Ausgang 28 ein Tabelleneintrag erzeugt wird, der den Tonalitätsindex mit einer Identifikationsmarke verknüpft, wobei die Identifikationsmarke dem zu indexierenden Signal eindeutig zugeordnet ist. Allgemein liefert die in Fig. 2 gezeigte Vorrichtung einen Index für das Signal, wobei der Index dem Signal zugeordnet ist und auf den Audioinhalt des Signals hinweist.
Wenn eine Vielzahl von Signalen durch die in Fig. 2 gezeigte Vorrichtung verarbeitet wird, entsteht nach und nach eine Datenbank aus Indizes für Audiostücke, die beispielsweise für das in Fig. 5 skizzierte Mustererkennungssystem verwendet werden kann. Die Datenbank enthält neben den Indizes optional die Audiostücke selbst. Damit können die Stücke hinsichtlich ihrer Tonalitätseigenschaften ohne weiteres durchsucht werden, um ein Stück durch die in Fig. 1 gezeigte Vorrichtung zu identifizieren und zu klassifizieren, und zwar hinsichtlich der To- nalitätseigenschaft bzw. hinsichtlich von Ähnlichkeiten zu anderen Stücken bzw. Abständen zwischen zwei Stücken. Allgemein liefert die in Fig. 2 gezeigte Vorrichtung jedoch eine Möglichkeit zur Erzeugung von Stücken mit einer zugehörigen MetaBeschreibung, d. h. dem Tonalitätsindex. Daher ist es möglich, Datensätze z.B. nach vorgegebenen Tonalitätsindizes zu indexieren und zu durchsuchen, so daß gemäß der vorliegenden Erfindung gewissermaßen ein effizientes Suchen und Auffinden von Multimediastücken möglich ist.
Zur Berechnung des Tonalitäts aßes eines Stückes können verschiedene Verfahren angewendet werden. Wie es in Fig. 3 gezeigt ist, kann ein zu charakterisierendes Zeitsignal mittels einer Einrichtung 30 in den Spektralbereich umgesetzt werden, um aus einem Block von zeitlichen Abtastwerten einen Block von Spektralkoeffizienten zu erzeugen. Wie später ausgeführt wird, kann für jeden Spektralkoeffizienten bzw. für jede Spektralkomponente ein eigener Tonalitätswert bestimmt werden, um beispielsweise mittels einer Ja/Nein-Bestimmung zu klassifizieren, ob eine Spektralkomponente tonal ist oder nicht. Unter Verwendung der Tonalitätswerte für die Spektralkomponenten und der Energie bzw. Leistung der Spektralkomponenten, wobei die Tonalitätswerte durch die Einrichtung 32 bestimmt werden, kann dann mittels einer Einrichtung 34 das Tonalitätsmaß für das Signal auf eine Vielzahl von verschiedenen Arten berechnet werden.
Aufgrund der Tatsache, daß beispielsweise durch das in Fig. 3 beschriebene Konzept ein quantitatives Tonalitätsmaß erhalten wird, ist es auch möglich, Abstände bzw. Ähnlichkeiten zwischen zwei Tonalitäts-indexierten Stücken anzugeben, wobei Stücke als ähnlich klassifiziert werden können, wenn ihre To- nalitätsmaße sich nur über eine Differenz kleiner als eine vorbestimmte Schwelle unterscheiden, während andere Stücke als unähnlich klassifiziert werden können, wenn sich ihre Tonali- tätsindizes durch eine Differenz unterscheiden, die größer als eine Unähnlichkeitsschwelle ist. Neben der Differenz zwischen zwei Tonalitätsmaßen können zur Bestimmung des Tonalitätsab- standes zwischen zwei Stücken weitere Größen verwendet werden, wie z. B. die Differenz zwischen zwei Absolutwerten, das Quadrat einer Differenz, der Quotient zwischen zwei Tonalitätsmaßen weniger Eins, die Korrelation zwischen zwei Tonalitätsmaßen, die Distanzmetrik zwischen zwei Tonalitätsmaßen, die n- dimensionale Vektoren sind, etc.
Es sei darauf hingewiesen, daß das zu charakterisierende Signal nicht unbedingt ein Zeitsignal sein muß, sondern daß das¬ selbe auch ein beispielsweise MP3-codiertes Signal sein kann, das aus einer Folge von Huffman-Codewörtern besteht, die aus quantisierten Spektralwerten erzeugt worden sind.
Die quantisierten Spektralwerte wurden aus den ursprünglichen Spektralwerten durch Quantisierung erzeugt, wobei die Quantisierung derart gewählt wurde, daß das durch die Quantisierung eingeführte Quantisierungsrauschen unterhalb der psychoakusti- schen Maskierungsschwelle liegt. In einem solchen Fall kann, wie es beispielsweise anhand von Fig. 4 dargestellt ist, direkt der codierte MP3-Datenstrom verwendet werden, um beispielsweise mittels einer MP3-Decodierers die Spektralwerte zu berechnen (Einrichtung 40 in Fig. 4) . Es ist nicht nötig, vor der Bestimmung der Tonalität eine Umsetzung in den Zeitbereich und dann wieder eine Umsetzung in den Spektralbereich vorzunehmen, sondern es können die innerhalb des MP3-Decodierers berechneten Spektralwerte unmittelbar genommen werden, um die Tonalität pro Spektralkomponente oder, wie es in Fig. 4 gezeigt ist, das SFM (SFM = Spectral Flatness Measure = Maß für die spektrale Flachheit) durch die Einrichtung 42 zu berechnen. Wenn zur Bestimmung der Tonalität daher Spektralkomponenten verwendet werden, und wenn das zu charakterisierende Signal ein MP3-Datenstrom ist, so ist die Einrichtung 40 wie ein Decodierer aufgebaut, jedoch ohne die inverse Filterbank.
Das Maß für die spektrale Flachheit (SFM) wird durch folgende Gleichung berechnet.
