EP1363092A1 - Cryogenic air separation process and apparatus - Google Patents

Cryogenic air separation process and apparatus Download PDF

Info

Publication number
EP1363092A1
EP1363092A1 EP03006695A EP03006695A EP1363092A1 EP 1363092 A1 EP1363092 A1 EP 1363092A1 EP 03006695 A EP03006695 A EP 03006695A EP 03006695 A EP03006695 A EP 03006695A EP 1363092 A1 EP1363092 A1 EP 1363092A1
Authority
EP
European Patent Office
Prior art keywords
liquid fraction
air
column system
heat exchange
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03006695A
Other languages
German (de)
French (fr)
Inventor
Ralph Spöri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP03006695A priority Critical patent/EP1363092A1/en
Publication of EP1363092A1 publication Critical patent/EP1363092A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air

Definitions

  • the invention relates to a method for the low-temperature separation of air in one Rectification column system, which has at least one separation column, a first Airflow cooled in a main heat exchanger and into the rectification column system is initiated, a second air flow to work relaxed and downstream of the Work-related relaxation through indirect heat exchange with a liquid Fraction from the rectification column system is heated.
  • the rectification column system can be a one, two or more column system act for nitrogen-oxygen separation. If necessary, that can Rectification column system one or more additional columns for the extraction of others Air components, especially noble gases.
  • JP 61079978 A A method of the type mentioned is known from JP 61079978 A. Similar Processes are described in DE 2518557 C and from Rathbone, "Latest developments in the field of cryogenic techniques for gas separation ", Proceedings of the International Symposium on Gas Separation Technology, Antwerp, Belgium, September 10-15, Shown in 1989. The work-relaxed air is not here Rectification column system fed, but warmed in the main heat exchanger and then discarded.
  • the invention is based, such a method and a task specify appropriate device that are particularly economical to operate.
  • the "main heat exchanger” can be in the invention by any known type of Heat exchangers are formed by regenerators or by a recuperative - switchable or non-switchable - heat exchanger. It can be from a block or several blocks connected in parallel and / or in series.
  • the "additional heat exchanger" according to the invention is preferably by a single, separate heat exchanger block formed by no other Process streams as the second air stream and the liquid fraction to be cooled be directed.
  • An alternative is an integration in a supercooling counterflow conceivable through which other process streams of the process flow.
  • the "second air flow” can, for example, be separate from the “first air flow” compressed and / or cleaned. Alternatively, both air flows become common compressed and cleaned and upstream of the cooling in the main heat exchanger or at an intermediate temperature of the main heat exchanger. In a Another variant (for example, when the air cools down in a switchable Main heat exchanger - Revex), the second air flow can also come from one of the columns of the rectification column system, for example above some Plywood floors from the high-pressure column of a two-column system.
  • the "work relaxation” is carried out in a relaxation machine, preferably in an expansion turbine.
  • the second air flow can be downstream of the indirect heat exchange with the liquid fraction partially or completely as a heating stream in the Main heat exchanger to be warmed up.
  • the second air stream is downstream of its heating in the Main heat exchanger removed from the process. This means that he is neither the one Rectification column system, still (in a circulatory system) to the work-related relaxation is returned. He can be in the atmosphere blown off or used as an impure product.
  • the Main heat exchanger can be the second air flow downstream of the indirect Heat exchange with the liquid fraction at least partially in one or several separation columns of the rectification column system are introduced. Doing so at least part of the second air flow of indirect heat exchange with the liquid fraction introduced as a blowing stream into the rectification column system, especially in the low pressure column of a two or more column system.
  • the heating current can be downstream of the indirect heat exchange with the liquid fraction with a product or residual stream from the rectification column system are mixed, for example with an impure nitrogen stream from the Low pressure column of a two-column system.
  • part of the from the Expansion machine exiting air into a column of the rectification column system be introduced, for example in the low pressure column of a two-column system.
  • the mixing can be upstream or downstream of the main heat exchanger take place, but it is preferably between the outlet from the additional heat exchanger carried out. The mixture is then removed from the process and for example blown off into the atmosphere or used as an impure product.
  • this top cold is preferably achieved in that the liquid fraction downstream of the indirect heat exchange in the Additional heat exchanger in the evaporation space of a condenser evaporator is initiated.
  • the cold is caused by indirect heat exchange transferred to a condensing stream.
  • the liquid fraction can be relaxed.
  • Cooling in the additional heat exchanger results in a particularly low level Flash gas amount.
  • the rectification column system for one or more columns Has argon recovery and liquid return for in the condenser-evaporator at least one of the columns for argon production is generated.
  • "Pillars for Argon production represents, for example, a raw argon column (for argon-oxygen separation) and / or a pure argon column (for argon-nitrogen separation). Die supercooled liquid fraction can be used to cool the head of one or both of these columns, especially the crude argon column.
  • Heat exchange in the additional heat exchanger causes the transfer of one increased amount of cold and thus an up to 6% improved argon yield. Due to the increased supercooling of the liquid for the crude argon column head cooling there is also greater flexibility in positioning the Relief valve upstream of the condenser-evaporator.
  • the liquid fraction is preferably in the Bottom evaporator of a pure argon column cooled.
  • This sump evaporator is used for Generation of rising steam for the pure argon column.
  • a liquid from the lower region is, for example, a liquid fraction one of the pillars of the rectification column system, especially from the lower area the high-pressure column of a two-column system for nitrogen-oxygen separation used. It is usually enriched with oxygen, which means that it has one higher oxygen content than air.
  • the generated during the work-relieving relaxation of the second air stream mechanical energy can at least partially compress the first and / or second air flow can be used by an appropriate compressor is mechanically coupled to the relaxation machine.
  • the invention also relates to a device according to claim 13.
  • Atmospheric air 1 is in an air compressor 2 to a pressure of brought, for example, 6 bar, overflows 3 after passing through an after-cooling Line 4 to a post-compressor 5 and there continues to, for example, 16.5 bar compacted. After a further after-cooling 6 is branched out through line 7 flowing air into a first air flow 8 and into a second air flow 201.
  • the cleaning device - usually a molecular sieve station - is preferably located between the after-cooler 3 and the post-compressor 5.
  • the first air flow 8 is approximately in a main heat exchanger 9 Cooled dew point temperature and via line 10 - if necessary after Throttling 11 - fed into the high pressure column 12 of a rectification column system.
  • the rectification column system is in terms of nitrogen-oxygen separation Two-pillar system built, the one next to the high pressure column 12 Has low pressure column 13. These two columns stand above a condenser evaporator 14, the so-called main condenser, in heat exchanging Connection.
  • Oxygenated liquid 15 from the sump of the high pressure column 12 is in cooled a supercooling counterflow 16, via line 17 two later descriptive heat exchangers 18 and 205 passed, there undercooled and then relaxed in a throttle valve 19. (A part of oxygen-enriched liquid can via a bypass line 20 to the Heat exchanger 18 are passed.)
  • the relaxed oxygen-enriched Liquid 21 is divided into a first partial flow 22 and a second partial flow 23 branched.
  • the first partial flow 22 is in a condenser-evaporator 24, which as Pure argon head condenser is formed, partially evaporated and then via line 25 into the evaporation space of a further condenser-evaporator 26, the crude argon overhead condenser, initiated while the first partial flow directly into the raw argon overhead condenser flows.
  • the in the evaporation room of the Crude argon overhead condenser 26 formed vapor 27 and the remaining liquid portion 28 are introduced into the low pressure column at a suitable point.
  • the gaseous nitrogen 29 formed at the top of the high pressure column 12 becomes one first part 30 warmed to about ambient temperature in the main heat exchanger 9 and discharged via line 31 as a gaseous pressure product.
  • a second part 32 it is passed into the liquefaction space of the main condenser 13. That there Part of the condensate 33 formed is returned to the high-pressure column 12 given up.
  • the rest is obtained as a liquid product, partly as liquid pressure nitrogen 36, or after hypothermia 16, throttling 39 and Phase separation 40 (via lines 37 and 38) as pressureless liquid nitrogen 41. Flash gas 42 from the phase separation 40 is together with the top product 43 Low pressure column 14 discharged.
  • Impure nitrogen 44 becomes liquid from an intermediate point of the high-pressure column 12 withdrawn, supercooled (16) and via line 45 and throttle valve 46 as a return abandoned the head of the low pressure column 14.
  • the rectification column system of the embodiment also has one Argon production with a raw argon column consisting of two parts 58 and 59, and with a pure argon column 60.
  • a raw argon column consisting of two parts 58 and 59
  • a pure argon column 60 At an intermediate point of the low pressure column 14 an argon-containing oxygen fraction 61 is drawn off and into the first crude argon column 58 initiated.
  • the top steam 62 of the first crude argon column continues to the bottom of the second raw argon column 59 out.
  • Gaseous raw argon 63 from the head of the second Crude argon column is partially condensed in the crude argon overhead condenser 26. there liquid 64 obtained is returned to the second crude argon column 59 given up.
  • the bottom liquid 65 of the second crude argon column 59 is by means of a Pump 66 is conveyed via line 67 to the top of the first crude argon column 58.
  • the oxygen-rich liquid 68 from the sump of the first ras 58 is finally in the low pressure column 14 is fed back.
  • crude argon 69 remaining in vapor form becomes the Pure argon column 60 supplied at an intermediate point.
  • Head steam 70 the Pure argon column 60 is partially condensed in the pure argon column top condenser 24.
  • the condensate 71 produced in the process is returned to the top of the pure argon column 60 given up.
  • the remaining gas 72 makes them more volatile than argon Components, especially nitrogen, are discharged as residual steam.
  • the Bottom evaporator 18 is used to obtain ascending steam Evaporation of a part 74 of those obtained in the bottom of the pure argon column 60 Liquid 73.
  • the rest forms the liquid pure argon product 75.
  • the second airflow 201 after cooling in Main heat exchanger 9 to an intermediate temperature via line 202 one Work-relieving relaxation fed into a turbine 203 and there to something about Brought atmospheric pressure.
  • the work-relaxed air 204 transfers in the Additional heat exchanger 205 their peak cold at about 91 K by indirect Heat exchange with the liquid fraction 15 - 17 from the bottom of the High pressure column 12.
  • the liquid fraction is in the additional heat exchanger 205 of about 95 cooled to about 93 K. This reduces the flash gas content at Expansion 19 of the liquid fraction downstream of the additional heat exchanger 205, and accordingly more cold is available for head cooling 26/24 of the raw argon column 58/59 or the pure argon column 60 are available.
  • the air flow 206-206 downstream of the additional heat exchanger 205 is at the embodiment offered two ways.
  • line 207 he can - if necessary after throttling 208 - the residual gas (impure nitrogen) 53 from the Low pressure column 14 mixed and together with this from the process removed (line 54/55).
  • line 209 it can pass through valve 210 and above Line 209 are blown into the low-pressure column 13 at a suitable point.
  • the two valves 208, 210 can indicate the quantitative ratio of these two flows any desired value can be set. In extreme cases, one of the two Lines 207, 209 are closed.
  • the turbine 203 is coupled to the post-compressor 5 via a common shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Process for the low temperature decomposition of air in a rectification column system (10,11) having separating columns (12, 14, 58, 59, 60) comprises cooling a first air stream (8) in a main heat exchanger (9) and feeding into the rectification column system, and relieving a second air stream (201, 202) and heating downstream in a heat exchanger (205) with a liquid fraction (15, 17) from the rectification column system. The liquid fraction from the rectification column system is contacted upstream of the heat exchanger (205) with the relieved second air stream in indirect heat exchange with a further process stream (49, 52). An Independent claim is also included for a device for the low temperature decomposition of air in a rectification column system.

