EP1364413A1 - Optoelektronisches bauelement - Google Patents

Optoelektronisches bauelement

Info

Publication number
EP1364413A1
EP1364413A1 EP02719924A EP02719924A EP1364413A1 EP 1364413 A1 EP1364413 A1 EP 1364413A1 EP 02719924 A EP02719924 A EP 02719924A EP 02719924 A EP02719924 A EP 02719924A EP 1364413 A1 EP1364413 A1 EP 1364413A1
Authority
EP
European Patent Office
Prior art keywords
layer
component according
electronic component
amorphous silicon
optoelectronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02719924A
Other languages
English (en)
French (fr)
Inventor
Peter Rieve
Jens Prima
Konstantin Seibel
Walder Marcus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics NV
Original Assignee
STMicroelectronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics NV filed Critical STMicroelectronics NV
Publication of EP1364413A1 publication Critical patent/EP1364413A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the invention relates to an optoelectronic component for converting electromagnetic radiation into an intensity-dependent photocurrent consisting of a substrate with a microelectronic circuit, on the surface of which a first layer of intrinsically conductive amorphous silicon a-Si: H or its alloys which is electrically contacted is arranged, wherein in Light incident direction of the first layer is arranged at least one further optically active layer, and a method for its production.
  • filters to suppress undesired infrared radiation, for example interference filters or colored glass filters, which suppress light with a wavelength above about 680 nm.
  • filters have the disadvantage, on the one hand, that they represent an additional outlay of a constructive or production-related nature, for example if they are integrated into the lens system in the optical beam path of a camera system, and, on the other hand, they have the disadvantage that they also represent a not inconsiderable proportion of the light absorb in the desired visible spectral range and thus reduce the overall sensor sensitivity.
  • the object of the invention is to improve an optoelectronic component of the type mentioned at the outset in such a way that a high spectral sensitivity in the visible light range and correspondingly a high suppression of the sensitivity to radiation in the infrared range are achieved without additional design effort.
  • the production of the first layer of intrinsically conductive amorphous silicon is carried out by alloying with carbon in a concentration of 2 to 15 atomic percent such that the band gap of the semiconductor material in the first layer is at least 1.8 eV.
  • this layer is produced in the PECVD process from silane (SiH 4 ) and methane (CH 4 ), the silane / methane mixture ratio being between 2: 1 and 1: 1. This results in layers with a carbon concentration of 2 to 15 atomic percent.
  • the silane / methane gas mixture can be diluted by adding hydrogen (H 2 ) in order to improve the electrical layer quality.
  • the preferred hydrogen volume fraction, based on the total gas mixture is 75 to 95 volume percent.
  • silane and methane other gases containing silicon or carbon can also be used, for example Si 2 H6, C 2 H 2 , C 2 H 4 , C 2 H 6 , or also gases which contain both silicon and carbon, for example (SiH 3 ) CH 3 .
  • the invention is characterized in that a component is realized in which a material changed in accordance with the alloy conditions is used in the intrinsically conductive absorption layer. This ensures that photons with an energy smaller than the band gap are not absorbed in the first layer, but only in the back contact of the component, which closes the component towards the substrate. At this point, however, the photons do not contribute to the generation of the photocurrent. As a result, the component has a noticeable infrared suppression and thus makes the infrared cut-off filters, which are essential in the sensor systems manufactured according to the prior art, superfluous.
  • the microelectronic circuit is a single semiconductor transistor in each pixel. This gives a so-called TFT transistor (thin-film transistor). Alternatively, a switching diode can also be used.
  • Such a component can also be used for use in the X-ray radiation area by applying a further X-ray active scintillation layer.
  • microelectronic circuit is an application-specific circuit (ASIC), the at least one further layer being a doped semiconducting layer which
  • a conductive layer made of a transparent oxide (TCO) is arranged upstream of the light incidence direction.
  • This design creates a component in the form of a TFA sensor (thin-film-on-ASIC), which represents a pixel-by-pixel organized image sensor due to the pixel-by-matrix and matrix-organized arrangement of the structured semiconductor component.
  • the electronic circuits for operating the sensor ie the pixel electronics, the peripheral electronics and the system electronics, are usually implemented in CMOS-based silicon technology and thus form the application-specific integrated circuit (ASIC) in the substrate.
