EP1363090A1 - Kühlanlage - Google Patents

Kühlanlage Download PDF

Info

Publication number
EP1363090A1
EP1363090A1 EP03076467A EP03076467A EP1363090A1 EP 1363090 A1 EP1363090 A1 EP 1363090A1 EP 03076467 A EP03076467 A EP 03076467A EP 03076467 A EP03076467 A EP 03076467A EP 1363090 A1 EP1363090 A1 EP 1363090A1
Authority
EP
European Patent Office
Prior art keywords
coolant
vaporiser
outlet
cooling installation
installation according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03076467A
Other languages
English (en)
French (fr)
Inventor
Johannes Gerardus Romijn
Titus Maria Christiaan Bartholomeus
Jan Hermanusz Gerritsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grenco BV
Original Assignee
Grenco BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grenco BV filed Critical Grenco BV
Publication of EP1363090A1 publication Critical patent/EP1363090A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present invention relates to a cooling installation comprising a vaporiser for at least partially vaporising a coolant by means of ambient heat, which vaporiser is provided with an inlet for supplying liquid coolant to the vaporiser, which vaporiser has multiple parallel lines (circuits), each of which is provided with an outlet for discharging gaseous and liquid coolant from the vaporiser, each outlet opening directly into a collection vessel for the separation therein of the liquid coolant from the gaseous coolant.
  • the cooling installation according to the present invention is particularly suitable for use as an air cooler.
  • the cooling installation according to the present invention is intended for a coolant circuit. That is to say, a coolant circulates in the cooling installation, the coolant successively being able to vaporise in a vaporiser so as to extract heat from the surroundings, being drawn under suction to a compressor so as to be compressed, then flowing to a condenser to be able to condense and being recycled to the vaporiser again via a float valve in order to able to start a new circuit.
  • the coolant that leaves the vaporiser and that is drawn under suction towards the compressor will be predominantly in the gas phase. Some of the coolant can, however, still be in the liquid phase. The coolant that is in the liquid phase cannot be discharged towards the compressor. Therefore, it is known to fit a so-called separator in a cooling installation, which separator separates the coolant that is in the gas phase from the coolant that is still in the liquid phase.
  • This separator usually comprises a relatively large vessel in which the coolant is collected.
  • the fraction that is in the liquid phase will settle in the separator under the influence of gravity.
  • the fraction that is in the gas phase is drawn off at the top of the separator towards the compressor.
  • the separator is also connected to a fluid vessel with the aid of a pressure line.
  • the coolant that has condensed in the condenser is collected in this fluid vessel. With the aid of the pressure line the coolant that is in the liquid phase is transported to the separator so as then to be discharged from the separator, at the bottom of the separator, towards the vaporiser.
  • a separator of the type described above demands a relatively large amount of space and is relatively expensive.
  • the cooling installation of the type described above can be filled with, for example, NH3. If the cooling installation is used in, for example, the food industry it is a disadvantage that a relatively large amount of NH 3 is present in the cooling installation. After all, in the event of accidents or, for example, in the case of leakage a relatively large amount of NH 3 can escape from the cooling installation and pass into the other installations.
  • NH 3 (ammonia) is a toxic gas that is hazardous for man. Therefore, NH3 must be prevented from being able to come anywhere near foods, both at the point in time when the foods are packed and at the point in time at which the foods have been packed.
  • US 5 505 060 discloses a cooling installation for a coolant circuit.
  • a compressor feeds gaseous coolant under pressure to a condenser in which the gas condenses.
  • the liquid coolant formed then flows to a bottom tank that forms an inlet of a vaporiser.
  • the coolant flows through parallel channels in the vaporiser to a top tank.
  • the coolant is essentially gaseous, although liquid coolant is still present. This liquid coolant is separated off from the gaseous coolant and flows into an accumulator that is connected to the bottom tank.