Description

Die Erfindung betrifft ein Verfahren zur Tieftemperatur-Zerlegung von Luft in einem Rektifiziersäulensystem, das mindestens eine Trennsäule aufweist, wobei ein erster Luftstrom in einem Hauptwärmetauscher abgekühlt und in das Rektifiziersäulensystem eingeleitet wird, ein zweiter Luftstrom arbeitsleistend entspannt und stromabwärts der arbeitsleistenden Entspannung durch indirekten Wärmeaustausch mit einer flüssigen Fraktion aus dem Rektifiziersäulensystem angewärmt wird.The invention relates to a method for the low-temperature separation of air in one Rectification column system, which has at least one separation column, a first Airflow cooled in a main heat exchanger and into the rectification column system is initiated, a second air flow to work relaxed and downstream of the Work-related relaxation through indirect heat exchange with a liquid Fraction from the rectification column system is heated.

Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) bekannt. Bei dem Rektifiziersäulensystem kann es sich um Ein-, Zwei- oder Mehr-Säulen-System zur Stickstoff-Sauerstoff-Trennung handeln. Gegebenenfalls kann das Rektifiziersäulensystem eine oder mehrere weitere Säulen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen aufweisen.Methods and devices for the low-temperature separation of air are, for example from Hausen / Linde, low temperature technology, 2nd edition 1985, chapter 4 (pages 281 to 337) known. The rectification column system can be a one, two or more column system act for nitrogen-oxygen separation. If necessary, that can Rectification column system one or more additional columns for the extraction of others Air components, especially noble gases.

Ein Verfahren der eingangs genannten Art ist aus JP 61079978 A bekannt. Ähnliche Prozesse sind in DE 2518557 C und aus Rathbone, "Latest developments in the field of cryogenic techniques for gas separation", Proceedings of the International Symposium on Gas Separation Technology, Antwerp, Belgium, September 10-15, 1989 gezeigt. Die arbeitsleistend entspannte Luft wird hier nicht in das Rektifiziersäulensystem eingespeist, sondern in dem Hauptwärmetauscher angewärmt und anschließend verworfen.A method of the type mentioned is known from JP 61079978 A. Similar Processes are described in DE 2518557 C and from Rathbone, "Latest developments in the field of cryogenic techniques for gas separation ", Proceedings of the International Symposium on Gas Separation Technology, Antwerp, Belgium, September 10-15, Shown in 1989. The work-relaxed air is not here Rectification column system fed, but warmed in the main heat exchanger and then discarded.

Der Erfindung liegt die Aufgabe zugrunde, ein derartiges Verfahren und eine entsprechende Vorrichtung anzugeben, die besonders wirtschaftlich zu betreiben sind.The invention is based, such a method and a task specify appropriate device that are particularly economical to operate.

Diese Aufgabe wird dadurch gelöst, dass die flüssige Fraktion (15, 17) stromaufwärts des indirekten Wärmeaustauschs (205) mit dem arbeitsleistend entspannten zweiten Luftstrom (204) in indirekten Wärmeaustausch (16) mit mindestens einem weiteren Prozess-Strom (49, 52) gebracht wird. This object is achieved in that the liquid fraction (15, 17) upstream the indirect heat exchange (205) with the work relaxed second Air flow (204) in indirect heat exchange (16) with at least one other Process stream (49, 52) is brought.