  • ASIC application-specific integrated circuit Separated from it by an insulating layer and connected to it by means of appropriate electrical contacts, a multilayer arrangement as a photodiode is located vertically on the ASIC, which converts electromagnetic radiation into an intensity-dependent photo current. This photo stream is at certain, existing in each pixel Transfer contacts to the underlying pixel electronics.
  • an optoelectronic conversion means in the form of a TFA image sensor with integrated infrared suppression results which is either a photodiode with the layer sequence nip, pin or a photodiode can act in the form of a Schottky diode.
  • a further externally conductive layer is introduced between the intrinsically conductive layer and the back electrode.
  • FIG. 1 shows the layer structure of an optoelectronic component known from the prior art
  • Fig. 3 shows the layer structure of an optoelectronic
  • Component according to an embodiment of the invention shows a comparison of the spectral sensitivities of optoelectronic components, in each case in the wavelength range between 350 and 800 nm.
  • Fig. 1 shows an optoelectronic component as it is basically known from the prior art after its layer structure.
  • a metal layer on the substrate (not shown).
  • an intrinsically conductive layer i) made of amorphous silicon (a-Si: H), over this again a p-doped semiconducting layer, and a transparent conductive oxide layer (TCO) arranged upstream in the direction of light incidence.
  • TCO transparent conductive oxide layer
  • the intrinsic layer (i) consists of amorphous silicon and usually has a band gap of approximately 1.7 eV.
  • the spectral sensitivity of such a component is shown in FIG. 4, curve a. It turns out that above the 680 nm range (i.e. in the infrared range) that is no longer visible to the eye, there is still a clear sensitivity that is undesirable (see above).
  • this element shows a second optoelectronic component, which represents a so-called pin photodiode known per se.
  • this element additionally has an n-doped semiconductor layer between the metal contact to the substrate and the intrinsically conductive a-Si: H layer.
  • This component also has a band gap of about 1.7 eV in the i- Area a spectral sensitivity curve roughly corresponding to FIG. 4, curve a.
  • FIG 3 shows the structure of an image sensor in its implementation by thin film on ASIC technology.
  • the optoelectronic component shown in FIG. 3 consists of a substrate 1, ie a silicon substrate, on the surface of which corresponding integrated circuits are formed. " These integrated circuits are implemented in CMOS technology, and the circuit thus formed is referred to as an application specific integrated circuit ASIC.
  • the substrate 1 with the ASIC contains as the uppermost layer an insulating layer 4, a so-called intermetallic dielectric layer, which has been planarized by chemical mechanical polishing, so that metallic contacts, ie horizontal connecting means 2 and vias 3, are inserted into the intermetallic dielectric layer in this way embedded that there are no significant surface roughness.
  • the connections between the individual metal layers 2 are made by connection vias 3 made of tungsten. These are also known as W-plugs.
  • a barrier layer for example made of titanium nitride, is introduced between the insulating layer 4 and the metal layer 5 described below.
  • this barrier layer is a metal layer 5, preferably made of chromium, the thickness of which is 100 nm or less and which is caused, for example, by Sputtering method is applied.
  • This metal layer is structured in such a way that that this results in back electrodes for individual picture elements (pixels).
  • an intrinsically conductive layer 7 made of amorphous or microcrystalline silicon or its alloys, the thickness of which is typically approximately 0.5 ⁇ m to 2 ⁇ m and which is preferably applied using the PECVD method.
  • a front contact in the form of a conductive transparent oxide layer 9 is located on the p-type layer 8.
  • the material used for this is preferably aluminum-doped zinc oxide, aluminum oxide-doped zinc oxide or else indium-tin oxide.
  • the structure of a Schottky diode in the form of a metal-semiconductor junction on a planarized ASIC surface is realized by the layer sequence metal - chromium / intrinsically conductive amorphous silicon.
  • the alloy of the intrinsically conductive a-Si: H layer 7 made according to the invention with a carbon alloy as specified above leads to spectral profiles in FIG. 4, as shown under curves c, d.
  • the spectral sensitivity within the infrared range (> 680 nm) is significantly lower than that of curve (a), so that such image sensors detect light from the optically visible range, whereas they significantly suppress infrared radiation.
  • the absorption curve for a sensor known from the prior art and equipped with conventional technology, which is used for infrared suppression is shown under curve b in FIG an additional filter (interference filter or colored glass filter) is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

