EP1363948A1 - Polypeptide eines p53-protein-spezifischen murinen alpha/beta t-zell rezeptors, diese kodierende nukleinsaeuren und deren verwendung - Google Patents

Polypeptide eines p53-protein-spezifischen murinen alpha/beta t-zell rezeptors, diese kodierende nukleinsaeuren und deren verwendung

Info

Publication number
EP1363948A1
EP1363948A1 EP02719973A EP02719973A EP1363948A1 EP 1363948 A1 EP1363948 A1 EP 1363948A1 EP 02719973 A EP02719973 A EP 02719973A EP 02719973 A EP02719973 A EP 02719973A EP 1363948 A1 EP1363948 A1 EP 1363948A1
Authority
EP
European Patent Office
Prior art keywords
protein
polypeptide
nucleic acid
cell
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02719973A
Other languages
English (en)
French (fr)
Inventor
Thomas Stanislawski
Frank Schmitz
Holger Voss
Matthias Theobalt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Immugenics AG
Original Assignee
Immugenics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immugenics AG filed Critical Immugenics AG
Publication of EP1363948A1 publication Critical patent/EP1363948A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the invention relates to polypeptides of the murine ⁇ / ⁇ -T cell receptor mediating a p53 protein-specific T cell response, nucleic acids encoding them and their use in the therapy, diagnosis and / or prevention of diseases associated with p53 protein.
  • T cell antigen receptor T cell antigen receptor
  • ⁇ and ß disulfide-linked polypeptides
  • Both receptors are associated with a set of five polypeptides, the CD3 complex, and thus together form the TZR complex (TZR-CD3 complex).
  • the ⁇ / ß-TZR is the most important functionally, because it is expressed in over 95% of all T cells.
  • ⁇ / ⁇ -T cells can be divided into two different overlapping populations: a subgroup that carries the CD4 marker and mainly supports the immune response (T H ) and a subgroup that carries the CD8 marker and is essentially cytotoxic (TQ).
  • CD8 + T cells recognize antigens in association with MHC class I molecules. Such antigens can include tumor-specific or tumor-associated peptide antigens. After detection of the peptide antigens, the cell in question is killed by the T cell lysing the target cell and / or inducing apoptosis of these target cells, or releasing cytokines (eg IL-2, IFN- ⁇ ).
  • cytokines eg IL-2, IFN- ⁇
  • TAA tumor-associated peptide antigens
  • Oligopeptides of the p53 protein can be presented in the context of MHC class I molecules on the cell surface and represent attractive target structures for CD8-positive T cells.
  • TCR protein-specific TCR
  • WO 97/32603 generally describes a method for producing recombinant T lymphocytes which express specific TCRs directed against tumor tissue.
  • HLA-transgenic mouse in this case HLA-A2.1
  • HLA-A2.1 is immunized with tumor-associated antigen in order to produce cytotoxic T lymphocytes that express specific TCRs on their surface.
  • Peptides of various genes such as Her-2 / neu, Ras, p53, tyrosinase, MART, gplOO, MAGE, BAGE and MUC-1 are described as tumor-associated antigens.
  • the nucleotide sequence which contains at least one variable region of the .alpha. And .beta. Chain of the corresponding non-human TCR is then isolated from the Her-2 / neu-specific T lymphocytes and used in various genetic (including "humanized") TCR constructs.
  • WO 97/32603 describes fusion proteins of variable regions of TZR with the ⁇ region of CD3, CD8 or CD 16, as well as the use of flexible linkers of the amino acid sequence (GGGGS) 3 .
  • Another aspect of the invention relates to a fusion protein comprising the polypeptide according to the invention or functional variants or parts thereof or nucleic acids encoding it, functional variants or parts thereof.
  • the fusion protein can be characterized in that it comprises the ⁇ region of CD3 or CD8 or CD 16 or parts thereof, in particular the ⁇ region of human CD3 or CD8 or CD 16 or parts thereof.
  • a fusion protein according to the invention which comprises a flexible linker (Whitlow et al., "An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability", Prot. Engin. 6 (8), pp. 989-995, 1993), in particular a linker of the amino acid sequence (GGGGS) 3.
  • the fusion protein according to the invention can comprise the ⁇ chain of the CD3 complex or ITAM motifs of the ⁇ chain or parts thereof, in particular the ⁇ chain of human CD3 or parts thereof
  • the fusion protein can further be characterized in that it comprises CD8 ⁇ or the Lck binding motif of CD8 ⁇ or parts thereof, in particular human CD8 ⁇ .
  • the fusion protein according to the invention can furthermore be a chimeric partially or completely humanized ⁇ and / or ⁇ TCR chain.
  • Another aspect of the invention relates to a fusion protein, which is a single chain TZR.
  • a fusion protein according to the invention which comprises a flexible linker, in particular a linker of the amino acid sequence (GGGGS) 3 .
  • the fusion protein according to the invention can also be characterized in that it is an ⁇ / ⁇ -TZR.
  • Another object of the invention is a method for producing a fusion protein for the diagnosis and / or treatment of diseases associated with p53 protein or for the identification of pharmacologically active substances, e.g. in a suitable host cell in which a nucleic acid according to the invention is used.
  • Fusion proteins are produced here which contain the polypeptides according to the invention described above, the fusion proteins themselves already having the function of a polypeptide of the invention or the specific function being functionally active only after the fusion portion has been split off. Above all, this includes fusion proteins with a proportion of approximately 1-200, preferably approximately 1-150, in particular approximately 1-100, especially approximately 1-50 foreign amino acids. Examples of such peptide sequences are prokaryotic peptide sequences which e.g. B. can be derived from the galactosidase of E. coli. Furthermore, viral peptide sequences, such as, for example, from bacteriophage Ml 3, can also be used in order to generate fusion proteins for the "phage display" method known to the person skilled in the art.
  • a further / further polypeptide can be added to purify the proteins according to the invention.
  • Protein tags according to the invention allow, for example, high-affinity absorption to a matrix, stringent washing with suitable buffers without eluting the complex to any appreciable extent, and then targeted elution of the absorbed complex.
  • Examples of the protein tags known to the person skilled in the art are a (His) 6 tag, a Myc tag, a FLAG tag, a Strep tag, a Strep tag II, a hemagglutinin tag, glutathione transferase (GST) tag, intein with an affinity chitin binding tag or maltose binding protein (MBP) tag.
  • These protein tags can be located at the N-, C-terminal and / or internally.
  • all of the polypeptides according to the invention or parts thereof may have been produced under cell-free conditions, e.g. B. by synthesis or by in v tro translation. So all or part of the polypeptide of which, for example, can be synthesized using classic synthesis (Merrifield technique). Parts of the polypeptides according to the invention are particularly suitable for obtaining antisera, with the aid of which suitable gene expression banks can be searched in order to arrive at further functional variants of the polypeptide according to the invention.
  • the invention also relates to polypeptides which are derivatives of an antibody with specificity for the p53 peptide antigen (AA 264-272), preferably presented in the context of HLA-A2.1.
  • the invention further comprises retro-inverse peptides or pseudopeptides according to the polypeptide sequence of SEQ ID No. 1 to SEQ ID No. 5 or functional variants or parts thereof. These peptides have -NH-CO bonds instead of the -CO-NH peptide bonds.
  • nucleic acid which is a DNA, RNA, PNA (peptide nucleic acid) or p-NA (pyranosyl nucleic acid), preferably a DNA, in particular a double-stranded DNA with a length of at least 8 nucleotides , preferably with at least 12 nucleotides, in particular with at least 24 nucleotides.
  • the nucleic acid can be characterized in that the sequence of the nucleic acid has at least one intron and / or a polyA sequence. It can also be in the form of its antisense sequence.
  • a double-stranded DNA is generally preferred for the expression of the gene in question, the DNA region coding for the polypeptide being particularly preferred.
  • This area begins with the first start codon (ATG) lying in a Kozak consensus sequence (Kozak 1987, Nucleic. Acids Res. 15: 8125-48) until the next stop codon (TAG, TGA or TAA), which is in the same reading frame as the ATG.
  • ATG first start codon
  • TGA a Kozak consensus sequence
  • TAA next stop codon
  • Another use of the nucleic acid sequences according to the invention is the construction of antisense oligonucleotides (Zheng and Kemeny 1995, Clin. Exp. Immunol. 100: 380-382; Nellen and Lichtenstein 1993, Trends Biochem. Sei.
  • Oligonucleotides can therefore appear as Therapeutic are suitable.
  • This strategy is also suitable, for example, for skin, epidermal and dermal cells, in particular if the "antisense" -01igonucleotides are complexed with liposomes (Smyth et al. 1997, J. Invest. Dermatol. 108: 523-6; White et al. 1999, J. Invest. Dermatol. 112: 699-705; White et al. 1999, J. Invest. Dermatol. 112: 887-92).
  • a single-stranded DNA or RNA is preferred for use as a probe or as an "antisense" oligonucleotide.
  • nucleic acids according to the invention can also have been produced synthetically.
  • a nucleic acid which has been prepared synthetically can be used to carry out the invention.
  • the nucleic acid according to the invention can be chemically determined using the protein sequences described in SEQ ID No. 1 to SEQ ID No. 5 using the genetic code z. B. can be synthesized by the phosphotriester method (see, for example, Uhlmann & Peyman 1990, Chemical Reviews 90: 543-584).
  • oligonucleotides are rapidly degraded by endo- or exonucleases, in particular by DNases and RNases occurring in the cell. It is therefore advantageous to modify the nucleic acid in order to stabilize it against degradation so that a high concentration of the nucleic acid in the cell is maintained over a long period of time (Beigelman et al. 1995, Nucleic Acids Res. 23: 3989-94 ; Dudycz 1995, WO 95/11910; Macadam et al. 1998, WO 98/37240; Reese et al. 1997, WO 97/29116). Typically, such stabilization can be obtained by introducing one or more internucleotide phosphate groups or by introducing one or more non-phosphorus internucleotides.
  • Suitable modified internucleotides are summarized in Uhlmann and Peymann (1990, Chem. Rev. 90_544) (see also Beigelman et al. 1995, Nucleic Acids Res. 23: 3989-94; Dudycz 1995, WO 95/11910; Macadam et al. 1998 , WO 98/37240; Reese et al. 1997, WO 97/29116).
  • Modified internucleotide phosphate residues and / or non-phosphorus ester bonds in a nucleic acid which can be used in one of the uses according to the invention contain, for example, methylphosphonate, phosphorothioate, phosphoramidate, phosphorodithioate, phosphate ester, while non-phosphorus internucleotide analogs, for example siloxane bridges, carbonate bridges , Carboxymethyl ester, acetamidate bridges and / or thio bridges. It is also intended that this modification be the The shelf life of a pharmaceutical composition which can be used in one of the uses according to the invention is improved.
  • Another aspect of the present invention relates to a vector, preferably in the form of a plasmid, shuttle vector, phagemid, cosmid, expression vector, adenoviral vector, retroviral vector (Miller, et al. "Improved retroviral vectors for gene transfer and expression", BioTechniques Vol. 7, No. 9, p 980, 1989) and / or gene therapy-effective vector which contains a nucleic acid according to the invention.
  • a vector preferably in the form of a plasmid, shuttle vector, phagemid, cosmid, expression vector, adenoviral vector, retroviral vector (Miller, et al. "Improved retroviral vectors for gene transfer and expression", BioTechniques Vol. 7, No. 9, p 980, 1989) and / or gene therapy-effective vector which contains a nucleic acid according to the invention.
  • the nucleic acid according to the invention can preferably be contained in a vector in an expression vector or a gene therapy vector.
  • the gene-therapeutic vector T cell preferably contains specific regulatory sequences which are functionally linked to the nucleic acid according to the invention.
  • the expression vectors can be prokaryotic or eukaryotic expression vectors. Examples of prokaryotic expression vectors are e.g. for expression in E. coli the vectors pGEM or pUC derivatives and for eukaryotic expression vectors for expression in Saccharomyces cerevisiae z. B. the vectors p426Met25 or p426GALl (Mumberg et al. 1994, Nucleic. Acids Res.
  • the expression vectors also contain suitable promoters for the respective host cell, e.g. B. the trp promoter for expression in E. coli (see, for example, EP-B1-0 154 133), the Met 25, GAL 1 or ADH2 promoter for expression in yeasts (Radorel et al. 1983, J. Biol. Chem. 258: 2674-2682; Mumberg, supra), the baculovirus polyhedrin promoter, for expression in insect cells (see, for example, 13. EP-B1-0 127 839).
  • promoters are suitable for expression in mammalian cells, which allow constitutive, regulatable, tissue-specific, cell cycle-specific or metabolically specific expression in eukaryotic cells.
  • Regulable elements are promoters, activator sequences, enhancers, silencers and / or repressor sequences.
  • suitable regulatable elements which enable constitutive expression in eukaryotes are promoters which are recognized by the RNA polymerase III or viral promoters, CMV enhancers, CMV promoters, SV40 promoters or LTR promoters e.g. B. from MMTV (mouse mammary tumor virus; Lee et al. 1981, Nature 214: 228-232) and other viral promoter and activator sequences derived from, for example, HBV, HCV, HSV, HPV, EBV, HTLV or HIV.
  • regulatable elements which enable regulatable expression in eukaryotes are the tetracycline operator in combination with a corresponding repressor (Gossen et al. 1994, Curr. Opin. Biotechnol. 5: 516-20).
  • regulatable elements which enable cell cycle-specific expression in eukaryotes are promoters of the following genes: cdc25, cyclin A, cyclin E, cdc2, E2F, B-myb or DHFR (Zwicker and Müller 1997, Trends Genet. 13: 3-6).
  • regulatable elements which enable metabolically specific expression in eukaryotes are promoters which are regulated by hypoxia, by glucose deficiency, by phosphate concentration or by heat shock.
  • the vector of the invention can be used to transfect a host cell, which is preferably a T cell.
  • a host cell is particularly preferred which is characterized in that it expresses a polypeptide or fusion protein according to the invention on its surface.
  • the nucleic acid can be present as a plasmid, as part of a viral or non-viral vector.
  • viral vectors retroviruses, baculoviruses, vaccinia viruses, adenoviruses, adeno-associated viruses and herpes viruses.
  • non-viral vectors virosomes, liposomes, cationic lipids, or poly-lysine-conjugated DNA.
  • vectors which are active in gene therapy are virus vectors, for example adenovirus vectors or retroviral vectors (Lindemann et al., 1997, Mol. Med. 3: 466-76; Springer et al. 1998, Mol. Cell. 2: 549-58).
