EP1368667B1 - Procede et dispositif de mesure de courant au moyen d'un interferometre de sagnac en ligne a fibres optiques et modulateur de phase approprie - Google Patents

Procede et dispositif de mesure de courant au moyen d'un interferometre de sagnac en ligne a fibres optiques et modulateur de phase approprie Download PDF

Info

Publication number
EP1368667B1
EP1368667B1 EP02724238A EP02724238A EP1368667B1 EP 1368667 B1 EP1368667 B1 EP 1368667B1 EP 02724238 A EP02724238 A EP 02724238A EP 02724238 A EP02724238 A EP 02724238A EP 1368667 B1 EP1368667 B1 EP 1368667B1
Authority
EP
European Patent Office
Prior art keywords
phase shift
interferometer
phase
polarization modes
phase modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02724238A
Other languages
German (de)
English (en)
Other versions
EP1368667A2 (fr
Inventor
Sven Voigt
Günter SPAHLINGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Litef GmbH
Original Assignee
Litef GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Litef GmbH filed Critical Litef GmbH
Publication of EP1368667A2 publication Critical patent/EP1368667A2/fr
Application granted granted Critical
Publication of EP1368667B1 publication Critical patent/EP1368667B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • G01R15/246Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect

Definitions

  • the invention relates to a method and a device for current measurement by means of a fiber-optic in-line Sagnac interferometer, as well as a suitable phase modulator for this purpose.
  • optical current measuring devices are increasing replace conventional current measuring devices.
  • a technological already proven variant of an optical current measuring device is based on an in-line Sagnac interferometer realizes what a physically and technologically elegant solution.
  • Such a current sensor measures the current flowing through a current conductor electric current by means of the Faraday effect.
  • This effect understands one the fact that in the propagation of linearly polarized light parallel to the field lines of a magnetic field, the light-vibration plane is turned.
  • This can be a utilization of this effect Phase shift between two orthogonal polarization modes of a generate the light beam passing through the in-line Sagnac interferometer, when the polarization modes in an interspersed by the conductor optical Measuring coil are guided.
  • the caused by the electric current Phase shift between the polarization modes is thus a Measure of the current to be measured and can be evaluated by evaluating a Interference pattern are measured by interfering the two against each other shifted polarization modes is generated.
  • a current sensor 1 using an in-line Sagnac interferometer has a light source 2, a coupler 3, a polarizer 4, a 45 ° Splice 5, a birefringence phase modulator 6, a ⁇ / 4 phase shifter 7, serving as a current measuring coil isotropic fiber coil 8, a Reflector 9, a conductor 10, a detector 11, a Gain / evaluation unit 12, and a phase modulator drive unit 13.
  • the light received by the light source 2 via the coupler 3 is transmitted through polarized the polarizer 4 and by means of the splice 5 at 45 ° to the Polarization axes of a polarization-maintaining, birefringent fiber coupled to the fiber coil 8, so that in the same fiber in parallel two various Porarisationsmoden performed with approximately the same amplitude become.
  • Partial light beams become the In-Line Sagnac interferometer replaced by "decomposition" of the light beam into two parallel polarization modes (Among them are parallel guided "partial light rays" of a primary light beam understood with a defined polarization), due to the polarization-maintaining fiber each effectively a different optical Use the light path.
  • Both polarization modes preferably pass through as Pockels cell realized birefringence phase modulator 6 for generation a non-reciprocal phase shift between the polarization modes, the ⁇ / 4 phase shifter 7 for the conversion of linearly polarized Light in circularly polarized light (for maximum effect of the Faraday effect) and the isotropic fiber coil 8 coming from a conductor 10 is interspersed, to the reflector 9, the reflection in the polarization the incident polarization modes rotate by 90 ° and thus the polarization the two polarization modes reversed. Flows in the conductor 10th a current, so is between the two circularly polarized polarization modes generates a phase shift due to the Faraday effect. Both Polarization modes run the same light path back, point but in this case the other polarization. The backward polarization modes are merged at splice 5 and over the polarizer 4 and the coupler 3 a detector 11 as an interference light beam fed.
  • a significant advantage of the structure thus obtained to an in-line Sagnac interferometer modified conventional Sagnac interferometer has the advantage of a strictly reciprocal behavior. That means that without Current flow in the conductor 10, the two polarization modes during decoupling from the polarization-maintaining fiber of the fiber coil 8, the same phase shift against each other, they when coupling in the had polarization-maintaining fiber. Phase shifts between the two polarizations due to spatial movements of the interferometer, by temperature gradients or by mechanical stresses arise in the fiber material are due to the parallel leadership of the Polarization modes reciprocal effects that compensate each other.
  • Fig. 6 shows the generation of a non-reciprocal phase shift between the polarization modes possible, resulting in the displacement of an interferometer characteristic is used in a region of highest linearity.
  • Birefringence phase modulator 6 acts polarization-preserving, ie not polarizing on the polarization modes, d. H. both polarization modes are performed equally in the birefringence phase modulator 6, but taking advantage of the Pockels effect of the polarization accordingly each modulated differently.