Die Erfindung betrifft ein optoelektronisches Bauelement zur Umwandlung elektromagnetischer Strahlung in einen intensitätsabhängigen Fotostrom bestehend aus einem Substrat (1) mit einem mikroelektronischen Schaltkreis, auf dessen Oberfläche eine mit diesem elektrisch kontaktierte erste Schicht (7) aus amorphem Silizium a-Si:H oder dessen Legierungen angeordnet ist, wobei in Lichteinfallsrichtung der ersten Schicht (7) mindestens eine weitere optisch aktive Schicht (8) vorgeordnet ist sowie ein Verfahren zu seiner Herstellung. Der Erfindung liegt die Aufgabe zugrunde, ein optoelektronisches Bauelement der eingangs genannten Art dahingehend zu verbessern, dass eine hohe spektrale Empfindlichkeit im sichtbaren Lichtbereich und entsprechend eine hohe Unterdrückung der Empfindlichkeit gegenüber Strahlung im Infrarotbereich ohne zusätzlichen konstruktiven Aufwand erreicht wird. Die Erfindung zeichnet sich dadurch aus, dass ein Bauelement realisiert wird, bei dem in der eigenleitenden Absorptionsschicht (7) ein entsprechend den Legierungsbedingungen durch einen zusätzlichen Kohlenstoffgehalt verändertes Material verwendet wird. Hierdurch wird sichergestellt, dass Photonen mit einer Energie kleiner als der Bandabstand nicht in der ersten Schicht absorbiert werden, sondern erst im Rückkontakt des Bauelements, welcher das Bauelement zum Substrat hin abschliesst.