  • a preferred mechanism for expression of the polypeptides according to the invention in vivo is viral gene transfer, in particular with the aid of retroviral particles. These are preferably used to provide corresponding target cells, preferably T-lymphocytes, of the patient ex vivo with the genes or nucleotide sequences coding for the inventive polypeptides by transduction.
  • the target cells can then be reinfused into the patient in the sense of an adoptive cell transfer in order to take over tumorizide and / or immunomodulating effector functions with the de novo inserted specificity.
  • very good gene therapy successes in the treatment of SCID-Xl disease characterized by immunocompetence in newborns have been achieved in this way, in the haematological progenitor cells with an analogous intact transgene of a non-functional mutant variant of the ⁇ chain gene occurring in children, that is essential for differentiation into the different effector cells of the adaptive immune system, have been provided retrovirally (Cavazzana-Calvo et al., 2000).
  • the viral vectors frequently used for the transfer of genes are predominantly retroviral, lentiviral, adenoviral and adeno-associated viral vectors. These are circular nucleotide sequences derived from natural viruses, in which at least the viral structural protein-encoding genes are exchanged for the construct to be transferred.
  • Retroviral vector systems create the prerequisites for long-term expression of the transgene through the stable but non-directional integration into the host genome. Younger generation vectors have no irrelevant and potentially immunogenic proteins, furthermore there is no pre-existing immunity of the recipient against the vector.
  • Retroviruses contain an RNA genome that is packaged in a lipid shell that consists of parts of the host cell membrane and virus proteins. To express viral genes, the RNA genome is reverse transcribed and integrated with the enzyme integrase in the target cell DNA. This can then be transcribed and translated by the infected cell, creating viral components that combine to form retroviruses. RNS is used exclusively da n inserted into the newly created viruses.
  • the retrovirus genome has three essential genes: gag, which codes for viral structural proteins, so-called group-specific antigens, pol for enzymes such as reverse transcriptase and integrase, and env for the envelope protein, which is responsible for the binding of the host-specific receptor.
  • gag codes for viral structural proteins
  • group-specific antigens pol for enzymes such as reverse transcriptase and integrase
  • env for the envelope protein, which is responsible for the binding of the host-specific receptor.
  • packaging cell lines which have been additionally equipped with the gag / pol-coding genes and express them "in trans” and thus complement the formation of replication-incompetent (ie gag / pol-deleted) transgenic virus particles.
  • An alternative is the cotransfection of the essential virus genes, whereby only the vector containing the transgene carries the packaging signal.
  • the separation of these genes on the one hand enables any combination of the gal / pol reading frame with e «v reading frames obtained from different strains, which creates pseudotypes with altered host tropism, and on the other hand drastically reduces the formation of replication-competent viruses within packaging cells.
  • the coat protein derived from “gibbon ape leukemia virus” (GALV), which is used in the present case, is able to transduce human cells and is established in the packaging cell line PG13 with an amphotropic host region (Miller et al., 1991).
  • the security is increased by selective deletion of non-essential virus sequences to prevent homologous recombination and thus the production of replication-competent particles.
  • New, non-viral vectors consist of autonomous, self-integrating DNA sequences, the transposons, which are e.g. liposomal transfection were introduced into the host cell and were successfully used for the first time to express human transgenes in mammalian cells (Yant et al, 2000).
  • Gene therapy-effective vectors can also be obtained by complexing the nucleic acid according to the invention with liposomes, since this enables a very high transfection efficiency, in particular of skin cells, to be achieved (Alexander and Akhurst 1995, Hum. Mol. Genet. 4: 2279-85) .
  • lipofection small unilamellar vesicles are made from cationic lipids by ultrasound treatment of the liposome suspension.
  • the DNA is bound ionically on the surface of the liposomes in such a ratio that a positive net charge remains and the plasmid DNA closes 100% is complexed by the liposomes.
  • lipid mixtures DOTMA (1,2-dioleyloxypropyl-3-trimethylammonium bromide) and DPOE (dioleoylphosphatidylethanolamine) have meanwhile been synthesized and numerous new lipid formulations have been synthesized and tested for their efficiency in transfecting various cell lines (Behr et al. 1989, Proc. Natl. Acad. Sci. USA 86: 6982-6986; Feigner et al. 1994, J. Biol. Chem. 269: 2550-25561; Gao and Huang. 1991, Biochim. Biophys. Acta 1189: 195-203).
  • lipid formulations examples include DOTAP N- [l- (2,3-dioleoyloxy) propyl] -N, N, N-trimethylammonium ethyl sulfate or DOGS (TRANSFECTAM; dioctadecylamidoglycyl spermine).
  • Excipients that increase the transfer of nucleic acids into the cell can be, for example, proteins or peptides that are bound to DNA or synthetic peptide-DNA molecules that enable the transport of the nucleic acid into the nucleus of the cell (Schwartz et al. 1999 , Gene Therapy 6: 282; Branden et al 1999, Nature Biotech. 17: 784).
  • Auxiliaries also include molecules that enable the release of nucleic acids into the cytoplasm of the cell (Kiehler et al 1997, Bioconj. Chem. 8: 213) or, for example, liposomes (Uhlmann and Peymann 1990, supra).
  • Another particularly suitable form of gene therapy vectors can be obtained by applying the nucleic acid according to the invention to gold particles and using the so-called “gene gun” to shoot them into tissue, preferably into the skin, or cells (Wang et al., 1999, J. Invest. Dermatol. 112: 775-81.
  • the part of the nucleic acid which codes for the polypeptide has one or more non-coding sequences including intron sequences, preferably between the promoter and the start codon of the polypeptide, and / or a polyA sequence , in particular the naturally occurring polyA sequence or an SV40 virus polyA sequence, especially at the 3 'end of the gene, since this can stabilize the mRNA (Jackson 1993, Cell 74: 9-14 and Palmiter et al 1991, Proc. Natl. Acad. Sci. USA 88: 478-482).
  • Another object of the present invention is a host cell, in particular a T cell, which is transformed with a vector according to the invention or another gene construct according to the invention.
  • Host cells can be both prokaryotic and eukaryotic cells, examples of prokaryotic host cells are E. coli and Saccharomyces cerevisiae or insect cells for eukaryotic cells.
  • a particularly preferred transformed host cell is a transgenic T precursor cell or a stem cell, which is characterized in that it comprises a gene construct according to the invention or an expression cassette according to the invention.
  • Methods for transforming host cells and / or stem cells are well known to those skilled in the art and include, for example, electroporation, microinjection, or transduction.
  • a particularly preferred transformed host cell is a patient's own T cell which, after removal, is transfected or transduced with a gene construct according to the invention.
  • Host cells according to the invention can in particular be obtained by removing one or more cells, preferably T cells, in particular CD8 + T cells, from the patient, which are then transfected or transduced ex vivo with one or more genetic constructs according to the invention, in order to thus inventive To maintain host cells.
  • the specific T cells generated ex vivo can then be re-implanted in the patient.
  • the process is thus similar to that in Darcy et al. ("Redirected perforin-dependent lysis of colon carcinoma by ex vivo genetically engineered CTL", J. Immunol. 2000, 164: 3705-3712) described methods using scFv anti-CEA receptor transduced ZTL, perforin and ⁇ -IFN.
  • Another preferred method according to the invention for identifying p53 protein-specific antigens is characterized in that p53-presenting tumor cells or fractions thereof are brought together with a host cell according to the invention under conditions in which the tumor cells or fractions thereof only lyse when the tumor does so p53 protein-specific antigen for which the expressed polypeptide or fusion protein is specific.
  • Another aspect of the invention relates to a method for producing an antibody, preferably a polyclonal or monoclonal antibody for the diagnosis and / or treatment of diseases associated with p53 protein or for the identification of pharmacologically active substances, characterized in that an antibody-producing organism with a Immunized polypeptide according to the invention or functional equivalents thereof or parts thereof with at least 6 amino acids, preferably with at least 8 amino acids, in particular with at least 12 amino acids or a nucleic acid according to the invention.
  • the method is carried out according to methods generally known to the person skilled in the art by immunizing a mammal, for example a rabbit, with the polypeptide according to the invention or the parts mentioned thereof or nucleic acid (s) encoding it, if appropriate in the presence of, for. B. incomplete Freund's adjuvant and / or aluminum hydride oxide gels (see e.g. Diamond et al. 1981, The New England Journal of Medicine, pp. 1344-1349).
  • the polyclonal antibodies produced in the animal due to an immunological reaction can then be easily isolated from the blood by generally known methods and z. B. clean over column chromatography.
  • Monoclonal antibodies can be produced, for example, by the known method from Winter & Milstein (1991, Nature 349: 293-299).
  • Another object of the present invention is an antibody for diagnosis, prognosis and therapy optimization of diseases associated with p53 protein or for the identification of pharmacologically active substances, which is directed against a polypeptide according to the invention and reacts specifically with the polypeptides according to the invention, the above mentioned parts of the polypeptide are either themselves immunogenic or by coupling to suitable carriers, such as. B. bovine serum albumin, immunogenic or can be increased in their immunogenicity.
  • This antibody is either polyclonal or monoclonal, a monoclonal antibody is preferred.
  • the term antibody is also understood to mean genetically engineered and optionally modified antibodies or antigen-binding parts thereof, such as, for example, chimeric antibodies, humanized antibodies, multifunctional antibodies, bi- or oligo-specific antibodies, single-stranded antibodies, F (ab) - or F (ab) 2 fragments (see, for example, EP-B1-0 368 684, US 4,816,567, US 4,816,397, WO 88/01649, WO 93/06213, WO 98/24884).
  • the antibodies according to the invention can be used for diagnosis, therapy monitoring and / or treatment of diseases associated with p53 protein or for the identification of pharmacologically active substances.
  • the present invention further relates to a method for producing a medicament for the treatment of diseases associated with p53 protein, characterized in that at least one nucleic acid, at least one polypeptide, at least one host cell or at least one antibody according to one of the preceding claims together with suitable additional substances. and auxiliary materials is combined.
  • the present invention further relates to a medicament for the treatment of diseases associated with p53 protein which is produced by this process and which contains at least one nucleic acid, at least one polypeptide or at least one antibody according to the present invention, optionally together with suitable additives and auxiliaries.
  • the invention further relates to the use of this medicament for the treatment of diseases associated with p53 protein.
  • Treatment of diseases associated with p53 protein can be carried out in a conventional manner, e.g. by infusions or injections containing the medicinal products according to the invention.
  • the medicaments according to the invention can furthermore optionally be administered in the form of liposome complexes or gold particle complexes.
  • Treatment by means of the medicaments according to the invention can also be administered via oral dosage forms, such as e.g. Tablets or capsules, through which mucous membranes, for example the nose or oral cavity, or in the form of disposers implanted under the skin.
  • Transdermal therapeutic systems are known for example from EP 0 944 398 AI, EP 0 916 336 AI, EP 0 889 723 AI or EP 0 852 493 AI.
  • the (poly) peptides according to the invention and their derivatives can also be used to specifically make patients with diseases, in particular tumor diseases, associated with p53 immune-competent in order to induce, generate and expand p53.264-272-specific cytotoxic Reach T-lymphocytes and specifically kill the tumor and leukemia cells of the patients concerned.
  • diseases include, for example, solid tumor diseases, lymphohematopoietic neoplasms, malignant hematological diseases or blasts.
  • one or more cells are removed from the patient and are then transfected or transduced ex vivo with one or more genetic constructs according to the invention.
  • the specific T cells generated ex vivo can then be re-infused or transplanted into the patient.
  • the process is thus similar to that in Darcy et al. ("Redirected perforin-dependent lysis of colon carcinoma by ex vivo genetically engineered CTL", 2000, J. Immunol. 164: 3705-3712) described immunotherapeutic methods in colon carcinomas using scFv anti-CEA receptor-transduced CTL, perforin and ⁇ -IFN.
  • Another aspect of the invention relates to a method for producing a test for finding functional interactors in connection with diseases associated with p53 protein, which is characterized in that at least one nucleic acid, at least one polypeptide or at least one antibody according to the present invention together with a suitable additive - and auxiliary materials are combined.
  • the term "functional interactors" within the meaning of the present invention is to be understood as all those molecules, compounds and / or compositions and mixtures of substances which are suitable for use with the nucleic acids, polypeptides or antibodies according to the invention, if appropriate together with suitable additives and auxiliaries Can interact.
  • Possible interactors are simple chemical organic or inorganic molecules or compounds, but can also include peptides, proteins or complexes thereof.
  • the functional interactors can influence the function (s) of the nucleic acids, polypeptides or antibodies in vivo or in vitro or can only bind to the nucleic acids, polypeptides or antibodies according to the invention or have other interactions with them covalently or non-covalently.
  • the invention further comprises a test according to the invention for identifying functional interactors in connection with diseases associated with p53 protein, which contains at least one nucleic acid, at least one polypeptide or at least one antibody according to the present invention, optionally together with suitable additives and auxiliaries. Often the pathological behavior of the cells can be mimicked in vitro and substances can be sought that restore the normal behavior of the cells and that have a therapeutic potential. In addition, this test system can be used for the screening of substances which inhibit an interaction between the polypeptide according to the invention and a functional interactor.