  • the different effects of the generated by the birefringence phase modulator 6 electromagnetic Felds on the different polarizations comes mathematically expressed by the fact that the respective influence by different Tensor elements is writable: The effective refractive index for different Polarization modes will be different by the electromagnetic field greatly changed, resulting in a phase shift between the Polarization modes results.
  • the birefringence phase modulator is from the phase modulator drive unit 13 applied with a modulation signal.
  • the phase shift between the polarization modes is determined by the Detector 11 is measured, the output signal of a gain / evaluation unit 12 is supplied.
  • Document US-A-5,644,397 discloses a sensor in which a polarization maintaining optical fiber is used, which is either a loop-shaped or forms a linear optical path. Circularly polarized light propagates along the optical path and passes through a field sensitive sensing medium. A Phase shift induced in the light sources by a magnetic field is, is by a photodetector or associated signal processing electronics detected.
  • the invention is based on the object, a device for fiber optic Specify current measurement, the constructive over the prior art Simplifications and has an increased measurement accuracy.
  • the specified object is erfindungsgmäß in a method for fiber optic Current measurement solved according to claim 1. Furthermore, the Invention a device for fiber optic current measurement according to claim 3 ready. Further advantageous embodiments and Further developments of the inventive idea are in the following description explained in more detail and / or defined in dependent claims.
  • the second phase shift first phase shift is effected satisfies the second phase shift by a plurality of binary graduated electromagnetic fields, through the polarization modes are performed, wherein the second phase shift a shift of the characteristic of the interferometer in a range includes maximum linearity, and where the field strengths of each electromagnetic Fields are varied so that the characteristic of the interferometer stochastically independent by +/- 1.5 ⁇ or by +/- 0.5 ⁇ in their phase is moved.
  • the inventive device for current measurement by means of a fiber optic In-line Sagnac interferometer which has a birefringence phase modulator for non-reciprocal phase modulation of two orthogonal polarization modes a light beam passing through the interferometer, and is designed as a closed-loop system, characterized by the fact that the Birefringence Phase Modulator a digital birefringence phase modulator with binary graded electrodes, over which one through one measuring current caused phase shift between the polarization modes can be compensated, the electrodes driven by a random number generator
  • the digital modulation signals are statistically independent Shift of the interferometer characteristic by +/- 1.5 ⁇ or by +/- 0.5 ⁇ in its Phase generated.
  • phase modulator realized on the basis of an in-line Sagnac interferometer Device for fiber-optic current measurement (which in the following called current sensor), a digital birefringence phase modulator (hereinafter referred to as phase modulator).
  • the phase modulator generates a plurality of electromagnetic fields that are orthogonal Polarization modes of a light beam passing through the interferometer through which, due to the Pockels effect, a Non-reciprocal phase modulation arises between the polarization modes.
  • a digital phase modulator makes it possible to use one Digital / analog converter, which when using an analog Phase modulator as a "link" between a possible digital phase modulator driver and the analog phase modulator necessary is to renounce.
  • This can be the high power consumption of a Bypassed digital / analog converter, and pre-existing digital signal processing and control electronics, for example, those of a conventional Sagnac interferometers, also without significant changes a current sensor can be used.
  • the use of binary graduated electromagnetic Fields or electrodes allows constructive simplifications of signal processing or phase modulator control devices of the current sensor, because in this case there is a close correlation between a binary number interpretable, parallel generated set of digital modulation signals and the size of the resulting phase shift, with which a direct application of the digital modulation signal set the electrodes makes sense.
  • phase modulator In order to the phase modulator is primarily used to compensate for The current to be measured caused phase shift between the orthogonal polarization modes (closed-loop system).
  • the measurement of Phase shift by compensation enables a high measurement accuracy and a problem-free determination of "large" phase shifts.
  • the phase modulator becomes stochastic independent shifting of the characteristic of the interferometer by +/- 1.5 ⁇ or used by +/- 0.5 ⁇ in their phase, whereby the characteristic curve in a range of maximum Linearity is shifted.
  • an integrated optical, birefringent waveguide runs for the equal guiding of two orthogonal polarization modes.
  • the electrodes are preferably arranged at a constant mutual distance from the optical axis of the waveguide, which is produced for example by diffusion of titanium into a LiNbO 3 crystal.
  • the voltages applied to the respective pairs of electrodes for generating the electromagnetic fields are varied independently of one another ("variation” here means the switching between discrete values). In each case, "separate" phase shifts of the polarization modes permeating the current sensor can be effected.
  • the individual electromagnetic fields can be regarded as "basic building blocks" of a "digital" total electromagnetic field.
  • at least one of its modulation electrodes is replaced by a plurality of electrodes having preferably binary graduated lengths.
  • the number of pairs of electrodes is eight
  • the electrodes of binary graduated lengths may also be arranged that a long electrode opposite to a plurality of short electrodes. the combination of a long electrode with a short electrode respectively forms a "pair of electrodes".
  • the waveguide of the phase modulator runs in this embodiment between the long electrode and the short, binary graduated electrodes.
