EP1360423A1 - Linearführung zum übertragen von drehmomenten - Google Patents

Linearführung zum übertragen von drehmomenten

Info

Publication number
EP1360423A1
EP1360423A1 EP02712841A EP02712841A EP1360423A1 EP 1360423 A1 EP1360423 A1 EP 1360423A1 EP 02712841 A EP02712841 A EP 02712841A EP 02712841 A EP02712841 A EP 02712841A EP 1360423 A1 EP1360423 A1 EP 1360423A1
Authority
EP
European Patent Office
Prior art keywords
shaft
bearing
linear guide
needle
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02712841A
Other languages
English (en)
French (fr)
Inventor
Alexander Zernickel
Horst DÖPPLING
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHO Holding GmbH and Co KG
Original Assignee
INA Schaeffler KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INA Schaeffler KG filed Critical INA Schaeffler KG
Publication of EP1360423A1 publication Critical patent/EP1360423A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/06Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/185Steering columns yieldable or adjustable, e.g. tiltable adjustable by axial displacement, e.g. telescopically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/06Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement
    • F16D3/065Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement by means of rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/24Steering systems, e.g. steering rods or columns

Definitions

  • the invention relates to a linear guide for transmitting torques between a tubular housing rotatable about its longitudinal axis and a shaft mounted therein axially displaceably via rolling elements.
  • Linear guides for transmitting torques are used in the motor vehicle sector, for example, for guiding racks or for guiding the steering spindle in a steering column. They are also used for guiding shift shafts or shift rails in the transmission.
  • a linear guide is known from US 3427 656, in which in the area of a radial plane of a shaft, axial roller bearing sets, which surround the shaft and are held in a tubular housing, are supported on the shaft surface with spherically shaped running disks. Since the shaft is circular in cross section, torques of the shaft cannot be transmitted to the housing. In addition, this linear guide requires a tension screw to generate a preload on the installed bearing sets, which acts on the housing in the area of a radial slot in the housing.
  • the document DE 196 19 449 A1 shows and describes a linear guide with a rod or shaft on the running surfaces of which rollers are supported, which are rotatably mounted in a carriage surrounding the shaft.
  • the slide is a rectangular hollow profile with externally accessible T-slots, via which desired parts can be attached.
  • holes must be drilled in the side walls of the hollow profile, in which rotary bearings, in particular ball bearings, are arranged.
  • at least one roller or the rotary bearing holding it requires an adjusting device, preferably an adjusting screw, with which the roller can be adjusted against the shaft without play.
  • the invention has for its object to provide an inexpensive to produce, working with an unlimited stroke linear guide, in which the influences of dimensional tolerances both of the tubular housing and the shaft axially displaceable therein are switched off and which is suitable as a steering shaft or steering column for a motor vehicle, wherein the tubular housing is designed as a steering tube and the shaft axially displaceable therein as a steering spindle.
  • a plurality of axial roller bearings surrounding the shaft are arranged in two radial planes at an axial distance from one another, the axial roller bearings each having two races or running disks and one in between in the area of a radial bearing plane Rolling element set are executed, of which a running disk is completed to form a bushing and is held in the housing, the central axis of the bushing also being arranged offset parallel to a normal to the longitudinal axis of the shaft, and of which the other running disk of the axial rolling bearing is dome-shaped and is supported with its convex spherical cap surface in a surface region of the shaft.
  • the object according to the invention is achieved in that a plurality of radial needle bearings surrounding the shaft are arranged in two radial planes at an axial distance from one another in the tubular housing, the radial needle bearings in each case in the area of a radial bearing plane are each designed with two races or disks and a roller body set located between them, of which a disk is completed to form a needle bushing and held in the housing, the central axis of the The needle bushing is offset or inclined parallel to a normal to the longitudinal axis of the shaft, and of which the other running disk of the needle bearing is dome-shaped and is supported with its convex dome surface in a surface area of the shaft and is provided with a bearing pin which is from is surrounded by the needle bushing and the roller bodies arranged therein as needles.
  • An advantage of the designs according to the invention is that the linear guide not only enables the transmission of torques but also tilting moments. If one considers the shaft longitudinal axis as the X axis and the two axes perpendicular to the X axis and to each other as the Y axis and the Z axis, moments about the X axis are torques which are transmitted from the shaft to the housing. Because the bearings that surround the shaft are arranged in two radial planes at an axial distance from one another, moments about the Y axis and moments about the Z axis, which are tilting moments here, can also pass from the shaft to the housing be transmitted.
  • the housing as a steering tube is a thin-walled housing, it can be used as a pretensioning element due to its elasticity.
  • the respective support bearings are first assembled in the housing with an oversize towards the center.
  • the housing is then expanded, that is to say an elastic deformation of the steering tube, with the corresponding desired prestressing effect.
  • a special clamping screw such as is used in the known prior art, is therefore not necessary in the embodiments according to the invention.