  • the present invention also relates to a medicament for the indication, such as diagnosis, and therapy of diseases associated with p53 protein, which contains a nucleic acid according to the invention or a polypeptide according to the invention and, if appropriate, suitable additives or auxiliaries, and a method for producing such Medicinal product for the treatment of diseases associated with p53 protein, in which a nucleic acid according to the invention or a polypeptide according to the invention is formulated with a pharmaceutically acceptable carrier.
  • Suitable therapeutic agents and / or prophylactic agents are in particular vaccines, recombinant particles or injections or infusion solutions which contain as active ingredient (a) the TCR polypeptide according to the invention and / or its derivatives and / or (b) a nucleic acid according to the invention and / or (c ) T-lymphocytes generated in-vitro or ex-vivo, which contain a TZR specifically directed against p53.264-272.
  • a drug and / or recombinant particle which contains the nucleic acid according to the invention in naked form or in the form of one of the gene therapy-active vectors described above or in a form complexed with liposomes or gold particles is particularly suitable for gene therapy use in humans.
  • the pharmaceutical carrier is, for example, a physiological buffer solution, preferably with a pH of approximately 6.0-8.0, preferably approximately 6.8-7.8. In particular of approximately 7.4 and / or an osmolarity of approximately 200-400 milliosmol / liter, preferably of approximately 290-310 milliosmol / liter.
  • the pharmaceutical carrier can contain suitable stabilizers, such as e.g. B. nuclease inhibitors, preferably complexing agents such as EDTA and / or other auxiliaries known to those skilled in the art.
  • the invention further relates to a method for producing a polypeptide for the diagnosis and / or treatment of diseases associated with p53 protein or for the identification of pharmacologically active substances in a suitable host cell, which is characterized in that a nucleic acid according to the invention is suitable for Way is expressed.
  • the polypeptide is thus produced, for example, by expression of the nucleic acid according to the invention in a suitable expression system, as already described above, using methods which are generally known to the person skilled in the art.
  • suitable host cells are, for example, the E. coli strains DHS, HB101 or BL21, the yeast strain Saccharomyces cerevisiae, insect cell lines, e.g. B. from Spodoptera frugiperda, or the animal cells COS, Vero, 293, HaCaT, and HeLa, all of which are commonly available.
  • a diagnostic agent according to the invention for monitoring the therapy contains the polypeptide according to the invention or the immunologically active parts thereof described in more detail above.
  • the polypeptide or parts thereof which are preferably attached to a solid phase, e.g. B. from nitrocellulose or nylon, for example, with the body fluid to be examined, for. As blood, are brought into contact in vitro, so as to be able to react, for example, with auto rim antibodies or tumor and leukemia cells.
  • the antibody-antigen complex can then be detected, for example, using labeled anti-human IgG or anti-human IgM antibodies.
  • the label is, for example, an enzyme, e.g. B. peroxidase, which catalyzes a color reaction, or around another suitable label. The presence and the amount of autoimmune antibodies present can thus be easily and quickly detected via the color reaction.
  • Another diagnostic agent for therapy monitoring contains the antibodies according to the invention themselves.
  • these antibodies for example, a tissue sample can be easily and quickly examined to determine whether the relevant polypeptide is present in an increased amount, thereby causing diseases associated with p53 protein diagnose and receive information about the success of the therapy.
  • the antibodies according to the invention are labeled, for example, with an enzyme, as already described above. The specific antibody-antigen complex can thus be detected easily and just as quickly via an enzymatic color reaction.
  • Another diagnostic agent according to the invention comprises a probe, preferably a DNA probe, and / or primer.
  • a probe preferably a DNA probe, and / or primer.
  • DNA or RNA fragments with a length of approx. 100-1000 nucleotides, preferably with a length of approx. 200-500 nucleotides, in particular with a length of approx. 300-400 nucleotides, the sequence of which from the polypeptides are suitable can be derived according to SEQ ID No. 1 to SEQ ID No. 5 of the sequence listing.
  • the derived nucleic acid sequences can be used to synthesize oligonucleotides which are suitable as primers for a polymerase chain reaction.
  • Suitable fragments are, for example, DNA fragments with a length of approx. 10-100 nucleotides, preferably with a length of approx.
  • sequence of which from the polypeptides according to SEQ ID No. 1 to SEQ ID No. 5 of the sequence listing can be derived on the basis of the corresponding cDNA sequences in accordance with the genetic code.
  • coding nucleic acid refers to a DNA sequence that codes for an isolatable bioactive polypeptide according to the invention or a precursor.
  • the polypeptide can be encoded by a full-length sequence or any part of the coding sequence, as long as the specific, for example enzymatic, activity is retained.
  • the term “functional variants” denotes all DNA sequences that are complementary to a DNA sequence that hybridize under stringent conditions with a derived reference sequence or parts thereof, in particular the hypervariable V (D) JC region, and one have similar or identical activity to the corresponding polypeptide according to the invention.
  • “Stringent hybridization conditions” are to be understood as those conditions in which hybridization takes place at 60 ° C. in 2.5 ⁇ SSC buffer, followed by several washing steps at 37 ° C. in a lower buffer concentration and remains stable.
  • functional variants in the sense of the present invention is understood to mean polypeptides that are functionally related to the polypeptides according to the invention, ie have structural features of the polypeptides.
  • functional variants are the Corresponding polypeptides which are derived from organisms other than the mouse, that is to say humans, or, preferably, from non-human mammals such as, for. B. monkeys, pigs and rats or birds, z. B. chickens.
  • Other examples of functional variants are polypeptides which are encoded by different alleles of the gene, in different individuals or in different organs of an organism.
  • Functional variants in the sense of the present invention are in particular polypeptides which recognize the same epitope of the p53 protein as the TZR of the present invention.
  • this also includes polypeptides which have a sequence homology, in particular a sequence identity, of approximately 70%, preferably approximately 80%, in particular approximately 90%, in particular approximately 95% of the polypeptide with the amino acid sequence according to one of the SEQ ID No. 1 to SEQ ID No. 5 and / or to DNA sequences derived from the peptide sequences.
  • polypeptides in the range from about 1-60, preferably from about 1-30, in particular from about 1-15, especially of approx. 1-5 amino acids.
  • the first amino acid methionine may be absent without significantly changing the function of the polypeptide.
  • FIG. 2 Illustration of the prepared TZR chains.
  • the nomenclature was used for the variable segments (V alpha / beta) according to Arden et al. (Immunogenetics 1995, 42: 501-530), for the J segments and the constant domains according to the Im MunoGeneTics database (http: // imgt.cines.fr:8104).
  • the TZR chains V ⁇ 3, V ⁇ l3, Vß3 and Vß3CßO are productive in terms of their sequence, Vßl, however, has a frame shift in the recombination region VDJ and is subsequently not productive for a TZR beta chain polypeptide.
  • CßO represents the insertion resulting from alternative splicing.
  • Figure 4 Representation of the viral vector pBullet AV03 for expression of the wild type
  • Figure 5 Representation of the Wt muTZR V ⁇ 13 chain, which was cloned via the restriction enzyme sites JVcoI and Sall as described.
  • FIG. 6 representation of the functional Wt muTZR Vß3, cloned into the retroviral vector pBullet.
  • FIG. 7 Result of the flow cytometric measurement of the PBMZ transduced with the empty vector pBullet. No transgene (Vß3) could be detected.
  • Figure 8 Representation of the expression of the transgene Vß3 as a marker for the reconstitution of the mu-TZR expression on human PBMZ, which could be detected by flow cytometry. As expected, the expression can only be shown for cells which additionally express the CD3 complex.
  • FIG. 10 Flow cytometric representation of human transduced with V ⁇ 3Vß3
  • V ⁇ 3 productive, functional mouse ⁇ chain (muv ⁇ -muc ⁇ ); (see Figure 2);
  • SEQ ID ⁇ r. 2 "V ⁇ 13": productive mouse ⁇ chain (muv ⁇ -muc ⁇ ); (see Figure 2); SEQ ID ⁇ r. 3: "Vß 1": non-productive, non-functional mouse ß chain (muvß-mucß);
  • Vß 3 productive, functional mouse ß chain (muvß-mucß);
  • Vß 3Cb0 splicing variant of Vß 3 with CbO insertion before Cbl
  • cytosolic mRNA was carried out using the commercially available QIAprep Miniprep (QIAGEN, Hilden, Germany) according to the manufacturer's protocol.
  • the 5'RACE-PCR was carried out using the commercially available RACE PCR Kit (Röche Molecular Diagnostics) according to the manufacturer's protocol.
  • the reverse transcription was carried out with displayTHERMO-RT (Display Systems Biotech, Vista, CA, USA).
  • displayTHERMO-RT Display Systems Biotech, Vista, CA, USA.
  • the corresponding kits Invitrogen, Netherlands
  • the cytotoxicity tests were carried out according to the method described in Theobald et al. ("Targeting p53 as a general tumor antigen", 1995, Proc. Natl. Acad. Sci. USA 92, 11993-11997).
  • 5'-RACE-PCR (Boehringer Mannheim, Germany) was carried out using the self-designed gene-specific primers (SEQ ID No. 6 to SEQ ID No. 14) isolated the full-length ⁇ -TZR chain.
  • SEQ ID No. 6 to SEQ ID No. 14 the self-designed gene-specific primers isolated the full-length ⁇ -TZR chain.
  • the DNA intermediate (approx. 1100 bp) was prepared from an agarose gel before the second PCR (nested PCR). The approximately 1000 bp products were subsequently cloned and sequenced in the pCR®-XL-TOPO® vector system according to the manufacturer.
  • the orientation of the primers and the cloning of the alpha chain is shown schematically in FIG. 1.
  • the gene-specific primers for the amplification of the entire codogenic region of the TCR- ⁇ chain were chosen so that they mated in the 3'-non-codogenic region (UTR).
  • the gene-specific primer GSP-3 (SEQ ID No. 8), which finally pairs on the stop codon, artificially inserts an AscI site through its 5 'overhang.
  • the sequences of the gene-specific primers were determined by comparing published mouse TCR- ⁇ chain sequences and selecting suitable regions.
  • the procedure for cloning the TCR- ⁇ chain was the same as for the ⁇ chain, but no gene-specific primers could be used here that mated outside the codogenic region, since different genes of the constant domain of the ⁇ chain exist. Therefore a 3'-truncated product had to be generated, for which the 5'-RACE PCR was also used, which was sequenced.
  • the product of the first PCR showed no clear band in the gel electrophoresis, but was nevertheless extracted from the gel and sent to the nested PCR. The resulting double band was then cloned into the TOPO® vector system (Invitrogen).
  • V ⁇ 3 productive TCR- ⁇ chain, functional (SEQ ID No. 1);
  • V ⁇ l3 productive TCR- ⁇ chain (SEQ ID No. 2);
  • Vßl due to faulty rearrangement (Vßl-> D beta: frameshift) non-productive ß chain, not functional (SEQ ID No. 3);
  • Vß3 productive ß chain, functional (SEQ ID No. 4);
  • Vß3CßO Splicing variant of Vß3 with CßO insertion before Cßl (SEQ ID No. 5).
  • primers could be derived for each chain that pair in the 5 'region. These were modified in such a way (see SED ID No. 12-14) that a PCR had an Ncol site (CCATGG) inserted around the start codon ATG, whereby in the case of the ⁇ chains the second base triplet and thereby the second amino acid was modified.
  • CCATGG Ncol site
  • mRNA was first reverse transcribed again (displayTHERMO-RT, see p. 20), but this time with an oligo dT primer (displayTHERMO-RT, see p. 20), which is found in poly-A -tail of the RNA paired, resulting in a reverse transcript (single-stranded cDNA) of the entire RNA. This served as a template in a subsequent PCR.
  • the TZR- ⁇ chains were cloned using the reverse transcription and PCR described above, in which the flanking Ncol and S ZI sites were inserted.
  • pBullet and insert were digested with Ncol and S ⁇ / I, and the insert (V ⁇ 3 / V ⁇ l3) was ligated in according to standard methodology. After transformation of competent bacteria, positive clones were sequenced. A flawless V ⁇ l3 clone was chosen for further experiments.
  • Vß3 the coding nucleic acid was again cloned into the pCR®XL-TOPO® after the PCR in order to be cloned from there into the vector pBullet.
  • a suitable clone was selected and first linearized by means of a ⁇ .yd digest.
  • the empty vector pBullet was linearized by an Xhol digest. Then both "sticky" cut ends were filled in to "blun" ends by the T4 DNA polymerase in the presence of dNTPs.
  • these plasmids were amplified and prepared in bacterial cultures according to methods known to the person skilled in the art. In combination with the plasmids coding for the structural proteins gag, pol and GALV-erav, these were transfected into the embryonic kidney cell line 293 T via Ca 3 (P0 4 ) transfection. The following combinations were transfected:
  • FIGS. 8 and 9 show that both those with the combination of V ⁇ 3Vß3 and those with that from V ⁇ l3Vß3 were stainable for CD3 and muTCR Vß3, which was an indication of membrane-based expression of the ß chain transgene.
  • the negative control pBullet without transgene was not positive for Vß3 surface transgenes.
  • the lytic reactivity of retrovirally transduced human PBMZ was evaluated by cytotoxicity tests.
  • the transduced PBMZ were tested in a standard chromium release test, using peptide-loaded T2 cells, the p53 defect mutant Saos-2 and their mut (143 V-> A) p53 transfectant Saos-2/143.
  • the target cells which all had the HLA-A2.1 phenotype, were additionally added to a 20-fold excess of non-chromium-labeled K562 cells which, as a so-called "cold target", selectively served as NK cell target cells and thus the non-specific NK cell mediated lysis of the tumor cells decreased
  • the ratio of effector to target cells (E: Z) was 30.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Oncology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Die Erfindung stellt Polypeptide eines eine p53-Protein-spezifische T-Zell Antwort vermittelnden murinen α/β T-Zell Rezeptors oder funktioneller Varianten oder Teile davon oder diese kodierende Nukleinsäuren, funktionelle Varianten oder Teile davon zur Verfügung. Diese bewirken, daß p53-Protein-exprimierende Zellen von T-Zellen, die mit jenen Genen ausgestattet wurden, erkannt werden, Zytokine ausgeschüttet werden, und eine T-Zell-induzierte Lyse und/oder Apoptose von Tumor- oder Leukämiezellen herbeigeführt wird.