Durch die erfindungsgemäße Verfahrensweise wird die bei der arbeitsleistenden Entspannung erzeugte Spitzenkälte gezielt an einer besonders kalten Stelle auf den Flüssigstrom übertragen und kann damit für das Verfahren weiter genutzt werden. Die beiden Wärmeaustausch-Schritte können in getrennten Wärmetauscher-Blöcken durchgeführt werden. (Für diesen Fall wird im folgenden die Bezeichnung "Zusatzwärmetauscher" für den Apparat verwendet, in dem der indirekte Wärmeaustausch zwischen der flüssigen Fraktion und dem entspannten zweiten Luftstrom stattfindet.) Alternativ ist eine Durchführung in einem mindestens teilweise gemeinsamen Block möglich, wobei mindesten in einem relativ kalten Abschnitt dieses Blocks Passagen für den entspannten zweiten Luftstrom, aber nicht für den weiteren Prozess-Strom vorgesehen sind, in einem relativ warmen Abschnitt dagegen Passagen für den weiteren Prozess-Strom, aber nicht für den entspannten zweiten Luftstrom. (In diesem Fall ist der Begriff "Zusatzwärmetauscher" auf den integrierten Wärmeaustauscher-Block zu lesen.)Through the procedure according to the invention, that in the work-performing Relaxation creates peak cold in a particularly cold place on the Transfer liquid power and can thus be used for the process. The Both heat exchange steps can be done in separate heat exchanger blocks be performed. (In this case, the designation is as follows "Additional heat exchanger" used for the apparatus in which the indirect Heat exchange between the liquid fraction and the relaxed second Air flow takes place.) Alternatively, an implementation is at least partially common block possible, at least in a relatively cold section of this Blocks passages for the relaxed second airflow, but not for the further one Process electricity are provided, but in a relatively warm section passages for the further process stream, but not for the relaxed second air stream. (In In this case, the term "additional heat exchanger" is integrated on the Read heat exchanger block.)

Der "Hauptwärmetauscher" kann bei der Erfindung durch jede bekannte Art von Wärmetauscher gebildet werden, durch Regeneratoren oder durch einen rekuperativen - umschaltbaren oder nicht umschaltbaren - Wärmetauscher. Er kann aus einem Block oder mehreren, parallel und/oder seriell verbundenen Blöcken bestehen.The "main heat exchanger" can be in the invention by any known type of Heat exchangers are formed by regenerators or by a recuperative - switchable or non-switchable - heat exchanger. It can be from a block or several blocks connected in parallel and / or in series.

Der erfindungsgemäße "Zusatzwärmetauscher" wird vorzugsweise durch einen einzelnen, separaten Wärmetauscher-Block gebildet, durch den keine anderen Prozess-Ströme als der zweite Luftstrom und die zu abzukühlende flüssige Fraktion geleitet werden. Alternativ ist eine Integration in einen Unterkühlungs-Gegenströmer denkbar, durch den auch andere Prozess-Ströme des Verfahrens fließen.The "additional heat exchanger" according to the invention is preferably by a single, separate heat exchanger block formed by no other Process streams as the second air stream and the liquid fraction to be cooled be directed. An alternative is an integration in a supercooling counterflow conceivable through which other process streams of the process flow.

Der "zweite Luftstrom" kann beispielsweise getrennt von dem "ersten Luftstrom" verdichtet und/oder gereinigt werden. Alternativ werden beide Luftströme gemeinsam verdichtet und gereinigt und stromaufwärts der Abkühlung im Hauptwärmetauscher oder bei einer Zwischentemperatur des Hauptwärmetauschers verzweigt. In einer weiteren Variante (beispielsweise bei Abkühlung der Luft in einem umschaltbaren Hauptwärmetauscher - Revex) kann der zweite Luftstrom auch aus einer der Säulen des Rektifiziersäulensystems entnommen werden, beispielsweise oberhalb einiger Sperrböden aus der Hochdrucksäule eines Zwei-Säulen-Systems. The "second air flow" can, for example, be separate from the "first air flow" compressed and / or cleaned. Alternatively, both air flows become common compressed and cleaned and upstream of the cooling in the main heat exchanger or at an intermediate temperature of the main heat exchanger. In a Another variant (for example, when the air cools down in a switchable Main heat exchanger - Revex), the second air flow can also come from one of the columns of the rectification column system, for example above some Plywood floors from the high-pressure column of a two-column system.

Die "arbeitsleistende Entspannung" wird in einer Entspannungsmaschine durchgeführt, vorzugsweise in einer Expansions-Turbine.The "work relaxation" is carried out in a relaxation machine, preferably in an expansion turbine.

Der zweite Luftstroms kann stromabwärts des indirekten Wärmeaustauschs mit der flüssigen Fraktion teilweise oder vollständig als Anwärmstrom in dem Hauptwärmetauscher angewärmt werden.The second air flow can be downstream of the indirect heat exchange with the liquid fraction partially or completely as a heating stream in the Main heat exchanger to be warmed up.

Vorzugsweise wird der zweite Luftstrom stromabwärts seiner Anwärmung im Hauptwärmetauscher aus dem Verfahren entfernt. Dies bedeutet, dass er weder dem Rektifiziersäulensystem zugeführt, noch (in einem Kreislaufsystem) zu der arbeitsleistenden Entspannung zurückgeleitet wird. Er kann in die Atmosphäre abgeblasen oder als unreines Produkt verwendet werden.Preferably, the second air stream is downstream of its heating in the Main heat exchanger removed from the process. This means that he is neither the one Rectification column system, still (in a circulatory system) to the work-related relaxation is returned. He can be in the atmosphere blown off or used as an impure product.

Alternativ oder zusätzlich zu der (dann teilweisen) Anwärmung im Hauptwärmetauscher kann der zweite Luftstrom stromabwärts des indirekten Wärmeaustauschs mit der flüssigen Fraktion mindestens teilweise in eine oder mehrere Trennsäulen des Rektifiziersäulensystems eingeleitet werden. Dabei wird mindestens ein Teil des zweiten Luftstroms des indirekten Wärmeaustauschs mit der flüssigen Fraktion als Einblasestrom in das Rektifiziersäulensystem eingeleitet, insbesondere in die Niederdrucksäule eines Zwei- oder Mehr-Säulen-Systems.Alternatively or in addition to the (then partial) heating in the Main heat exchanger can be the second air flow downstream of the indirect Heat exchange with the liquid fraction at least partially in one or several separation columns of the rectification column system are introduced. Doing so at least part of the second air flow of indirect heat exchange with the liquid fraction introduced as a blowing stream into the rectification column system, especially in the low pressure column of a two or more column system.