  • liquid coolant separation of the liquid coolant from the gaseous coolant proceeds relatively poorly.
  • liquid droplets can be entrained with the gaseous coolant towards the compressor.
  • the compressor is suitable only for pumping gas. Even the presence of a small amount of droplets can cause damage to the compressor, in particular when ammonia is used as coolant.
  • the aim of the present invention is to provide an improved cooling installation.
  • each outlet is provided with separating means for separating the liquid coolant from the gaseous coolant. Because each outlet has separating means, the liquid coolant will be separated from the gaseous coolant as soon as it flows into the separator, that is to say the collection vessel. The separation is consequently more effective.
  • the outlet thus has both a feed function and a separating function.
  • the separating means can, for example, be constituted by saw cuts that have been made in the outlet.
  • An alternative is the use of a demister.
  • a demister is a fine mesh permeable part, for example made of steel wool. Liquid droplets collide with the demister and under the influence of gravity flow downwards over the demister, whilst the gas is allowed through.
  • the collection vessel is directly connected to the outlet of the vaporiser, which vessel is provided with means for discharging the coolant that is in the gas phase from the collection vessel and which collection vessel is connected to the inlet of the vaporiser for feeding the coolant that is in the liquid phase to said inlet by means of gravity.
  • connection between the collection vessel and the inlet of the vaporiser comprises an essentially vertically positioned line.
  • Coolant that is still in the liquid phase will flow to the inlet of the vaporiser under the influence of gravity. If, as according to the invention, the connection between the collection vessel and the inlet of the vaporiser is positioned essentially vertically, it will be possible for the coolant that is still in the liquid phase to be stored in this vertically positioned line.
  • the quantity of liquid that is in the line can, moreover, be used as an indication of the effectiveness of the cooling installation according to the invention.
  • more or less coolant can be fed to the inlet of the vaporiser.
  • the collection vessel comprises a first tube or line, the outlet of the vaporiser opening into said tube or line.
  • the means for discharging the coolant that is in the gas phase comprise a second tube or line that extends into the collection vessel.
  • openings are provided in the second tube or line to allow coolant that is in the gas phase to pass through, which openings are made in the top of said second tube or line.
  • the second tube is also used to enable the gas to be withdrawn "directly” under suction, wherein it is prevented that the speed of the gas flow in the collection vessel becomes so high that liquid droplets "are entrained".
  • the inlet of the vaporiser is provided with a venturi tube for feeding coolant to the vaporiser via said venturi tube.
  • venturi tube has the advantage that the primary feed of coolant to the vaporiser takes place through the venturi tube.
  • this venturi tube the flow rate of the coolant towards the vaporiser will be higher, so that the effectiveness of the cooling installation can increase, compared with the cooling installation according to the state of the art.
  • the vaporiser comprises several parallel lines (circuits) each provided with an outlet, each of these outlets connecting directly to the collection vessel.
  • the vaporiser of the cooling installation consists of several parallel lines or circuits in which coolant can vaporise. Each of these lines has an inlet for supplying coolant and an outlet for discharging coolant. These outlets of the various lines each connect to a common collection vessel.
  • a cooling installation 1 that makes use of a coolant circuit is shown diagrammatically in Figure 1.
  • the installation 1 comprises a vaporiser 2 in which the coolant is able to vaporise so as to extract heat from the surroundings.
  • the vaporiser 2 has an outlet 3 for discharging the coolant from the vaporiser 2.
  • the outlet 3 is connected via a line 4 to a separator 5.
  • the separator 5 is incorporated in the installation 1 because the coolant that leaves the vaporiser at the outlet 3 will possess both a fraction that is in the gas phase and a fraction that is still in the liquid phase.