  • the shaft of the linear guide can be a steering column spindle, which is designed as a polygonal shaft with a triangular, square, square or polygonal basic shape in cross-section, with a surface area with a concave surface being worked in between two longitudinal edges that follow one another in the circumferential direction. Due to the concave surface before the bearing capacity is increased. As a result of the use of complete bearing assemblies with rolling elements and raceways according to the invention, it is no longer necessary to incorporate raceways into the housing.
  • FIG. 1 shows a linear guide according to the invention in a perspective view with a cross section in the region of a bearing plane, which shows axial rolling bearings installed in parallel displacement;
  • Figure 2 shows the cross section of Figure 1 in an enlarged view
  • FIG. 3 shows a partial cross section corresponding to FIG. 2 with a modified axial roller bearing
  • FIG. 4 shows a partial cross section corresponding to FIG. 2 with a combined roller bearing containing needles and balls;
  • FIG. 5 shows a partial cross section corresponding to FIG. 2 with a needle bearing modified and pivoted in relation to FIG. 4.
  • a linear guide according to the invention shown in FIGS. 1 and 2 consists of a shaft 1, a housing 2 and a plurality of axial rolling bearings 3 designed as ball bearings.
  • the shaft 1 is the result of a basic shape with a square cross section, into which concave on the four long sides ve surface areas 4 are incorporated. These extend with constant cross-sectional dimensions in the longitudinal direction of the shaft 1.
  • the housing 2 is designed in the form of a square tube with internal cross-sectional dimensions that are larger than the shaft dimensions.
  • the shaft 1 is inserted axially in the housing 2 and is supported there with the axial roller bearings 3 in a radially supported manner.
  • two radial bearing planes are provided on the linear guide, which maintain a longitudinal distance from one another.
  • four axial roller bearings 3 are arranged one behind the other in the circumferential direction of the tubular housing 2.
  • the housing 2 has continuous radial bores 5, each bore 5 being adjacent to a concave surface area 4 of the shaft 1.
  • An axial roller bearing 3 consists in each case of a running disk 6, a bushing 7 and a roller element set 8 arranged between them, balls being used as roller elements.
  • the running disk 6 is dome-shaped and has a dome surface 9 which is convex to the shaft 1 and with which it is supported on the shaft in the adjacent concave surface region 4 of the shaft 1. Due to suitable osculation conditions, there is point contact in a contact point 10.
  • the dome-shaped running disk 6 is supported by the rotating roller set 8 on the bushing 7, which is a non-cutting component and has a raceway for the roller body 8.
  • the bushing 7 is pressed into the respective bore 5 of the housing 2.
  • the bore 5 is arranged in the housing 2 so that the central axis 11 of the bushing 7 is displaced in parallel with an offset a with respect to a normal 12 of the longitudinal axis of the shaft 1 running in the bearing plane.
  • the point of contact 10 is displaced by the dimension b from the normal 12, which can be referred to as a rotary lever.
  • this rotary lever b causes the rotating disk 6 to rotate about the point of contact or the contact line 10 that is created.
  • a tolerance-independent positioning of the axial roller bearings 3 with respect to the shaft 1 is achieved during assembly in the tubular housing 2 as follows: The axial roller bearings 3 are pressed into the bores 5 as deep or until the desired contact on the shaft 1 is reached, which you can tell by the amount of force increase.
  • Figure 1 shows the section in the area of the front bearing level.
  • At least one further bearing level of this type is required in order to enable a play-free torque transmission in both circumferential directions of the linear guide.
  • Two bushings of axial roller bearings 3 can be seen in the area of a rear bearing level.
  • at least two axial roller bearings 3 must be provided for each bearing level.
  • the shaft can have a profile that deviates from the illustration, for example a triangular, polygonal, hollow or solid profile.
  • a round shaft can also be guided according to this principle, but without torque absorption.
  • FIG. 3 shows an axial roller bearing 13 of a linear guide according to the invention, in whose bush 14 an elastic rubber ring 15 is additionally inserted, on which an additional bearing disk 16, which is provided with a raceway for the rolling element set 8, is supported.
  • the rubber ring 15 acts as a compensating element for dimensional tolerances and as a noise-insulating component.
  • FIG. 4 shows that in the linear guide according to the invention, instead of a pure axial roller bearing, a needle bush can also be used.
  • a needle bush can also be used.
  • an additional set of rolling elements 19 for the axial support of a bearing journal 20 is arranged in a needle bushing 17 of a radial needle bearing 18 and is attached to the running disk 6 or in one piece therewith is executed. With the rolling element set 19, the friction of the rotating bearing pin 20 is reduced.
  • FIG. 5 the bottom of a needle bushing 21, which surrounds the bearing journal 20 and the roller body set of a needle bearing 22 consisting of needles, has an inwardly convex bulge 23, on which the bearing journal 20 is axially supported. In this way, the friction is reduced when the journal 20 rotates.
  • the central axis 11 of the needle bush 21 shown in FIG. 5 is inclined at an angle ⁇ to the normal 12 of the shaft longitudinal axis. This results in the same way as in the embodiments according to FIGS. 1 to 4, a rotation lever b for the running disk 6 and the resulting rotation effect.
  • the respective bearing can be fastened in the bore 5 of the housing 2 by caulking 24 (FIGS. 4 and 5) of the housing material or by means of a snap ring.
  • the housing acts as a preloading element