Description

Polypeptide eines p53-Protein-spezifischen murinen α/ß T-Zell Rezeptors, diese kodierende Nukleinsäuren und deren Verwendung
Beschreibung
Die Erfindung betrifft Polypeptide des eine p53-Protein-spezifische T-Zell Antwort vermittelnden murinen α/ß -T-Zell Rezeptors, diese kodierende Nukleinsäuren und deren Verwendung bei der Therapie, Diagnose und/oder Prävention von mit p53 -Protein assoziierten Erkrankungen.
Die Antigenerkennung durch T-Lymphozyten (ZTL) ist entscheidend für die Erzeugung und Regulierung einer effektiven Immunantwort. Der charakteristische T-Zellinien-Marker ist der T-Zell- Antigen-Rezeptor (TZR). Es gibt zwei definierte Typen von TZR: Einer ist ein Heterodimer von zwei Disulfid- verbundenen Polypeptiden (α und ß); der andere ist zwar strukturell ähnlich, besteht jedoch' aus γ- und δ-Pölypeptiden. Beide Rezeptoren sind mit einem Set von fünf Polypeptiden, dem CD3-Komplex assoziiert und bilden so zusammen den TZR-Komplex (TZR-CD3-Komplex). Der α/ß-TZR ist der funktionell bedeutendste, da er in über 95% aller T-Zellen exprimiert wird.
α/ß-T-Zellen können in zwei verschiedene sich überschneidende Populationen unterteilt werden: Eine Untergruppe, die den CD4-Marker trägt und hauptsächlich die Immunantwort unterstützt (TH) und eine Untergruppe, die den CD8-Marker trägt und im wesentlichen zytotoxisch ist (TQ). CD8+-T-Zellen erkennen Antigene in Assoziierung mit MHC-Klasse-I- Molekülen. Solche Antigene können unter anderem tumorspezifische oder tumorassoziierte Peptidantigene sein. Nach Erkennung der Peptidantigene wird die betreffende Zelle abgetötet, indem die T-Zelle die Zielzelle lysiert und/oder Apoptose dieser Zielzellen induziert, oder Zytokine (z.B. IL-2, IFN-γ) freisetzt.
Unter den tumorassoziierten Peptidantigenen (TAA), die im Kontext von MHC-Klasse-I- Molekülen auf der Oberfläche von Tumorzellen präsentiert werden, sind die sogenannten "universellen" TAA von besonderem Interesse. Diese TAA leiten sich überwiegend von zellulären Proteinen ab, die in normalen Zellen schwach exprimiert und in Tumorzellen überexprimiert werden. Zu diesen Proteinen gehört unter anderem das "p53" Protein, dessen Expression in ungefähr 50% aller humanen malignen Erkrankungen, insbesondere in einer Reihe solider Tumore, erhöht ist, und dessen Umsatz im Sinne einer Proteasom-vermittelten Degradation und nachfolgender MHC-Klasse-I-assoziierter Präsentation erhöht ist.
Oligopeptide des p53-Proteins können im Kontext mit MHC-Klasse-I-Molekülen auf der Zelloberfläche präsentiert werden und repräsentieren attraktive Zielstrukturen für CD8- positive T-Zellen.
Ein Ansatz für die Entwicklung immuntherapeutischer Verfahren zur Behandlung bösartiger Tumorerkrankungen ist die Identifizierung von Protein-spezifischen TZR. Solche TZR köm en unter bestimmten Voraussetzungen T-Zellen mit Antigenspezifität im allgemeinen und Tumor-Reaktivität im besonderen versehen mit dem Ziel, daß diese T-Zellen die Remission und die Eradikation eines bestimmten Tumors herbeiführen.
Weijtens et al. ("A retroviral vector System ,'STITCH'; in combination with an optimized single chain antibody chimeric receptor gene structure allows efficient gene transduction and expression in human T-lymphocytes", 1998, Gene Therapy 5:1995-1203) beschreiben ein retrovirales Vektorsystem zur Transduktion von Genen in aktivierte T-Lymphozyten. Dieses System wird verwendet, um die Expression von Antikörper-basierten chimären Rezeptoren in der Membran von T-Zellen zu bewirken. Diese T-Zellen können dann gegen z. B. Nieren- Karzinomzellen eingesetzt werden. Mittels FACS-Analyse wird die Protein-Expression und damit der Erfolg der Vektor-Übertragung bestimmt, während Cytotoxizitäts-Test Aufschluß über die erfolgreiche Expression und Funktion des chimären Rezeptors geben. Ähnlich beschreiben Eshhar et al. ("Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors", 1993, Proc. Natl. Acad. Sei. USA, 90:720-724) die Herstellung von tumorspezifischen Lymphozyten und ihre Verwendung in der Immuntherapie auf der Basis von Chimären, die die variablen Regionen eines Antikörpers mit der konstanten Region des TZR umfassen. Diese chimären Gene konnten auf der Oberfläche von zytolytischen T-Zell-Hybridomen exprimiert werden und bewirkten die Ausschüttung von Interleukin-2 nach Kontakt mit dem Antigen. Clay et al. ("Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity"; 1999, J. Immunology 163:507-513) beschreiben die Isolierung von Genen der α-TZR und ß-TZR Ketten eines MART-1 (25-35) spezifischen TZR und deren Expression in humanen peripheren Blut-Lymphozyten (PBLs). Die Lyse von verschiedenen Melanomzellinien wird beschrieben.
Darcy et al. ("Redirected perforin-dependent lysis of colon carcinoma by ex vivo genetically engineered CTL", 2000, J. Immunol. 164, 3705-3712) beschreiben ein innnuntherapeutiscb.es Verfahren für Colon-Karzinomen unter der Verwendung von scFv anti-CEA Rezeptor transduzierten ZTL, Perforin und γ-IFN. Das chimäre spezifische Rezeptorkonstrukt wird über einen retroviralen Vektor in primäre Maus-T-Lymphozyten transduziert. Diese Zellen wurden in Mäuse injiziert (sogenannte adoptiver T-Zell-Transfer), die vorher mit Colon- Karzinomzellen beimpft waren.
Aus Theobald et al. ("Targeting p53 as a general tumor antigen", 1995, Proc. Natl. Acad. Sei. USA 92:11993-11997) ist die Herstellung von p53-spezifischen zytotoxischen T-Zellen nach der Injektion von Peptiden aus der Wildtyp-Sequenz von p53 bekannt. Mittels dieser T- Zelllinien konnte anschließend eine Auswahl von menschlichen Tumorzellen lysiert werden. Die Isolierung von Genen spezifischer TZRs der gegen p53 gerichteten lyrischen T-Zellen wird nicht beschrieben. Die WO 97/32603 beschreibt allgemein ein Verfahren zur Herstellung von rekombinanten T-Lymphozyten, die gegen Tumorgewebe gerichtete spezifische TZRs exprimieren. Dabei wird eine HLA-transgene Maus (in diesem Fall HLA-A2.1) mit tumorassoziiertem Antigen immunisiert, um so die Produktion von zytotoxischen T- Lymphozyten zu bewirken, die spezifische TZRs auf ihrer Oberfläche exprimieren. Als tumorassoziierte Antigene werden Peptide verschiedener Gene, wie Her-2/neu, Ras, p53, Tyrosinase, MART, gplOO, MAGE, BAGE und MUC-1 beschrieben. Aus den Her-2/neu spezifischen T-Lymphozyten wird dann die Nukleotidsequenz, die mindestens eine variable Region der α- und ß -Kette des entsprechenden nicht menschlichen TZR enthält isoliert und in verschiedenen genetischen (u.a. "humanisierten") TZR-Konstrukten verwendet. So beschreibt die WO 97/32603 Fusionsproteine von variablen Regionen von TZR mit der ζ-Region von CD3, CD8 oder CD 16, sowie die Verwendung flexibler Linker der Aminosäuresequenz (GGGGS)3.
Corrupted TIFF IMAGE: no OCR available
Protein in Zusammenhang stehenden Erkrankungen oder für die Identifizierung von pharmakologisch aktiven Substanzen, so daß sich aus dieser Erfindung völlig neue Therapieansätze ergeben.
Bei Liu et al. ("Targeting of human p53-overexpressing tumor cells by an HLA A*0201- restricted murine T-cell receptor expressed in Jurcat T Cells", 2000, Cancer Res. 60, 693-701) wird die Herstellung eines p53-spezifιschen TZR auf der Basis von injizierten Peptiden beschreiben. Die erhaltenen T-Zellen werden als für die Immuntherapie von Krebs geeignet beschrieben. Der von Liu et al. beschriebene TZR ist jedoch gegen ein Peptid der Aminosäuren 149-157 von p53 gerichtet. Da das von den TZR erkannte Epitop des TAA für die therapeutische Wirkung und Nebenwirkungen von entscheidender Bedeutung ist, überrascht das Vorhandensein von weiteren effektiven und bisher unbekannten TZR, die gegen andere Peptide/Epitope des p53 gerichtet sind, umso mehr.
Ein weiterer Aspekt der Erfindung betrifft ein Fusionsprotein, umfassend das erfindungsgemäße Polypeptid oder funktioneile Varianten oder Teile davon oder dieses kodierende Nukleinsäuren, funktioneile Varianten oder Teile davon.
Das Fusionsprotein kann dadurch gekennzeichnet sein, daß es die ζ-Region von CD3 oder CD8 oder CD 16 oder Teile davon umfaßt, insbesondere die ζ-Region von humanem CD3 oder CD8 oder CD 16 oder Teile davon. Bevorzugt ist ein erfϊndungsgemäßes Fusionsprotein, das einen flexiblen Linker umfaßt (Whitlow et al., „An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability", Prot. Engin. 6(8), pp. 989-995, 1993), insbesondere einen Linker der Aminosäuresequenz (GGGGS)3. Insbesondere kann das erfindungsgemäße Fusionsprotein die ζ-Kette des CD3 -Komplexes oder ITAM-Motive der ζ- Kette oder Teile davon umfassen, insbesondere die ζ-Kette von humanem CD3 oder Teile davon. Das Fusionsprotein kann weiterhin dadurch gekennzeichnet sein, daß es CD8α oder das Lck-Bindungsmotiv von CD8α umfaßt oder Teile davon, insbesondere von humanem CD8α.
Bei dem erfindungsgemäßen Fusionsprotein kann es sich weiterhin um eine chimäre partiell oder vollständig humanisierte α und/oder ß TZR-Kette handeln. Ein weiterer Aspekt der Erfindung betrifft ein Fusionsprotein, bei dem es sich um einen Einzelketten-TZR handelt. Bevorzugt ist ein erfϊndungsgemäßes Fusionsprotein, das einen flexiblen Linker umfaßt, insbesondere einen Linker der Aminosäuresequenz (GGGGS)3. Das erfindungsgemäße Fusionsprotein kann aber auch dadurch gekennzeichnet sein, daß es sich um einen α/ß-TZR handelt.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines Fusionsproteins zur Diagnose und/oder Behandlung vom mit p53-Protein in Zusammenhang stehenden Erkrankungen oder zur Identifizierung von pharmakologisch aktiven Substanzen, z.B. in einer geeigneten Wirtszelle, bei dem eine erfindungsgemäße Nukleinsäure verwendet wird.
Hergestellt werden hierbei Fusionsproteine, die die oben beschriebenen erfindungsgemäßen Polypeptide enthalten, wobei die Fusionsproteine selbst bereits die Funktion eines Polypeptids der Erfindung aufweisen oder erst nach Abspaltung des Fusionsanteils die spezifische Funktion funktioneil aktiv ist. Vor allem zählen hierzu Fusionsproteine mit einem Anteil von ca. 1-200, vorzugsweise ca. 1-150, insbesondere ca. 1-100, vor allem ca. 1-50 fremden Aminosäuren. Beispiele solcher Peptidsequenzen sind prokaryotische Peptidsequenzen, die z. B. aus der Galactosidase von E. coli abgeleitet sein können. Weiterhin können auch virale Peptidsequenzen, wie zum Beispiel vom Bakteriophagen Ml 3 verwendet werden, um so Fusionsproteine für das dem Fachmann bekannte "phage display"- Verfahren zu erzeugen.
Zur Aufreinigung der erfindungsgemäßen Proteine kann ein weiteres/weiterer Polypeptid("tag") angefügt sein. Erfindungsgemäße Protein-tags erlauben beispielsweise die hochaffine Absorption an eine Matrix, stringentes Waschen mit geeigneten Puffern, ohne den Komplex in nennenswertem Maße zu eluieren und anschließend gezielte Elution des absorbierten Komplexes. Beispiele der dem Fachmann bekannten Protein-tags sind ein (His)6- tag, ein Myc-tag, ein FLAG-tag, ein Strep-tag, ein Strep-tag II, ein Hämagglutinin-tag, Glutathion-Transferase (GST)-tag, Intein mit einem Affinitäts-Chitin-binding-tag oder Maltose-bindendes Protein (MBP)-tag. Diese Protein-tags können sich N-, C-terminal und/oder intern befinden.
Neben den aus Zellen isolierten natürlichen Polypeptiden können alle erfindungsgemäßen Polypeptide oder deren Teile unter zellfreien Bedingungen hergestellt worden sein, z. B. durch Synthese oder durch in v tro-Translation. So kann das gesamte Polypeptid oder Teile davon zum Beispiel mit Hilfe der klassischen Synthese (Merrifield-Technik) synthetisiert werden. Teile der erfindungsgemäßen Polypeptide eignen sich insbesondere zur Gewinnung von Antiseren, mit deren Hilfe geeignete Genexpressionsbanken durchsucht werden können, um so zu weiteren funktionellen Varianten des erfindungsgemäßen Polypeptids zu gelangen.
Die Erfindung betrifft auch Polypeptide, die Derivate eines Antikörpers mit Spezifität für das p53-Peptidantigen (AA 264-272), vorzugsweise präsentiert im Kontext von HLA-A2.1 sind.
Weiterhin umfaßt die Erfindung retro-inverse Peptide oder Pseudopeptide gemäß der Polypeptidsequenz der SEQ ID Nr. 1 bis SEQ ID Nr. 5 oder funktioneile Varianten oder Teile davon. Diese Peptide weisen anstelle der -CO-NH-Peptidbindungen -NH-CO-Bindungen auf.
Die Aufgabe der Erfindung wird weiterhin durch eine erfindungsgemäße Nukleinsäure gelöst, die eine DNA, RNA, PNA (Peptide nucleic acid) oder p-NA (Pyranosyl nucleic acid), vorzugsweise eine DNA, insbesondere eine doppelsträngige DNA ist mit einer Länge von mindestens 8 Nukleotiden, vorzugsweise mit mindestens 12 Nukleotiden, insbesondere mit mindestens 24 Nukleotiden ist. Die Nukleinsäure kann dadurch gekennzeichnet sein, daß die Sequenz der Nukleinsäure mindestens ein Intron und/oder eine polyA-Sequenz aufweist. Sie kann auch in Form ihrer antisense-Sequenz vorliegen.
Für die Expression des betreffenden Gens ist im allgemeinen eine doppelsträngige DNA bevorzugt, wobei der für das Polypeptid kodierende DNA-Bereich besonders bevorzugt ist. Dieser Bereich beginnt mit dem ersten in einer Kozak-Konsensus-Sequenz (Kozak 1987, Nucleic. Acids Res. 15:8125-48) liegenden Start-Codon (ATG) bis zum nächsten Stop-Codon (TAG, TGA bzw. TAA), das im gleichen Leseraster zum ATG liegt. Eine weitere Verwendung der erfindungsgemäßen Nukleinsäuresequenzen ist die Konstruktion von anti- sense Oligonukleotiden (Zheng und Kemeny 1995, Clin. Exp. Immunol. 100:380-382; Nellen und Lichtenstein 1993, Trends Biochem. Sei. 18:419-23) und/oder Ribozymen (Amarzguioui et al. 1998, Cell. Mol. Life Sei. 54:1175-202; Vaish, et al. 1998, Nucleic Acids Res. 26:5237- 42; Persidis 1997, Nat. Biotechnol. 15:921-2; Couture und Stinchcomb 1996, Trends Genet. L2:510-5). Mit "antisense"-01igonukleotiden kann man die Stabilität der erfindungsgemäßen Nukleinsäure verringern und/oder die Translation der erfindungsgemäßen Nukleinsäure inhibieren. So kann beispielsweise die Expression der entsprechenden Gene in Zellen sowohl in vivo als auch in vitro verringert werden. Oligonukleotide können sich daher als Therapeutikum eignen. Diese Strategie eignet sich beispielsweise auch für Haut, epidermale und dermale Zellen, insbesondere, wenn die "antisense"-01igonukleotide mit Liposomen komplexiert werden (Smyth et al. 1997, J. Invest. Dermatol. 108:523-6; White et al. 1999, J. Invest. Dermatol. 112:699-705; White et al. 1999, J. Invest. Dermatol. 112:887-92). Für die Verwendung als Sonde oder als "antisense'Oligonukleotid ist eine einzelsträngige DNA oder RNA bevorzugt.
Neben den aus Zellen isolierten natürlichen Nukleinsäuren können alle erfindungsgemäßen Nukleinsäuren oder deren Teile auch synthetisch hergestellt worden sein. Weiterhin kann zur Dwcrrfuhrung der Erfindung eine Nukleinsäure verwendet werden, die synthetisch hergestellt worden ist. So kann die erfindungsgemäße Nukleinsäure beispielsweise chemisch anhand der in den von SEQ ID Nr. 1 bis SEQ ID Nr. 5 beschriebenen Proteinsequenzen unter Heranziehen des genetischen Codes z. B. nach der Phosphotriester-Methode synthetisiert werden (siehe z. B. Uhlmann & Peyman 1990, Chemical Reviews 90:543-584).