In dieser Gleichung steht X(n) für das Betragsquadrat einer Spektralkomponente mit dem Index n, während N für die Gesamtanzahl der Spektralkoeffizienten eines Spektrums steht. Aus der Gleichung ist zu sehen, daß das SFM gleich dem Quotienten aus dem geometrischen Mittel der Spektralkomponenten zum arithmetischen Mittel der Spektralkomponenten ist. Wie bekannt ist, ist das geometrische Mittel immer kleiner oder höchstens gleich dem arithmetischen Mittel, so daß das SFM einen Wertebereich hat, der zwischen 0 und 1 liegt. Dabei deutet ein Wert nahe 0 auf ein tonales Signal und ein Wert nahe 1 auf ein eher rauschartiges Signal mit einem flachen Spektralverlauf hin. Es sei darauf hingewiesen, daß das arithmetische Mittel und das geometrische Mittel nur gleich sind, wenn alle X(n) identisch sind, was einem völlig atonalen, d. h. rauschartigen oder impulsartigen Signal entspricht. Ist dagegen im Extremfall lediglich eine Spektralkomponente betragsmäßig sehr groß, während andere Spektralkomponenten X(n) betragsmäßig sehr klein sind, so wird das SFM einen Wert nahe 0 haben, was auf ein sehr tonales Signal hinweist.
Das SFM ist in „Digital Coding of Waveforms", Englewood Cliffs, NJ, Prentice-Hall, N. Jayant, P. Noll, 1984, beschrieben und wurde ursprünglich als Maß für den maximal zu erreichenden Codiergewinn aus einer Redundanzreduktion definiert.
Aus dem SFM kann dann durch eine Einrichtung 44 zum Bestimmen des Tonalitätsmaßes das Tonalitätsmaß ermittelt werden.
Eine weitere Möglichkeit zum Bestimmen der Tonalität der Spektralwerte, die durch eine Einrichtung 32 von Fig. 3 durchgeführt werden kann, besteht in der Bestimmung von Spitzen im Leistungsdichtespektrum des Audiosignals, wie es in MPEG-1 Audio ISO/IEC 11172-3, Annex Dl „Psychoacoustic Model 1", beschrieben ist. Hierbei wird der Pegel einer Spektralkomponente ermittelt. Daraufhin werden die Pegel von zwei die eine Spektralkomponente umgebenden Spektralkomponenten bestimmt. Eine Klassifizierung der Spektralkomponente als tonal findet dann statt, wenn der Pegel der Spektralkomponente um einen vorbestimmten Faktor größer ist als ein Pegel einer umgebenden Spektralkomponente. Die vorbestimmte Schwelle wird im Stand der Technik als 7dB angenommen, wobei für die vorliegende Erfindung jedoch beliebige andere vorbestimmte Schwellen verwendet werden können. Dadurch kann für jede Spektralkomponente angegeben werden, ob diese tonal ist oder nicht. Das Tonalitätsmaß kann dann durch die Einrichtung 34 von Fig. 3 unter Verwendung der Tonalitätswerte für die einzelnen Komponenten sowie der Energie der Spektralkomponenten angegeben werden.
Eine weitere Möglichkeit zur Bestimmung der Tonalität einer Spektralkomponente besteht in der Auswertung der zeitlichen Prädizierbarkeit, d. h. Vorhersagbarkeit, der Spektralkomponente. Hierbei wird wieder auf MPEG-1 Audio ISO/IEC 11172-3, Annex D2 „Psychoacoustic Model 2", verwiesen. Allgemein wird ein aktueller Block von Abtastwerten des zu charakterisierenden Signals in eine spektrale Darstellung umgesetzt, um einen aktuellen Block von Spektralkomponenten zu erhalten. Hierauf werden die Spektralkomponenten des aktuellen Blocks von Spektralkomponenten unter Verwendung von Informationen aus Abtastwerten des zu charakterisierenden Signals, die dem aktuellen Block vorausgehen, also unter Verwendung von Vergangenheitsinformationen, prädiziert. Daraufhin wird ein Prädiktionsfehler bestimmt, aus dem dann ein Tonalitätsmaß abgeleitet werden kann.
Eine weitere Möglichkeit zur Bestimmung der Tonalität ist in dem US-Patent Nr. 5,918,203 beschrieben. Wieder wird eine positive reellwertige Darstellung des Spektrums des zu charakterisierenden Signals verwendet. Diese Darstellung kann die Beträge, die Betragsquadrate etc. der Spektralkomponten umfassen. Bei einem Ausführungsbeispiel werden die Beträge oder Betragsquadrate der Spektralkomponenten zunächst logarithmisch komprimiert und dann mit einem Filter mit differenzierender Charakteristik gefiltert, um einen Block von differenzierend gefilterten Spektralkomponenten zu erhalten. Bei einem anderen Ausführungsbeispiel werden die Beträge der Spektralkomponenten zunächst mit einem Filter mit differenzierender Charakteristik gefiltert, um einen Zähler zu erhalten, und dann mit einem Filter mit integrierender Charakteristik gefiltert, um einen Nenner zu erhalten. Der Quotient aus einem differenzierend gefilterten Betrag einer Spektral omponente und dem integrierend gefilterten Betrag derselben Spektralkomponente ergibt dann den Tonalitätswert für diese Spektralkomponente.
Durch diese beiden Vorgehensweisen werden langsame Änderungen zwischen benachbarten Beträgen von Spektralkomponenten unterdrückt, während abrupte Änderungen zwischen benachbarten Beträgen von Spektralkomponenten im Spektrum hervorgehoben werden. Langsame Änderungen zwischen benachbarten Beträgen von Spektralkomponenten deuten auf atonale Signalkomponenten hin, während abrupte Änderungen auf tonale Signalkomponenten hinweisen. Die logarithmisch komprimierten und differenzierend gefilterten Spektralkomponenten bzw. die Quotienten können dann wiederum dazu verwendet werden, um ein Tonalitätsmaß für das betrachtete Spektrum zu berechnen.