Der Anwärmstrom kann stromabwärts des indirekten Wärmeaustauschs mit der flüssigen Fraktion mit einem Produkt- oder Reststrom aus dem Rektifiziersäulensystem vermischt werden, beispielsweise mit einem unreinen Stickstoffstrom aus der Niederdrucksäule eines Zwei-Säulen-Systems. Zusätzlich kann ein Teil der aus der Entspannungsmaschine austretenden Luft in eine Säule des Rektifiziersäulensystems eingeführt werden, zum Beispiel in die Niederdrucksäule eines Zwei-Säulen-Systems. Die Vermischung kann stromaufwärts oder stromabwärts des Hauptwärmetauschers erfolgen, vorzugsweise wird sie aber zwischen Austritt aus dem Zusatzwärmetauscher durchgeführt. Anschließend wird das Gemisch aus dem Verfahren entfernt und beispielsweise in die Atmosphäre abgeblasen oder als unreines Produkt verwendet.The heating current can be downstream of the indirect heat exchange with the liquid fraction with a product or residual stream from the rectification column system are mixed, for example with an impure nitrogen stream from the Low pressure column of a two-column system. In addition, part of the from the Expansion machine exiting air into a column of the rectification column system be introduced, for example in the low pressure column of a two-column system. The mixing can be upstream or downstream of the main heat exchanger take place, but it is preferably between the outlet from the additional heat exchanger carried out. The mixture is then removed from the process and for example blown off into the atmosphere or used as an impure product.

Vorzugsweise nehmen an dem indirekten Wärmeaustausch in dem Zusatzwärmetauscher keine weiteren Prozess-Ströme außer dem arbeitsleistend entspannten zweiten Luftstrom und der flüssigen Fraktion teil, das heißt der Zusatzwärmetauscher wird durch einen separaten Wärmetauscher-Block mit genau zwei Gruppen von Passagen gebildet. Die Spitzenkälte aus der arbeitsleistenden Entspannung wird damit vollständig auf die flüssige Fraktion übertragen.Preferably take part in the indirect heat exchange in the Additional heat exchanger no other process streams other than that work relaxed second air flow and the liquid fraction, that is Additional heat exchanger is made with a separate heat exchanger block two groups of passages are formed. The peak cold from the job-performing Relaxation is thus completely transferred to the liquid fraction.

Die weitere Nutzung dieser Spitzenkälte wird vorzugsweise dadurch erreicht, dass die flüssige Fraktion stromabwärts des indirekten Wärmeaustauschs in dem Zusatzwärmetauscher in den Verdampfungsraum eines Kondensator-Verdampfers eingeleitet wird. Bei der Verdampfung wird die Kälte durch indirekten Wärmeaustausch auf einen kondensierenden Strom übertragen. Vor der Einleitung in den Kondensator-Verdampfer kann die flüssige Fraktion entspannt werden. Durch die erfindungsgemäße Abkühlung in dem Zusatzwärmetauscher entsteht dabei eine besonders geringe Flashgas-Menge.The further use of this top cold is preferably achieved in that the liquid fraction downstream of the indirect heat exchange in the Additional heat exchanger in the evaporation space of a condenser evaporator is initiated. In the case of evaporation, the cold is caused by indirect heat exchange transferred to a condensing stream. Before introducing into the condenser-evaporator the liquid fraction can be relaxed. By the invention Cooling in the additional heat exchanger results in a particularly low level Flash gas amount.

Es ist ferner günstig, wenn das Rektifiziersäulensystem eine oder mehrere Säulen zur Argongewinnung aufweist und in dem Kondensator-Verdampfer flüssiger Rücklauf für mindestens eine der Säulen zur Argongewinnung erzeugt wird. "Säulen zur Argongewinnung" stellen beispielsweise eine Rohargonsäule (zur Argon-Sauerstoff-Trennung) und/oder einer Reinargonsäule (zur Argon-Stickstoff-Trennung) dar. Die unterkühlte flüssige Fraktion kann zur Kopfkühlung einer oder beider dieser Säulen, insbesondere der Rohargonsäule, eingesetzt werden. Der erfindungsgemäße Wärmeaustausch in dem Zusatzwärmetauscher bewirkt dabei die Übertragung einer erhöhten Kältemenge und damit eine um bis zu 6 % verbesserte Argonausbeute. Durch die verstärkte Unterkühlung der Flüssigkeit für die Rohargonsäulen-Kopfkühlung besteht außerdem eine höhere Flexibilität hinsichtlich der Positionierung des Entspannungsventils stromaufwärts des Kondensator-Verdampfers.It is also advantageous if the rectification column system for one or more columns Has argon recovery and liquid return for in the condenser-evaporator at least one of the columns for argon production is generated. "Pillars for Argon production "represent, for example, a raw argon column (for argon-oxygen separation) and / or a pure argon column (for argon-nitrogen separation). Die supercooled liquid fraction can be used to cool the head of one or both of these columns, especially the crude argon column. The invention Heat exchange in the additional heat exchanger causes the transfer of one increased amount of cold and thus an up to 6% improved argon yield. Due to the increased supercooling of the liquid for the crude argon column head cooling there is also greater flexibility in positioning the Relief valve upstream of the condenser-evaporator.

Tieftemperatur-Luftzerlegungs-Systeme mit Argongewinnung sind beispielsweise aus DE 2325422 A, EP 171711 A2, EP 377117 B2 (= US 5019145), EP 628777 B1 (= US 5426946), EP 669508 A1 (= US 5592833), EP 669509 B1 (= US 5590544), EP 942246 A2 oder EP 1103772 A1 bekannt.Low temperature air separation systems with argon extraction are, for example, out DE 2325422 A, EP 171711 A2, EP 377117 B2 (= US 5019145), EP 628777 B1 (= US 5426946), EP 669508 A1 (= US 5592833), EP 669509 B1 (= US 5590544), EP 942246 A2 or EP 1103772 A1 known.

Stromaufwärts des Zusatzwärmetauschers wird die flüssige Fraktion vorzugsweise im Sumpfverdampfer einer Reinargonsäule abgekühlt. Dieser Sumpfverdampfer dient zur Erzeugung aufsteigenden Dampfs für die Reinargonsäule. Die Flüssigkeit wird bei dem indirekten Wärmeaustausch gibt in dem Sumpfverdampfer fühlbare, aber keine latente Wärme ab. Diese Vorgehensweise an sich ist im Detail in EP 669509 B1 (= US 5590544) beschrieben.Upstream of the additional heat exchanger, the liquid fraction is preferably in the Bottom evaporator of a pure argon column cooled. This sump evaporator is used for Generation of rising steam for the pure argon column. The liquid is at the indirect heat exchange gives tangible but no latent heat in the sump evaporator Heat. This procedure itself is described in detail in EP 669509 B1 (= US 5590544).

Als flüssige Fraktion wird beispielsweise eine Flüssigkeit aus dem unteren Bereich einer der Säulen des Rektifiziersäulensystems, insbesondere aus dem unteren Bereich der Hochdrucksäule eines Zwei-Säulen-Systems zur Stickstoff-Sauerstoff-Trennung eingesetzt. Sie ist in der Regel sauerstoffangereichert, das heißt sie weist einen höheren Sauerstoffgehalt als Luft auf.A liquid from the lower region is, for example, a liquid fraction one of the pillars of the rectification column system, especially from the lower area the high-pressure column of a two-column system for nitrogen-oxygen separation used. It is usually enriched with oxygen, which means that it has one higher oxygen content than air.

Die bei der arbeitsleistenden Entspannung des zweiten Luftstroms erzeugte mechanische Energie kann mindestens teilweise zur Verdichtung des ersten und/oder zweiten Luftstroms eingesetzt werden, indem ein entsprechender Verdichter mechanisch mit der Entspannungsmaschine gekoppelt ist.The generated during the work-relieving relaxation of the second air stream mechanical energy can at least partially compress the first and / or second air flow can be used by an appropriate compressor is mechanically coupled to the relaxation machine.

