EP1368230A1 - Verin et commande de position integree - Google Patents

Verin et commande de position integree

Info

Publication number
EP1368230A1
EP1368230A1 EP01924184A EP01924184A EP1368230A1 EP 1368230 A1 EP1368230 A1 EP 1368230A1 EP 01924184 A EP01924184 A EP 01924184A EP 01924184 A EP01924184 A EP 01924184A EP 1368230 A1 EP1368230 A1 EP 1368230A1
Authority
EP
European Patent Office
Prior art keywords
output shaft
contact
gear
output
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01924184A
Other languages
German (de)
English (en)
Other versions
EP1368230A4 (fr
Inventor
John C. Holloway
Thomas P. Schregardus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stoneridge Control Devices Inc
Original Assignee
Stoneridge Control Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stoneridge Control Devices Inc filed Critical Stoneridge Control Devices Inc
Priority claimed from PCT/US2001/008568 external-priority patent/WO2002074626A1/fr
Publication of EP1368230A1 publication Critical patent/EP1368230A1/fr
Publication of EP1368230A4 publication Critical patent/EP1368230A4/fr
Withdrawn legal-status Critical Current

Links

Definitions

  • the present invention relates generally to an electromechanical actuator for driving a mechanism between open and closed positions.
  • Such a door may include a valve, such as a ball valve, which rotates under the control of an actuator to allow access to the fuel filler port.
  • the actuator should reliably rotate the valve from the closed position to the open position to permit fueling the vehicle and then drive the mechanism or valve back to the closed position.
  • An anti-pinch safety feature may also be required for protecting against a shearing effect created as the valve rotates to close the fuel filler port. For example, absent anti-pinch protection fingers may be injured if inadvertently placed in the port while the door is closing. In addition, system damage may occur, if for example, the door is closed on a gasoline pump nozzle or other robust obstruction.
  • An electromechanical actuator consistent with the invention includes an electric motor and a conductive path normally connecting the motor for receiving a power supply input.
  • An output gear is coupled to an output shaft of the motor, and an output shaft structure is coupled to the output gear to allow relative motion between the output shaft structure and the output gear upon application of a predetermined level of force to the output shaft structure.
  • the relative motion between the output gear and the output shaft structure opens the conductive path.
  • Integrated position control is provided by configuration of stationary contacts whereby the conductive path is opened at limits to the range of motion for the output shaft established by location of the ends of the stationary contacts.
  • a fuel filler valve system consistent with the invention includes a valve disposed between a vehicle fuel filler port and a vehicle fuel tank, and an actuator consistent with the invention for moving the valve between the open and closed positions.
  • a method of providing pinch protection in a movable mechanism consistent with the invention includes coupling the mechanism to an actuator consistent with the invention, and energizing the actuator motor to drive the mechanism.
  • FIG. 1 is a perspective cut-away view of an exemplary fuel filler system consistent with the invention
  • FIG. 2 is a perspective view of an exemplary actuator consistent with the present invention
  • FIG. 3 is a partially exploded view of an exemplary output gear and output shaft structure portion of an actuator consistent with the invention
  • FIG. 4 is a perspective view of the wipers and stationary contacts of the actuator assembly shown in FIG. 1;
  • FIG. 5 is a perspective view of another embodiment of an actuator consistent with the invention.
  • FIGS. 6-8 are plan views of alternative exemplary stationary contact arrangements for an actuator consistent with the invention.
  • FIGS. 9 illustrates an exemplary operator control switching scheme for an actuator consistent with the invention
  • FIG. 10 is a perspective view illustrating an exemplary mounting arrangement for an actuator consistent with the invention relative to a ball valve assembly wherein the actuator is mounted for manual override;
  • FIG 11 is a perspective view of the exemplary manual override cap illustrated in FIG. 10.
  • FIG. 12 is a perspective view of the exemplary top housing portion illustrated in FIG. 10.
  • valve assembly 25 may be mounted to a vehicle 3 for controlling access to the vehicle fuel tank 5.
  • the actuator 10 reliably and safely drives a ball valve 13 of the valve assembly 25 between open and closed positions. When the valve 13 is in an open position, access to the fuel tank is permitted, allowing a user to fill the tank.
  • valve When the valve is in a closed position, the valve securely closes the passageway to the fuel tank. Operation of the actuator to achieve an open or closed valve position may be controlled via a switch 15, e.g. in the vehicle passenger compartment, which controls connection of a power supply 17, e.g. the vehicle battery, to the actuator.
  • a switch 15 e.g. in the vehicle passenger compartment, which controls connection of a power supply 17, e.g. the vehicle battery, to the actuator.