Obgleich im vorherigen Text davon gesprochen wurde, daß ein Tonalitätswert pro Spektralkomponente berechnet wird, wird es im Hinblick auf einen geringeren Rechenaufwand bevorzugt, beispielsweise immer die Betragsquadrate zweier benachbarter Spektralkomponenten zu addieren und dann für jedes Ergebnis der Addition einen Tonalitätswert durch eines der genannten Verfahren zu berechnen. Jede Art einer additiven Gruppierung von Betragsquadraten bzw. Beträgen von Spektralkomponenten kann verwendet werden, um Tonalitätswerte für mehr als eine Spektralkomponente zu berechnen.
Eine weitere Möglichkeit zur Bestimmung der Tonalität einer Spektralkomponente besteht darin, den Pegel einer Spektralkom- ponente mit einem Mittelwert von Pegeln von Spektralkomponen- ten in einem Frequenzband zu vergleichen. Die Breite des Frequenzbands, in dem die eine Spektralkomponente liegt, deren Pegel mit dem Mittelwert z. B. der Beträge oder Betragsquadrate der Spektralkomponenten verglichen wird, kann je nach Anforderung gewählt werden. Eine Möglichkeit besteht beispielsweise darin, daß das Band schmal gewählt wird. Alternativ könnte das Band auch breit gewählt werden, oder auch nach psy- choakustischen Gesichtspunkten. Dadurch kann der Einfluß kurzzeitiger Leistungseinbrüche im Spektrum vermindert werden.
Obgleich im vorhergehenden die Tonalität eines Audiosignals anhand seiner Spektralkomponenten bestimmt wurde, kann dies auch im Zeitbereich, also unter Verwendung der Abtastwerte des Audiosignals geschehen. Hierzu könnte eine LPC-Analyse des Signals durchgeführt werden, um einen Prädiktionsgewinn für das Signal abzuschätzen. Der Prädiktionsgewinn ist umgekehrt proportional zu dem SFM und ist ebenfalls ein Maß für die Tonalität des Audiosignals.
Bei einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung wird nicht nur ein Wert pro Kurzzeitspektrum angegeben, sondern das Tonalitätsmaß ist ein mehrdimensionaler Vektor von Tonalitätswerten. So kann beispielsweise das Kurzzeitspektrum in vier aneinander angrenzende und vorzugsweise nicht überlappende Bereiche bzw. Frequenzbänder aufgeteilt werden, wobei für jedes Frequenzband ein Tonalitätswert beispielsweise durch die Einrichtung 34 von Fig. 3 oder durch die Einrichtung 44 von Fig. 4 ermittelt wird. Damit wird für ein Kurzzeitspektrum des zu charakterisierenden Signals ein 4-dimensionaler Tonalitätsvektor erhalten. Um eine bessere Charakterisierung zu erlauben, würde es ferner bevorzugt, beispielsweise vier aufeinanderfolgende Kurzzeitspektren wie oben beschrieben zu bearbeiten, so daß sich insgesamt ein Tonalitätsmaß ergibt, das ein 16-dimensionaler Vektor oder allgemein ein n x m- dimensionaler Vektor ist, wobei n für die Anzahl der Tonali- tätskomponenten pro Frame oder Block von Abtastwerten steht, während m für die Anzahl von betrachteten Blöcken bzw. Kurzzeitspektren steht. Das Tonalitätsmaß wäre dann, wie ausgeführt, ein 16-dimensionaler Vektor. Um den zeitlichen Verlauf des zu charakterisierenden Signals besser zu berücksichtigen, wird es ferner bevorzugt, mehrere derartige beispielsweise 16- dimensionale Vektoren zu errechnen und dann statistisch zu verarbeiten, um beispielsweise Varianz, Mittelwert oder Zentralmomente höherer Ordnung aus sämtlichen n x m- dimensionalen Tonalitätsvektoren eines Stücks mit einer bestimmten Länge zu berechnen, um dieses Stück dadurch zu indexieren.
Allgemein gesagt kann die Tonalität somit aus Teilen des gesamten Spektrums berechnet werden. Damit ist es möglich, die Tonalität/Rauschartigkeit eines Teilspektrums bzw. mehrerer Teilspektren zu bestimmen und somit eine feinere Charakterisierung des Spektrums und somit des Audiosignals zu erzielen.
Ferner können Kurzzeitstatistiken aus Tonalitätswerten, wie z.B. Mittelwert, Varianz und Zentralmomente höherer Ordnung, als Tonalitätsmaß berechnet werden. Diese werden mittels statistischer Techniken anhand einer zeitlichen Folge von Tonalitätswerten bzw. Tonalitätsvektoren ermittelt und liefern damit eine Essenz über einen längeren Abschnitt eines Stückes.
Darüber hinaus können auch Differenzen von zeitlich aufeinanderfolgenden Tonalitätsvektoren oder linear gefilterte Tonalitätswerte verwendet werden, wobei als lineare Filter beispielsweise IIR-Filter oder FIR-Filter eingesetzt werden können. Auch bei der Berechnung des SFM (Block 42 in Fig. 4) wird es aus Rechenzeitersparnisgründen bevorzugt, beispielsweise zwei frequenzmäßig benachbarte Betragsquadrate zu addieren oder zu mittein und die SFM-Berechnung auf dieser vergröberten positiven und reellwertigen Spektraldarstellung durchzuführen. Dies führt ferner zu einer größeren Robustheit gegenüber schmalban- digen Frequenzeinbrüchen sowie zu einem geringeren Rechenaufwand.
Im nachfolgenden wird auf Fig. 5 eingegangen, die eine schematische Übersicht über ein Mustererkennungssystem zeigt, bei dem die vorliegende Erfindung vorteilhaft eingesetzt werden kann. Prinzipiell unterscheidet man bei einem in Fig. 5 gezeigten Mustererkennungssystem zwischen zwei Betriebsmodi, nämlich dem Trainingsmodus 50 und dem Klassifikationsmodus 52.
In dem Trainings-Modus werden Daten „eintrainiert", d. h. dem System zugefügt und anschließend in einer Datenbank 54 aufgenommen.