Die Erfindung betrifft außerdem eine Vorrichtung gemäß Patentanspruch 13.The invention also relates to a device according to claim 13.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert.The invention and further details of the invention are described below of an embodiment shown in the drawing.

Atmosphärische Luft 1 wird in einem Luftverdichter 2 auf einen Druck von beispielsweise 6 bar gebracht, strömt nach Durchlaufen einer Nachkühlung 3 über Leitung 4 zu einem Nachverdichter 5 und wird dort weiter auf beispielsweise 16,5 bar verdichtet. Nach einer weiteren Nachkühlung 6 wird verzweigt die durch Leitung 7 strömende Luft in einen ersten Luftstrom 8 und in einen zweiten Luftstrom 201.Atmospheric air 1 is in an air compressor 2 to a pressure of brought, for example, 6 bar, overflows 3 after passing through an after-cooling Line 4 to a post-compressor 5 and there continues to, for example, 16.5 bar compacted. After a further after-cooling 6 is branched out through line 7 flowing air into a first air flow 8 and into a second air flow 201.

Vor der Einleitung in den Hauptwärmetauscher 9 wird die Luft gereinigt (nicht dargestellt). Die Reinigungseinrichtung - in der Regel eine Molekularsiebstation - befindet sich vorzugsweise zwischen dem Nachkühler 3 und dem Nachverdichter 5.Before being introduced into the main heat exchanger 9, the air is cleaned (not ) Shown. The cleaning device - usually a molecular sieve station - is preferably located between the after-cooler 3 and the post-compressor 5.

Der erste Luftstrom 8 wird in einem Hauptwärmetauscher 9 auf etwa Taupunktstemperatur abgekühlt und über Leitung 10 - gegebenenfalls nach Drosselung 11 - in die Hochdrucksäule 12 eines Rektifiziersäulensystems eingespeist. Das Rektifiziersäulensystem ist hinsichtlich der Stickstoff-Sauerstoff-Trennung als Zwei-Säulen-System aufgebaut, das neben der Hochdrucksäule 12 eine Niederdrucksäule 13 aufweist. Diese beiden Säulen stehen über einen Kondensator-Verdampfer 14, den so genannten Hauptkondensator, in wärmetauschender Verbindung.The first air flow 8 is approximately in a main heat exchanger 9 Cooled dew point temperature and via line 10 - if necessary after Throttling 11 - fed into the high pressure column 12 of a rectification column system. The rectification column system is in terms of nitrogen-oxygen separation Two-pillar system built, the one next to the high pressure column 12 Has low pressure column 13. These two columns stand above a condenser evaporator 14, the so-called main condenser, in heat exchanging Connection.

Sauerstoffangereicherter Flüssigkeit 15 vom Sumpf der Hochdrucksäule 12 wird in einem Unterkühlungs-Gegenströmer 16 abgekühlt, über Leitung 17 zwei später zu beschreibenden Wärmetauschern 18 und 205 zugeleitet, dort weiter unterkühlt und anschließend in einem Drosselventil 19 entspannt. (Ein Teil der sauerstoffangereicherten Flüssigkeit kann über eine Bypass-Leitung 20 an dem Wärmetauscher 18 vorbeigeführt werden.) Die entspannte sauerstoffangereicherte Flüssigkeit 21 wird in einen ersten Teilstrom 22 und einen zweiten Teilstrom 23 verzweigt. Der erste Teilstrom 22 wird in einem Kondensator-Verdampfer 24, der als Reinargon-Kopfkondensator ausgebildet ist, teilweise verdampft und anschließend über Leitung 25 in den Verdampfungsraum eines weiteren Kondensator-Verdampfers 26, des Rohargon-Kopfkondensators, eingeleitet, während der erste Teilstrom direkt in den Rohargon-Kopfkondensator strömt. Der in dem Verdampfungsraum des Rohargon-Kopfkondensators 26 gebildete Dampf 27 und der flüssig verbliebene Anteil 28 werden an geeigneter Stelle in die Niederdrucksäule eingeführt.Oxygenated liquid 15 from the sump of the high pressure column 12 is in cooled a supercooling counterflow 16, via line 17 two later descriptive heat exchangers 18 and 205 passed, there undercooled and then relaxed in a throttle valve 19. (A part of oxygen-enriched liquid can via a bypass line 20 to the Heat exchanger 18 are passed.) The relaxed oxygen-enriched Liquid 21 is divided into a first partial flow 22 and a second partial flow 23 branched. The first partial flow 22 is in a condenser-evaporator 24, which as Pure argon head condenser is formed, partially evaporated and then via line 25 into the evaporation space of a further condenser-evaporator 26, the crude argon overhead condenser, initiated while the first partial flow directly into the raw argon overhead condenser flows. The in the evaporation room of the Crude argon overhead condenser 26 formed vapor 27 and the remaining liquid portion 28 are introduced into the low pressure column at a suitable point.

Der am Kopf der Hochdrucksäule 12 gebildete gasförmige Stickstoff 29 wird zu einem ersten Teil 30 im Hauptwärmetauscher 9 auf etwa Umgebungstemperatur angewärmt und über Leitung 31 als gasförmiges Druckprodukt abgeführt. Zu einem zweiten Teil 32 wird er in den Verflüssigungsraum des Hauptkondensators 13 geleitet. Das dort gebildete Kondensat 33 wird zu einem Teil 34 als Rücklauf auf die Hochdrucksäule 12 aufgegeben. Der Rest wird als Flüssigprodukt gewonnen, und zwar teilweise als flüssiger Druckstickstoff 36, oder nach Unterkühlung 16, Drosselung 39 und Phasentrennung 40 ( über Leitungen 37 und 38) als druckloser Flüssigstickstoff 41. Flashgas 42 aus der Phasentrennung 40 wird gemeinsam mit dem Kopfprodukt 43 der Niederdrucksäule 14 abgeführt.The gaseous nitrogen 29 formed at the top of the high pressure column 12 becomes one first part 30 warmed to about ambient temperature in the main heat exchanger 9 and discharged via line 31 as a gaseous pressure product. To a second part 32 it is passed into the liquefaction space of the main condenser 13. That there Part of the condensate 33 formed is returned to the high-pressure column 12 given up. The rest is obtained as a liquid product, partly as liquid pressure nitrogen 36, or after hypothermia 16, throttling 39 and Phase separation 40 (via lines 37 and 38) as pressureless liquid nitrogen 41. Flash gas 42 from the phase separation 40 is together with the top product 43 Low pressure column 14 discharged.

Von einer Zwischenstelle der Hochdrucksäule 12 wird unreiner Stickstoff 44 flüssig abgezogen, unterkühlt (16) und über Leitung 45 und Drosselventil 46 als Rücklauf auf den Kopf der Niederdrucksäule 14 aufgegeben.Impure nitrogen 44 becomes liquid from an intermediate point of the high-pressure column 12 withdrawn, supercooled (16) and via line 45 and throttle valve 46 as a return abandoned the head of the low pressure column 14.