  • FIGS. 2 through 4 an exemplary embodiment of an actuator 10 consistent with the invention is illustrated.
  • the actuator 10 may be disposed within a housing 11, as shown in FIG. 1.
  • FIGS. 2-4 only a bottom portion 41 of the housing is shown to allow for simplicity and ease of explanation.
  • the actuator 10 may include a motor 12 that drives an output gear 14 through a gear train 16.
  • gear trains 16 may be used to drive the output gear 14.
  • the gear train includes a motor worm gear 20, a spur gear 22 and a worm gear 24 in meshing engagement with the output gear 14.
  • a pinch protection feature may be accomplished through relative motion between the output gear 14 and an output shaft structure 18 that is coupled to the valve assembly 25 for driving the valve 13 between open and closed positions.
  • an obstruction to closure of the valve 13 imparts a force to the output shaft structure 18 that causes relative motion between the structure and the gear 14.
  • This relative motion breaks a normally closed electrical connection between the power supply 17 and the motor 12 to disconnect the motor from the power supply 17 and stop the actuator.
  • the output gear 14 is coupled via a shaft 21 to the output shaft structure 18 so that the two parts 14 and 18 are coaxial.
  • the gear 14 and shaft structure 18 are biased against each other through use of a torsion spring 26.
  • the spring 26 may be installed between the output gear 14 and the output shaft structure 18 with a specific preloaded force.
  • output shaft electrical contacts or wipers 30, 32, 34 may be attached to a radial extension 23 of the output shaft structure 18, and a corresponding set of output gear contacts or wipers 42, 4, 46, may be attached to a radial extension 27 the output gear.
  • the wipers 30, 32, 34 move in tandem with the output shaft structure 18 at all times.
  • the output shaft wipers 30, 32, 34 and the output gear wipers 42, 44, 6 interact with each other as well as with stationary contacts, e.g. contacts 36, 38, 40 in FIG. 4 that are fixed to the bottom 41 of the housing 11.
  • the wipers may be spring temper stampings. In the embodiment illustrated in FIGS.
  • the wipers 30, 32, 34 and 42, 44, 46 are normally in contact, as shown in FIG. 4, but separate upon relative motion between the output gear 14 and the output shaft structure 18 to open an electrical path between the power supply and the motor, as will be described in more detail below.
  • opening and closing of the motor/ power supply connection is achieved by relative motion of the output gear 14a and the output shaft structure 18a, except the wipers 42, 44, 46 are not provided on the output gear 14a.
  • cam contacts or wipers 48, 50 may be provided on the extension 23a of output shaft structure 18a.
  • the wipers 48, 50 and 30, 32, 34 are moved into and out of contact with each other by engagement and disengagement of the wipers 48,50 with cam lobes 52, 54 on the output gear 14a. More particularly, when the actuator is driving a mechanism, e.g.
  • the gear train 16 drives the output gear 14a, which transmits torque to the output shaft structure 18a through the torsion spring 26.
  • the output shaft structure 18a is free to turn with less torque than that required to overcome the preloaded force of the torsion spring 26.
  • the output gear 14a and output shaft structure 18a thus behave as one piece, and the cam lobes 52, 54 force the wipers 48, 52 into contact with the wipers 30, 32, 34 on extension 23a. It is intended that the normal operating torque for the valve 13 be below the torque provided by the preloaded spring 26 so that the system will behave as described under ordinary circumstances.
  • the output shaft structure 18a may stop rotating. Since the motor 12 may still be providing power through the gear train 16, the output gear 14a may continue to move. This may result in relative motion between the output gear 14a and the output shaft structure 18a and corresponding deflection of the torsion spring 26. Calibration of this pinch protection trip point may be achieved by varying the designed force characteristics of the spring.
  • the output gear 14a rotates relative to the output shaft structure 18a, it also rotates relative to the wipers 48, 50 disposed on the output shaft structure 18a.
  • the cam lobes 52, 54 on the face of the output gear move relative to the wipers 48,50.
  • These cam lobes 52, 54 are shaped and positioned in such a manner as to predictably release the wipers allowing them to spring apart from the wipers 30, 32, 34 on extension 23a that they were being held in contact with.
  • the motor connection circuit is arranged in such way that if the system is in a "Pinch Protection Zone" this separation of the wipers interrupts the supply of electrical power to the motor 12 and the output gear 14a will cease to rotate. As long as the obstruction remains, this relationship may be maintained because the output gear 14a may be driven by a worm drive that has a small lead angle so that it is resistant to being back-driven by the spring.
  • the spring 26 may release stored energy and drive the output shaft structure 18a relative to the output gear 14a.
  • the output shaft structure 18a may align with the output gear 14a, and the ordinary and usual relationship between the parts may then be restored.