Oligonukleotide werden in der Regel schnell durch Endo- oder Exonukleasen, insbesondere durch in der Zelle vorkommende DNasen und RNasen, abgebaut. Deshalb ist es vorteilhaft, die Nukleinsäure zu modifizieren, um sie gegen den Abbau zu stabilisieren, so daß über einen langen Zeitraum eine hohe Konzentration der Nukleinsäure in der Zelle beibehalten wird (Beigelman et al. 1995, Nucleic Acids Res. 23:3989-94; Dudycz 1995, WO 95/11910; Macadam et al. 1998, WO 98/37240; Reese et al. 1997, WO 97/29116). Typischerweise kann eine solche Stabilisierung durch die Einführung von einer oder mehrerer Internukleotid- Phosphatgruppen oder durch die Einfuhrung einer oder mehrerer Nicht-Phosphor- Internukleotide, erhalten werden.
Geeignete modifizierte Internukleotide sind in Uhlmann und Peymann (1990, Chem. Rev. 90_ι544) zusammengefaßt (siehe auch Beigelman et al. 1995, Nucleic Acids Res. 23:3989-94; Dudycz 1995, WO 95/11910; Macadam et al. 1998, WO 98/37240; Reese et al. 1997, WO 97/29116). Modifizierte Internukleotid-Phosphatreste und/oder nicht-Phosphoresterbindungen in einer Nukleinsäure, die bei einer der erfindungsgemäßen Verwendungen eingesetzt werden können, enthalten zum Beispiel Methylphosphonat, Phosphorothioat, Phosphoramidat, Phosphorodithioat, Phosphatester, während Nicht-Phosphor-Internukleotid-Analoge, beispielsweise Siloxanbrücken, Carbonatbrücken, Carboxymethylester, Acetamidatbrücken und/oder Thiobrücken enthalten. Es ist auch beabsichtigt, daß diese Modifizierung die Haltbarkeit einer pharmazeutischen Zusammensetzung, die bei einer der erfindungsgemäßen Verwendungen eingesetzt werden kann, verbessert.
Ein weiterer Aspekt der vorliegenden Erfindung betrifft einen Vektor, vorzugsweise in Form eines Plasmids, Shuttle Vektors, Phagemids, Cosmids, Expressionsvektors, adenoviralen Vektors, retroviralen Vektors (Miller, et al. „Improved retroviral vectors for gene transfer and expression", BioTechniques Vol. 7, No. 9, p 980, 1989) und/oder gentherapeutisch wirksamen Vektors, der eine erfindungsgemäße Nukleinsäure enthält.
So kann die erfindungsgemäße Nukleinsäure in einem Vektor vorzugsweise in einem Expressionsvektor oder gentherapeutisch wirksamen Vektor enthalten sein. Vorzugsweise enthält der gentherapeutisch wirksame Vektor T-Zell spezifische regulatorische Sequenzen, die funktionell mit der erfindungsgemäßen Nukleinsäure verbunden sind. Die Expressionsvektoren können prokaryotische oder eukaryotische Expressionsvektoren sein. Beispiele für prokaryotische Expressionsvektoren sind für die Expression in E. coli z.B. die Vektoren pGEM oder pUC-Derivate und für eukaryotische Expressionsvektoren für die Expression in Saccharomyces cerevisiae z. B. die Vektoren p426Met25 oder p426GALl (Mumberg et al. 1994, Nucleic. Acids Res. 22:5767-57681 für die Expression in Insektenzellen z. B. Baculovirus- Vektoren wie in EP-B1-0 127 839 oder EP-B1-0 549 721 offenbart, und für die Expression in Säύgerzellen z. B. die Vektoren Rc/CMV und Rc/RSV oder SV40- Vektoren, welche alle allgemein erhältlich sind.
Im allgemeinen enthalten die Expressionsvektoren auch für die jeweilige Wirtszelle geeignete Promotoren, wie z. B. den trp-Promotor für die Expression in E. coli (siehe z. B. EP-B1-0 154 133), den Met 25, GAL 1 oder ADH2-Promotor für die Expression in Hefen (Rüssel et al. 1983, J. Biol. Chem. 258:2674-2682; Mumberg, supra), den Baculovirus-Polyhedrin- Promotor, für die Expression in Insektenzellen (siehe z. 13. EP-B1-0 127 839). Für die Expression in Säugetierzellen sind beispielsweise Promotoren geeignet, die eine konstitutive, regulierbare, gewebsspezifische, zellzyklusspezifische oder metabolischspezifische Expression in eukaryotischen Zellen erlauben. Regulierbare Elemente gemäß der vorliegenden Erfindung sind Promotoren, Aktivatorsequenzen, Enhancer, Silencer und/oder Repressorsequenzen. Beispiel für geeignete regulierbare Elemente, die konstitutive Expression in Eukaryonten ermöglichen, sind Promotoren, die von der RNA Polymerase III erkannt werden oder virale Promotoren, CMV-Enhancer, CMV-Promotor, SV40 Promotor oder LTR-Promotoren z. B. von MMTV (mouse mammary tumour virus; Lee et al. 1981, Nature 214:228-232) und weitere virale Promotor- und Aktivatorsequenzen, abgeleitet aus beispielsweise HBV, HCV, HSV, HPV, EBV, HTLV oder HIV. Beispiele für regulierbare Elemente, die regulierbare Expression in Eukaryonten ermöglichen, sind der Tetracyclinoperator in Kombination mit einem entsprechenden Repressor (Gossen et al. 1994, Curr. Opin. Biotechnol. 5:516-20).
Beispiele für regulierbare Elemente, die T-Zell spezifische Expression in Eukaryonten ermöglichen, sind Promotoren oder Aktivatorsequenzen aus Promotoren oder Enhancern von solchen Genen, die für Proteine kodieren, die nur in diesen Zelltypen exprimiert werden.
Beispiele für regulierbare Elemente, die zellzyklusspezifische Expression in Eukaryonten ermöglichen, sind Promotoren folgender Gene: cdc25, Cyclin A, Cyclin E, cdc2, E2F, B-myb oder DHFR (Zwicker und Müller 1997, Trends Genet. 13:3-6). Beispiele für regulierbare Elemente, die metabolischspezifϊsche Expression in Eukaryonten ermöglichen, sind Promotoren, die durch Hypoxie, durch Glukosemangel, durch Phosphatkonzentration oder durch Hitzeschock reguliert werden.
Der erfindungsgemäße Vektor kann zur Transfektion einer Wirtszelle verwendet werden, bei der es sich bevorzugterweise um eine T-Zelle handelt. Besonders bevorzugt ist eine Wirtszelle, die dadurch gekennzeichnet ist, daß sie auf ihrer Oberfläche ein erfindungsgemäßes Polypeptid oder Fusionsprotein exprimiert.
Um die Einführung von erfindungsgemäßen Nukleinsäuren und damit die Expression des Polypeptids in einer eu- oder prokaryotischen Zelle durch Transfektion, Transformation oder Infektion zu ermöglichen, kann die Nukleinsäure als Plasmid, als Teil eines viralen oder nicht- viralen Vektors vorliegen. Als virale Vektoren eignen sich hierbei besonders: Retroviren, Baculoviren, Vakziniaviren, Adenoviren, adenoassoziierte Viren und Herpesviren. Als nicht-virale Vektoren eignen sich hierbei besonders: Virosomen, Liposomen, kationische Lipide, oder poly-Lysin konjugierte DNA.
Beispiele von gentherapeutisch wirksamen Vektoren sind Virusvektoren, beispielsweise Adenovirusvektoren oder retrovirale Vektoren (Lindemann et al., 1997, Mol. Med. 3:466-76; Springer et al. 1998, Mol. Cell. 2:549-58). Ein bevorzugter Mechanismus, erfindungsgemäße Polypeptide in vivo zur Expression zu bringen, ist der virale Gen-Transfer, insbesondere mit Hilfe retroviraler Partikel. Diese werden vorzugsweise genutzt, entsprechende Zielzellen, vorzugsweise T-Lymphozyten, des Patienten ex vivo mit den für erfindungsgemäße Polypeptide kodierenden Genen oder Nukleo- tidsequenzen durch Transduktion zu versehen. Die Zielzellen können daraufhin im Sinne eines adoptiven Zelltransfers wieder in den Patienten reinfundiert werden, um mit der de novo eingefügten Spezifität tumorizide und/oder immunmodulierende Effektorfunktionen zu übernehmen. Jüngst wurden auf diesem Wege sehr gute gentherapeutische Erfolge in der Behandlung der durch Immuninkompetenz gekennzeichneten SCID-Xl- Krankheit bei Neugeborenen erzielt, in dem hämatologische Vorläuferzellen mit einem analogen intakten Transgen einer in den Kindern vorkommenden nicht-funktionellen mutierten Variante des γ- Kettengens, das für die Differenzierung in die verschiedenen Effektorzellen des adaptiven Immunsystems essentiell ist, retroviral versehen wurden (Cavazzana-Calvo et al., 2000).
Weiterhin besteht die Möglichkeit den Gentransfer in vivo durchzuführen, einerseits durch präferentiell stereotaktische Injektion der infektiösen Partikel, andererseits durch direkte Applikation von Viren-produzierenden Zellen (Oldfield, et al. Hum. Gen. Ther., 1993, 4:39-69).
Die zum Transfer von Genen häufig eingesetzten viralen Vektoren sind nach heutigem Stand der Technik vorwiegend retrovirale, lentivirale, adenovirale und adeno-assoziierte virale Vektoren. Diese sind von natürlichen Viren abgeleitete zirkuläre Nukleotidsequenzen, in denen zumindest die viralen Strukturprotein-kodierenden Gene durch das zu transferierende Konstrukt ausgetauscht werden.
Retrovirale Vektorsysteme schaffen die Voraussetzung für eine langhaltende Expression des Transgens durch die stabile, aber ungerichtete Integration in das Wirtsgenom. Vektoren der jüngeren Generation besitzen keine irrelevanten und potentiell immunogenen Proteine, des weiteren gibt es keine vorbestehende Immunität des Empfängers gegenüber dem Vektor. Retroviren enthalten ein RNA-Genom, das in eine LipidhüUe verpackt ist, die aus Teilen der Wirtszellmembran und Virusproteinen besteht. Zur Expression viraler Gene wird das RNS- Genom revers transkribiert und mit dem Enzym Integrase in die Zielzell-DNS integriert. Diese kann daraufhin von der infizierten Zelle transkribiert und translatiert werden, wodurch virale Bestandteile entstehen, die sich zu Retroviren zusammenfügen. RNS wird ausschließlich da n in die neu entstandenen Viren eingefügt. Das Genom der Retroviren besitzt drei essentielle Gene: gag, das für virale Strukturproteine, sogenannte gruppenspezifische Antigene kodiert, pol für Enzyme wie Reverse Transkriptase und Integrase und env für das Hüllprotein („envelope"), das für die Bindung des wirtsspezifischen Rezeptors verantwortlich ist. Die Produktion der replikationsinkompetenten Viren findet nach Transfektion in sogenannten Verpackungszelllinien statt, die zusätzlich mit den gag/pol-kodierenden Genen ausgestattet wurden und diese „in trans" exprimieren und somit die Ausbildung replikationsinkompetenter (d.h. gag/pol-deletierter) transgener Viruspartikel komplementieren. Eine Alternative ist die Cotransfektion der essentiellen Virusgene, wobei nur der das Transgen enthaltende Vektor das Vepackungssignal trägt.
Die Separation dieser Gene ermöglicht einerseits die beliebige Kombination des gal/pol- Leserahmen mit aus verschiedenen Stämmen gewonnenen e«v-Leserahmen, wodurch Pseu- dotypen mit verändertem Wirtstropismus entstehen, andererseits kann dadurch die Bildung replikationskompetenter Viren innerhalb von Verpackungszellen drastisch reduziert werden. Das aus „gibbon ape leukemia virus" (GALV) abgeleitete Hüllprotein, das im vorliegenden Fall Verwendung findet, ist in der Lage, humane Zellen zu transduzieren und ist in der Verpackungszelllinie PG13 mit amphotropen Wirtsbereich etabliert (Miller et al., 1991). Zusätzlich wird die Sicherheit durch selektive Deletion von nicht-essentiellen Virussequenzen zur Verhinderung einer homologen Rekombination und somit der Produktion replikationskompetenter Partikel erhöht.
Neue, nicht-virale Vektoren bestehen aus autonomen, sich selbst-integrierenden DNS- Sequenzen, den Transposonen, die durch z.B. liposomale Transfektion in die Wirtszelle ein- geschleußt werden und erstmals erfolgreich zur Expression humaner Transgene in Säugerzellen eingesetzt wurden (Yant et al, 2000).
Gentherapeutisch wirksame Vektoren lassen sich auch dadurch erhalten, daß man die erfindungsgemäße Nukleinsäure mit Liposomen komplexiert, da damit eine sehr hohe Transfektionseffizienz, insbesondere von Hautzellen, erreicht werden kann (Alexander und Akhurst 1995, Hum. Mol. Genet. 4:2279-85). Bei der Lipofektion werden kleine unilamellare Vesikel aus kationischen Lipiden durch Ultraschallbehandlung der Liposomensuspension hergestellt. Die DNA wird ionisch auf der Oberfläche der Liposomen gebunden, und zwar in einem solchen Verhältnis, daß eine positive Nettoladung verbleibt und die Plasmid-DNA zu 100% von den Liposomen komplexiert wird. Neben den von Feigner et al. (1987, supra) eingesetzten Lipidmischungen DOTMA (l,2-Dioleyloxpropyl-3-trimethylammoniumbromid) und DPOE (Dioleoylphosphatidylethanolamin) wurden inzwischen zahlreiche neue Lipidformulierungen synthetisiert und auf ihre Effiziens der Transfektion verschiedener Zellinien getestet (Behr et al. 1989, Proc. Natl. Acad. Sei. USA 86:6982-6986; Feigner et al. 1994, J. Biol. Chem. 269:2550-25561; Gao und Huang. 1991, Biochim. Biophys. Acta 1189:195-203). Beispiele der neuen Lipidformulierungen sind DOTAP N-[l-(2,3- Dioleoyloxy)propyl]-N,N,N-trimethylammoniumethylsulfat oder DOGS (TRANSFECTAM; Dioctadecylamidoglycylspermin). Hilfsstoffe, die den Transfer von Nukleinsäuren in die Zelle erhöhen, können beispielsweise Proteine oder Peptide, die an DNA gebunden sind oder synthetische Peptid-DNA-Moleküle, die den Transport der Nukleinsäure in den Kern der Zelle ermöglichen, sein (Schwartz et al. 1999, Gene Therapy 6:282; Branden et al 1999, Nature Biotech. 17:784). Hilfsstoffe umfassen auch Moleküle, die die Freisetzung von Nukleinsäuren in das Cytoplasma der Zelle ermöglichen (Kiehler et al 1997, Bioconj. Chem. 8:213) oder beispielsweise Liposomen (Uhlmann und Peymann 1990, supra). Eine andere besonders geeignete Form von gentherapeutischen Vektoren läßt sich dadurch erhalten, daß man die erfindungsgemäße Nukleinsäure auf Goldpartikeln aufbringt und diese mit Hilfe der sogenannten "Gene Gun" in Gewebe, bevorzugt in die Haut, oder Zellen schießt (Wang et al., 1999, J. Invest. Dermatol. 112:775-81 .
Für die gentherapeutische Anwendung der erfindungsgemäßen Nukleinsäure ist es auch von Vorteil, wenn der Teil der Nukleinsäure, der für das Polypeptid kodiert, ein oder mehrere nicht kodierende Sequenzen einschließlich Intronsequenzen, vorzugsweise zwischen Promotor und dem Startcodon des Polypeptids, und/oder eine polyA-Sequenz, insbesondere die natürlich vorkommende polyA-Sequenz oder eine SV40 Virus polyA-Sequenz, vor allem am 3 '-Ende des Gens enthält, da hierdurch eine Stabilisierung der mRNA erreicht werden kann (Jackson 1993, Cell 74:9-14 und Palmiter et al. 1991, Proc. Natl. Acad. Sei. USA 88:478-482).
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Wirtszelle, insbesondere eine T- Zelle, die mit einem erfindungsgemäßen Vektor oder einem anderen erfindungsgemäßen Genkonstrukt transformiert ist. Wirtszellen können sowohl prokaryotische als auch eukaryotische Zellen sein, Beispiele für prokaryotische Wirtszellen sind E. coli und für eukaryotische Zellen Saccharomyces cerevisiae oder Insektenzellen. Eine besonders bevorzugte transformierte Wirtszelle ist eine transgene T-Vörläuferzelle oder eine Stammzelle, die dadurch gekennzeichnet ist, daß sie ein erfindungsgemäßes Genkonstrukt oder eine erfindungsgemäße Expressionskassette umfaßt. Verfahren zur Transformation von Wirtszellen und/oder Stammzellen sind dem Fachmann gut bekannt und umfassen zum Beispiel Elektroporation, Mikroinjektion oder Transduktion. Eine besonders bevorzugte transformierte Wirtszelle ist eine patienteneigene T-Zelle, die nach der Entnahme mit einem erfindungsgemäßen Genkonstrukt transfiziert oder transduziert wird. Erfindungsgemäße Wirtszellen können insbesondere dadurch erhalten werden, daß dem Patienten eine oder mehrere Zellen, bevorzugterweise T-Zellen, insbesondere CD8+-T-Zellen entnommen werden, die dann ex vivo mit einem oder mehreren erfindungsgemäßen genetischen Konstrukten transfiziert oder transduziert werden, um so erfindungsgemäße Wirtszellen zu erhalten. Die ex vivo generierten spezifischen T-Zellen kömien dann anschließend in den Patienten re-implantiert werden. Das Verfahren ähnelt somit dem bei Darcy et al. ("Redirected perforin-dependent lysis of colon carcinoma by ex vivo genetically engineered CTL", J. Immunol. 2000. 164:3705-3712) beschriebenen Verfahren unter der Verwendung von scFv anti-CEA Rezeptor transduzierten ZTL, Perforin und γ-IFN.