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

Bei einer Linearführung zum Übertragen von Drehmomenten zwischen einem rohrförmigen, um seine Längsachse drehbaren Gehäuse (2) und einer darin über Wälzkörper axial verschiebbar gelagerten Welle (1) sind in dem rohrförmigen Gehäuse (2) im Bereich einer radialen Lagerebene mehrere die Welle (1) umgebende Axialwälzlager (3) mit jeweils zwei Laufringen oder Laufscheiben und einem dazwischen befindlichen Wälzkörpersatz angeordnet, von denen eine Laufscheibe zu einer Büchse vervollständig und in dem Gehäuse (2) gehalten ist wobei die Mittelachse der Büchse vervollständig und in dem Gehäuse (2) gehalten ist, wobei die Mittelachse der Büchse mit einem Versatz (a) zu einer Normalen der Wellen-Längsachse parallel verschoben angeordnet ist, und von denen die andere Laufscheibe des axialwälzlagers (3) kalottenförmig ausgebildet und mit ihrer konvexen Kalottenfläche in einem Oberflächenbereich der Welle (1) an dieser abgestützt ist.

Description

LINEARFÜHRUNG ZUM ÜBERTRAGEN VON DREHMOMENTEN
Beschreibung
Gebiet der Erfindung
Die Erfindung betrifft eine Linearführung zum Übertragen von Drehmomenten zwischen einem rohrformigen, um seine Längsachse drehbaren Gehäuse und einer darin über Wälzkörper axial verschiebbar gelagerten Welle.
Linearführungen zum Übertragen von Drehmomenten werden im Kraftfahrzeugbereich beispielsweise für die Führung von Zahnstangen oder für die Füh- rung der Lenkspindel in einer Lenksäule verwendet. Auch für die Führung von Schaltwellen oder Schaltschienen im Getriebe werden sie eingesetzt.
Aus der Druckschrift US 3427 656 ist eine Linearführung bekannt, bei der sich im Bereich einer radialen Ebene einer Welle Axialwälzlagersätze, welche die Welle umgeben und in einem rohrformigen Gehäuse gehalten sind, mit kalot- tenförmig ausgebildeten Laufscheiben an der Wellenoberfläche abstützen. Da die Welle im Querschnitt kreisförmig ist, können Drehmomente der Welle auf das Gehäuse nicht übertragen werden. Außerdem benötigt diese Linearführung zur Erzeugung einer Vorspannung der eingebauten Lagersätze eine Spann- schraube, die im Bereich eines Radialschlitzes des Gehäuses auf das Gehäuse einwirkt. Die Druckschrift DE 196 19 449 A1 zeigt und beschreibt eine Linearführung mit einer Stange oder Welle an deren Laufflächen Rollen abgestützt sind, die in einem die Welle umgebenden Schlitten drehbar gelagert sind. Der Schlitten ist ein rechteckiges Hohlprofil mit von außen zugänglichen T-Nuten, über welche gewünschte Teile befestigt werden können. Zur Lagerung der Rollen müssen hier in den Seitenwänden des Hohlprofils Bohrungen angebracht werden, in welchen Drehlager, insbesondere Kugellager, angeordnet sind. Darüberhinaus benötigt mindestens eine Rolle bzw. das sie haltende Drehlager eine Stellvorrichtung, vorzugsweise eine Stellschraube, mit welcher die Rolle spielfrei ge- gen die Welle eingestellt werden kann.
Aus der Druckschrift DE 37 30 393 A1 ist eine Drehmomente übertragende Verbindung für axial ineinander verschiebliche Wellenteile bekannt, die für die Lenkwelle von Kraftfahrzeugen bestimmt ist. Bei dieser Linearführung der ein- gangs genannten Art sind als Wälzkörper Kugeln einerseits in inneren Längsnuten des äußeren Wellenteils und andererseits in äußeren Längsnuten des inneren Wellenteils spielfrei eingespannt. Um bei der Axialverschiebung der Wellenteile relativ zueinander einen Ausgleich von Fertigungstoleranzen und eine Leichtgängigkeit ohne zusätzliche Bearbeitung zu erreichen, müssen hier die Kugeln in Laufbahnen aus Blech angeordnet werden, welche in die Längsnuten eingesetzt und, bezogen auf die Mittellängsachse der Welle, radial unter Vorspannung gesetzt sind. Außerdem können die beiden Wellenteile nur mit einem begrenzten Hub relativ zueinander axial bewegt werden.