  • the cam lobes 52, 54 on the output gear may have moved back into proximity with the wipers 48, 50 respectively, and the wipers 48, 50 and 30, 32, 34 may once again be held in contact with each other. This action restores the supply of electrical power to the motor and the actuator may resume closing the mechanism.
  • the arrangement of the stationary electrical contacts on the housing may vary. Exemplary arrangements are illustrated in FIGS. 6-8.
  • the range of motion defining the operational zones, e.g. the "Pinch Protection Zone", for the actuator may vary depending on the specific configuration of the stationary contacts. It may be desirable, however, to have the pinch protection scheme employed in the range of motion where an object could become trapped between an edge of the opening in the stationary valve housing and an opposing edge in the moving portion of the valve mechanism.
  • the wipers 30, 32, 34 may travel relative to the stationary contacts 36, 38, 40 between an open position indicated by line 150 and a closed position indicated by line 152.
  • the stationary contacts 36, 38, 40 are maintained in contact with the wipers 30, 32, 34 to ensure full torque from the motor.
  • pinch protection may be enabled in a first zone referred to as zone A.
  • zone A first zone
  • the output gear 14, 14a and the output shaft structure, 18, 18a disconnects the motor from the power supply to provide pinch protection.
  • the wipers 30, 32, 34 are positioned on the stationary contacts in zone B, if the output shaft encounters high resistance torque (torque greater than that available form the preloaded torsion spring), e.g. from seals, hard stops, etc., the output gear 14a may begin to rotate relative to the output shaft structure 18a, just as in the preceding description of the pinch protection feature.
  • the arrangement of the stationary contacts 36, 38, 40 differs so that even though the wipers 48,50 spring apart and loose contact with each other, electrical power to the motor is not interrupted. This results in the motor continuing to drive the system.
  • the output gear 14a may continue to rotate relative to the output shaft structure 18a and deflect the torsion spring 26 until it reaches a rigid interface point with the output shaft, e.g. until a rigid stop 62 on the output shaft structure 18a contacts a rigid stop 60 or 64 on the output gear 14a. At this point, the output gear 14a may no longer be transmitting torque to the output shaft structure 18 through the spring 26, but may be transmitting torque to the structure 18 through the rigid interface. The result is that the full power of the motor (less gear train inefficiency, of course) is delivered to the output shaft structure 18a and subsequently, the mechanism or valve.
  • the output may resume rotating as long as the obstruction is unable to resist the torque that is now being delivered directly to the output shaft structure 18a (not through the spring).
  • electrical power to the motor 12 will be interrupted by a gap, e.g. gap 70, or other transition in the stationary contacts.
  • a gap e.g. gap 70, or other transition in the stationary contacts.
  • the motor 12 and gear train 16 may drive the output gear 14a.
  • the output gear 14a transmits torque to the output shaft structure 18a through the preloaded torsion spring 26.
  • the pre-load torque of the spring 26 will cause the output gear 14a and the output shaft structure 18a to behave in tandem or as if they were one piece. This remains true so long as the torque required to rotate the output shaft structure (and the mechanism that it is attached to) remains below the preloaded torque of the spring.
  • the spring feature is utilized in the opening direction primarily as a shock absorber to cushion the gear train 16 from loads that would occur by any abrupt obstruction of the output shaft or from reaching an end-of -travel stop.
  • the output shaft structure 18a When the ball reaches the end-of-travel stop (the fully open position) the output shaft structure 18a will not be able to continue rotating.
  • the motor will have shut down because, just as in the other direction, there will be a gap, e.g. gap 72, or other transition in the stationary contacts that the wiper will ride into, breaking electrical continuity to the motor.
  • the spring 26 will absorb any remaining energy ("coast") due to inertia of the moving system.
  • Control of the actuator in its operational zones is thus accomplished through internal switching.
  • the control switches allow the actuator to complete its last command. For example, if the pinch protection feature is activated, the obstruction that caused it can remain in place indefinitely without causing damage to the motor since the pinch protection mechanism breaks the electrical circuit. Due to the spring 26, the mechanism will reset automatically when the obstruction is removed and the actuator will complete its instruction to close the valve.
  • This instruction may be provided by selectively supplying electrical power, e.g. through switch 15, to the stationary contacts through an electrical connector that is part of the actuator.
  • the actuator may be energized to open or close using a double-pole/ double through (DPDT) relay 200.
  • the relay facilitates connection of the power supply 17, e.g. 12 NDC, through a fuse 202 to contact points 160, 162, and 164 depending on the position of the control switch 15.