Ein weiteres bevorzugtes erfindungsgemäßes Verfahren zur Identifizierung von p53-Protein- spezifischen Antigenen ist dadurch gekennzeichnet, daß p53 -präsentierende Tumorzellen oder Fraktionen davon mit einer erfindungsgemäßen Wirtszelle unter Bedingungen zusammengebracht werden, bei denen die Tumorzellen oder Fraktionen davon nur dann lysieren, wenn der Tumor das p53 -Protein-spezifische Antigen präsentiert, für welches das exprimierte Polypetid oder Fusionsprotein spezifisch ist.
Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zur Herstellung eines Antikörpers, vorzugsweise eines polyklonalen oder monoklonalen Antikörpers zur Diagnose und/oder Behandlung von mit p53-Protein assoziierten Erkrankungen oder zur Identifizierung von pharmakologisch aktiven Substanzen, dadurch gekennzeichnet, daß ein Antikörper produzierender Organismus mit einem erfindungsgemäßen Polypeptid oder funktioneller Äquivalente davon oder Teile davon mit mindestens 6 Aminosäuren, vorzugsweise mit mindestens 8 Aminosäuren, insbesondere mit mindestens 12 Aminosäuren oder einer erfindungsgemäßen Nukleinsäure immunisiert wird. Das Verfahren erfolgt nach dem Fachmann allgemein bekannten Methoden durch Immunisieren eines Säugetiers, beispielsweise eines Kaninchens, mit dem erfindungsgemäßen Polypeptid oder den genannten Teilen davon oder diese(s) kodierende Nukleinsäure(n), gegebenenfalls in Anwesenheit von z. B. inkompletten Freundsches Adjuvant und/oder AluminiumhydiOxidgelen (siehe z. B. Diamond et al. 1981, The New England Journal of Medicine, pp. 1344-1349). Die im Tier aufgrund einer immunologischen Reaktion entstandenen polyklonalen Antikörper lassen sich anschließend nach allgemein bekannten Methoden leicht aus dem Blut isolieren und z. B. über Säulenchromatographie reinigen. Monoklonale Antikörper können beispielsweise nach der bekannten Methode von Winter & Milstein (1991, Nature 349: 293-299) hergestellt werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Antikörper zur Diagnose, Prognose und Therapie-Optimierung von mit p53-Protein assoziierten Erkrankungen oder zur Identifizierung von pharmakologisch aktiven Substanzen, der gegen ein erfindungsgemäßes Polypeptid gerichtet ist und mit den erfindungsgemäßen Polypeptiden spezifisch reagiert, wobei die oben genannten Teile des Polypeptids entweder selbst immunogen sind oder durch Kopplung an geeignete Träger, wie z. B. bovines Serumalbumin, immunogen gemacht bzw. in ihrer Immunogenität gesteigert werden können. Dieser Antikörper ist entweder polyklonal oder monoklonal, bevorzugt ist ein monoklonaler Antikörper. Unter dem Begriff Antikörper versteht man gemäß der vorliegenden Erfindung auch gentechnisch hergestellte und gegebenenfalls modifizierte Antikörper bzw. antigenbindende Teile davon, wie z.B. chimäre Antikörper, humanisierte Antikörper, multifunktionelle Antikörper, bi- oder oligospezifϊsche Antikörper, einzelsträngige Antikörper, F(ab)- oder F(ab)2-Fragmente (siehe z.B. EP-B1-0 368 684, US 4,816,567, US 4,816,397, WO 88/01649, WO 93/06213, WO 98/24884). Die erfϊndungsgemäßen Antikörper können zur Diagnose, Therapie-Überwachung und/oder Behandlung von mit p53 -Protein assoziierten Erkrankungen oder zur Identifizierung von pharmakologisch aktiven Substanzen verwendet werden.
Die vorliegende Erfindung betrifft weiterhin ein Verfahren zur Herstellung eines Arzneimittels zur Behandlung von mit p53-Protein assoziierten Erkrankungen, dadurch gekennzeichnet, daß mindestens eine Nukleinsäure, mindestens ein Polypeptid, mindestens eine Wirtszelle oder mindestens ein Antikörper nach einem der vorgenannten Ansprüche zusammen mit geeigneten Zusatz- und Hilfsstoffen kombiniert wird. Die vorliegende Erfindung betrifft weiterhin ein nach diesem Verfahren hergestelltes Arzneimittel zur Behandlung von mit p53 -Protein assoziierten Erkrankungen, das mindestens eine Nukleinsäure, mindestens ein Polypeptid oder mindestens einen Antikörper gemäß der vorliegenden Erfindung, gegebenenfalls zusammen mit geeigneten Zusatz- und Hilfsstoffen, enthält. Die Erfindung betrifft weiterhin die Verwendung dieses Arzneimittels zur Behandlung von mit p53 -Protein assoziierten Erkrankungen.
Die Therapie der mit p53-Protein assoziierten Erkrankungen kann auf herkömmliche Weise, z.B. durch Infusionen oder Injektionen erfolgen, die die erfindungsgemäßen Arzneimittel enthalten. Die Verabreichung der erfϊndungsgemäßen Arzneimittel kann weiterhin gegebenenfalls in Form von Liposomenkomplexen bzw. Goldpartikelkomplexen erfolgen. Die Behandlung mittels der erfindungsgemäßen Arzneimittel kann aber auch über orale Dosierungsformen, wie z.B. Tabletten oder Kapseln, über die Schleimhäute, zum Beispiel der Nase oder der Mundhöhle, oder in Form von unter die Haut implantierten Dispositorien erfolgen. Transdermale therapeutische Systeme sind zum Beispiel aus den EP 0 944 398 AI, EP 0 916 336 AI, EP 0 889 723 AI oder EP 0 852 493 AI bekannt. Die erfindungsgemäßen (Poly)peptide und deren Derivate können auch dazu eingesetzt werden, Patienten mit Erkrankungen, insbesondere Tumorerkrankungen, die mit p53 in Zusammenhang stehen, gezielt immunkompetent zu machen, um die Induktion, Erzeugung und Expansion von p53.264-272-spezifischen zytotoxischen T-Lymphozyten zu erreichen und die Tumor- und Leukämiezellen der betreffenden Patienten spezifisch abzutöten. Solche Erkrankungen umfassen zum Beispiel solide Tumorerkrankungen, lymphohämatopoetische Neoplasien, maligne hämatologische Erkrankungen oder Blastenschübe.
Bei einer besonders bevorzugten Art der Behandlung wird dem Patienten eine oder mehrere Zellen, bevorzugterweise T-Zellen, insbesondere CD8+-T-Zellen entnommen, die dann ex vivo mit einem oder mehreren erfindungsgemäßen genetischen Konstrukten transfiziert oder transduziert werden. Die ex vivo generierten spezifischen T-Zellen können dann anschließend in den Patienten re-infundiert oder transplantiert werden. Das Verfahren ähnelt somit dem bei Darcy et al. ("Redirected perforin-dependent lysis of colon carcinoma by ex vivo genetically engineered CTL", 2000, J. Immunol. 164: 3705-3712) beschriebenen immunotherapeutischen Verfahren bei Colon-Karzinomen unter der Verwendung von scFv anti-CEA Rezeptor transduzierten ZTL, Perforin und γ-IFN. Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zur Herstellung eines Tests zur Auffindung funktioneller Interaktoren in Zusammenhang mit p53-Protein assoziierten Erkrankungen, das dadurch gekennzeichnet ist, daß mindestens eine Nukleinsäure, mindestens ein Polypeptid oder mindestens ein Antikörper gemäß der vorliegenden Erfindung zusammen mit geeigneten Zusatz- und Hilfsstoffen kombiniert wird.
Unter dem Begriff "funktioneile Interaktoren" im Sinne der vorliegenden Erfindung sind alle diejenigen Moleküle, Verbindungen und/oder Zusammensetzungen und Stoffgemische zu verstehen, die mit den erfindungsgemäßen Nukleinsäuren, Polypeptiden oder Antikörpern, gegebenenfalls zusammen mit geeigneten Zusatz- und Hilfsstoffen, unter geeigneten Bedingungen in Wechselwirkung treten können. Mögliche Interaktoren sind einfache chemische organische oder anorganische Moleküle oder Verbindungen, können aber auch Peptide, Proteine oder Komplexe davon umfassen. Die funktionellen Interaktoren können aufgrund ihrer Wechselwirkung die Funktion(en) der Nukleinsäuren, Polypeptide oder Antikörper in vivo oder in vitro beeinflussen oder auch nur an die erfindungsgemäßen Nukleinsäuren, Polypeptide oder Antikörper binden oder mit ihnen andere Wechselwirkungen kovalenter oder nicht-kovalenter Weise eingehen.
Die Erfindung umfaßt weiterhin einen erfindungsgemäß hergestellten Test zur Identifizierung funktioneller Interaktoren in Zusammenhang von mit p53-Protein assoziierten Erkrankungen, der mindestens eine Nukleinsäure, mindestens ein Polypeptid oder mindestens einen Antikörper gemäß der vorliegenden Erfindung, gegebenenfalls zusammen mit geeigneten Zusatz- und Hilfsstoffen, enthält. Oft kann so das pathologische Verhalten der Zellen in vitro nachgeahmt werden und es können Substanzen gesucht werden, die das normale Verhalten der Zellen wieder herstellen und die ein therapeutisches Potential besitzen. Zudem läßt sich dieses Testsystem zum Screening von Substanzen ausnutzen, die eine Interaktion zwischen dem erfindungsgemäßen Polypeptid und einem funktioneilen Interaktor inhibieren.
Ein Gegenstand der vorliegenden Erfindung ist auch ein Arzneimittel zur Indikation, wie z.B. Diagnose, und Therapie von mit p53 -Protein assoziierten Erkrankungen, das eine erfindungsgemäße Nukleinsäure oder ein erfindungsgemäßes Polypeptid und gegebenenfalls geeignete Zusatz- oder Hilfsstoffe enthält, sowie ein Verfahren zur Herstellung eines solchen Arzneimittels zur Behandlung von mit p53-Protein assoziierten Erkrankungen, bei dem eine erfindungsgemäße Nukleinsäure oder ein erfindungsgemäßes Polypeptid mit einem pharmazeutisch annehmbaren Träger formuliert wird.
Als Therapeutika und/oder Prophylaktika kommen insbesondere Impfstoffe, rekombinante Partikel oder Injektionen oder Infusionslösungen in Betracht, die als Wirkstoff (a) das erfmdungsgemäße TZR-Polypeptid und/oder seine Derivate und/oder (b) eine erfindungsgemäße Nukleinsäure enthalten und/oder (c) in-vitro oder ex-vivo erzeugte T- Lymphozyten, die einen spezifisch gegen p53.264-272 gerichteten TZR enthalten.
Für die gentherapeutische Anwendung beim Menschen ist vor allem ein Arzneimittel und/oder rekombinanter Partikel geeignet, das die erfindungsgemäße Nukleinsäure in nackter Form oder in Form eines der oben beschriebenen gentherapeutisch wirksamen Vektoren oder in mit Liposomen bzw. Goldpartikeln komplexierter Form enthält. Der pharmazeutische Träger ist beispielsweise eine physiologische Pufferlösung, vorzugsweise mit einem pH von ca. 6,0-8,0, vorzugsweise von ca. 6,8-7,8. Insbesondere von ca. 7,4 und/oder einer Osmolarität von ca. 200-400 milliosmol/Liter, vorzugsweise von ca. 290-310 milliosmol/Liter. Zusätzlich kann der pharmazeutische Träger geeignete Stabilisatoren, wie z. B. Nukleaseinhibitoren, vorzugsweise Komplexbildner wie EDTA und/oder andere dem Fachmann bekannte Hilfsstoffe enthalten.
Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung eines Polypeptids zur Diagnose und/oder Behandlung von mit p53-Protein in Zusammenhang stehenden Erkrankungen oder zur Identifizierung von pharmakologisch aktiven Substanzen in einer geeigneten Wirtszelle, das dadurch gekennzeichnet ist, daß eine erfindungsgemäße Nukleinsäure auf geeignete Weise exprimiert wird.
Das Polypeptid wird so beispielsweise durch Expression der erfindungsgemäßen Nukleinsäure in einem geeigneten Expressionssystem, wie oben bereits beschrieben, nach dem Fachmann allgemein bekannten Methoden hergestellt. Als Wirtszellen eignen sich beispielsweise die E. coli Stämme DHS, HB101 oder BL21, der Hefestamm Saccharomyces cerevisiae, Insektenzellinien, z. B. von Spodoptera frugiperda, oder die tierischen Zellen COS, Vero, 293, HaCaT, und HeLa, die alle allgemein erhältlich sind. Ein erfindungsgemäßes Diagnostikum zur Therapie-Überwachung enthält das erfindungsgemäße Polypeptid bzw. die oben näher beschriebenen immunologisch wirksamen Teile davon. Das Polypeptid bzw. die Teile davon, die vorzugsweise an eine Festphase, z. B. aus Nitrocellulose oder Nylon, gebunden sind, können beispielsweise mit der zu untersuchenden Körperflüssigkeit, z. B. Blut, in vitro in Berührung gebracht werden, um so beispielsweise mit Auto rimunantikörpern oder Tumor- und Leukämiezellen reagieren zu können. Der Antikörper-Antigen-Komplex kann anschließend beispielsweise anhand markierter Antihuman-IgG- oder Antihuman-IgM-Antikörper nachgewiesen werden. Bei der Markierung handelt es sich beispielsweise um ein Enzym, z. B. Peroxidase, das eine Farbreaktion katalysiert, oder um eine andere geeignete Markierung. Die Anwesenheit und die Menge an anwesenden Autoimmunantikörpern kann somit über die Farbreaktion leicht und schnell nachgewiesen werden.
Ein anderes Diagnostikum zur Therapie-Überwachung enthält die erfindungsgemäßen Antikörper selbst. Mit Hilfe dieser Antikörper kann beispielsweise eine Gewebeprobe leicht und schnell dahingehend untersucht werden, ob das betreffende Polypeptid in einer erhöhten Menge vorhanden ist, um dadurch mit p53-Protein in Zusammenhang stehende Erkrankungen zu diagnostizieren und Hinweise zum Therapie-Erfolg zu erhalten. In diesem Fall sind die erfindungsgemäßen Antikörper beispielsweise mit einem Enzym, wie oben bereits beschrieben, markiert. Der spezifische Antikörper-Antigen-Komplex kann dadurch leicht und ebenso schnell über eine enzymatische Farbreaktion nachgewiesen werden.
Ein weiteres erfindungsgemäßes Diagnostikum umfaßt eine Sonde, vorzugsweise eine DNA- Sonde, und/oder Primer. Dies eröffnet eine weitere Möglichkeit, die erfindungsgemäßen Nukleinsäuren, zum Beispiel durch die Isolierung aus einer geeigneten Genbank anhand einer geeigneten Sonde zu erhalten (siehe z. B. Sambrook et al. 1989, "Molecular Cloning. A Laboratory Manual" 2nd edn., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY Kapitel 8 Seite 8.1 bis 8.81, Kapitel 9 Seite 9.47 bis 9.58 und Kapitel 10 Seite 10.1 bis 10.67).
Als Sonde eignen sich beispielsweise DNA- oder RNA-Fragmente mit einer Länge von ca. 100-1000 Nukleotiden, vorzugsweise mit einer Länge von ca. 200-500 Nukleotiden, insbesondere mit einer Länge von ca. 300-400 Nukleotiden deren Sequenz aus den Polypeptiden gemäß den SEQ ID Nr. 1 bis SEQ ID Nr. 5 des Sequenzprotokolls abgeleitet werden kann. Alternativ können anhand der abgeleiteten Nukleinsäuresequenzen Oligonukleotide synthetisiert werden, die sich als Primer für eine Polymerase Kettenreaktion eignen. Als Primer eignen sich beispielsweise DNA-Fragmente mit einer Länge von ca. 10-100 Nukleotiden, vorzugsweise mit einer Länge von ca. 15 bis 50 Nukleotiden, insbesondere mit einer Länge von 20-30 Nukleotiden deren Sequenz aus den Polypeptiden gemäß den SEQ ID Nr. 1 bis SEQ ID Nr. 5 des Sequenzprotokolls anhand der entsprechenden cDNA Sequenzen gemäß dem genetischen Code abgeleitet werden kann.
Der Begriff "kodierende Nukleinsäure" bezieht sich auf eine DNA-Sequenz, die für ein isolierbares bioaktives erfindungsgemäßes Polypeptid oder einen Precursor kodiert. Das Polypeptid kann durch eine Sequenz in voller Länge oder jeden Teil der kodierenden Sequenz kodiert werden, solange die spezifische, beispielsweise enzymatische Aktivität erhalten bleibt.
Es ist bekannt, daß kleine Veränderungen in der Sequenz der erfindungsgemäßen Nukleinsäuren vorhanden sein können, zum Beispiel durch die Degenerierung des genetischen Codes, oder daß nicht translatierte Sequenzen am 5' und/oder 3 '-Ende der Nukleinsäure angehängt sein können, ohne daß dessen Aktivität wesentlich verändert wird. Diese Erfindung umfaßt deshalb auch sogenannte "funktionelle Varianten" der erfindungsgemäßen Nukleinsäuren.