  • the fraction that is still in the liquid phase has to be removed from the coolant flow before the coolant can flow from the separator 5 via the line 6 towards a compressor 7.
  • the coolant that is still in the liquid phase will settle in the separator 5 under the influence of gravity and collect at the bottom of the separator.
  • the coolant that is in the gas phase is removed from the separator 5 via the line 6 and transferred to the compressor 7.
  • the compressor 7 is connected to a condenser 9 via a line 8.
  • the coolant can condense in the condenser 9 so as then to be fed in the liquid phase via a line 10 to a fluid vessel 11.
  • the fluid vessel 11 is, in turn, connected to the separator 5 via a pressure line 12.
  • the bottom of the separator 5 is connected via a line 13 to the inlet 14 of the vaporiser 2.
  • a cooling installation 20 according to the invention is shown in Figure 2.
  • This cooling installation 20 comprises a vaporiser 21 that is made up of lines 22 situated in parallel. The form of these lines can be seen in particular in Figure 3.
  • Each of the lines 22 is provided with an outlet 23 that opens into a collection vessel 40.
  • the form of the collection vessel 40 can be seen in particular in Figure 3.
  • the coolant that is pumped round in the installation 20 will leave the lines 22 at the outlet 23.
  • the outlets 23 are provided with saw cuts 90 for allowing the coolant to pass through, as shown in Figure 4. These saw cuts 90 are made over approximately 60% of the tube diameter.
  • the fraction of the coolant that is in the liquid phase will collect on the bottom of the collection vessel 40. This coolant will flow out via an opening in the base of the collection vessel 40 (see Figure 3) into a line 41 and in doing so flow towards a central inlet 42.
  • the saw cuts fulfil a separating function.
  • the two-phase flow of liquid and gaseous coolant will be effectively separated by the saw cuts.
  • the outlets 23 can be provided with other separating means, such as a demister (not shown). A combination of these separating means is also possible according to the invention.
  • the coolant that has left the lines 22 at the outlets 23 and that is in the gas phase can be removed from the collection vessel 40 via a second tube or line 43. Cut-outs 44 have been made in the top of this tube 43. These cut-outs are, for example, constituted by saw cuts.
  • the second tube 43 is also used to enable the gas to be withdrawn (directly) under suction from the lines 23, the speed in the collection vessel 40 being prevented from becoming so high that liquid droplets are entrained.
  • the coolant that is in the gas phase is transferred via the second tube or line 43 and via a following line 45 to a compressor 27.
  • the compressor 27 is connected via a line 28 to a condenser 29. Condenser 29, in turn, is connected to a fluid vessel 31 with the aid of a line 30.
  • venturi tube has the advantage that the liquid is drawn in from the line 41, so that the sensor 50 can be mounted in a relatively low position.
  • the height of the liquid column in the line 41 and the venturi action together form the driving force for the coolant flow in the air cooler. This driving force is needed to be able to overcome the flow pressure in the cooler.
  • the mode of operation of the sensor 50 is described below with reference to Figures 2 and 3.
  • the central inlet 42 is connected via a tube or line 43 to individual inlets 44 of the various lines 22.
  • the coolant supplied is able to vaporise in the lines 22, heat being able to be extracted from the surroundings. Not all coolant supplied will vaporise. Overall, less than 50% of the coolant mass flow supplied will vaporise.
  • the construction of the vaporiser 21 is particularly suitable for heat exchange with an air flow. That is to say, the installation 20 according to the present invention can, for example, very suitably be used as an air cooler.
  • a sensor 50 is also shown in Figures 2 and 3. This sensor 50 is fitted in the line 41 that connects the collection vessel 40 to the central inlet 42. The liquid level in the line 41 can be determined with the aid of the sensor 50. This measured value can be used to control the quantity of coolant that is fed via the line 32 from the fluid vessel 31 to the central inlet 42.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
EP03076467A 2002-05-16 2003-05-16 Kühlanlage Withdrawn EP1363090A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1020611 2002-05-16
NL1020611 2002-05-16