Description

Optoelektronisches Bauelement
Die Erfindung betrifft ein optoelektronisches Bauelement zur Umwandlung elektromagnetischer Strahlung in einen intensitätsabhängigen Fotostrom bestehend aus einem Substrat mit einem mikroelektronischen Schaltkreis, auf dessen Oberfläche eine mit diesem elektrisch kontaktierte erste Schicht aus eigenleitendem amorphen Silizium a-Si:H oder dessen Legierungen angeordnet ist, wobei in Lichteinfallsrichtung der ersten Schicht mindestens eine weitere optisch aktive Schicht vorgeordnet ist, sowie ein Verfahren zu seiner Herstellung.
Bei Bildsensoren, welche für die Aufzeichnung optischer Strahlung aus dem sichtbaren Spektralbereich eingesetzt werden sollen, ist eine Anpassung an die spektrale Empfindlichkeit des menschlichen Auges von großer Bedeutung, um eine farbmetrisch exakte Wiedergabe farbiger Bildinhalte zu erreichen. Dieser sichtbare Spektralbereich liegt zwischen Wellenlängen von 380 nm und etwa 680 nm, wobei der untere Grenzbereich durch den ultravioletten Strahlungsbereich und der obere Bereich durch den Infrarotstrahlungsbereich bestimmt wird. Bei herkömmlichen Bildsensoren tritt jedoch das Problem auf, dass diese aufgrund der Materialeigenschaften des Siliziums über den sichtbaren Bereich hinaus auch im Infrarotbereich eine merkliche Empfindlichkeit besitzen. Daher müssen zur Vermeidung der Verfälschung des Bildsignals durch Infrarotanteile zusätzliche Maßnahmen ergriffen werden. Zum einen ist es bekannt, auf die fotoaktiven Schichten ein pixelweise strukturiertes optisches Farbfiltersystem aufzubringen (US-Patent 3,971,065).
Andererseits ist es bekannt, zur Unterdrückung unerwünschter Infrarotstrahlungen zusätzliche Filter einzusetzen, beispielsweise Interferenzfilter oder Farbglasfilter, die Licht mit einer Wellenlänge von oberhalb ca. 680 nm unterdrücken. Solche Filter haben zum einen den Nachteil, dass sie einen zusätzlichen Aufwand konstruktiver bzw. fertigungstechnischer Art darstellen, beispielsweise wenn sie in das Linsensystem integriert im optischen Strahlengang eines Kamerasystems eingebaut werden, und zum anderen den Nachteil, dass sie auch einen nicht unbeträchtlichen Anteil des Lichtes im gewünschten sichtbaren Spektralbereich absorbieren und somit insgesamt die Sensorempfindlichkeit herabsetzen.
Der Erfindung liegt davon ausgehend die Aufgabe zugrunde, ein optoelektronisches Bauelement der eingangs genannten Art dahingehend zu verbessern, dass eine hohe spektrale Empfindlichkeit im sichtbaren Lichtbereich und entsprechend eine hohe Unterdrückung der Empfindlichkeit gegenüber Strahlung im Infrarotbereich ohne zusätzlichen konstruktiven Aufwand erreicht wird.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Herstellung der ersten Schicht aus eigenleitendem amorphen Silizium durch Zulegierung von Kohlenstoff in einer Konzentration von 2 bis 15 Atomprozent erfolgt, derart, dass der Bandabstand des Halbleitermaterials in der ersten Schicht mindestens 1,8 eV beträgt. Technologisch wird diese Schicht im PECVD-Verfahren aus Silan (SiH4) und Methan (CH4) hergestellt, wobei das Silan/Methan-Mischungsverhältnis zwischen 2:1 und 1:1 liegt. Daraus ergeben sich Schichten mit einer Kohlenstoff-Konzentration von 2 bis 15 Atomprozent. Des weiteren kann das Silan/Methan-Gasgemisch durch Hinzugabe von Wasserstoff (H2) verdünnt werden zwecks Verbesserung der elektrischen Schichtqualität. Der bevorzugte Wasserstoff-Volumenanteil, bezogen auf das gesamte Gasgemisch, beträgt 75 bis 95 Volumenprozent. Statt Silan und Methan können auch andere Silizium- bzw. Kohlenstoff enthaltende Gase verwendet werden, z.B. Si2H6, C2H2, C2H4, C2H6, oder auch Gase, welche sowohl Silizium als auch Kohlenstoff enthalten, z.B. (SiH3)CH3.