  • FIGS. 1 and 3 a preferred embodiment of a current sensor based on an in-line Sagnac interferometer described.
  • a current sensor 20 based on an in-line Sagnac interferometer has a light source 21, a coupler 22, a polarizer 23, a birefringence phase modulator 24, a ⁇ / 4 phase shifter 25, an isotropic fiber coil 26, a reflector 27, a current conductor 28, a detector 29, a Amplifier 30, an analog / digital converter 3 1, a signal processing and control unit 32, and one in the signal processing and Control unit 32 integrated signal generator unit 33.
  • Phase modulator 24 as a digital birefringence phase modulator with binary stepped electrodes is realized, the drive preferably directly from digital components in the signal processing and control unit 32 and the signal generator unit 33 out takes place.
  • the light obtained from the light source 21 via the coupler 22 is polarized by the polarizer 23 and coupled at 45 ° to the polarization axes of a polarization-maintaining, birefringent fiber of the fiber bobbin 26, so that two different porar modes of approximately equal strength are guided in parallel in the same fiber , Both polarization modes pass through the phase modulator 24 to produce a nonreciprocal phase shift between the polarization modes, the ⁇ / 4 phase shifter 25 for converting linearly polarized light into circularly polarized light, and the isotropic fiber coil 26 penetrated by the current conductor 28 to the reflector 27 which rotates by 90 ° the polarization of the incident polarization modes and thus reverses the polarization of the two polarization modes.
  • the signal generator unit 33 generates a digital compensation signal directly applied to the phase modulator for the phase shift caused by the current to be measured.
  • the compensation signal is superimposed with a signal for stochastically independent shifting of the interferometer characteristic by +/- 1.5 ⁇ or by +/- 0.5 ⁇ in the region of highest linearity.
  • the phase modulator 24 used in the above-described construction preferably has the embodiment shown in Fig. 3, which in the following closer is explained.
  • the phase modulator 24 is designed as an integrated-optical component based on a LiNbO 3 crystal 35.
  • a polarization-maintaining waveguide 36 for guiding light formed from titanium diffused into the LiNbO 3 crystal 35 passes.
  • electrodes 37 1 to 37 16 Arranged around the waveguide 36 are electrodes 37 1 to 37 16 , which are combined to form pairs of electrodes.
  • the waveguide 36 extends between the electrodes 37 1 to 37 16 of the respective electrode pairs.
  • An electromagnetic field can be applied to each electrode pair via electrode terminals 38 1 to 38 9 by applying the electrode terminals 38 1 to 38 9 with corresponding (independent) voltages or voltage values.
  • the lengths of the electrode pairs are binary graduated relative to each other, ie, with the exception of the pair of electrodes, which has the smallest length, each electrode pair is twice as long as another pair of electrodes.
  • the electrodes 37 1 to 37 8 are combined into a single electrode, so that the electrodes 37 9 to 37 16 of the combined electrode are opposite. Further arrangements of binary graduated electrodes 37 1 to 37 16 are known, for example, from publication WO / 9803895.
  • the electrodes 37 1 to 37 16 are preferably at a constant mutual distance from the optical axis of the waveguide.
  • phase modulator 24 If a phase shift is generated by the current to be measured between orthogonal, circularly polarized polarization modes, this is compensated by the phase modulator 24. From the size of the reset signal then the phase shift and thus the current to be measured can be determined. The compensation is achieved by applying individual voltages to the electrodes 37 1 to 37 16 , whereby, in accordance with the field strengths and lengths of the binary graduated electromagnetic fields generated thereby, the polarization modes passing through the fields are shifted in their phases. Preferably, a field strength of the applied electromagnetic fields is switchable between a fixed value or zero. However, it is also conceivable to allow additional discrete intermediate values of the field strength, with which the resolution of the phase modulation could be further refined.
  • the control of the phase shift can therefore take place via switching on and off of the individual electromagnetic fields.
  • the to the respective electrode pairs 37 1 to 37 16 can be applied voltage assumes the same value, due to the eight pairs of electrodes 37 1 different in this embodiment, 256-37 16 ways to change the phase shift between the two light-beam components.
  • a targeted phase modulation with fine resolution is possible even with direct digital control of the phase modulator 24.
  • the phase shift is preferably effected by the signal generator unit 33 connected to the electrodes 37 1 to 37 16 of the phase modulator 24, which generates digital modulation signals which are applied as voltages to the electrodes 37 1 to 37 16 of the phase modulator.
  • the signal generator unit 33 preferably has a random generator with which the already mentioned statistically independent modulation signal patterns can be generated.
  • a voltage U ⁇ necessary for generating a phase shift of ⁇ between the respective polarization modes is determined by: where ⁇ is the wavelength of the guided light wave, g denotes an electrode gap, n TE, TM denote effective refractive indices for the two polarization modes in the waveguide 3, r 13.33 are electro-optic tensor coefficients, and ⁇ TE, TM is a field overlap between one of electrodes 37 1 to 37 16 formed electric field and an optical field of the guided light partial beams. L denotes a respective length of the electrodes 37 1 to 37 16 .
  • the invention can also be applied to field sensors such.
  • B. voltage sensors which are based on a fiber optic device.
  • phase modulator shown in patent application DE 100 44 197.1 to restore the caused by a voltage to be measured Phase shift as digital birefringence phase shifter with binary split electrodes executable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Claims (3)