Im Klassifikations-Modus wird versucht, ein zu charakterisierendes Signal mit den in der Datenbank 54 vorhandenen Einträgen zu vergleichen und zu ordnen. Die in Fig. 1 gezeigte erindungsgemäße Vorrichtung kann im Klassifikationsmodus 52 verwendet werden, wenn Tonalitätsindizes anderer Stücke vorliegen, mit denen der Tonalitätsindex des aktuellen Stücks verglichen werden kann, um eine Aussage über das Stück zu treffen. Die in Fig. 2 gezeigte Vorrichtung wird dagegen vorteilhaft im Trainings-Modus 50 von Fig. 5 eingesetzt, um die Datenbank nach und nach zu füllen.
Das Mustererkennungssystem umfaßt eine Einrichtung 56 zur Signalvorverarbeitung, eine nachgeschaltete Einrichtung 58 zur Merkmalsextraktion, eine Einrichtung 60 zur Merkmalsverarbeitung, eine Einrichtung 62 für eine Cluster-Generierung, und eine Einrichtung 64 zum Durchführen einer Klassifikation, um beispielsweise als Ergebnis des Klassifikations-Modus 52 eine solche Aussage über den Inhalt des zu charakterisierenden Signals zu treffen, daß das Signal mit dem Signal xy, das in einem früheren Trainings-Modus eintrainiert worden ist, identisch ist.
Im nachfolgenden wird auf die Funktionalität der einzelnen Blöcke von Fig. 5 eingegangen.
Der Block 56 bildet zusammen mit dem Block 58 einen Merkmals- Extraktor, während der Block 60 einen Merkmalsprozessor darstellt. Der Block 56 setzt ein Eingangssignal auf ein einheitliches Zielformat um, wie z. B. die Anzahl der Kanäle, die Abtastrate, die Auflösung (in Bits pro Abtastwert) usw. Dies ist insofern sinnvoll und notwendig, da keine Voraussetzungen über die Quelle, aus der das Eingangssignal stammt, gemacht werden sollte.
Die Einrichtung 58 zur Merkmalsextraktion dient dazu, die üblicherweise große Informationsmenge am Ausgang der Einrichtung 56 auf eine kleine Informationsmenge einzuschränken. Die zu untersuchenden Signale haben meist eine hohe Datenrate, also eine hohe Anzahl von Abtastwerten pro Zeitabschnitt. Die Einschränkung auf eine kleine Informationsmenge muß so stattfinden, daß die Essenz des ursprünglichen Signals, also die Eigenheit desselben, nicht verloren geht. In der Einrichtung 58 werden vorgegebene charakteristische Eigenschaften, wie allgemein beispielsweise Lautheit, Grundfrequenz, usw. und/oder, gemäß der vorliegenden Erfindung, Tonalitätsmerkmale bzw. das SFM, aus dem Signal extrahiert. Die so gewonnenen Tonalitätsmerkmale sollen sozusagen die Essenz des untersuchten Signals beinhalten. In dem Block 60 können die zuvor errechneten Merkmalsvektoren verarbeitet werden. Eine einfache Verarbeitung besteht in der Normierung der Vektoren. Mögliche Merkmalsverarbeitungen sind lineare Transformationen, wie beispielsweise die Karhunen- Loeve-Transformation (KLT) oder die lineare Diskriminanz- Analyse (LDA) , die in der Technik bekannt sind. Weitere insbesondere auch nichtlineare Transformationen sind ebenfalls zur Merkmalsverarbeitung anwendbar.
Der Klassengenerator dient dazu, die verarbeiteten Merkmalsvektoren zu Klassen zusammenzufassen. Diese Klassen entsprechen einer kompakten Darstellung des zugehörigen Signals. Der Klassifikator 64 dient schließlich dazu, einen erzeugten Merkmalsvektor einer vordefinierten Klasse bzw. einem vordefinierten Signal zuzuordnen.
Die nachfolgende Tabelle stellt eine Übersicht über Erkennungsraten unter verschiedenen Bedingungen dar.
Die Tabelle stellt Erkennungsraten unter Verwendung einer Datenbank (54) von Fig. 5 mit insgesamt 305 Musikstücken dar, von denen jeweils die ersten 180 Sekunden als Referenzdaten eintrainiert wurden. Die Erkennungsrate gibt prozentual die Anzahl der richtig erkannten Stücke in Abhängigkeit des Signaleinflusses an. Die zweite Spalte stellt die Erkennungsrate dar, wenn die Lautheit als Merkmal verwendet wird. Insbesondere wurde die Lautheit in vier Spektralbändern berechnet, dann eine Logarithmierung der Lautheitswerte durchgeführt, und dann eine Differenzbildung von logarithmierten Lautheitswerten für zeitlich aufeinanderfolgende entsprechende Spektralbänder durchgeführt. Das dadurch erhaltene Ergebnis wurde als Merkmalsvektor für die Lautheit verwendet.
In der letzten Spalte wurde das SFM für vier Bänder als Merkmalsvektor verwendet.
Es ist zu sehen, daß die erfindungsgemäße Verwendung der Tonalität als Klassifikationsmerkmal zu einer 100%igen Erkennungsrate von MP-3-codierten Stücken führt, wenn ein Ausschnitt von 30 Sekunden betrachtet wird, während die Erkennungsraten sowohl bei dem erfindungsgemäßen Merkmal als auch bei der Lautheit als Merkmal abnehmen, wenn kürzere Ausschnitte (z. B. 15 s) des zu untersuchenden Signals zur Erkennung verwendet werden.
Wie es bereits ausgeführt worden ist, kann die in Fig. 2 gezeigte Vorrichtung verwendet werden, um das in Fig. 5 gezeigte Erkennungssystem zu trainieren. Allgemein kann jedoch die in Fig. 2 gezeigte Vorrichtung verwendet werden, um für jegliche Multimediadatensätze Metabeschreibungen, d. h. Indizes zu erzeugen, so daß es möglich ist, Datensätze hinsichtlich ihrer Tonalitätswerte zu durchsuchen bzw. aus einer Datenbank Datensätze auszugeben, die einen bestimmten Tonalitätsvektor haben bzw. zu einem bestimmten Tonalitätsvektor ähnlich sind.