Mit dem Begriff "funktionelle Varianten" sind alle DNA-Sequenzen bezeichnet, die komplementär zu einer DNA-Sequenz sind, die unter stringenten Bedingungen mit einer abgeleiteten Referenzsequenz oder Teilen davon, insbesondere der hypervariablen V(D)JC- Region, hybridisieren und eine zu dem entsprechenden erfindungsgemäßen Polypeptid ähnliche oder identische Aktivität aufweisen.
Unter "stringenten Hybridisierungsbedingungen" sind solche Bedingungen zu verstehen, bei denen eine Hybridisierung bei 60°C in 2,5 x SSC-Puffer, gefolgt von mehreren Waschschritten bei 37°C in einer geringeren Pufferkonzentration erfolgt und stabil bleibt.
Unter dem Begriff "funktionelle Varianten" im Sinne der vorliegenden Erfindung versteht man Polypeptide, die funktionell mit dem erfindungsgemäßen Polypeptiden verwandt sind, d. h. Sti d turmerkmale der Polypeptide aufweisen. Beispiele funktioneller Varianten sind die entsprechenden Polypeptide, die aus anderen Organismen als der Maus, also dem Menschen, bzw., vorzugsweise aus nicht-menschlichen Säugetieren wie z. B. Affen, Schweinen und Ratten oder auch Vögeln, z. B. Hühnern, stammen. Andere Beispiele funktioneller Varianten sind Polypeptide, die durch unterschiedliche Allele des Gens, in verschiedenen Individuen oder in verschiedenen Organen eines Organismus kodiert werden. Funktionelle Varianten im Sinne der vorliegenden Erfindung sind insbesondere Polypeptide, die das gleiche Epitop des p53 Proteins erkennen, wie der TZR der vorliegenden Erfindung. Im weiteren Sinne versteht man darunter auch Polypeptide, die eine Sequenzhomologie, insbesondere eine Sequenzidentität, von ca. 70%, vorzugsweise ca. 80%, insbesondere ca. 90%, vor allem ca. 95% zu dem Polypeptid mit der Aminosäuresequenz gemäß einer der SEQ ID Nr. 1 bis SEQ ID Nr. 5 und/oder zu anhand der Peptidsequenzen abgeleiteten DNA Sequenzen aufweisen. Dazu zählen auch Deletionen, Inversionen, Additionen, Substitutionen, Insertionen sowie chemische und/oder physikalische Modifikationen oder Teile des Polypeptids im Bereich von ca. 1-60, vorzugsweise von ca. 1-30, insbesondere von ca. 1-15, vor allem von ca. 1-5 Aminosäuren. Beispielsweise kann die erste Aminosäure Methionin fehlen, ohne daß die Funktion des Polypeptids wesentlich verändert wird.
Die Erfindung soll nun weiter anhand der beigefügten Beispiele und Figuren erläutert werden, ohne durch diese eingeschränkt zu werden. Es zeigt:
Figur 1 : Schema der Primerpositionen zur Präparation der Vollängen der TZR-α-
Kette;
Figur 2: Darstellung der präparierten TZR-Ketten. Die Nomenklatur erfolgte für die variablen Segmente (V alpha/beta) nach Arden et al.(Immunogenetics 1995, 42:501-530), für die J-Segmente und die Konstanten Domänen nach der Im- MunoGeneTics-Datenbank (http://imgt.cines.fr:8104). Die TZR-Ketten Vα3, Vαl3, Vß3 und Vß3CßO sind, bezogen auf ihre Sequenz, produktiv, Vßl hingegen weist einen Frame-Shift in der Rekombinationsregion V-D-J und ist nachfolgend nicht produktiv für ein TZR-beta-Ketten-Polypeptid. CßO stellt die durch alternatives Splicing entstandene Insertion dar. Die konstante Domäne der Vßl -Kette konnte keiner Subfamilie zugewiesen werden, da ausschließlich die frankierte Form präpariert wurde und damit keine Differenzierung möglich war. Figur 3: Positionen der Primer zur Präparation der trunkierten TZR-ß-Ketten im Rahmen der 5'-RACE-PCR.
Figur 4: Darstellung des viralen Vektors pBullet AV03 zur Expression der wildtyp
(Wt) murine (mu) TZR Vα3 -Kette. Die Wildtyp Vα3 -Kette wurde wie im Text beschrieben über die Restriktionsenzymschnittstellen Ncol und BamHI in den retroviralen Vektor pBullet kloniert.
Figur 5: Darstellung der Wt muTZR Vα 13 -Kette, die über die Restriktionsenzymstellen JVcoI und Sall wie beschrieben kloniert wurde.
Figur 6: Darstellung der funktionellen Wt muTZR Vß3, in den retroviralen Vektor pBullet kloniert.
Figur 7: Ergebnis der durchflußzytometrischen Messung der mit dem leeren Vektor pBullet transduzierten PBMZ. Es konnte kein Transgen (Vß3) nachgewiesen werden.
Figur 8: Darstellung der Expression des Transgens Vß3 als Marker für rekonstitution der mu-TZR-Expression auf humanen PBMZ, die durchflußzytometrisch nachgewiesen werden konnte. Die Expression ist, wie erwartet, ausschließlich für Zellen, die zusätzlich den CD3 -Komplex exprimieren, zu zeigen.
Figur 9: Darstellung der Expression der Kombination Vαl3Vß3 ähnlich Figur 8, die
Detektion des Transgens Vß3 läßt auf Rekonstitution der murinen TZR- Expression auf humanen PBMZ schließen.
Figur 10: Durchflusszytometrische Darstellung mit Vα3Vß3 transduzierter humaner
PBMZ, gezeigt ist eine Anfärbbarkeit für HLA-A2.1-p53(264-272)-PE- Tetramer die auf Expression eines p53(264-272)-spezifischen und HLA- A2.1 -restringierten TZR auf den humanen PBMZ hinweist.
SEQ ID Νr. 1 : "Vα 3": produktive, funktionelle Maus α-Kette (muvα-mucα); (siehe Figur 2);
SEQ ID Νr. 2: "Vα 13": produktive Maus α-Kette (muvα-mucα); (siehe Figur 2); SEQ ID Νr. 3 : "Vß 1": nicht produktive, nicht funktionelle Maus ß-Kette (muvß-mucß);
(siehe Figur 2); SEQ ID Νr. 4: "Vß 3": produktive, funktionelle Maus ß-Kette (muvß-mucß); (siehe Figur
2); SEQ ID Nr. 5: "Vß 3Cb0": splicing- Variante von Vß 3 mit CbO Insertion vor Cbl; (siehe
Figur 2); SEQ ID Nr. 6: Primer GSP-1 (rev_R_a_SPl) SEQ ID Nr. 7: Primer GSP-2 (rev_R_a_SP2) SEQ ID Nr. 8: Primer GSP-3 (rev_Asc_aTCR_cl .2) SEQ ID Nr. 9: Primer GSP-4 (rev_Asc_bTCR_c2) SEQ ID Nr. 10: Primer GSP-5 (rev_bTCR_c4) SEQ ID Nr. 11 : Primer GSP-6 (rev_Asc_bTCR_c6) SEQ ID Nr. 12: Vα3: Primer Forward (for_Va3-NcoI_l) SEQ ID Nr. 13: Vß3(CßO): Primer Forward (for_Vb3-NcoI_l) SEQ ID Nr. 14: Vαl3: Primer Reverse (for_Val3-NcoI_l)
Beispiele:
Die Präparation cytosolischer mRNA wurde unter der Verwendung des käuflich erhältlichen QIAprep Miniprep (QIAGEN, Hilden, Germany) gemäß Protokoll des Herstellers durchgeführt. Die 5'RACE-PCR wurde unter der Verwendung des käuflich erhältlichen RACE PCR Kit (Röche Molecular Diagnostics) gemäß Protokoll des Herstellers durchgeführt. Die reverse Transkription wurde alternativ zur reversen Transkription innerhalb des RACE-PCR-Protokolls mit displayTHERMO-RT (Display Systems Biotech, Vista, CA, USA) durchgeführt. Zur Klonierung in die Vektoren ρCR®2.1-TOPO® und pCR®XL- TOPO® wurden die entsprechenden Kits (Invitrogen, Niederlande) gemäß Protokoll des Herstellers verwendet. Die Zytotoxizitätstests erfolgten nach dem in Theobald et al. ("Targeting p53 as a general tumor antigen", 1995, Proc. Natl. Acad. Sei. USA 92, 11993- 11997) beschriebenen Verfahren.
1. Klonierung der α-TZR-Ketten
Nach Extraktion der mRNA aus einem p53.264-272-spezifischen, HLA-A2.1 -restringierten Maus-ZTL-Klon wurde über 5'-RACE-PCR (Boehringer Mannheim, Germany) mittels der selbst designten Gen-spezifischen Primern (SEQ ID Nr. 6 bis SEQ ID Nr. 14) die Vollängen α-TZR-Kette isoliert. Zur Erhöhung der Spezifität wurde das DNA-Intermediat (ca. 1100 Bp) vor der zweiten PCR (Nested PCR) aus einem Agarose-Gel präpariert. Die etwa 1000 Bp großen Produkte wurden nachfolgend in das pCR®-XL-TOPO®-Vektorsystem nach Angaben des Herstellers kloniert und sequenziert. Die Orientierung der Primer und die Klonierung der alpha-Kette ist schematisch in Figur 1 gezeigt. Die Gen-spezifischen Primer zur Amplifikation der gesamten kodogenen Region der TZR-α-Kette wurden so gewählt, daß sie in der 3'-nicht-kodogenen Region (UTR) paarten. Der Gen-spezifische Primer GSP-3 (SEQ ID Nr. 8), der abschließend auf dem Stop-Codon paart, fügt durch seinen 5 '-Überhang künstlich eine AscI-Site ein. Die Sequenzen der Gen- spezifischen Primer wurden durch Vergleich publizierter Maus-TZR-α-Ketten Sequenzen und Auswahl geeigneter Bereicht ermittelt.
2. Klonierung der trunkierten-TZR-ß-Ketten
Zur Klonierung der TZR-ß-Kette wurde wie bei der α-Kette verfahren, jedoch konnten hier keine Gen-spezifischen Primer dienen, die außerhalb der codogenen Region paarten, da verschiedene Gene der konstanten Domäne der ß-Kette existieren. Daher mußte ein 3'- trunkiertes Produkt generiert werden, wozu ebenfalls die 5'-RACE PCR benutzt wurde, welches sequenziert wurde. Das Produkt der ersten PCR ergab in der Gelelekrophorese keine deutliche Bande, wurde aber dennoch aus dem Gel extrahiert und der Nested PCR zugeführt. Die resultierende Doppelbande wurde nachfolgend in das TOPO®- Vektorsystem (Invitrogen) kloniert.
3. Analyse der TZR-Ketten Sequenzen
Durch Sequenzierung der PCR-Produkte konnten fünf verschiedene TZR-Ketten-kodierende Sequenzen unterschieden werden:
1) Vα3: produktive TZR-α-Kette, funktionell (SEQ ID Nr. 1);
2) Vαl3: produktive TZR-α-Kette (SEQ ID Nr. 2);
3) Vßl: durch fehlerhaftes Rearrangement (Vßl->D beta: frameshift) nicht produktive ß- Kette, nicht funktionell (SEQ ID Nr. 3);
4) Vß3: produktive ß-Kette, funktionell (SEQ ID Nr. 4); und
5) Vß3CßO: splicing-Variante von Vß3 mit CßO Insertion vor Cßl (SEQ ID Nr. 5).
4. Klonierung der produktiven Ketten in das retrovirale Vektorsystem pBullet
Aus den erhaltenen Sequenzen ließen sich für jede Kette Primer ableiten, die im 5'-Bereich paaren. Diese wurden derart modifiziert (siehe SED ID Nrn. 12-14), daß sich durch eine PCR eine Ncol-Site (CCATGG) um das Startcodon ATG einfügen ließ, wodurch im Fall der α- Ketten das zweite Basentriplett und dadurch die zweite Aminosäure modifiziert wurde.
Zur Klonierung in den retroviralen Vektor pBullet wurde zunächst erneut mRNA revers transkribiert (displayTHERMO-RT, vgl. S. 20), diesmal jedoch mit einem oligo dT-Primer (displayTHERMO-RT, vgl. S. 20), der im poly-A-tail der RNA paarte, wodurch ein reverses Transkript (einzelsträngige cDNA) der gesamten RNA entstand. Dieses diente in einer nachfolgenden PCR als Matrize.
4.1 Klonierung Vα3/13
Die Klonierung der TZR-α-Ketten erfolgte nach oben beschriebener reversen Transkription und PCR, in der die flankierenden Ncol- und S ZI-Sites eigef gt wurden. pBullet und Insert wurden Ncol- und Sα/I-verdaut, und das Insert (Vα3/Vαl3) wurde nach Standardmethodik einligiert. Nach Transformation kompetenter Bakterien wurden positive Klone sequenziert. Ein fehlerloser Vαl3-Klon wurde für weitere Versuche gewählt. Da die Ausbeute verwertbarer Klone für Vα3 gering war, und einer dieser bis auf einen Fehler im Stopcodon akzeptabel war, wurde dieser zur Rekonstitution des Stop-Codons nochmals in ein bestehendes Plasmid über eine Ncol-Austauschkonierung umkloniert, wobei die 3'- flankierende "site" in diesem Fall eine BamHI-spezifische war.
4.2 Klonierung Vß3
Zur Klonierung der ß-Kette (Vß3), wurde die kodierende Nukleinsäure nach der PCR abermals in den pCR®XL-TOPO® kloniert, um von dort aus in den Vektor pBullet umkloniert zu werden. Dazu wurde ein geeigneter Klon selektiert und zunächst durch einen ^.yd-Verdau linearisiert. Gleichsam wurde der leere Vektor pBullet durch einen Xhol- Verdau linearisiert. Daraufhin wurden beide "sticky" geschnittenen, Enden durch die T4-DNA- Polymerase in Anwesenheit von dNTPs zu "blun '-Enden aufgefüllt. Dann erfolgte ein partieller Ncol- Verdau des Vß3-Klons, da WildtypTZR über eine interne Ncol-Site verfügen und diese bei jenem Verdau nicht geschnitten werden darf und gleichsam ein kompletter Ncol- Verdau des leeren Vektors. Nach Gel-Elektrophorese und Extraktion des Ncol- VollängeVß3-blunt und des blunt-pBullet-leer-NcoI Fragments erfolgte die Ligation des Inserts und des Vektors. Mit dem Ligationsprodukt transformierte Bakterienklone wurden sequenziert. 5. Transduktion humaner PBMZ
Nach Etablierung in den retroviralen Vektor pBullet inserierter Vollängen-TZR-Konstrukte, wurden diese Plasmide nach dem Fachmann bekannten Methoden in Bakterienkulturen amplifiziert und präpariert. Diese wurden in Kombination mit den für die Strakturproteine gag, pol und GALV-erav kodierenden Plasmiden in die embryonale Nierenzellinie 293 T über Ca3(P04) -Transfektion transfiziert. Es wurden folgende Kombinationen transfiziert:
1 - pBullet + pHIT60 + pCOLT-GaLV
2 - pBullet AV03+pBullet BV03 + pHIT60 + pCOLT-GALV
3 - pBullet AV13+pBullet BV03 + pHIT60 + pCOLT-GALV
Diese transiente Transfektion (keine eingeführten Selektionsmarker) führte nach etwa 24h zur Produktion von GALV-pseudotypisierten retroviralen Partikeln, die durch Ko-Kultivierung der virusproduzierenden 293T-Zellen (2500 rad bestrahlt) mit OKT-3(α-hu CD3)-aktivierten HLA-A2 positiven PBMZ gesunder Spender, zur Infektion dieser PBMZ genutzt wurden. Die Transduktionseffizienz wurde etwa eine Woche nach dreitägiger Kokultivierung und Expansion durch Durchflußzytometrie evaluiert und nach weiterer Expansion konnte die lyrische Reaktivität getestet werden.
6. FACS-Untersuchung transduzierter PBMZ
Zur Evaluierung der Transduktionseffizienz wurden Zellen mit der TZR-Ketten-Kombination Vα3Vß3, Vαl3Vß3 und auch solche, die nur mit dem Expressionsvektor pBullet, der kein Transgen enthielt, mit der Technik der Durchflußzytometrie gemessen. Dazu wurden 10 Zellen laut Herstellerangaben mit 1 μg anti-muTCR Vß3-Antikörper (BD Pharmingen, Heidelberg) und anti-huCD3 -Antikörper für 30 Minuten bei Raumtemperatur gefärbt und durchflußzytometrisch gemessen. Figuren 8 und 9 zeigen, daß sowohl die mit der Kombination aus Vα3Vß3 als auch die mit der aus Vαl3Vß3 positiv für CD3 und muTCR Vß3 anfärbbar waren, was als Hinweis auf membranständige Expression des ß -Ketten- Transgens hinwies. Nicht positiv für Vß3-Oberflächen-Transgen hingegen war die Negativkontrolle pBullet ohne Transgen.
Um weiterhin die Rekonstitution der Antigenspezifität durchflußzytometrisch zu bestimmen, wurden 105 Zellen mit 0,375 μg A2-p53(264-272)-PE-Tetramer (60 Minuten auf Eis) und anti-huCD8-FITC (15 Minuten auf Eis) gefärbt und durchflußzytometrisch gemessen. Exemplarisch ist die Färbung zuvor positiv für muTCR Vß3 FACS-sortierter, mit der Kombination Vα3Vß3 transduzierter PBMC gezeigt (siehe Figur 10).
7. Zytolytische Aktivität transduzierter PBMZ
Die lytische Reaktivität retroviral transduzierter humaner PBMZ wurde durch Zytotoxizitätstests evaluiert. Die transduzierten PBMZ wurden in einem Standard Chromfrei- setztungstest getestet, wobei zum einen peptidbeladene T2-Zellen, als auch die p53- Defektmutante Saos-2 und deren mut (143 V->A) p53 Transfektante Saos-2/143 eingesetzt wurden. Die Zielzellen, die alle den HLA-A2.1-Phänotyp besaßen, wurden zusätzlich in zwanzigfachem Überschuß nicht Chrom-markierter K562-Zellen versetzt, die als sogenanntes „cold target" selektiv als NK-Zell Zielzellen dienten und somit die unspezifische NK-Zell vermittelte Lyse der Tumorzellen verringerten. Das eingesetzte Verhältnis von Effektor-zu- Zielzellen (E:Z) war 30.
Es ist eine für das p53-Polypeptid spezifische Reaktion der mit der Kombination Vα3Vß3 transduzierten PBMZ zu erkennen. Außerdem wird endogen prozessiertes und in Kontext von HLA-A2.1 präsentiertes p53 abgeleitetes Peptid erkannt (Saos-2/143), was als notwendige Voraussetzung zur Lyse p53-überexprimierender Tumorzellen gilt. Eine Lyse der Negativkontrolle Saos-2 ließ sich für keine Effektorzellen zeigen. Nachfolgende Tabelle 1 stellt exemplarisch die gemessene spezifische Lyse verschiedener Zielzellen dar. Weiter konnte eine spezifische Lyse maligner Zellinien nachgewiesen werden (nicht gezeigt).
Tabelle 1:
Angaben in % spezifischer Lyse, Verhältnis E:Z = 30:1