  1. Procédé de mesure de courant à l'aide d'un interféromètre de Sagnac en ligne à fibre optique (20), selon lequel un premier déphasage non réciproque est produit entre deux modes de polarisation orthogonaux d'un faisceau de lumière traversant l'interféromètre (20) par un courant à mesurer, et selon lequel pour la détermination du premier déphasage, les phases des modes de polarisation sont modifiées de façon supplémentaire moyennant l'utilisation de l'effet Pockels au moyen d'un second déphasage non réciproque, de telle sorte que sous l'effet du second déphasage, il se produit une compensation du premier déphasage, caractérisé en ce que le second déphasage est réalisé à l'aide d'une multiplicité de champs électromagnétiques étagés de façon binaire, par lesquels les modes de polarisation sont guidés, et le second déphasage comprend un décalage de la courbe caractéristique de l'interféromètre (20) dans une gamme de linéarité maximale, les intensités des champs électromagnétiques individuels étant modifiées de telle sorte que la phase de la courbe caractéristique de l'interféromètre (20) est décalée, de façon indépendante stochastique, de +/- 1,5 x ou de +/- 0,5 π.
  2. Procédé selon la revendication 1, caractérisé en ce que les champs électromagnétiques sont produits directement par une multiplicité de signaux de tension numériques, générés en parallèle.
  3. Dispositif (20) pour la mesure de courant à l'intérieur d'un interféromètre Sagnac en ligne à fibre optique, qui comporte un modulateur de phase à biréfringence (24) pour la modulation de phase non réciproque de deux modes de polarisation orthogonaux d'un faisceau de lumière traversant l'interféromètre, et est réalisé sous la forme d'un système en boucle fermé, caractérisé en ce que le modulateur de phase à biréfringence est un modulateur de phase à biréfringence numérique (24) comportant des électrodes (371 à 3716), au moyen desquelles un déphasage, provoqué par un courant mesuré, entre les modes de polarisation peut être compensé, auquel cas les électrodes (371 à 3716) peuvent être commandées par un générateur de nombres aléatoires, qui produit des signaux de modulation numériques pour le décalage, indépendant de façon stochastique, de la courbe caractéristique de l'interféromètre et ce de +/- 1,5 π ou de +/- 2,5 π.
EP02724238A 2001-03-16 2002-03-15 Procede et dispositif de mesure de courant au moyen d'un interferometre de sagnac en ligne a fibres optiques et modulateur de phase approprie Expired - Lifetime EP1368667B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10112835 2001-03-16
DE10112835A DE10112835B4 (de) 2001-03-16 2001-03-16 Verfahren und Einrichtung zur Strommessung mittels eines faseroptischen In-Line-Sagnac-Interferometers und dafür geeigneter Phasenmodulator
PCT/EP2002/002906 WO2002075249A2 (fr) 2001-03-16 2002-03-15 Procede et dispositif de mesure de courant au moyen d'un interferometre de sagnac en ligne a fibres optiques et modulateur de phase approprie