  • the connections established by the relay 200 as a function of the switch position may be as set forth in Table 1 below:
  • the contact points 160, and 162 are electrically connected to stationary contacts 40, 38, as shown in FIG. 6, and contact 164 is electrically connected to a first motor input terminal with the other motor terminal connected to stationary contact 36.
  • the output shaft and output gear structure rotate together, and the power supply is connected across the motor 12 through wipers 30, 32, 34 and wipers 48, 50, which connect either stationary contact 40 (and contact 160) to stationary contact 36 in the opening direction, or stationary contact 38 (and contact 162) to stationary contact 36 in the closing direction.
  • the wipers 30, 32, 34 engage/ disengage associated stationary contacts to achieve the above-stated functions.
  • the stationary contacts define the limits of the open and closed positions, and the actuator stops when these positions are reached. This is significant because it prevents motor degradation that would occur more quickly if the actuator were driven to stall every time. In the absence of this feature, control would have to be more sophisticated with a timed source of current. Also, driving the system to a hard internal stop every time would increase fatigue on the gear train. Current draw would be higher when the motor stalled.
  • a manual override may also be provided to account for actuator failure or electrical power loss. This feature may allow the actuator to be manually driven to open the valve allowing for fuel delivery.
  • the manual override may also facilitate manual closure of the valve, but the preferred action upon actuator failure with the valve in the open position may be replacement of the system.
  • the manual override may be designed so that the actuator can "self heal” when re-powered by back-driving (rotating in reverse) itself and dropping into mounting detents at the completion of cycle.
  • the actuator housing 11 may include a top housing portion 115 and a bottom manual override cap 102 secured to the valve assembly 25.
  • the cap 102 is illustrated more particularly in FIG. 11.
  • the cap generally includes the circular bottom panel portion 41 and an axially extending perimeter sidewall 122.
  • the bottom portion includes portions 128 defining an aperture through which an input shaft of the ball valve assembly 25 may extend for coupling to the actuator output shaft structure 18, 18a.
  • the sidewall includes key slots for receiving associated locking tabs 108 on the top portion 115.
  • the top housing portion 115 may include a first large diameter cylindrical portion 132 with a concentric small diameter cylindrical portion 134 disposed thereon.
  • the large diameter cylindrical portion 132 may include a sidewall 120 with the locking tabs 108 extending radially from an exterior surface 124 thereof.
  • the tabs 108 may be generally rectangular in shape with a chamfered forward edge 132.
  • the top portion 115 may be concentrically and rotatably arranged relative to the cap 102, with the interior surface 120 of the cap side-wall 122 disposed adjacent to the exterior surface 124 of the top portion side wall 126 as shown in FIG. 10.
  • a locking tab 108 on the actuator housing engages a corresponding retention ramp 110 on the cap to prevent rotation of the top portion 115 relative to the cap 102.
  • the top portion 115 may be manually rotated, e.g. by operation of an override cable accessible through the vehicle trunk or passenger compartment and connected to an override arm extending from the top portion 115 of the housing. Rotation of the top portion causes sufficient rotation of the output shaft to open the valve. Rotation of the top portion during manual override is arrested by engagement of the locking tab 108 with a manual override position stop 112.
  • the mechanical override self-heals by returning to the normal position upon energization of the actuator following a mechanical override.
  • pinch protection is enabled in a simple and efficient manner.
  • Other methods that are sometimes employed are more elaborate solutions using, for example, electronic sensors that can detect the presence of objects.
  • the present invention employs a method that is simple and cost effective and accomplished through electromechanical means rather than with electronics. This translates lower cost through less expensive components and simplified assembly and test.
  • the actuator moves to an open or closed position and then turns itself off, automatic control is facilitated in an efficient manner.
  • the actuator could, for example, be electrically connected to a vehicle park interlock so that the fuel door will automatically close upon placing the vehicle in gear.
  • the actuator could also be configured so that the ignition had to be off to permit opening.
  • the automated control allows the control of the actuator based on a variety of conditions and inputs.
  • the invention has applicability beyond the scope of fuel filler access.
  • This system may find utility in the operation of any valve.
  • the actuator would find utility in any device requiring movement of a mechanism while providing an anti-pinch feature that is active throughout the full range of motion of the actuator or within a specific range of the motion.
  • a linear version could be made that employs these same unique features.