Gasförmig verlassen die Niederdrucksäule 14 Sauerstoff (47 - 48), Kopfstickstoff (43 - 49 - 50 - 51) und unreiner Stickstoff (52 - 53 - 54 - 55 - 56) und werden nach Anwärmung im Unterkühlungs-Gegenströmer 16 und/oder im Hauptwärmetauscher 9 als gasförmige Produkte beziehungsweise Restgas unter Umgebungstemperatur abgezogen. (Die Ströme 49 und 52 stellen je einen "weiteren Prozess-Strom" im Sinne der Erfindung dar.) Außerdem wird flüssiger Sauerstoff 56 vom Sumpf der Niederdrucksäule 14 abgezogen und - gegebenenfalls nach Unterkühlung in 16 - als weiteres Flüssigprodukt 57 gewonnen.Gaseous leave the low pressure column 14 oxygen (47 - 48), top nitrogen (43 - 49 - 50 - 51) and impure nitrogen (52 - 53 - 54 - 55 - 56) and become after Heating in the subcooling countercurrent 16 and / or in the main heat exchanger 9 as gaseous products or residual gas below ambient temperature deducted. (Streams 49 and 52 each represent a "further process stream" in the sense the invention.) In addition, liquid oxygen 56 from the bottom of the Deducted low pressure column 14 and - if necessary after hypothermia in 16 - as won another liquid product 57.

Das Rektifiziersäulensystem des Ausführungsbeispiels weist außerdem eine Argongewinnung mit einer Rohargonsäule, die aus zwei Teilen 58 und 59 besteht, und mit einer Reinargonsäule 60 auf. An einer Zwischenstelle der Niederdrucksäule 14 wird eine argonhaltige Sauerstofffraktion 61 abgezogen und in die erste Rohargonsäule 58 eingeleitet. Der Kopfdampf 62 der ersten Rohargonsäule wird weiter zum Sumpf der zweiten Rohargonsäule 59 geführt. Gasförmiges Rohargon 63 vom Kopf der zweiten Rohargonsäule wird in dem Rohargon-Kopfkondensator 26 partiell kondensiert. Dabei gewonnene Flüssigkeit 64 wird als Rücklauf auf die zweite Rohargonsäule 59 aufgegeben. Die Sumpfflüssigkeit 65 der zweiten Rohargonsäule 59 wird mittels einer Pumpe 66 über Leitung 67 auf den Kopf der ersten Rohargonsäule 58 gefördert. Die sauerstoffreiche Flüssigkeit 68 aus dem Sumpf der ersten Ras 58 wird schließlich in die Niederdrucksäule 14 zurückgespeist.The rectification column system of the embodiment also has one Argon production with a raw argon column consisting of two parts 58 and 59, and with a pure argon column 60. At an intermediate point of the low pressure column 14 an argon-containing oxygen fraction 61 is drawn off and into the first crude argon column 58 initiated. The top steam 62 of the first crude argon column continues to the bottom of the second raw argon column 59 out. Gaseous raw argon 63 from the head of the second Crude argon column is partially condensed in the crude argon overhead condenser 26. there liquid 64 obtained is returned to the second crude argon column 59 given up. The bottom liquid 65 of the second crude argon column 59 is by means of a Pump 66 is conveyed via line 67 to the top of the first crude argon column 58. The oxygen-rich liquid 68 from the sump of the first ras 58 is finally in the low pressure column 14 is fed back.

Im Rohargon-Kopfkondensator 26 dampfförmig verbliebenes Rohargon 69 wird der Reinargonsäule 60 an einer Zwischenstelle zugeführt. Kopfdampf 70 der Reinargonsäule 60 wird im Reinargonsäule-Kopfkondensator 24 partiell kondensiert. Dabei erzeugtes Kondensat 71 wird als Rücklauf auf den Kopf der Reinargonsäule 60 aufgegeben. Mit dem verbliebenen Gas 72 werden die leichter als Argon flüchtigen Komponenten, insbesondere Stickstoff, als Restdampf ausgeschleust. Der Sumpfverdampfer 18 dient zur Gewinnung von aufsteigendem Dampf durch Verdampfung eines Teils 74 der im Sumpf der Reinargonsäule 60 anfallenden Flüssigkeit 73. Der Rest bildet das flüssige Reinargon-Produkt 75.In the crude argon overhead condenser 26, crude argon 69 remaining in vapor form becomes the Pure argon column 60 supplied at an intermediate point. Head steam 70 the Pure argon column 60 is partially condensed in the pure argon column top condenser 24. The condensate 71 produced in the process is returned to the top of the pure argon column 60 given up. The remaining gas 72 makes them more volatile than argon Components, especially nitrogen, are discharged as residual steam. The Bottom evaporator 18 is used to obtain ascending steam Evaporation of a part 74 of those obtained in the bottom of the pure argon column 60 Liquid 73. The rest forms the liquid pure argon product 75.

Gemäß der Erfindung wird der zweite Luftstrom 201 nach Abkühlung im Hauptwärmetauscher 9 auf eine Zwischentemperatur über Leitung 202 einer arbeitsleistenden Entspannung in einer Turbine 203 zugeführt und dort auf etwas über Atmosphärendruck gebracht. Die arbeitsleistend entspannte Luft 204 überträgt in dem Zusatzwärmetauscher 205 ihre Spitzenkälte bei etwa 91 K durch indirekten Wärmeaustausch mit der flüssigen Fraktion 15 - 17 aus dem Sumpf der Hochdrucksäule 12. Die flüssige Fraktion wird im Zusatzwärmetauscher 205 von etwa 95 auf etwa 93 K abgekühlt. Damit verringert sich der Flashgas-Anteil bei der Entspannung 19 der flüssigen Fraktion stromabwärts des Zusatzwärmetauschers 205, und entsprechend mehr Kälte steht zur Kopfkühlung 26/24 der Rohargonsäule 58/59 beziehungsweise der Reinargonsäule 60 zur Verfügung.According to the invention, the second airflow 201 after cooling in Main heat exchanger 9 to an intermediate temperature via line 202 one Work-relieving relaxation fed into a turbine 203 and there to something about Brought atmospheric pressure. The work-relaxed air 204 transfers in the Additional heat exchanger 205 their peak cold at about 91 K by indirect Heat exchange with the liquid fraction 15 - 17 from the bottom of the High pressure column 12. The liquid fraction is in the additional heat exchanger 205 of about 95 cooled to about 93 K. This reduces the flash gas content at Expansion 19 of the liquid fraction downstream of the additional heat exchanger 205, and accordingly more cold is available for head cooling 26/24 of the raw argon column 58/59 or the pure argon column 60 are available.

Dem Luftstrom 206 -206 stromabwärts des Zusatzwärmetauschers 205 werden bei dem Ausführungsbeispiel zwei Wege angeboten. Zum einen (Leitung 207) kann er - gegebenenfalls nach Drosselung 208 - dem Restgas (unreinen Stickstoff) 53 aus der Niederdrucksäule 14 zugemischt und gemeinsam mit diesem aus dem Verfahren entfernt (Leitung 54/55) werden. Zum anderen kann er durch Ventil 210 und über Leitung 209 an geeigneter Stelle in die Niederdrucksäule 13 eingeblasen werden. Über die beiden Ventile 208, 210 kann das Mengenverhältnis dieser beiden Ströme auf jeden gewünschten Wert eingestellt werden. Im Extremfall kann auch eine der beiden Leitungen 207, 209 geschlossen werden.The air flow 206-206 downstream of the additional heat exchanger 205 is at the embodiment offered two ways. On the one hand (line 207) he can - if necessary after throttling 208 - the residual gas (impure nitrogen) 53 from the Low pressure column 14 mixed and together with this from the process removed (line 54/55). On the other hand, it can pass through valve 210 and above Line 209 are blown into the low-pressure column 13 at a suitable point. about the two valves 208, 210 can indicate the quantitative ratio of these two flows any desired value can be set. In extreme cases, one of the two Lines 207, 209 are closed.