Die Erfindung zeichnet sich dadurch aus, dass ein Bauelement realisiert wird, bei dem in der eigenleitenden Absorptionsschicht ein entsprechend den Legierungsbedingungen verändertes Material verwendet wird. Hierdurch wird sichergestellt, dass Photonen mit einer Energie kleiner als der Bandabstand nicht in der ersten Schicht absorbiert werden, sondern erst im Rückkontakt des Bauelements, welcher das Bauelement zum Substrat hin abschließt. An dieser Stelle tragen die Photonen jedoch nicht zur Generation des Fotostroms bei. Hierdurch verfügt das Bauelement über eine merkliche Infrarotunterdrückung und macht somit die bei den nach dem Stand der Technik gefertigten Sensorsystemen unerlässlichen Infrarotsperrfilter überflüssig.
In einer ersten Variante der Erfindung ist vorgesehen, dass der mikroelektronische Schaltkreis ein einzelner Halbleitertransistor in jedem Pixel ist. Hierdurch ergibt sich ein sog. TFT-Transistor (Thin-Film-Transistor) . Alternativ kann auch eine Schaltdiode verwendet werden.
Ein solches Bauelement kann auch zur Verwendung im Röntgenstrahlungsbereich eingesetzt werden, indem eine weitere röntgenaktive Szintillationsschicht aufgebracht wird.
Die bevorzugte Variante der erfindungsgemäßen Lösung ist dadurch gekennzeichnet, dass der mikroelektronische Schaltkreis ein anwendungsspezifischer Schaltkreis (ASIC) ist, wobei die mindestens eine weitere Schicht eine dotierte halbleitende Schicht ist, der in
Lichteinfallsrichtung vorgeordnet eine leitfähige Schicht aus einem transparenten Oxid (TCO) ist.
Durch diese Gestaltung wird ein Bauelement in Form eines TFA-Sensors (Thin-Film-on-ASIC) geschaffen, welcher aufgrund der pixelweise und matrixorganisierten Anordnung des strukturierten Halbleiterbauelements einen pixelweise organisierten Bildsensor darstellt. Dabei sind die elektronischen Schaltungen zum Betrieb des Sensors, d.h. die Pixelelektronik, die Peripherieelektronik und die Systemelektronik üblicherweise in CMOS-basierter Siliziumtechnologie realisiert und bilden somit den anwendungsspezifischen integrierten Schaltkreis (ASIC) im Substrat. Durch eine isolierende Schicht hiervon getrennt und mittels entsprechender elektrischer Kontakte hiermit verbunden, befindet sich vertikal auf dem ASIC eine Mehrschichtanordnung als Fotodiode, welche die Umwandlung elektromagnetischer Strahlung in einen intensitätsabhängigen Fotostrom vornimmt. Dieser Fotostrom wird an bestimmten, in jedem Pixel vorhandenen Kontakten der darunter liegenden Pixelelektronik übergeben.
Wird die Fotodiode unter Verwendung des durch die oben genannten Spezifikationen definierten Materials hergestellt, ergibt sich ein als Fotodiode ausgebildetes optoelektronisches Konvertierungsmittel in Form eines TFA-Bildsensors mit integrierter Infrarotunterdrückung, wobei es sich entweder um eine Fotodiode mit der Schichtenfolge n-i-p, p-i-n oder um eine Fotodiode in Form einer Schottkydiode handeln kann. Im Falle der p-i- n—oder n-i-p-Struktur wird eine weitere fremdleitende Schicht zwischen die eigenleitende Schicht und die Rückelektrode eingeführt.
Weitere bevorzugte Ausführungsformen ergeben sich aus den weiteren Unteransprüchen.
Die Erfindung wird im Folgenden anhand von Zeichnungen näher erläutert. Hierbei zeigen
Fig. 1 den Schichtenaufbau eines aus dem Stand der Technik bekannten optoelektronischen Bauelements;
Fig. 2 den Schichtenaufbau eines weiteren aus dem Stand der Technik bekannten elektronischen Bauelements;
Fig. 3 den Schichtenaufbau eines optoelektronischen
Bauelements nach einem Ausführungsbeispiel der Erfindung; Fig. 4 einen Vergleich der spektralen Empfindlichkeiten optoelektronischer Bauelemente, jeweils im Wellenlängenbereich zwischen 350 und 800 nm.
Fig. 1 zeigt ein optoelektronisches Bauelement, wie es nach seinem Schichtaufbau grundsätzlich aus dem Stand der Technik bekannt ist. Hierbei befindet sich auf dem (nicht dargestellten) Substrat zunächst eine Metallschicht. Über dieser angeordnet ist eine eigenleitende Schicht (i) aus amorphen Silizium (a-Si:H), hierüber wiederum eine p- dotierte halbleitende Schicht, und in Lichteinfallsrichtung weiter vorgeordnet eine transparente leitfähige Oxidschicht (TCO) . Das hierdurch gebildete Bauelement wird als „Schottky-Fotodiode" bezeichnet .