Publications (2)

Publication Number Publication Date
EP1368667A2 EP1368667A2 (fr) 2003-12-10
EP1368667B1 true EP1368667B1 (fr) 2005-01-05

Family

ID=7677793

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02724238A Expired - Lifetime EP1368667B1 (fr) 2001-03-16 2002-03-15 Procede et dispositif de mesure de courant au moyen d'un interferometre de sagnac en ligne a fibres optiques et modulateur de phase approprie

Country Status (4)

Country Link
US (1) US7102757B2 (fr)
EP (1) EP1368667B1 (fr)
DE (1) DE10112835B4 (fr)
WO (1) WO2002075249A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10307525B4 (de) * 2003-02-21 2006-03-16 Litef Gmbh Verfahren und Einrichtung zur Erhöhung der Auflösung eines digitalen Phasenmodulators für eine faseroptische Signalübertragungs- oder Messeinrichtung
EP2145194B1 (fr) * 2007-05-04 2017-07-12 Alstom Technology Ltd. Filtres adaptatifs pour capteurs à fibre optique
US20100141955A1 (en) * 2008-12-04 2010-06-10 Yong Huang Sensor probe for fiber-based current sensor
JP5904694B2 (ja) 2009-12-10 2016-04-20 株式会社東芝 サニャック干渉型光電流センサ
CN117606461B (zh) * 2024-01-24 2024-04-19 广东奥斯诺工业有限公司 双环差分式超高转速光子芯片光纤陀螺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59307220D1 (de) * 1993-10-28 1997-10-02 Litef Gmbh Faseroptisches Sagnac-Interferometer zur Drehratenmessung mit wellenlängenstabilisierter Lichtquelle
US5644397A (en) * 1994-10-07 1997-07-01 The Texas A&M University System Fiber optic interferometric circuit and magnetic field sensor
DE19629260C1 (de) * 1996-07-19 1998-02-26 Litef Gmbh Elektrooptischer Phasenmodulator mit richtungsunabhängiger Impulsantwort, Anordnung von elektrooptischen Phasenmodulatoren und Verwendung eines elektrooptischen Phasenmodulators
DE19808517A1 (de) 1998-02-27 1999-09-16 Litef Gmbh Einrichtung zur Strommessung
US6301400B1 (en) * 1998-11-12 2001-10-09 Nxtphase Technologies Srl Fiber optic current sensor having rotation immunity