Zusammenfassung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, eine preisgünstig herstellbare, mit unbegrenztem Hub arbeitende Linearführung anzugeben, bei welcher die Einflüsse von Maßtoleranzen sowohl des rohrformigen Gehäuses als auch der darin axial verschiebbaren Welle ausgeschaltet sind und die sich als Lenkwelle oder Lenksäule für ein Kraftfahrzeug eignet, wobei das rohrförmige Gehäuse als Lenkrohr und die darin axial verschiebbare Welle als Lenkspindel ausgebildet ist. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß in dem rohrformigen Gehäuse mehrere die Welle umgebende Axialwälzlager in zwei radialen, in einem axialen Abstand voneinander befindlichen Ebenen angeordnet sind, wobei jeweils im Bereich einer radialen Lagerebene die Axialwälzlager mit jeweils zwei Laufringen oder Laufscheiben und einem dazwischen befindlichen Wälzkörpersatz ausgeführt sind, von denen eine Laufscheibe zu einer Büchse vervollständigt und in dem Gehäuse gehalten ist, wobei außerdem die Mittelachse der Büchse mit einem Versatz zu einer Normalen der Wellen- Längsachse parallel verschoben angeordnet ist, und von denen die andere Laufscheibe des Axialwälzlagers kalottenförmig ausgebildet und mit ihrer konvexen Kalottenfläche in einem Oberflächenbereich der Welle an dieser abgestützt ist.
Infolge der Parallelverschiebung der Büchsenachse gegenüber der Wellenmitte einerseits und infolge der konvexen Kalottenfläche der Laufscheibe andererseits, die sich in dem Oberflächenbereich der Welle abstützt, ergibt sich eine Verschiebung von deren Berührungspunkt und damit ein Rotationshebel, der während der Linearbewegung der Welle eine Rotation der Laufscheibe bewirkt. Das Ausschalten des Einflusses von Maßtoleranzen wird durch eine toleranzunabhängige Positionierung des Axialwälzlagers in Bezug auf die Welle erreicht.
Anstatt die Büchse mit ihrer Achse parallel verschoben anzuordnen, kann die gleiche Wirkung auch durch eine Anordnung der Büchse mit geneigter Achse erzielt werden. Nach einem weiteren Vorschlag wird die erfindungsgemäße Aufgabe dadurch gelöst, dass in dem rohrformigen Gehäuse mehrere die Welle umgebende Radial-Nadellager in zwei radialen, in einem axialen Abstand voneinander befindlichen Ebenen angeordnet sind, wobei jeweils im Be- reich einer radialen Lagerebene die Radial-Nadellager mit jeweils zwei Laufringen oder Laufscheiben und einem dazwischen befindlichen Wälzkörpersatz ausgeführt sind, von denen eine Laufscheibe zu einer Nadelbüchse vervollständigt und in dem Gehäuse gehalten ist, wobei die Mittelachse der Nadelbüchse mit einem Versatz zu einer Normalen der Wellen-Längsachse parallel verschoben oder geneigt angeordnet ist, und von denen die andere Laufscheibe des Nadellagers kalottenförmig ausgebildet und mit ihrer konvexen Kalottenfläche in einem Oberflächenbereich der Welle an dieser abgestützt und mit einem Lagerzapfen versehen ist, der von der Nadelbüchse und darin angeordneten, als Nadeln ausgebildeten Wälzkörpern umgeben ist.
Ein Vorteil der erfindungsgemäßen Ausführungen besteht darin, dass mit der Linearführung nicht nur die Übertragung von Drehmomenten, sondern auch von Kippmomenten möglich ist. Betrachtet man die Wellenlängsachse als X- Achse und die beiden zu der X-Achse und zueinander rechtwinklig stehenden Achsen als Y-Achse und Z-Achse, so sind Momente um die X-Achse Drehmomente, welche von der Welle auf das Gehäuse übertragen werden. Weil die Lager, welche die Welle umgeben, in zwei radialen, in einem axialen Abstand voneinander befindlichen Ebenen angeordnet sind, können auch Momente um die Y-Achse und Momente um die Z-Achse, welche hier Kippmomente sind, von der Welle auf das Gehäuse übertragen werden.