Die eigenleitende Schicht (i) besteht aus amorphem Silizium und weist üblicherweise einen Bandabstand von ca. 1,7 eV auf. Die spektrale Empfindlichkeit eines solchen Bauelements ist in Fig. 4, Kurvenverlauf a dargestellt. Es zeigt sich, dass oberhalb des für das Auge nicht mehr sichtbaren Bereichs von 680 nm (also im Infrarotbereich) noch eine deutliche Empfindlichkeit vorhanden ist, die unerwünscht ist (siehe oben) .
Fig. 2 zeigt ein zweites optoelektronisches Bauelement, welches eine an sich bekannte sog. p-i-n-Fotodiode darstellt. Gegenüber der in Fig. 1 dargestellten Schichtenfolge weist dieses Element zusätzlich zwischen der Metallkontaktierung zum Substrat und der eigenleitenden a-Si:H-Schicht noch eine n-dotierte Halbleiterschicht auf. Auch bei diesem Bauelement ergibt sich aufgrund des Bandabstands von etwa 1,7 eV im i- Bereich ein spektraler Empfindlichkeitsverlauf etwa entsprechend Fig. 4, Kurve a.
Fig. 3 zeigt den Aufbau eines Bildsensors in seiner Realisierung durch Thin-Film-on-ASIC-Technologie.
Das in Fig. 3 dargestellte optoelektronische Bauelement besteht aus einem Substrat 1, d.h. einem Siliziumsubstrat, auf dessen Oberfläche entsprechende integrierte Schaltkreise ausgebildet sind. "Diese integrierten Schaltkreise werden in CMOS-Technologie realisiert, und der somit gebildete Schaltkreis wird als anwendungsspezifischer integrierter Schaltkreis ASIC bezeichnet .
Das Substrat 1 mit dem ASIC enthält als oberste Schicht eine isolierende Schicht 4, eine sog. intermetallische Dielektrikumsschicht, welche auf dem Wege des Chemical Mechanical Polishing planariέiert worden ist, so dass metallische Kontaktierungen, d.h. horizontale Verbindungsmittel 2 und Vias 3 derart in die intermetallische Dielektrikumsschicht eingebettet sind, dass keine nennenswerten Oberflächenrauigkeiten entstehen. Die Verbindungen zwischen den einzelnen Metalllagen 2 erfolgen durch Verbindungsvias 3 aus Wolfram. Diese werden auch als W-Plugs bezeichnet. Zwischen der isolierenden Schicht 4 und der im folgenden beschriebenen Metallschicht 5 wird noch eine Barriereschicht, z.B. aus Titan-Nitrid, eingeführt.. Oberhalb dieser Barriereschicht befindet sich eine Metallschicht 5, vorzugsweise aus Chrom, deren Dicke lOOnm oder weniger beträgt und die beispielsweise durch das Verfahren des Sputterns aufgebracht wird. Die Strukturierung dieser Metallschicht erfolgt dahingehend, dass sich hierdurch Rückelektroden für einzelne Bildelemente (Pixel) ergeben. Oberhalb der Metallschicht 5 befindet sich eine eigenleitende Schicht 7 aus amorphem oder mikrokristallinem Silizium oder dessen Legierungen, deren Dicke typischerweise ca. 0,5μm bis 2μm beträgt und die bevorzugt im PECVD-Verfahren aufgebracht wird. Schließlich befindet sich oberhalb der eigenleitenden Schicht 7 eine p-leitende Schicht aus amorphem oder mikrokristallinem Silizium 8 oder dessen Legierungen, deren Dicke typischerweise ca. 5nm bis 20nm beträgt. Auf der p-leitenden Schicht 8 befindet sich ein Frontkontakt in Form einer leitfähigen transparenten Oxidschicht 9. Das hierfür verwendete Material ist bevorzugt Aluminiumdotiertes Zinkoxid, Aluminiumoxid-dotiertes Zinkoxid oder aber auch Indium-Zinn-Oxid.
Durch die Schichtenfolge Metall - Chrom/eigenleitendes amorphes Silizium wird die Struktur einer Schottkydiode in Form eines Metall-Halbleiterübergangs auf einer planarisierten ASIC-Oberflache realisiert.
Die gemäß der Erfindung vorgenommene Legierung der eigenleitenden a-Si :H-Schicht 7 mit einer wie oben angegebenen Kohlenstofflegierung führt zu spektralen Verläufen in Fig. 4, wie sie unter den Kurven c, d dargestellt sind. Die spektrale Empfindlichkeit innerhalb des Infrarotbereichs (> 680 nm) ist deutlich gegenüber derjenigen von Kurve (a) herabgesetzt, so dass solche Bildsensoren Licht aus dem optisch sichtbaren Bereich erfassen, wohingegen sie Infrarotstrahlung maßgeblich unterdrücken. Zum Vergleich ist in Fig. 4 unter Kurve b die Absorptionskurve für einen aus dem Stand der Technik bekannten in herkömmlicher Technologie ausgestatteten Sensor dargestellt, welcher zur Infrarotunterdrückung einen zusätzlichen Filter (Interferenzfilter oder Farbglasfilter) verwendet.