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)

Abstract

L'invention concerne un vérin électromécanique (10) comprenant une structure d'arbre de sortie couplée à un engrenage de sortie pour permettre un mouvement relatif entre les deux, à l'application, sur la structure d'arbre de sortie, d'un niveau de force prédéterminé. L'invention concerne également un système de soupape (25) pour réservoir de carburant et un procédé permettant d'empêcher les étranglements.
EP01924184A 2001-03-15 2001-03-15 Verin et commande de position integree Withdrawn EP1368230A4 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2001/008568 WO2002074626A1 (fr) 2001-03-13 2001-03-15 Verin et commande de position integree

Publications (2)

Publication Number Publication Date
EP1368230A1 true EP1368230A1 (fr) 2003-12-10
EP1368230A4 EP1368230A4 (fr) 2005-04-13

Family

ID=29547632

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01924184A Withdrawn EP1368230A4 (fr) 2001-03-15 2001-03-15 Verin et commande de position integree

Country Status (1)

Country Link
EP (1) EP1368230A4 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB525050A (en) * 1939-02-13 1940-08-21 Houdry Process Corp Apparatus for the control of chemical reactions by the timed operation of electrically-controlled valves
US3808895A (en) * 1973-02-09 1974-05-07 J Fitzwater Electric fail-safe actuator
US5052424A (en) * 1990-07-16 1991-10-01 Eaton Corporation Electrically operated servo actuator with automatic shut off
EP0727601A1 (fr) * 1995-02-14 1996-08-21 General Electric Company Commande linéaire avec rupteur de change pour détection de cisaillement axial.
EP0903522A2 (fr) * 1997-08-19 1999-03-24 LANDIS & STAEFA, INC. Actionneur avec un frein électrostrictif

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB525050A (en) * 1939-02-13 1940-08-21 Houdry Process Corp Apparatus for the control of chemical reactions by the timed operation of electrically-controlled valves
US3808895A (en) * 1973-02-09 1974-05-07 J Fitzwater Electric fail-safe actuator
US5052424A (en) * 1990-07-16 1991-10-01 Eaton Corporation Electrically operated servo actuator with automatic shut off
EP0727601A1 (fr) * 1995-02-14 1996-08-21 General Electric Company Commande linéaire avec rupteur de change pour détection de cisaillement axial.
EP0903522A2 (fr) * 1997-08-19 1999-03-24 LANDIS & STAEFA, INC. Actionneur avec un frein électrostrictif

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO02074626A1 *

Also Published As

Publication number Publication date
EP1368230A4 (fr) 2005-04-13

Similar Documents

Publication Publication Date Title
US5934717A (en) Motor Vehicle lid or door lock
CN102498244B (zh) 具有机械门传感器的电气设备锁
KR100887472B1 (ko) 자동차의 도어들 또는 플랩들을 위한 로크
CA1327055C (fr) Appareil de commande de panneau de coffre pour vehicule motorise
US4796932A (en) Remote release and pull-down unit
CN1580475A (zh) 闩锁机构
KR20010042142A (ko) 회전형 캐치를 구비한 자동차용 도어록
US8826592B2 (en) Window regulator device
US4270783A (en) Door lock actuator
MX2014000869A (es) Cierre de tapa para tanque de combustible.
CN110242126B (zh) 电动吸合锁
US6408901B2 (en) Actuator with anti-pinch feature and integrated position control
US20060005591A1 (en) Electrically-releasable lock
CN205595260U (zh) 一种用于三工位开关机构的限位装置
CN113710864B (zh) 具有电力复位电路机构的闭合闩锁组件和用于复位的方法
US6409233B1 (en) Closure apparatus for vehicle door
JPS61233183A (ja) 自動車ドアロツク用調節装置
KR100919456B1 (ko) 정전시에 자동으로 열리는 차량용 차단기
EP1368230A1 (fr) Verin et commande de position integree
US20230151651A1 (en) Locking device for locking charging, fueling, or service flaps
US8726573B2 (en) Window regulator device
JP3565618B2 (ja) 電動ミラー
CN114466964B (zh) 闭合闩锁组件
EP0798163B1 (fr) Rétroviseur extérieur de véhicule
US6002224A (en) One touch vehicle window operating circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOLLOWAY, JOHN, C.

Inventor name: SCHREGARDUS, THOMAS, P.

A4 Supplementary search report drawn up and despatched

Effective date: 20050302

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 16K 31/04 B

Ipc: 7B 65B 1/04 A

17Q First examination report despatched

Effective date: 20050704

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060613