Da das Gehäuse als Lenkrohr ein dünnwandiges Gehäuse ist, kann es infolge seiner Elastizität als Vorspannelement genutzt werden. In diesem Fall werden die jeweiligen Stützlager zunächst in dem Gehäuse mit einem Übermaß zur Mitte hin montiert. Beim anschließenden Einführen der Welle in das Gehäuse erfolgt dann ein Aufweiten des Gehäuses, also eine elastische Verformung des Lenkrohres, mit dem entsprechenden gewünschten Vorspannungseffekt. Eine besondere Spannschraube, wie sie im vorbekannten Stand der Technik verwendet wird', ist bei den erfindungsgemäßen Ausführungen also nicht erforderlich.
Die Welle der Linearführung kann eine Lenksäulenspindel sein, welche als Mehrkantwelle mit im Querschnitt dreieckiger, viereckiger, quadratischer oder vieleckiger Grundform ausgebildet ist, wobei zwischen zwei in Umfangsrichtung aufeinanderfolgenden Längskanten jeweils ein Oberflächenbereich mit einer konkaven Oberfläche eingearbeitet ist. Durch die konkaven Oberflächenberei- ehe wird die Tragfähigkeit der Lager erhöht. Infolge der erfindungsgemäßen Verwendung vollständiger Lagerbausätze mit Wälzkörpern und Laufbahnen ist es nicht mehr erforderlich, Laufbahnen in das Gehäuse einzuarbeiten.
Kurze Beschreibung der Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher beschrieben. Es zeigen
Figur 1 eine erfindungsgemäße Linearführung in einer perspektivischen Ansicht mit einem Querschnitt im Bereich einer Lagerebene, welcher parallel verschoben eingebaute Axialwälzlager zeigt;
Figur 2 den Querschnitt nach Figur 1 in vergrößerter Darstellung;
Figur 3 einen Figur 2 entsprechenden Teilquerschnitt mit einem abgewandelten Axialwälzlager;
Figur 4 einen Figur 2 entsprechenden Teilquerschnitt mit einem kombinierten, Nadeln und Kugeln enthaltenden Wälzlager;
Figur 5 einen Figur 2 entsprechenden Teilquerschnitt mit einem gegenüber Figur 4 abgewandelten und verschwenkt ein- gebauten Nadellager.
Ausführliche Beschreibung der Zeichnung
Eine in den Figuren 1 und 2 dargestellte erfindungsgemäße Linearführung be- steht aus einer Welle 1 , einem Gehäuse 2 und mehreren als Kugellager ausgebildeten Axialwälzlagern 3. Die Welle 1 ist aus einer im Querschnitt quadratischen Grundform hervorgegangen, in welche an den vier Längsseiten konka- ve Oberflächenbereiche 4 eingearbeitet sind. Diese erstrecken sich mit konstanten Querschnittsabmessungen in Längsrichtung der Welle 1.
Das Gehäuse 2 ist in der Form eines Vierkantrohres mit gegenüber den Wel- lenabmessungen größeren Querschnittsinnenmaßen ausgebildet. Die Welle 1 ist in dem Gehäuse 2 axial eingesteckt und dort mit den Axialwälzlagern 3 radial abgestützt gelagert. Hierfür sind an der Linearführung zwei radiale Lagerebenen vorgesehen, die einen Längsabstand voneinander einhalten. In dem Bereich jeder Lagerebene sind vier Axialwälzlager 3 in Umfangsrichtung des rohrformigen Gehäuses 2 hintereinander angeordnet. Zu diesem Zweck weist das Gehäuse 2 durchgehende radiale Bohrungen 5 auf, wobei jede Bohrung 5 einem konkaven Oberflächenbereich 4 der Welle 1 benachbart ist.
Ein Axialwälzlager 3 besteht jeweils aus einer Laufscheibe 6, einer Büchse 7 und einem dazwischen angeordneten Wälzkörpersatz 8, wobei als Wälzkörper Kugeln verwendet sind. Die Laufscheibe 6 ist kalottenförmig geformt und weist eine zu der Welle 1 konvexe Kalottenfläche 9 auf, mit der sie in dem benachbarten konkaven Oberflächenbereich 4 der Welle 1 an der Welle abgestützt ist. Aufgrund geeigneter Schmiegungsverhältnisse ergibt sich dabei eine Punktbe- rührung in einem Berührungspunkt 10.