Claims

P A T E N T AN S P R Ü C H E
1. Optoelektronisches Bauelement zur Umwandlung elektromagnetischer Strahlung in einen intensitätsabhängigen Fotostrom bestehend aus einem Substrat (1) mit einem mikroelektronischen Schaltkreis, auf dessen Oberfläche eine mit diesem elektrisch kontaktierte erste Schicht (7) aus eigenleitendem amorphen Silizium (a-Si:H) oder dessen Legierungen angeordnet ist, wobei in Lichteinfallsrichtung der ersten Schicht (7) mindestens eine weitere optisch aktive Schicht (8) vorgeordnet ist, dadurch gekennzeichnet, dass die Herstellung der ersten Schicht (7) aus eigenleitendem amorphen Silizium durch Zulegierung von Kohlenstoff in einer Konzentration von 2 bis 15 Atomprozent erfolgt, derart, dass der Bandabstand des Halbleitermaterials in der ersten Schicht (7) mindestens 1,8 eV beträgt.
2. Optoelektronisches Bauelement nach Anspruch 1 dadurch gekennzeichnet, dass der mikroelektronische Schaltkreis ein einzelner Halbleitertransistor oder eine Schaltdiode ist.
3. Optoelektronisches Bauelement nach Anspruch 2 dadurch gekennzeichnet, dass eine weitere Schicht in Form einer röntgenaktiven Szintillationsschicht in Lichteinfallsrichtung vorgelagert ist.
. Optoelektronisches Bauelement nach Anspruch 1, wobei es sich um eine pixelweise strukturierte, matrixorganisierte Bildsensoreinrichtung handelt, dadurch gekennzeichnet, dass der mikroelektronische Schaltkreis ein anwendungsspezifischer Schaltkreis (ASIC) ist, wobei die mindestens eine weitere Schicht (8) eine dotierte halbleitende Schicht ist, der in Lichteinfallsrichtung vorgeordnet eine leitfähige Schicht (9) aus einem transparenten Oxid (TCO) ist.
5. Optoelektronisches Bauelement nach Anspruch 4 dadurch gekennzeichnet, dass in Lichteinfallsrichtung der ersten Schicht (7) nachgeordnet eine zweite dotierte halbleitende Schicht angeordnet ist, wobei die Schichtenfolge der so gebildeten Fotodiode p-i-n oder n-i-p ist.
6. Optoelektronisches Bauelement nach Anspruch 1 oder 4 dadurch gekennzeichnet, dass es als eine Schottky-Fotodiode ausgebildet ist.
7. Verfahren zur Herstellung eines elektronischen Bauelements zur Umwandlung elektromagnetischer Strahlung in einen intensitätsabhängigen Fotostrom, bei dem auf einem einen mikroelektronischen Schaltkreis enthaltenden Substrat (1) eine elektrisch mit dem Schaltkreis kontaktierte erste Schicht (7) aus amorphen Silizium a-Si:H oder dessen Legierungen aufgebracht wird, auf der wiederum mindestens eine weitere optisch aktive Schicht (8) angeordnet ist, dadurch gekennzeichnet, dass die Herstellung der ersten Schicht (7) aus eigenleitendem amorphen Silizium durch Zulegierung von Kohlenstoff unter Verwendung eines Silan (SiH)/ Methan (CH) -Gasgemisches im Volumenverhältnis 2:1 bis 1:1 erfolgt, derart, dass der Bandabstand des Halbleitermaterials in der ersten Schicht (7) mindestens 1,8 eV beträgt.
8. Verfahren zur Herstellung eines elektronischen Bauelements nach Anspruch 7, dadurch gekennzeichnet, dass zusätzlich eine Beimengung von Wasserstoff (H2) in einer Konzentration von 75 bis 95 Volumenprozent erfolgt, bezogen auf den gesamten Gasfluss (Silan + Methan + Wasserstoff) .
9. Verfahren zur Herstellung eines elektronischen Bauelements nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Bandabstand der eigenleitenden amorphen
Siliziumschicht im Bereich von 1,8 bis 2,0 eV liegt.
10. Verfahren zur Herstellung eines elektronischen Bauelements nach einem der drei vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Silan/Methan-Mischungsverhältnis während der Deposition 1,7:1 bis 1:1, vorzugsweise 1,67:1 beträgt .
1. Verfahren zur Herstellung eines elektronischen Bauelements nach Anspruch 7, dadurch gekennzeichnet, dass die Schicht aus amorphen Silizium mittels des PECVD- Verfahrens (PECVD = Plasma Enhanced Chemical Vapor Deposition) aus Silan (SiH ) und gegebenenfalls weiteren Gasen aufgebracht wird.
EP02719924A 2001-03-01 2002-02-26 Optoelektronisches bauelement Withdrawn EP1364413A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10109984 2001-03-01
DE10109984 2001-03-01
PCT/EP2002/002016 WO2002071497A1 (de) 2001-03-01 2002-02-26 Optoelektronisches bauelement

Publications (1)

Publication Number Publication Date
EP1364413A1 true EP1364413A1 (de) 2003-11-26

Family

ID=7676008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02719924A Withdrawn EP1364413A1 (de) 2001-03-01 2002-02-26 Optoelektronisches bauelement

Country Status (3)

Country Link
US (1) US7053457B2 (de)
EP (1) EP1364413A1 (de)
WO (1) WO2002071497A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008540A1 (en) * 2002-07-16 2004-01-22 Stmicroelectronics Nv Tfa image sensor with stability-optimized photodiode
FR2944140B1 (fr) * 2009-04-02 2011-09-16 Commissariat Energie Atomique Dispositif de detection d'image electronique