Claims

Patentansprüche
1. Verfahren zum Charakterisieren eines Signals, das einen Audioinhalt darstellt, mit folgenden Schritten:
Ermitteln (12) eines Maßes für eine Tonalität des Signals, wobei die Tonalität von dem Audioinhalt abhängt, und wobei sich die Tonalität für ein rauschartiges Signal von der Tonalität für ein tonartiges Signal unterscheidet; und
Treffen (16) einer Aussage über den Audioinhalt des Signals aufgrund des Maßes für die Tonalität des Signals.
2. Verfahren nach Anspruch 1, bei dem der Schritt (16) des Treffens einer Aussage folgende Schritte aufweist:
Vergleichen (64) des Maßes für die Tonalität des Signals mit einer Mehrzahl von bekannten Tonalitätsmaßen für eine Mehrzahl von bekannten Signalen, die unterschiedliche Audioinhalte darstellen;
Feststellen, daß der Audioinhalt des zu charakterisierenden Signals mit dem Inhalt eines bekannten Signals übereinstimmt, wenn das Tonalitätsmaß des zu charakterisierenden Signals eine geringere als eine vorbestimmte Abweichung zu dem Tonalitätsmaß hat, das dem bekannten Signal zugeordnet ist.
3. Verfahren nach Anspruch 2, das ferner folgenden Schritt aufweist: Ausgeben eines Titels, eines Urhebers oder sonstiger Meta- informationen für das zu charakterisierende Signal, wenn eine Übereinstimmung festgestellt wird.
4. Verfahren nach Anspruch 1, bei dem das Maß für die Tonalität eine quantitative Größe ist, wobei das Verfahren ferner folgende Schritte aufweist:
Berechnen eines Tonalitäts-Abstandes zwischen dem ermittelten Maß für die Tonalität des Signals und einem bekannten Tonalitätsmaß für ein bekanntes Signal; und
Angeben eines Ähnlichkeitsmaßes für das zu charakterisierende Signal, wobei das Ähnlichkeitsmaß von dem Tonalitäts- abstand abhängt und die Ähnlichkeit des Inhalts des bekannten Signals zu dem Inhalt des zu charakterisierenden Signals darstellt.
5. Verfahren nach einem der vorhergehenden Ansprüche,
bei dem das zu charakterisierende Signal durch Codierung aus einem ursprünglichen Signal abgeleitet ist,
wobei die Codierung eine blockweise Umsetzung des ursprünglichen Signals in den Frequenzbereich und eine von einem psychoakustischen Modell gesteuerte Quantisierung von Spektralwerten des ursprünglichen Signals aufweist.
6. Verfahren nach einem der Ansprüche 1 bis 4 bei dem das zu charakterisierende Signal durch Ausgabe eines ursprünglichen Signals mittels eines Lautsprechers und durch Aufnahme mittels eines Mikrofons bereitgestellt wird.
Verfahren nach einem der vorhergehenden Ansprüche,
bei dem das zu charakterisierende Signal als Nebeninformation eine Maß für die Tonalität aufweist, und
bei dem der Schritt des Ermitteins (12) das Lesen des Maßes für die Tonalität aus den Nebeninformationen aufweist.
Verfahren nach einem der Ansprüche 1 bis 6
bei dem im Schritt des Ermitteins (12) eines Maßes für die Tonalität folgende Schritte durchgeführt werden:
Umsetzen eines Blocks von zeitlichen Abtastwerten des zu charakterisierenden Signals in eine spektrale Darstellung, um einen Block von Spektralkoeffizienten zu erhalten;
Ermitteln eines Pegels einer Spektralkomponente des Blocks von Spektralkomponenten;
Ermitteln von Pegeln der die eine Spektralkomponente umgebenden Spektral omponenten; Klassifizieren der einen Spektralkomponente als tonal, wenn der Pegel der Spektralkomponente um einen vorbestimmten Faktor größer ist als die Pegel der umgebenden Spektralkomponenten; und
Errechnen des Maßes für die Tonalität unter Verwendung der klassifizierten Spektralkomponenten.
9. Verfahren nach einem der Ansprüche 1 bis 6, bei dem der Schritt (12) des Ermitteins eines Maßes für die Tonalität folgende Schritte aufweist:
Umsetzen eines aktuellen Blocks von Abtastwerten des zu charakterisierenden Signals in eine spektrale Darstellung, um einen Block von Spektralkomponenten zu erhalten;
Prädizieren der Spektralkomponenten des aktuellen Blocks von Spektralkomponenten unter Verwendung von Informationen aus Abtastwerten des zu charakterisierenden Signals, die dem aktuellen Block vorausgehen;
Bestimmen von Prädiktionsfehlern durch Subtrahieren der durch Umsetzen erhaltenen Spektralkomponenten von den durch den Schritt des Prädizierens erhaltenen Spektralkomponenten, um einen Prädiktionsfehler pro Spektralkomponente zu erhalten; und
Errechnen eines Maßes für die Tonalität unter Verwendung der Prädiktionsfehler.
10. Verfahren nach einem der Ansprüche 1 bis 6, bei dem zur Bestimmung des Tonalitätsmaßes der Pegel einer Spektralkomponente mit einem Mittelwert von Pegeln von Spektralkomponenten in einem Frequenzband in Beziehung gesetzt wird, das die eine Spektralkomponente umfaßt .
11. Verfahren nach einem der Ansprüche 1 bis 6, bei dem der Schritt ( 12) des Ermitteins eines Maßes für die Tonalität folgende Schritte aufweist :
Umsetzen (30 ) eines Blocks von Abtastwerten des zu charakterisierenden Signals in eine positive und reellwertige spektrale Darstellung, um einen Block von Spektralkomponenten zu erhalten;
optionales Vorverarbeiten der positiven und reellwertigen Darstellung, um einen Block von vorverarbeiteten Spektralkomponenten zu erhalten;