Die kalottenförmige Laufscheibe 6 stützt sich über den umlaufenden Wälzkörpersatz 8 an der Büchse 7 ab, die ein spanlos geformtes Bauteil ist und eine Laufbahn für den Wälzkörpersatz 8 aufweist. Die Büchse 7 ist in die jeweilige Bohrung 5 des Gehäuses 2 eingepreßt. Dabei ist die Bohrung 5 in dem Gehäuse 2 so angeordnet, daß die Mittelachse 11 der Büchse 7 gegenüber einer in der Lagerebene verlaufenden Normalen 12 der Längsachse der Welle 1 mit einem Versatz a parallel verschoben ist. Infolge dieser Verschiebung ergibt sich eine Verlagerung des Berührungspunktes 10 um das Maß b aus der Nor- malen 12, welches als Rotationshebel bezeichnet werden kann. Während einer Linearbewegung der Welle 1 innerhalb des Gehäuses 2 bewirkt dieser Rotationshebel b eine Rotation der Laufscheibe 6 um den Berührungspunkt bzw. die entstehende Berührungslinie 10. Eine toleranzunabhängige Positionierung der Axialwälzlager 3 zu der Welle 1 wird während der Montage im rohrformigen Gehäuse 2 wie folgt erreicht: Die Axialwälzlager 3 werden in die Bohrungen 5 so tief bzw. so lange eingepreßt, bis der gewünschte Kontakt an der Welle 1 erreicht ist, was man an dem Maß des Kraftanstiegs erkennen kann.
Figur 1 zeigt den Schnitt im Bereich der vorderen Lagerebene. Zur Positionierung der Welle 1 in dem Gehäuse 2 wird mindestens noch eine weitere solche Lagerebene benötigt, um eine spielfreie Drehmomentübertragung in beiden Umfangsrichtungen der Linearführung zu ermöglichen. Hiervon sind im Bereich einer hinteren Lagerebene zwei Büchsen von Axialwälzlagern 3 erkennbar. Um bei diesem Vierkantprofil die Wellenpositionierung in allen Achsrichtungen durchführen zu können, müssen pro Lagerebene mindestens zwei Axialwälzla- ger 3 vorgesehen werden.
Die Welle kann ein von der Darstellung abweichendes Profil, beispielsweise ein Dreikant-, Mehrkant-, Hohl- oder Vollprofil aufweisen. Auch eine runde Welle kann nach diesem Prinzip geführt werden, jedoch ohne Drehmomentauf- nähme.
Figur 3 zeigt ein Axialwälzlager 13 einer erfindungsgemäßen Linearführung, in dessen Büchse 14 zusätzlich ein federnder Gummiring 15 eingesetzt ist, an dem sich eine zusätzliche, mit einer Laufbahn für den Wälzkörpersatz 8 verse- hene Lagerscheibe 16 abstützt. Hier wirkt der Gummiring 15 als Ausgleichselement für Maßtoleranzen und als geräuschdämmendes Bauteil.
Die Figuren 4 und 5 zeigen, daß bei der erfindungsgemäßen Linearführung statt eines reinen Axialwälzlagers auch eine Nadelbüchse verwendet werden kann. In Figur 4 ist in einer Nadelbüchse 17 eines Radial-Nadellagers 18 ein zusätzlicher Wälzkörpersatz 19 für die axiale Abstützung eines Lagerzapfens 20 angeordnet, der an der Laufscheibe 6 befestigt bzw. mit dieser einstückig ausgeführt ist. Mit dem Wälzkörpersatz 19 wird die Reibung des sich drehenden Lagerzapfens 20 verringert.
In Figur 5 weist der Boden einer Nadelbüchse 21, die den Lagerzapfen 20 und den aus Nadeln bestehenden Wälzkörpersatz eines Nadellagers 22 umgibt, eine nach innen konvexe Auswölbung 23 auf, an welcher der Lagerzapfen 20 axial abgestützt ist. Auf diese Weise wird hier bei der Drehung des Lagerzapfens 20 die Reibung reduziert. Die Mittelachse 11 der in Figur 5 dargestellten Nadelbüchse 21 ist zu der Normalen 12 der Wellen-Längsachse um einen Winkel α geneigt angeordnet. Dadurch entsteht ebenso, wie bei den Ausführungen nach den Figuren 1 bis 4 ein Rotationshebel b für die Laufscheibe 6 und der dadurch bedingte Rotationseffekt.
Bei allen Ausführungsbeispielen kann das jeweilige Lager durch eine Ver- stemmung 24 (Figuren 4 und 5) des Gehäusewerkstoffs oder mittels eines Sprengringes in der Bohrung 5 des Gehäuses 2 befestigt werden.
Zur Erzeugung der Vorspannung der Linearführung ist es möglich, eines oder mehrere Lager tiefer einzupressen, als es das Wellenmaß erfordert, beispiels- weise nach Einführen eines Werkzeugs mit gegenüber der Welle geringeren Abmessungen, und nach dem Entfernen dieses Werkzeugs die Welle in das Gehäuse einzuführen. In diesem Fall wirkt das Gehäuse als vorspannendes Element
Bezugszahlenliste
1 Welle
Gehäuse
3 Axialwälzlager konkaver Oberflächenbereich
5 Bohrung
Laufscheibe
7 Büchse
8 Wälzkörpersatz
9 Kalottenfläche
10 Berührungspunkt
11 Mittelachse
12 Normale
13 Axialwälzlager
14 Büchse
15 Gummiring
16 Lagerscheibe
17 Nadelbüchse
18 Nadellager
19 Wälzkörpersatz
20 Lagerzapfen
21 Nadelbüchse
22 Nadellager
23 Auswölbung
24 Verstemmung
a Versatz b Maß, Rotationshebel α Winkel