Claims

Patentansprüche
Polypeptid eines eine p53-Protein-spezifische T-Zell Antwort vermittelnden murinen α/ß T-Zell Rezeptors gemäß SEQ ID Nr. 1 bis SEQ ID Nr. 5 oder funktioneller Varianten oder Teile davon oder dieses kodierende Nukleinsäuren, funktionelle Varianten oder Teile davon.
Fusionsprotein, umfassend ein Polypeptid gemäß Anspruch 1 oder funktionelle Varianten oder Teile davon oder dieses kodierende Nukleinsäuren, funktionelle Varianten oder Teile davon.
Fusionsprotein nach Anspruch 2, dadurch gekennzeichnet, daß es die ζ-Region von CD3, und/oder CD8, CD 16 oder Teile davon umfaßt, insbesondere die ζ-Region von humanem CD3 und/oder CD8, CD 16 oder Teile davon.
Fusionsprotein nach Ansprach 2 oder 3, weiterhin einen flexiblen Linker umfassend, insbesondere einen Linker der Aminosäuresequenz (GGGGS)3.
Fusionsprotein nach Ansprach 2, dadurch gekennzeichnet, daß es sich um ein chimäres, zumindest partiell humanisiertes Fusionsprotein handelt.
Fusionsprotein nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß es sich um einen Einzelketten oder Doppelketten T-Zell Rezeptor handelt.
α- oder ß-Kette eines T-Zell-Rezeptors, der die Antigen-Erkennungssequenz eines für die Aminosäuren 264-272 des Proteins p53 oder eines Komplexes von p53 264-272 und HLA-A2 spezifischen Antikörpers umfaßt.
Polypeptid nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Polypeptid synthetisch hergestellt worden ist.
Nukleinsäure nach Ansprach 1 oder 2, dadurch gekennzeichnet, daß sie eine DNA oder RNA, vorzugsweise eine DNA, insbesondere eine doppelsträngige DNA ist mit einer Länge von mindestens 8 Nuldeotiden, vorzugsweise mit mindestens 18 Nukleotiden, insbesondere mit mindestens 24 Nukleotiden ist.
Nukleinsäure nach einem der Ansprüche 1, 2 oder 9, dadurch gekennzeichnet, daß die Sequenz der Nukleinsäure mindestens ein Intron und/oder eine polyA-Sequenz aufweist.
Nukleinsäure nach einem der Ansprüche 1, 2, 9 oder 10 in Form ihrer komplementären "antisense"-Sequenz.
Nukleinsäure nach einem der Ansprüche 1, 2 oder 9 bis 11, dadurch gekennzeichnet, daß die Nukleinsäure synthetisch hergestellt worden ist.
Vektor, vorzugsweise in Form eines Plasmids, Shuttle Vektors, Phagemids, Cosmids, Expressionsvektors, retroviralen Vektors, adenoviralen Vektors oder Partikels und/oder gentherapeutisch wirksamen Vektors, umfassend eine Nukleinsäure nach einem der Ansprüche 1, 2 oder 9 bis 12.
Wirtszelle, transfiziert mit einem Vektor oder infiziert oder transduziert mit einem Partikel gemäß Anspruch 13.
Wirtszelle nach Anspruch 14, dadurch gekennzeichnet, daß es sich um eine T-Zelle oder eine T- Vorläuferzelle oder eine Stammzelle handelt.
Wirtszelle nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß sie auf ihrer Oberfläche ein Polypeptid oder Fusionsprotein gemäß einem der Ansprüche 1 bis 8 exprimiert.
Verfahren zur Identifizierung von p53 -Protein-spezifischen Antigenen, dadurch gekennzeichnet, daß p53 -präsentierende Tumorzellen oder Fraktionen davon mit einer Wirtszelle gemäß Ansprach 16 unter Bedingungen zusammengebracht werden, bei denen die Tumorzellen oder Fraktionen davon nur dann lysiert werden, wenn der Tumor das p53 -Protein-spezifische Antigen präsentiert, für welches das präsentierte Polypeptid oder Fusionsprotein spezifisch ist. Verfahren zur Herstellung eines gegen ein Polypeptid, Fusionsprotein oder eine Nukleinsäure gemäß einem der Ansprüche 1 bis 12 gerichteten Antikörpers, vorzugsweise eines polyklonalen oder monoklonalen Antikörpers zur Diagnose, Behandlung und/oder Überwachung der Behandlung von mit p53-Protein assoziierten Erkrankungen und/oder zur Identifizierung von pharmakologisch aktiven Substanzen, dadurch gekennzeichnet, daß ein Antikörper produzierender Organismus mit einem Polypeptid oder funktionellen Äquivalenten davon oder Teilen davon mit mindestens 6 Aminosäuren, vorzugsweise mit mindestens 8 Aminosäuren, insbesondere mit mindestens 12 Aminosäuren nach einem der Ansprüche 1 bis 8 oder diese kodierende Nukleinsäuren immunisiert wird.
Antikörper, hergestellt gemäß Anspruch 18, dadurch gekennzeichnet, daß er gegen ein Polypeptid nach einem der Ansprüche 1 bis 8 gerichtet ist.
Rekombinanter Antikörper, dadurch gekennzeichnet, daß er die die Antigen- Erkennungssequenz der α- oder ß-Kette eines für die Aminosäuren 264-272 des Proteins p53 oder eines Komplexes von p53 264-272 und HLA-A2 spezifischen T-Zell-Rezeptors umfaßt.
Verfahren zur Herstellung eines Arzneimittels zur Behandlung von mit p53 -Protein assoziierten Erkrankungen, dadurch gekennzeichnet, daß mindestens eine Nukleinsäure, mindestens ein Polypeptid, mindestens eine Wirtszelle oder mindestens ein Antikörper nach einem der vorgenannten Ansprüche zusammen mit geeigneten Zusatz- und Hilfsstoffen kombiniert wird.
Arzneimittel zur Behandlung von mit p53-Protein assoziierten Erkrankungen, dadurch gekennzeichnet, daß es mindestens eine Nukleinsäure, mindestens ein Polypeptid, mindestens eine Wirtszelle oder mindestens einen Antikörper nach einem der vorgenannten Ansprüche, gegebenenfalls zusammen mit geeigneten Zusatz- und Hilfsstoffen, enthält.
Verwendung eines Arzneimittels nach Ansprach 22 zur Behandlung von mit p53-Protein assoziierten Erkrankungen. Verfahren zur Herstellung eines Tests zur Auffindung funktioneller Interaktoren in Zusammenhang mit p53 -Protein assoziierten Erkrankungen, dadurch gekennzeichnet, daß mindestens eine Nukleinsäure, mindestens ein Polypeptid oder mindestens ein Antikörper nach einem der vorgenannten Ansprüche zusammen mit geeigneten Zusatz- und Hilfsstoffen kombiniert wird.
Test zur Identifizierung funktioneller Interaktoren in Zusammenhang mit p53-Protein assoziierten Erkrankungen, dadurch gekennzeichnet, daß er mindestens eine Nukleinsäure, mindestens ein Polypeptid oder mindestens einen Antikörper nach einem der vorgenannten Ansprüche, gegebenenfalls zusammen mit geeigneten Zusatz- und Hilfsstoffen, enthält.
EP02719973A 2001-03-01 2002-02-28 Polypeptide eines p53-protein-spezifischen murinen alpha/beta t-zell rezeptors, diese kodierende nukleinsaeuren und deren verwendung Withdrawn EP1363948A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10109855A DE10109855A1 (de) 2001-03-01 2001-03-01 Polypeptide eines p53-Protein-spezifischen murinen alpha/beta T-Zell Rezeptors, diese kodierende Nukleinsäuren und deren Verwendung
DE10109855 2001-03-01
PCT/EP2002/002186 WO2002070556A1 (de) 2001-03-01 2002-02-28 POLYPEPTIDE EINES P53-PROTEIN-SPEZIFISCHEN MURINEN Α/β T-ZELL REZEPTORS, DIESE KODIERENDE NUKLEINSÄUREN UND DEREN VERWENDUNG

Publications (1)

Publication Number Publication Date
EP1363948A1 true EP1363948A1 (de) 2003-11-26

Family

ID=7675928

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02719973A Withdrawn EP1363948A1 (de) 2001-03-01 2002-02-28 Polypeptide eines p53-protein-spezifischen murinen alpha/beta t-zell rezeptors, diese kodierende nukleinsaeuren und deren verwendung

Country Status (6)

Country Link
US (1) US20040171111A1 (de)
EP (1) EP1363948A1 (de)
JP (1) JP2004535780A (de)
CA (1) CA2445004A1 (de)
DE (1) DE10109855A1 (de)
WO (1) WO2002070556A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7456263B2 (en) * 2001-06-05 2008-11-25 Altor Bioscience Corporation P53 binding T cell receptor molecules
DE10244457A1 (de) 2002-09-24 2004-04-01 Johannes-Gutenberg-Universität Mainz Verfahren zur rationalen Mutagenese von alpha/beta T-Zell Rezeptoren und entsprechend mutierte MDM2-Protein spezifische alpha/beta T-Zell Rezeptoren
EP1804835B9 (de) * 2004-09-13 2010-09-29 Genzyme Corporation Multimere konstrukte
WO2010075417A1 (en) * 2008-12-23 2010-07-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Survivin specific t cell receptor for treating cancer
EP3209626A4 (de) * 2014-10-20 2018-03-21 The Scripps Research Institute Proximitätsbasiertes verfahren zur auswahl von bindungspartnern

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG70553A1 (en) * 1984-03-01 2000-02-22 Univ Leland Stanford Junior T-cell receptor-specific for antigen polypeptides and related polynucleotides
US5189147A (en) * 1984-06-13 1993-02-23 Massachusetts Institute Of Technology Meterodimeric T lymphocyte receptor antibody
WO1993024525A1 (en) * 1992-05-26 1993-12-09 Rijksuniversiteit Leiden PEPTIDES OF HUMAN p53 PROTEIN FOR USE IN HUMAN T CELL RESPONSE INDUCING COMPOSITIONS, AND HUMAN p53 PROTEIN-SPECIFIC CYTOTOXIC T-LYMPHOCYTES
WO1997032603A1 (en) * 1996-03-05 1997-09-12 The Scripps Research Institute Recombinant constructs encoding t cell receptors specific for human hla-restricted tumor antigens
AU742650B2 (en) * 1997-10-02 2002-01-10 Altor Bioscience Corporation Soluble single-chain T-cell receptor proteins
US6284223B1 (en) * 1998-10-15 2001-09-04 Fluoroprobe, Inc. Method for viewing tumor tissue located within a body cavity
CA2354862A1 (en) * 1998-10-19 2000-04-27 Yeda Research And Development Co. Ltd. Treatment of systemic lupus erythematosus by down-regulating the autoimmune response to autoantigens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02070556A1 *

Also Published As

Publication number Publication date
JP2004535780A (ja) 2004-12-02
US20040171111A1 (en) 2004-09-02
CA2445004A1 (en) 2002-09-12
WO2002070556A9 (de) 2003-10-23
WO2002070556A1 (de) 2002-09-12
DE10109855A1 (de) 2002-09-12

Similar Documents

Publication Publication Date Title
DE69519521T2 (de) Zusammensetzung enthaltend ein antigen exprimierendes rekombinantes virus und ein immunstimulierendes molekül exprimierendes rekombinantes virus
US8236767B2 (en) Methods for treating inflammation using B7-H4 polypeptides and fragments thereof
DE69730693T2 (de) Mhc-komplexe und ihre verwendungen
DE69936927T2 (de) Polyspezifische bindemoleküle und deren verwendung
US9469684B2 (en) Therapeutic and diagnostic cloned MHC-unrestricted receptor specific for the MUC1 tumor associated antigen
DE102006041455B4 (de) Verfahren zur Herstellung einer einen stabilisierten funktionellen humanen Einzelketten-Antigen-erkennenden-TCR (scTCR) exprimierenden Zelllinie, damit hergestellt Zelllinie, stabilisierter TAA-spezifischer scTCR, deren Verwendungen und diese enthaltende pharmazeutische Zusammmensetzungen
EP1543032B1 (de) Verfahren zur rationalen mutagenese von a/beta t-zell rezeptoren und entsprechend mutierte mdm2-protein spezifische a/beta t-zell rezeptoren
DE69334211T2 (de) Multidrug resistenz gen
DE60133287T2 (de) Tumorantigen
JP2009213484A (ja) 可溶性mhc複合体とその利用法
WO2005038030A1 (de) Rekombinate impfstoffe und deren verwendung
JPH09504693A (ja) 活性化されたt細胞の表面上のレセプタ:act―4
JPH10501681A (ja) 核酸送達システムならびにその合成および使用方法
WO2002070552A2 (de) POLYPEPTIDE EINES HDM2-PROTEIN SPEZIFISCHEN MURINEN Α/β T-ZELL REZEPTORS, DIESE KODIERENDE NUKLEINSÜREN UND DEREN VERWENDUNG
DE10259713A1 (de) Verfahren zur Expressionsstabilisierung und Verbesserung der spezifischen Effektorfunktion von Einzelketten-Antigenerkennenden genetischen Konstrukten (scARC) und entsprechend mutierten MDM2-Protein spezifischen scT-Zell Rezeptoren
EP1363948A1 (de) Polypeptide eines p53-protein-spezifischen murinen alpha/beta t-zell rezeptors, diese kodierende nukleinsaeuren und deren verwendung
DE60023891T2 (de) Peptidverbindung, die von einem verschobenen offenen leserahmen des ice-gens abstammt
US5936138A (en) Gene encoding mutant L3T4 protein which facilitates HIV infection and transgenic mouse expressing such protein
DE69920216T2 (de) Biologisches material zur herstellung pharmazeutischer zusammensetzungen zur behandlung von säugetieren
DE602004001395T2 (de) Rhesus-karzinoembryonales antigen, dieses codierende nukleotide und verwendungen davon
AU671160C (en) Multidrug resistance gene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040430

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050714