Also Published As

Publication number Publication date
WO2002075249A3 (fr) 2003-02-20
DE10112835B4 (de) 2006-05-11
US7102757B2 (en) 2006-09-05
WO2002075249A2 (fr) 2002-09-26
EP1368667A2 (fr) 2003-12-10
DE10112835A1 (de) 2002-10-24
US20040095581A1 (en) 2004-05-20

Similar Documents

Publication Publication Date Title
EP1154278B1 (fr) Capteur de courant à fibre optique
DE3049033C2 (fr)
DE60309291T2 (de) (Faser-) Optischer Sensor mit geeigneter Modulation
DE3782393T2 (de) Faseroptischer rotationssensor mit einer faser hoher doppelbrechung und niedriger phasenfehlerintensitaet.
DE3609507C2 (de) Faseroptisches Interferometer
EP0706661B1 (fr) Procede optique permettant de mesurer un courant alternatif electrique compense en temperature et dispositif de mise en ouvre dudit procede
DE19703128A9 (de) Magnetooptischer Stromsensor
DE4031449A1 (de) Aktive polarisationskontrolle
DE112013006884T5 (de) Faseroptischer Stromsensor mit gesponnener Faser und Temperaturkompensation
EP1299736A1 (fr) Capteur de courant a fibre optique
DE102012002984A1 (de) Integrierter optischer Schaltkreis und Verfahren zur Strommessung sowie Sensormodul und Messeinrichtung
EP0569700B1 (fr) Capteur à fibre optique
DE69102543T2 (de) Optischer faserkreisel.
EP0554211A2 (fr) Procédés de mesure d'une force utilisant une fibre optique
EP1368667B1 (fr) Procede et dispositif de mesure de courant au moyen d'un interferometre de sagnac en ligne a fibres optiques et modulateur de phase approprie
DE3726411A1 (de) Faseroptischer magnetfeldsensor
DE2934794A1 (de) Verfahren zur messung absoluter drehungen und anordnung zur durchfuehrung des verfahrens
EP0356670B1 (fr) Sonde de courant à fibre optique
EP1421393B1 (fr) Capteurs de courant optiques
EP0864098B1 (fr) Procede et dispositif de mesure d'une grandeur, notamment un courant electrique, avec une haute resolution de mesure
EP0529339B1 (fr) Capteur à fibre optique
DE4224190B4 (de) Faseroptischer Stromsensor
EP2409141A1 (fr) Agencement de capteur et procédé de détection
CH671638A5 (en) Optical fibre current transducer using Sagnac interferometer - has two polarised partial beams fed through current sensor coil in opposing directions
DE3419580A1 (de) Mehrkanaliger faseroptischer sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030708

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040202

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH & PARTNER

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051006

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: RENTSCH & PARTNER;FRAUMUENSTERSTRASSE 9, POSTFACH 2441;8022 ZUERICH (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: LITEF GMBH

Free format text: LITEF GMBH#LOERRACHER STRASSE 18#79115 FREIBURG (DE) -TRANSFER TO- LITEF GMBH#LOERRACHER STRASSE 18#79115 FREIBURG (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200325

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200324

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331