Claims

Patentansprüche
1. Linearführung zum Übertragen von Drehmomenten zwischen einem rohrformigen, um seine Längsachse drehbaren Gehäuse (2) und einer darin über Wälzkörper axial verschiebbar gelagerten Welle (1), dadurch gekennzeichnet, daß in dem rohrformigen Gehäuse (2) mehrere die Welle (1) umgebende Axialwälzlager (3, 13) in zwei radialen, in einem axialen Abstand voneinander befindlichen Ebenen angeordnet sind, wo- bei jeweils im Bereich einer radialen Lagerebene die Axialwälzlager (3,
13) mit jeweils zwei Laufringen oder Laufscheiben und einem dazwischen befindlichen Wälzkörpersatz ausgeführt sind, von denen eine Laufscheibe zu einer Büchse (7, 14) vervollständigt und in dem Gehäuse (2) gehalten ist, wobei außerdem die Mittelachse (11) der Büchse (7, 14) mit einem Versatz (a) zu einer Normalen (12) der Wellen-
Längsachse parallel verschoben angeordnet ist, und von denen die andere Laufscheibe (6) des Axialwälzlagers (3, 13) kalottenförmig ausgebildet und mit ihrer konvexen Kalottenfläche (9) in einem Oberflächenbereich (4) der Welle (1) an dieser abgestützt ist.
2. Linearführung zum Übertragen von Drehmomenten zwischen einem rohrformigen, um seine Längsachse drehbaren Gehäuse (2) und einer darin über Wälzkörper axial verschiebbar gelagerten Welle (1), dadurch gekennzeichnet, daß in dem rohrformigen Gehäuse (2) mehrere die Welle (1) umgebende Radial-Nadellager (18, 22) in zwei radialen, in einem axialen Abstand voneinander befindlichen Ebenen angeordnet sind, wobei jeweils im Bereich einer radialen Lagerebene die Radial- Nadellager (18, 22) mit jeweils zwei Laufringen oder Laufscheiben und einem dazwischen befindlichen Wälzkörpersatz ausgeführt sind, von denen eine Laufscheibe zu einer Nadelbüchse (17, 21) vervollständigt und in dem Gehäuse (2) gehalten ist, wobei die Mittelachse (11) der Nadelbüchse (17, 21) mit einem Versatz zu einer Normalen (12) der Wellen-Längsachse parallel verschoben oder geneigt angeordnet ist, und von denen die andere Laufscheibe (6) des Nadellagers (18, 22) kalot- tenförmig ausgebildet und mit ihrer konvexen Kalottenfläche (9) in einem Oberflächenbereich (4) der Welle (1) an dieser abgestützt und mit einem Lagerzapfen (20) versehen ist, der von der Nadelbüchse (17, 21) und darin angeordneten, als Nadeln ausgebildeten Wälzkörpern umgeben ist.
3. Linearführung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Büchse (7, 14) des Axialwälzlagers (3, 13) bzw. die Nadelbüchse (17, 21) des Nadellagers (18, 22) jeweils in eine durchgehende radiale
Bohrung (5) des Gehäuses (2) eingepreßt ist.
4. Linearführung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Welle (1) eine Lenksäulenspindel ist, welche als Mehrkantwelle mit im Querschnitt dreieckiger, viereckiger, quadratischer oder vieleckiger
Grundform ausgebildet ist, wobei zwischen zwei in Umfangsrichtung aufeinanderfolgenden Längskanten jeweils ein Oberflächenbereich (4) mit einer konkaven Oberfläche eingearbeitet ist.
5. Linearführung nach Anspruch 1, dadurch gekennzeichnet, daß das Axialwälzlager (3) als Kugellager ausgeführt ist.
6. Linearführung nach Anspruch 2, dadurch gekennzeichnet, daß am Boden der Nadelbüchse (21) eine nach innen konvexe warzenförmige Auswölbung (23) angeordnet ist, an welcher der Lagerzapfen (20) mit seiner äußeren Stirnseite abgestützt ist.
7. Linearführung nach Anspruch 2, dadurch gekennzeichnet, daß zwischen dem Boden der Nadelbüchse (17) und der äußeren Stirnseite des Lagerzapfens (20) ein Wälzkörpersatz (19) eines Axialwälzlagers angeordnet ist.
8. Linearführung nach Anspruch 1 , dadurch gekennzeichnet, daß in dem Axialwälzlager (13) eine mit einer Laufbahn für Wälzkörper versehene Lagerscheibe (16) mittels eines Federelementes, beispielsweise eines Gummiringes (15) abgestützt ist.
9. Linearführung nach Anspruch 2, dadurch gekennzeichnet, daß bezüglich der Mittelachse (11) der Nadelbüchse (21) anstelle einer um den Versatz parallel verschobenen Anordnung eine um einen Winkel α zu der Normalen (12) der Wellen-Längsachse geneigte Anordnung vorge- sehen ist.
EP02712841A 2001-02-15 2002-01-24 Linearführung zum übertragen von drehmomenten Withdrawn EP1360423A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10106982A DE10106982A1 (de) 2001-02-15 2001-02-15 Linearführung
DE10106982 2001-02-15
PCT/EP2002/000675 WO2002064989A1 (de) 2001-02-15 2002-01-24 Linearführung zum übertragen von drehmomenten