Publications (1)

Publication Number Publication Date
EP1363090A1 true EP1363090A1 (de) 2003-11-19

Family

ID=29268075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03076467A Withdrawn EP1363090A1 (de) 2002-05-16 2003-05-16 Kühlanlage

Country Status (1)

Country Link
EP (1) EP1363090A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046951A2 (en) * 2006-10-16 2008-04-24 Vahterus Oy Apparatus and method for separating droplets from vaporized refrigerant
WO2024078660A1 (de) * 2022-10-10 2024-04-18 Thermofin Gmbh Trockenexpansionsverdampfer für ammoniakkälteanlagen

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE500225C (de) * 1926-12-14 1930-06-19 Gabriel Zwicky Taschenverdampfer mit UEberflutungsbetrieb fuer Kleinkaeltemaschinen
DE501093C (de) * 1929-05-23 1930-06-27 Iwan Kuprianoff Verfahren zur Erhoehung des Fluessigkeitsumlaufs in Verdampfern von Kaeltemaschinen
DE584615C (de) * 1931-02-26 1933-09-22 Teves Kg Alfred UEberflutungsverdampfer fuer Kaeltemaschinen
US1951007A (en) * 1932-06-27 1934-03-13 Carbondale Machine Company Evaporator for refrigerating systems
US1978382A (en) * 1929-01-07 1934-10-23 Sharples Specialty Co Chilling method and apparatus
US2154874A (en) * 1936-10-02 1939-04-18 Fedders Mfg Co Inc Refrigeration apparatus
US4187695A (en) * 1978-11-07 1980-02-12 Virginia Chemicals Inc. Air-conditioning system having recirculating and flow-control means
US5493875A (en) * 1994-08-01 1996-02-27 Kozinski; Richard C. Vehicle air conditioning system utilizing refrigerant recirculation within the evaporatorccumulator circuit
US5505060A (en) * 1994-09-23 1996-04-09 Kozinski; Richard C. Integral evaporator and suction accumulator for air conditioning system utilizing refrigerant recirculation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE500225C (de) * 1926-12-14 1930-06-19 Gabriel Zwicky Taschenverdampfer mit UEberflutungsbetrieb fuer Kleinkaeltemaschinen
US1978382A (en) * 1929-01-07 1934-10-23 Sharples Specialty Co Chilling method and apparatus
DE501093C (de) * 1929-05-23 1930-06-27 Iwan Kuprianoff Verfahren zur Erhoehung des Fluessigkeitsumlaufs in Verdampfern von Kaeltemaschinen
DE584615C (de) * 1931-02-26 1933-09-22 Teves Kg Alfred UEberflutungsverdampfer fuer Kaeltemaschinen
US1951007A (en) * 1932-06-27 1934-03-13 Carbondale Machine Company Evaporator for refrigerating systems
US2154874A (en) * 1936-10-02 1939-04-18 Fedders Mfg Co Inc Refrigeration apparatus
US4187695A (en) * 1978-11-07 1980-02-12 Virginia Chemicals Inc. Air-conditioning system having recirculating and flow-control means
US5493875A (en) * 1994-08-01 1996-02-27 Kozinski; Richard C. Vehicle air conditioning system utilizing refrigerant recirculation within the evaporatorccumulator circuit
US5505060A (en) * 1994-09-23 1996-04-09 Kozinski; Richard C. Integral evaporator and suction accumulator for air conditioning system utilizing refrigerant recirculation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046951A2 (en) * 2006-10-16 2008-04-24 Vahterus Oy Apparatus and method for separating droplets from vaporized refrigerant
WO2008046951A3 (en) * 2006-10-16 2008-06-05 Vahterus Oy Apparatus and method for separating droplets from vaporized refrigerant
CN101589279B (zh) * 2006-10-16 2012-12-05 瓦特鲁斯公司 从蒸发制冷剂中分离液滴的装置和方法
US9038402B2 (en) 2006-10-16 2015-05-26 Vahterus Oy Apparatus and method for separating droplets from vaporized refrigerant
WO2024078660A1 (de) * 2022-10-10 2024-04-18 Thermofin Gmbh Trockenexpansionsverdampfer für ammoniakkälteanlagen

Similar Documents

Publication Publication Date Title
US4878923A (en) Apparatus for removing oil from a compressed gas flow
CN1160539C (zh) 致冷系统
WO2015082867A1 (en) External separator
EP3042127B1 (de) Integrierter abscheider-verteiler für fallfilmverdampfer
CN113167513B (zh) 具有改进的液滴分离的蒸发器
EP1363090A1 (de) Kühlanlage
CA2305962C (en) A closed oil liquid ring gas compression system with a suction injection port
US6878185B2 (en) Method for separating fuel vapour-air mixtures and device for carrying out said method
CN211783682U (zh) 用于石化系统的消气器
US5535595A (en) Refrigerant handling with centrifugal separation of non condensibles from refrigerant
JP4756622B2 (ja) 満液式蒸発器を用いた冷凍サイクル装置
KR20230119719A (ko) 가스 쿨러
EP2734797B1 (de) Ölabscheider
EP1225403B1 (de) Kombinierte Sammlungs- und Trocknungsvorrichtung
US5336376A (en) Distillation column with vaporous sidestream removal
WO1986001882A1 (en) Device for returning oil to at least one compressor in a cooling or refrigerating system
USRE38434E1 (en) Closed oil liquid ring gas compression system with a suction injection port
JPS566086A (en) Oil separating device for refrigerant compressor
EP3685106A1 (de) Ölabscheider
JPH0120348B2 (de)
JPS6320873Y2 (de)
JP3509954B2 (ja) 復水排出装置
CN213942147U (zh) 一种防堵塞的冷凝物料采出装置
CN209984975U (zh) 一种蒸发器分离器物料分配除沫装置
CN217682145U (zh) 压缩机和制冷设备

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid
RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17P Request for examination filed

Effective date: 20080705

17Q First examination report despatched

Effective date: 20100224

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100707