Die Turbine 203 ist über eine gemeinsame Welle mit dem Nachverdichter 5 gekoppelt.The turbine 203 is coupled to the post-compressor 5 via a common shaft.

Claims (13)

Verfahren zur Tieftemperatur-Zerlegung von Luft in einem Rektifiziersäulensystem, das mindestens eine Trennsäule (12, 14, 58, 59, 60) aufweist, wobei ein erster Luftstrom (8) in einem Hauptwärmetauscher (9) abgekühlt und in das Rektifiziersäulensystem eingeleitet (10, 11) wird, ein zweiter Luftstrom (201, 202) arbeitsleistend entspannt (203) und stromabwärts der arbeitsleistenden Entspannung (203) durch indirekten Wärmeaustausch (205) mit einer flüssigen Fraktion (15, 17) aus dem Rektifiziersäulensystem angewärmt wird, dadurch gekennzeichnet, dass die flüssige Fraktion (15, 17) stromaufwärts des indirekten Wärmeaustauschs (205) mit dem arbeitsleistend entspannten zweiten Luftstrom (204) in indirekten Wärmeaustausch (16) mit mindestens einem weiteren Prozess-Strom (49, 52) gebracht wird.Method for low-temperature separation of air in a rectification column system which has at least one separation column (12, 14, 58, 59, 60), a first air stream (8) being cooled in a main heat exchanger (9) and introduced into the rectification column system (10, 11), a second air stream (201, 202) is expanded to perform work (203) and is heated downstream of the expanded work (203) by indirect heat exchange (205) with a liquid fraction (15, 17) from the rectification column system, characterized in that the liquid fraction (15, 17) upstream of the indirect heat exchange (205) is brought into indirect heat exchange (16) with at least one further process stream (49, 52) with the work-relieved relaxed second air stream (204). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mindestens ein Teil des zweiten Luftstroms (206) stromabwärts des indirekten Wärmeaustauschs (205) mit der flüssigen Fraktion (15, 17) als Anwärmstrom (207) in dem Hauptwärmetauscher (9) angewärmt wird.A method according to claim 1, characterized in that at least a portion of the second air flow (206) downstream of the indirect heat exchange (205) with the liquid fraction (15, 17) is heated as the heating flow (207) in the main heat exchanger (9). Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Anwärmstrom (207) stromabwärts seiner Anwärmung im Hauptwärmetauscher (9) mindestens teilweise aus dem Verfahren entfernt (54, 55) wird.A method according to claim 2, characterized in that the heating flow (207) downstream of its heating in the main heat exchanger (9) is at least partially removed (54, 55) from the process. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens ein Teil des der zweiten Luftstroms (206) des indirekten Wärmeaustauschs (205) mit der flüssigen Fraktion (15, 17) als Einblasestrom (209) in das Rektifiziersäulensystem eingeleitet wird, insbesondere in die Niederdrucksäule (13) eines Zwei- oder Mehr-Säulen-Systems.Method according to one of claims 1 to 3, characterized in that at least part of the second air stream (206) of the indirect heat exchange (205) with the liquid fraction (15, 17) is introduced as a blowing stream (209) into the rectification column system, in particular into the low pressure column (13) of a two or more column system. Verfahren einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Anwärmstrom (207) stromabwärts des indirekten Wärmeaustauschs (205) mit der flüssigen Fraktion (15, 17) mit einem Produkt- oder Reststrom (53) aus dem Rektifiziersäulensystem vermischt wird. Method according to one of claims 1 to 4, characterized in that the heating stream (207) downstream of the indirect heat exchange (205) with the liquid fraction (15, 17) is mixed with a product or residual stream (53) from the rectification column system. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass an dem indirekten Wärmeaustausch (205) mit der flüssigen Fraktion (15, 17) keine weiteren Prozess-Ströme außer dem arbeitsleistend entspannten zweiten Luftstrom (204) und der flüssigen Fraktion (17) teilnehmen.Method according to one of claims 1 to 10, characterized in that at the indirect heat exchange (205) with the liquid fraction (15, 17) no further process streams apart from the work-relieved relaxed second air stream (204) and the liquid fraction (17) take part. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die flüssige Fraktion (21, 22, 23) stromabwärts des indirekten Wärmeaustauschs (205) mit der flüssigen Fraktion (15, 17) in den Verdampfungsraum eines Kondensator-Verdampfers (24, 26) eingeleitet wird.Method according to one of claims 1 to 6, characterized in that the liquid fraction (21, 22, 23) downstream of the indirect heat exchange (205) with the liquid fraction (15, 17) into the evaporation space of a condenser-evaporator (24, 26 ) is initiated. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Rektifiziersäulensystem eine oder mehrere Säulen (58, 59, 60) zur Argongewinnung aufweist und in dem Kondensator-Verdampfer (24, 26) flüssiger Rücklauf (64, 71) für mindestens eine der Säulen (59, 60) zur Argongewinnung erzeugt wird.Method according to one of claims 1 to 7, characterized in that the rectification column system has one or more columns (58, 59, 60) for the production of argon and in the condenser-evaporator (24, 26) liquid return (64, 71) for at least one the columns (59, 60) for argon production. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Rektifiziersäulensystem eine Rohargonsäule (59) zur Argon-Sauerstoff-Trennung aufweist und in dem Kondensator-Verdampfer (26) flüssiger Rücklauf (64) für die Rohargonsäule (59) erzeugt wird.A method according to claim 8, characterized in that the rectification column system has a crude argon column (59) for argon-oxygen separation and liquid return (64) for the crude argon column (59) is generated in the condenser-evaporator (26). Verfahren nach Anspruch 8 oder 2, dadurch gekennzeichnet, dass das Rektifiziersäulensystem eine Reinargonsäule (60) zur Argon-Stickstoff-Trennung umfasst, wobei die Reinargonsäule (60) einen Sumpfverdampfer (18) aufweist und die flüssige Fraktion (17) stromaufwärts des Zusatzwärmetauschers (205) in dem Sumpfverdampfer (18) abgekühlt wird.Method according to claim 8 or 2, characterized in that the rectification column system comprises a pure argon column (60) for argon-nitrogen separation, the pure argon column (60) having a bottom evaporator (18) and the liquid fraction (17) upstream of the additional heat exchanger (205 ) is cooled in the bottom evaporator (18). Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die flüssige Fraktion (15, 17) aus dem unteren Bereich einer der Säulen des Rektifiziersäulensystem, insbesondere aus dem unteren Bereich der Hochdrucksäule (12) eines Zwei-Säulen-Systems (12/14) zur Stickstoff-Sauerstoff-Trennung, entnommen wird.Method according to one of claims 1 to 10, characterized in that the liquid fraction (15, 17) from the lower region of one of the columns of the rectification column system, in particular from the lower region of the high pressure column (12) of a two-column system (12 / 14) for nitrogen-oxygen separation. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die bei der arbeitsleistenden Entspannung (203) des zweiten Luftstroms (201, 202) erzeugte mechanische Energie mindestens teilweise zur Verdichtung (5) des ersten und/oder zweiten Luftstroms eingesetzt wird.Method according to one of claims 1 to 11, characterized in that the mechanical energy generated during the relaxation of work (203) of the second air stream (201, 202) is used at least partially for the compression (5) of the first and / or second air stream. Vorrichtung zur Tieftemperatur-Zerlegung von Luft mit einem Rektifiziersäulensystem, das mindestens eine Trennsäule (12, 14, 58, 59, 60) aufweist, mit einer ersten Luftleitung (8, 10) für einen ersten Luftstrom, wobei die erste Luftleitung (8, 10) durch einen Hauptwärmetauscher (9) in das Rektifiziersäulensystem führt, und mit einer zweiten Luftleitung (201, 202, 204, 206, 207, 54, 55) für einen zweiten Luftstrom, wobei die zweite Luftleitung (201, 202, 204, 206, 207, 54, 55) durch eine Entspannungsmaschine (203) und weiter zu einem Zusatzwärmetauscher (205) zur Anwärmung des zweiten Luftstroms (204) stromabwärts der Entspannungsmaschine (203) und stromaufwärts seiner Einleitung in den Hauptwärmetauscher (9) durch indirekten Wärmeaustausch mit einer flüssigen Fraktion (15, 17) aus dem Rektifiziersäulensystem führt, gekennzeichnet durch Mittel (16) zum indirekten Wärmeaustausch eines weiteren Prozess-Stroms (49, 52) mit der flüssigen Fraktion (15, 17) stromaufwärts des indirekten Wärmeaustauschs (205) mit dem arbeitsleistend entspannten zweiten Luftstrom (204).Device for the low-temperature separation of air with a rectification column system, which has at least one separation column (12, 14, 58, 59, 60), with a first air line (8, 10) for a first air flow, the first air line (8, 10 ) through a main heat exchanger (9) into the rectification column system and with a second air line (201, 202, 204, 206, 207, 54, 55) for a second air flow, the second air line (201, 202, 204, 206, 207, 54, 55) through an expansion machine (203) and further to an additional heat exchanger (205) for heating the second air stream (204) downstream of the expansion machine (203) and upstream of its introduction into the main heat exchanger (9) by indirect heat exchange with a liquid Fraction (15, 17) leads from the rectification system, characterized by means (16) for indirect heat exchange of a further process stream (49, 52) with the liquid fraction (15, 17) upstream de s indirect heat exchange (205) with the work-relieved relaxed second air flow (204).
EP03006695A 2002-05-17 2003-03-26 Cryogenic air separation process and apparatus Withdrawn EP1363092A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03006695A EP1363092A1 (en) 2002-05-17 2003-03-26 Cryogenic air separation process and apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10222121 2002-05-17
DE10222121A DE10222121A1 (en) 2002-05-17 2002-05-17 Process for the low temperature decomposition of air in a rectification column system comprises contacting a liquid fraction from the rectification column system upstream of the heat exchanger with a relieved air stream
EP02014454 2002-06-28
EP02014454 2002-06-28
EP03006695A EP1363092A1 (en) 2002-05-17 2003-03-26 Cryogenic air separation process and apparatus