Filtern des Blocks von Spektralkomponenten oder des Blocks von vorverarbeiteten Spektralkomponenten mit einem Filter mit differenzierender Charakteristik, um einen Block von differenzierend gefilterten Spektralkomponenten zu erhalten;
Bestimmen der Tonalität einer Spektralkomponente unter Verwendung der differenzierend gefilterten Spektralkomponente; und
Errechnen (34 ) eines Maßes für die Tonalität unter Verwendung der Tonalitäten der Spektralkomponenten .
12. Verfahren nach einem der Ansprüche 1 bis 1 , bei dem der Schritt (12) des Ermitteins eines Maßes für die Tonalität folgende Schritte aufweist:
Berechnen (40) eines Blocks von positiven und reellwertigen Spektralkomponenten für das zu charakterisierende Signal;
Bilden (42) eines Quotienten mit dem geometrischen Mittel einer Mehrzahl von Spektralkomponenten des Blocks von Spektralkomponenten als Zähler und dem arithmetischen Mittel der Mehrzahl von Spektralkomponenten im Nenner, wobei der Quotient als Maß für die Tonalität dient, wobei ein Quotient mit einem Wert in der Nähe von 0 auf ein tonales Signal hinweist, und wobei ein Quotient in der Nähe von 1 auf ein nicht tonales Signal mit flachem Spektralverlauf hinweist.
13. Verfahren nach Anspruch 8, 10, 11 oder 12, bei dem zumindest zwei frequenzmäßig benachbarte Spektralkomponenten gruppiert werden, wobei daraufhin nicht die einzelnen Spektralkomponenten, sondern die gruppierten Spektralkomponenten weiterverarbeitet werden.
14. Verfahren nach einem der vorhergehenden Ansprüche,
bei dem im Schritt (12) des Ermitteins ein Kurzzeitspektrum des zu charakterisierenden Signals in n Bänder aufgeteilt wird, wobei für jedes Band ein Tonalitätswert ermittelt wird, bei dem ferner für m aufeinanderfolgende Kurzzeitspektren des zu charakterisierenden Signals jeweils n Tonalitätswerte bestimmt werden, und
bei dem ein Tonalitätsvektor mit einer Dimension gebildet wird, die gleich m x n ist, wobei m und n größer oder gleich 1 sind.
15. Verfahren nach Anspruch 14, bei dem das Maß für die Tonalität der Tonalitätsvektor oder eine Statistikgröße aus einer Mehrzahl von zeitlich aufeinanderfolgenden Tonalitätsvektoren des zu charakterisierenden Signals ist, wobei die Statistikgröße einen Mittelwert, eine Varianz oder ein Zentralmoment höherer Ordnung oder eine Kombination der genannten Statistikgrößen ist.
16. Verfahren nach Anspruch 14, bei dem das Maß für die Tonalität aus einer Differenz einer Mehrzahl von Tonalitätsvektoren oder einer linearen Filterung einer Mehrzahl von Tonalitätsvektoren abgeleitet ist.
17. Verfahren zum Erzeugen eines indexierten Signals, das einen Audioinhalt aufweist, mit folgenden Schritten:
Ermitteln (22) eines Maßes für eine Tonalität des Signals, wobei die Tonalität von dem Audioinhalt abhängt, und wobei sich die Tonalität für ein rauschartiges Signal von der Tonalität für ein tonartiges Signal unterscheidet; und Aufzeichnen (26) des Maßes für die Tonalität als Index in
Zuordnung zu dem Signal, wobei der Index auf den Audioinhalt des Signals hinweist.
18. Verfahren nach Anspruch 17, bei dem der Schritt des Ermitteins (22) eines Maßes für die Tonalität folgende Schritte aufweist:
Berechnen von Tonalitätswerten für verschiedene Spektralkomponenten oder Gruppen von Spektralkomponenten des Signals; und
Verarbeiten der Tonalitätsgrößen (60), um das Maß für die Tonalität zu erhalten; und
Einordnen (62) des Signals in eine Signalklasse abhängig von dem Maß für die Tonalität.
19. Verfahren nach Anspruch 17, das für eine Mehrzahl von Signalen durchgeführt wird, um eine Datenbank (54) aus Verweisen auf die Mehrzahl von Signalen samt zugeordneten Indizes, die auf Tonalitätseigenschaften der Signale hinweisen, zu erhalten.
20. Vorrichtung zum Charakterisieren eines Signals, das einen Audioinhalt darstellt, mit folgenden Merkmalen:
einer Einrichtung zum Ermitteln (12) eines Maßes für eine Tonalität des Signals, wobei die Tonalität von dem Audioinhalt abhängt, und wobei sich die Tonalität für ein rauschartiges Signal von der Tonalität für ein tonartiges Signal unterscheidet; und
einer Einrichtung zum Treffen (16) einer Aussage über den Audioinhalt des Signals aufgrund des Maßes für die Tonalität des Signals.
21. Vorrichtung zum Erzeugen eines indexierten Signals, das einen Audioinhalt aufweist, mit folgenden Merkmalen:
einer Einrichtung zum Ermitteln (22) eines Maßes für eine Tonalität des Signals, wobei die Tonalität von dem Audioinhalt abhängt, und wobei sich die Tonalität für ein rauschartiges Signal von der Tonalität für ein tonartiges Signal unterscheidet; und
einer Einrichtung zum Aufzeichnen (26) des Maßes für die Tonalität als Index in Zuordnung zu dem Signal, wobei der Index auf den Audioinhalt des Signals hinweist.
EP02718164A 2001-02-28 2002-02-26 Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals Expired - Lifetime EP1368805B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10109648 2001-02-28
DE10109648A DE10109648C2 (de) 2001-02-28 2001-02-28 Verfahren und Vorrichtung zum Charakterisieren eines Signals und Verfahren und Vorrichtung zum Erzeugen eines indexierten Signals
PCT/EP2002/002005 WO2002073592A2 (de) 2001-02-28 2002-02-26 Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals