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708281A (en) * 1989-03-29 1998-01-13 Canon Kabushiki Kaisha Semiconductor device and photoelectric conversion apparatus using the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2202085B (en) * 1987-01-27 1990-02-14 Ricoh Kk Amorphous silicon photosensor
DE69033657T2 (de) * 1989-08-04 2001-05-03 Canon Kk Photoelektrischer umwandler
US6127692A (en) 1989-08-04 2000-10-03 Canon Kabushiki Kaisha Photoelectric conversion apparatus
IL96561A0 (en) 1989-12-28 1991-09-16 Minnesota Mining & Mfg Amorphous silicon sensor
US5888452A (en) * 1991-07-12 1999-03-30 Electric Power Research Institute Hydrogenated amorphous silicon alloys
JPH05335257A (ja) * 1992-06-03 1993-12-17 Showa Shell Sekiyu Kk p型シリコンカーバイドの形成方法
US5324553A (en) * 1993-04-30 1994-06-28 Energy Conversion Devices, Inc. Method for the improved microwave deposition of thin films
JP3165575B2 (ja) * 1993-12-20 2001-05-14 シャープ株式会社 光情報装置の製造方法
DE19581590T1 (de) * 1994-03-25 1997-04-17 Amoco Enron Solar Erhöhung eines Stabilitätsverhaltens von Vorrichtungen auf der Grundlage von amorphem Silizium, die durch Plasmaablagerung unter hochgradiger Wasserstoffverdünnung bei niedrigerer Temperatur hergestellt werden
US5936261A (en) * 1998-11-18 1999-08-10 Hewlett-Packard Company Elevated image sensor array which includes isolation between the image sensors and a unique interconnection
US6586812B1 (en) * 1999-04-13 2003-07-01 Agilent Technologies, Inc. Isolation of alpha silicon diode sensors through ion implantation
US6373117B1 (en) 1999-05-03 2002-04-16 Agilent Technologies, Inc. Stacked multiple photosensor structure including independent electrical connections to each photosensor
US6784361B2 (en) * 2000-09-20 2004-08-31 Bp Corporation North America Inc. Amorphous silicon photovoltaic devices
US6723421B2 (en) * 2001-10-05 2004-04-20 Energy Conversion Devices, Inc. Semiconductor with coordinatively irregular structures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708281A (en) * 1989-03-29 1998-01-13 Canon Kabushiki Kaisha Semiconductor device and photoelectric conversion apparatus using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO02071497A1 *

Also Published As

Publication number Publication date
WO2002071497A1 (de) 2002-09-12
US20040155311A1 (en) 2004-08-12
US7053457B2 (en) 2006-05-30

Similar Documents

Publication Publication Date Title
DE2925796C2 (de) Photoleitendes Material und photoleitender lichtempfindlicher Film
DE60318848T2 (de) Abbildungsvorrichtung
EP2188855B1 (de) Organischer photodetektor zur detektion infraroter strahlung, verfahren zur herstellung dazu und verwendung
DE2550933C2 (de) Halbleiterphotodiode für ein mit Wechselstrom betriebenes Lichtventil und Verfahren zu ihrer Herstellung
DE102011075103B4 (de) Photodetektor
DE2517939C2 (de) Verfahren zur Herstellung einer für Infrarotstrahlung empfindlichen Photodiode
DE3802365A1 (de) Amorpher siliziumphotosensor
DE102016225549A1 (de) Flüssigkristall-displayvorrichtung und deren herstellungsverfahren
DE2903651A1 (de) Festkoerper-bildsensor
EP1016141A1 (de) Mehrfarbensensor
EP1631996A1 (de) Organische solarzelle mit einer zwischenschicht mit asymmetrischen transporteigenschaften
EP0788661B1 (de) Dreifarbensensor
DE3135412C2 (de) Fotoempfindlicher amorpher Halbleiter auf Siliziumbasis sowie Verfahren zu dessen Herstellung und Verwendung desselben
DE3112209C2 (de)
DE3526337C2 (de)
WO2002050921A1 (de) Optoelektronisches bauelement zur umwandlung elektromagnetischer strahlung in einen intensitätsabhängigen fotostrom
EP1412987A2 (de) Optoelektronisches bauelement mit leitfähiger kontaktstruktur
DE60205022T2 (de) Optisch adressierbarer, ortsauflösender lichtmodulator (oaslm) mit dielektrischem spiegel, der schichten aus amorphem, hydriertem kohlenstoff enthält
EP1364413A1 (de) Optoelektronisches bauelement
DE2644001C2 (de) Photoelektrische Anordnung
WO2010006595A2 (de) Photoaktives bauelement mit organischen schichten und einer mehrschichtelektrode
DE3117333A1 (de) Roehre fuer eine fernsehkamera mit einer aus amorphem silicium gebildeten, lichtempfindlichen schicht
DE102018008959B4 (de) Vorrichtung zum Erfassen von Röntgenstrahlung und Verfahren zum Herstellen einer solchen Vorrichtung zum Erfassen von Röntgenstrahlung
DE19710134C2 (de) Variospektral-Vielfarbendiode
EP1440476B1 (de) Verfahren zur herstellung einer photodiodenkontaktierung für einen tfa-bildsensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20061004

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090422