Publications (1)

Publication Number Publication Date
EP1363092A1 true EP1363092A1 (en) 2003-11-19

Family

ID=29413936

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03006695A Withdrawn EP1363092A1 (en) 2002-05-17 2003-03-26 Cryogenic air separation process and apparatus

Country Status (2)

Country Link
EP (1) EP1363092A1 (en)
DE (1) DE10222121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3772627A1 (en) * 2019-08-09 2021-02-10 Linde GmbH Method and system for cryoseparation of air

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179978A (en) * 1984-09-28 1986-04-23 株式会社日立製作所 Method of controlling air separator sampling argon
JPS61256174A (en) * 1985-05-07 1986-11-13 株式会社日立製作所 Method of controlling air separator sampling argon
EP0669509A1 (en) * 1994-02-24 1995-08-30 Linde Aktiengesellschaft Process and apparatus for obtaining pure argon
US5704229A (en) * 1996-12-18 1998-01-06 The Boc Group, Inc. Process and apparatus for producing nitrogen
EP0860670A2 (en) * 1997-02-11 1998-08-26 Air Products And Chemicals, Inc. Air separation with intermediate pressure vaporization and expansion
DE10153919A1 (en) * 2001-11-02 2002-05-08 Linde Ag Process for recovering highly pure oxygen from less pure oxygen in a distillation system comprises cooling the heat exchange fluid downstream of the high pressure column sump vaporizer and upstream of a pressure relieving device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179978A (en) * 1984-09-28 1986-04-23 株式会社日立製作所 Method of controlling air separator sampling argon
JPS61256174A (en) * 1985-05-07 1986-11-13 株式会社日立製作所 Method of controlling air separator sampling argon
EP0669509A1 (en) * 1994-02-24 1995-08-30 Linde Aktiengesellschaft Process and apparatus for obtaining pure argon
US5704229A (en) * 1996-12-18 1998-01-06 The Boc Group, Inc. Process and apparatus for producing nitrogen
EP0860670A2 (en) * 1997-02-11 1998-08-26 Air Products And Chemicals, Inc. Air separation with intermediate pressure vaporization and expansion
DE10153919A1 (en) * 2001-11-02 2002-05-08 Linde Ag Process for recovering highly pure oxygen from less pure oxygen in a distillation system comprises cooling the heat exchange fluid downstream of the high pressure column sump vaporizer and upstream of a pressure relieving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3772627A1 (en) * 2019-08-09 2021-02-10 Linde GmbH Method and system for cryoseparation of air

Also Published As

Publication number Publication date
DE10222121A1 (en) 2003-12-04

Similar Documents

Publication Publication Date Title
EP1139046B1 (en) Process and device for producing high pressure oxygen product by cryogenic air separation
EP1308680B1 (en) Process and system for production of krypton and/or xenon by cryogenic air separation
EP1067345B1 (en) Process and device for cryogenic air separation
EP1243882B1 (en) Production of argon using a triple pressure air separation system with an argon column
EP2236964B1 (en) Method and device for low-temperature air separation
WO2007104449A1 (en) Method and apparatus for fractionating air at low temperatures
EP1284404A1 (en) Process and device for recovering a product under pressure by cryogenic air separation
EP2015012A2 (en) Process for the cryogenic separation of air
EP1031804B1 (en) Air separation process with nitrogen recycling
EP1357342A1 (en) Cryogenic triple column air separation system with argon recovery
EP1074805B1 (en) Process for producing oxygen under pressure and device therefor
DE10332863A1 (en) Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
DE19609490A1 (en) Oxygen-production process with reduced energy requirement
EP3290843A2 (en) Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air
EP2963369B1 (en) Method and device for the cryogenic decomposition of air
EP0768503B1 (en) Triple column air separation process
EP2551619A1 (en) Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air
DE68901667T2 (en) AIR SEPARATION.
EP3394536A1 (en) Method and device for obtaining pure nitrogen and pure oxygen by low-temperature separation of air
EP1363092A1 (en) Cryogenic air separation process and apparatus
DE20319823U1 (en) Device for extracting krypton and / or xenon by cryogenic decomposition
DE102010056569A1 (en) Method for recovery of pressurized nitrogen product in distilling column system, involves making secondary portion of vaporized/pseudo-vaporized nitrogen flow in indirect heat exchange with oxygen-enriched liquid of high pressure column
EP1284403B1 (en) Process and apparatus for the production of oxygen by low temperature air separation
DE10251485A1 (en) Process for recovering argon by the low temperature decomposition of air comprises feeding gaseous cooling fluid formed in a vaporization chamber of a condenser-vaporizer into an additional column
EP3255366A1 (en) Method and device for generating a gaseous compressed oxygen product

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040422

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060105