Publications (2)

Publication Number Publication Date
EP1368805A2 true EP1368805A2 (de) 2003-12-10
EP1368805B1 EP1368805B1 (de) 2004-08-18

Family

ID=7675809

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02718164A Expired - Lifetime EP1368805B1 (de) 2001-02-28 2002-02-26 Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals

Country Status (9)

Country Link
US (1) US7081581B2 (de)
EP (1) EP1368805B1 (de)
JP (1) JP4067969B2 (de)
AT (1) ATE274225T1 (de)
AU (1) AU2002249245A1 (de)
DE (2) DE10109648C2 (de)
DK (1) DK1368805T3 (de)
ES (1) ES2227453T3 (de)
WO (1) WO2002073592A2 (de)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277766B1 (en) 2000-10-24 2007-10-02 Moodlogic, Inc. Method and system for analyzing digital audio files
US7890374B1 (en) 2000-10-24 2011-02-15 Rovi Technologies Corporation System and method for presenting music to consumers
DE10134471C2 (de) * 2001-02-28 2003-05-22 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Charakterisieren eines Signals und Verfahren und Vorrichtung zum Erzeugen eines indexierten Signals
DE10157454B4 (de) * 2001-11-23 2005-07-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Erzeugen einer Kennung für ein Audiosignal, Verfahren und Vorrichtung zum Aufbauen einer Instrumentendatenbank und Verfahren und Vorrichtung zum Bestimmen der Art eines Instruments
US7027983B2 (en) * 2001-12-31 2006-04-11 Nellymoser, Inc. System and method for generating an identification signal for electronic devices
DE10232916B4 (de) * 2002-07-19 2008-08-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Charakterisieren eines Informationssignals
AU2003281641A1 (en) * 2002-07-22 2004-02-09 Koninklijke Philips Electronics N.V. Determining type of signal encoder
US20040194612A1 (en) * 2003-04-04 2004-10-07 International Business Machines Corporation Method, system and program product for automatically categorizing computer audio files
KR101008022B1 (ko) * 2004-02-10 2011-01-14 삼성전자주식회사 유성음 및 무성음 검출방법 및 장치
JP2006018023A (ja) * 2004-07-01 2006-01-19 Fujitsu Ltd オーディオ信号符号化装置、および符号化プログラム
DE102004036154B3 (de) * 2004-07-26 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur robusten Klassifizierung von Audiosignalen sowie Verfahren zu Einrichtung und Betrieb einer Audiosignal-Datenbank sowie Computer-Programm
DE102004047032A1 (de) * 2004-09-28 2006-04-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Bezeichnen von verschiedenen Segmentklassen
DE102004047069A1 (de) * 2004-09-28 2006-04-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Ändern einer Segmentierung eines Audiostücks
WO2006062064A1 (ja) * 2004-12-10 2006-06-15 Matsushita Electric Industrial Co., Ltd. 楽曲処理装置
US7567899B2 (en) * 2004-12-30 2009-07-28 All Media Guide, Llc Methods and apparatus for audio recognition
JP4940588B2 (ja) * 2005-07-27 2012-05-30 ソニー株式会社 ビート抽出装置および方法、音楽同期画像表示装置および方法、テンポ値検出装置および方法、リズムトラッキング装置および方法、音楽同期表示装置および方法
US8068719B2 (en) 2006-04-21 2011-11-29 Cyberlink Corp. Systems and methods for detecting exciting scenes in sports video
JP4597919B2 (ja) * 2006-07-03 2010-12-15 日本電信電話株式会社 音響信号特徴抽出方法、抽出装置、抽出プログラム、該プログラムを記録した記録媒体、および該特徴を利用した音響信号検索方法、検索装置、検索プログラム、並びに該プログラムを記録した記録媒体
US8450592B2 (en) * 2006-09-18 2013-05-28 Circle Consult Aps Method and a system for providing sound generation instructions
US7873634B2 (en) * 2007-03-12 2011-01-18 Hitlab Ulc. Method and a system for automatic evaluation of digital files
EP2162880B1 (de) 2007-06-22 2014-12-24 VoiceAge Corporation Verfahren und einrichtung zur schätzung der tonalität eines schallsignals
US8412340B2 (en) 2007-07-13 2013-04-02 Advanced Bionics, Llc Tonality-based optimization of sound sensation for a cochlear implant patient
US8401845B2 (en) 2008-03-05 2013-03-19 Voiceage Corporation System and method for enhancing a decoded tonal sound signal
US7923624B2 (en) * 2008-06-19 2011-04-12 Solar Age Technologies Solar concentrator system
CN101847412B (zh) * 2009-03-27 2012-02-15 华为技术有限公司 音频信号的分类方法及装置
US8620967B2 (en) * 2009-06-11 2013-12-31 Rovi Technologies Corporation Managing metadata for occurrences of a recording
US20110041154A1 (en) * 2009-08-14 2011-02-17 All Media Guide, Llc Content Recognition and Synchronization on a Television or Consumer Electronics Device
US8677400B2 (en) * 2009-09-30 2014-03-18 United Video Properties, Inc. Systems and methods for identifying audio content using an interactive media guidance application
US20110078020A1 (en) * 2009-09-30 2011-03-31 Lajoie Dan Systems and methods for identifying popular audio assets
US8161071B2 (en) 2009-09-30 2012-04-17 United Video Properties, Inc. Systems and methods for audio asset storage and management
US20110173185A1 (en) * 2010-01-13 2011-07-14 Rovi Technologies Corporation Multi-stage lookup for rolling audio recognition
US8886531B2 (en) 2010-01-13 2014-11-11 Rovi Technologies Corporation Apparatus and method for generating an audio fingerprint and using a two-stage query
US8812310B2 (en) * 2010-08-22 2014-08-19 King Saud University Environment recognition of audio input
JP5851455B2 (ja) * 2013-08-06 2016-02-03 日本電信電話株式会社 共通信号含有区間有無判定装置、方法、及びプログラム
EP3317878B1 (de) 2015-06-30 2020-03-25 Fraunhofer Gesellschaft zur Förderung der Angewand Verfahren und vorrichtung zum erzeugen einer datenbank
US9743138B2 (en) 2015-07-31 2017-08-22 Mutr Llc Method for sound recognition task trigger
CN105741835B (zh) * 2016-03-18 2019-04-16 腾讯科技(深圳)有限公司 一种音频信息处理方法及终端
CN109584904B (zh) * 2018-12-24 2022-10-28 厦门大学 应用于基础音乐视唱教育的视唱音频唱名识别建模方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210820A (en) * 1990-05-02 1993-05-11 Broadcast Data Systems Limited Partnership Signal recognition system and method
US5510572A (en) * 1992-01-12 1996-04-23 Casio Computer Co., Ltd. Apparatus for analyzing and harmonizing melody using results of melody analysis
JPH06110945A (ja) * 1992-09-29 1994-04-22 Fujitsu Ltd 音楽データベース作成装置及びその検索装置
DE19505435C1 (de) * 1995-02-17 1995-12-07 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Bestimmen der Tonalität eines Audiosignals
US5918223A (en) * 1996-07-22 1999-06-29 Muscle Fish Method and article of manufacture for content-based analysis, storage, retrieval, and segmentation of audio information
US6185527B1 (en) * 1999-01-19 2001-02-06 International Business Machines Corporation System and method for automatic audio content analysis for word spotting, indexing, classification and retrieval

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02073592A2 *

Also Published As

Publication number Publication date
US7081581B2 (en) 2006-07-25
ATE274225T1 (de) 2004-09-15
DE10109648C2 (de) 2003-01-30
DE50200869D1 (de) 2004-09-23
WO2002073592A2 (de) 2002-09-19
DE10109648A1 (de) 2002-09-12
WO2002073592A3 (de) 2003-10-02
EP1368805B1 (de) 2004-08-18
AU2002249245A1 (en) 2002-09-24
US20040074378A1 (en) 2004-04-22
JP2004530153A (ja) 2004-09-30
ES2227453T3 (es) 2005-04-01
DK1368805T3 (da) 2004-11-22
JP4067969B2 (ja) 2008-03-26

Similar Documents

Publication Publication Date Title
EP1368805B1 (de) Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals
DE10134471C2 (de) Verfahren und Vorrichtung zum Charakterisieren eines Signals und Verfahren und Vorrichtung zum Erzeugen eines indexierten Signals
EP1405222B1 (de) Verfahren und vorrichtung zum erzeugen eines fingerabdrucks und verfahren und vorrichtung zum identifizieren eines audiosignals
EP1787284B1 (de) Vorrichtung und verfahren zur robusten klassifizierung von audiosignalen sowie verfahren zu einrichtung und betrieb einer audiosignal-datenbank sowie computer-programm
DE60215495T2 (de) Verfahren und system zur automatischen erkennung ähnlicher oder identischer segmente in audioaufzeichnungen
EP2099024B1 (de) Verfahren zur klangobjektorientierten Analyse und zur notenobjektorientierten Bearbeitung polyphoner Klangaufnahmen
EP1371055B1 (de) Vorrichtung zum analysieren eines audiosignals hinsichtlich von rhythmusinformationen des audiosignals unter verwendung einer autokorrelationsfunktion
DE10117870B4 (de) Verfahren und Vorrichtung zum Überführen eines Musiksignals in eine Noten-basierte Beschreibung und Verfahren und Vorrichtung zum Referenzieren eines Musiksignals in einer Datenbank
EP1523719A2 (de) Vorrichtung und verfahren zum charakterisieren eines informationssignals
DE112020004052T5 (de) Sequenzmodelle zur audioszenenerkennung
DE60303346T2 (de) Encodier- und/oder Decodierverfahren für digitale Audiosignale, basierend auf Zeit-Frequenzkorrelation und Vorrichtung hierzu
DE10157454B4 (de) Verfahren und Vorrichtung zum Erzeugen einer Kennung für ein Audiosignal, Verfahren und Vorrichtung zum Aufbauen einer Instrumentendatenbank und Verfahren und Vorrichtung zum Bestimmen der Art eines Instruments
DE102004028693B4 (de) Vorrichtung und Verfahren zum Bestimmen eines Akkordtyps, der einem Testsignal zugrunde liegt
EP1377924B1 (de) VERFAHREN UND VORRICHTUNG ZUM EXTRAHIEREN EINER SIGNALKENNUNG, VERFAHREN UND VORRICHTUNG ZUM ERZEUGEN EINER DAZUGEHÖRIGEN DATABANK und Verfahren und Vorrichtung zum Referenzieren eines Such-Zeitsignals
EP1247275B1 (de) Vorrichtung und verfahren zum bestimmen eines codierungs-blockrasters eines decodierten signals
Thiruvengatanadhan Music genre classification using mfcc and aann
EP1743324B1 (de) Vorrichtung und verfahren zum analysieren eines informationssignals
DE3935308C1 (en) Speech recognition method by digitising microphone signal - using delta modulator to produce continuous of equal value bits for data reduction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030822

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HELLMUTH, OLIVER

Inventor name: ALLAMANCHE, ERIC

Inventor name: FROEBA, BERNHARD

Inventor name: HERRE, JUERGEN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040818

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040818

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040818

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50200869

Country of ref document: DE

Date of ref document: 20040923

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041118

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040818

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050226

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2227453

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050519

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: M2ANY GMBH

Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27 C#80686 MUENCHEN (DE) -TRANSFER TO- M2ANY GMBH#LICHTENBERGSTRASSE 8#85748 GARCHING (DE)

NLS Nl: assignments of ep-patents

Owner name: M2ANY GMBH

Effective date: 20060131

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050118

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190224

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20190222

Year of fee payment: 18

Ref country code: GB

Payment date: 20190225

Year of fee payment: 18

Ref country code: CH

Payment date: 20190222

Year of fee payment: 18

Ref country code: DE

Payment date: 20181204

Year of fee payment: 18

Ref country code: ES

Payment date: 20190315

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190222

Year of fee payment: 18

Ref country code: AT

Payment date: 20190222

Year of fee payment: 18

Ref country code: FR

Payment date: 20190224

Year of fee payment: 18

Ref country code: DK

Payment date: 20190222

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50200869

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20200229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 274225

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200226

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200226

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200226

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200226

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200227