Publications (1)

Publication Number Publication Date
EP1360423A1 true EP1360423A1 (de) 2003-11-12

Family

ID=7674102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02712841A Withdrawn EP1360423A1 (de) 2001-02-15 2002-01-24 Linearführung zum übertragen von drehmomenten

Country Status (6)

Country Link
US (2) US6948401B2 (de)
EP (1) EP1360423A1 (de)
JP (1) JP2004518099A (de)
KR (1) KR20030077008A (de)
DE (1) DE10106982A1 (de)
WO (1) WO2002064989A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7086305B2 (en) * 2001-09-04 2006-08-08 Ina-Schaeffler Kg Gearshift device
GB2395995B (en) * 2001-10-01 2005-11-30 Nsk Ltd Vehicle steering telescopic shaft
DE10220063A1 (de) * 2002-05-04 2003-11-13 Ina Schaeffler Kg Führung
EP1512607B1 (de) * 2002-06-11 2008-08-13 NSK Ltd. Teleskopspindel zum lenken eines fahrzeugs und teleskopwelle zum lenken eines fahrzeugs mit kardanwellenkupplung
DE10239618A1 (de) * 2002-08-29 2004-03-11 Bayerische Motoren Werke Ag Verschiebelager und Motorradgabel mit einem solchen Verschiebelager
JP4196630B2 (ja) * 2002-10-02 2008-12-17 日本精工株式会社 車両ステアリング用伸縮軸
JP4254194B2 (ja) * 2002-10-10 2009-04-15 日本精工株式会社 車両ステアリング用伸縮軸
AU2003302651A1 (en) * 2002-11-29 2004-06-23 Nsk Ltd. Telescoping shaft for vehicle steering
DE10302766A1 (de) * 2003-01-24 2004-07-29 Ina-Schaeffler Kg Zahnstangenlenkung
JP4190905B2 (ja) * 2003-02-06 2008-12-03 日本精工株式会社 車両用ステアリング装置
GB0308911D0 (en) * 2003-04-17 2003-05-21 Lucas Automotive Gmbh A steering assembly
CN100436226C (zh) * 2003-07-02 2008-11-26 日本精工株式会社 车辆转向用伸缩轴
WO2005070744A1 (ja) * 2004-01-27 2005-08-04 Nsk Ltd. 車両ステアリング用伸縮軸
US7516985B2 (en) 2004-03-11 2009-04-14 Delphi Technologies, Inc. Multi piece bearing for telescoping steering column assembly
US20060053933A1 (en) * 2004-08-30 2006-03-16 Gaeth Gerald A Dual axis rolling element for adjustable steering column
DE102004051829A1 (de) * 2004-10-25 2006-05-04 Bosch Rexroth Mechatronics Gmbh Linearführungs-Vorschubmodul mit Führungskörper sowie Ausleger hierfür
US20060131873A1 (en) * 2004-11-26 2006-06-22 Klingbail Kenneth E High pressure swivel joint
US7556293B2 (en) * 2005-06-27 2009-07-07 Delphi Technologies, Inc. Telescoping steering column assembly and method of manufacturing the assembly
DE102005037527B4 (de) * 2005-08-09 2014-07-03 Schaeffler Technologies Gmbh & Co. Kg Lenkwelle für Kraftfahrzeuge
US7740207B2 (en) * 2007-08-22 2010-06-22 Embraer - Empresa Brasileira De Aeronautica S.A. Aircraft flight control systems and methods
US7798525B2 (en) * 2008-04-11 2010-09-21 Gm Global Technology Operations, Inc. Collapsible steering column assembly
US8021235B2 (en) * 2008-12-16 2011-09-20 Nexteer (Beijing) Technology Co., Ltd. Rolling element shaft assembly
US20110088502A1 (en) * 2009-10-19 2011-04-21 Schaeffler Technologies Gmbh & Co. Kg Steering column with integrated shaft bearing and tube-mounted slidable yoke
KR20110137099A (ko) * 2010-06-16 2011-12-22 삼익정공(주) 다각형 가이드 순환형 니이들 베어링 리테이너
KR20110137098A (ko) * 2010-06-16 2011-12-22 삼익정공(주) 무한 스트로크형 다각형 니이들 베어링 가이드
WO2012015881A1 (en) * 2010-07-28 2012-02-02 Thomson Industries Inc. Linear motion bearing system with self-aligning rail
US8443685B2 (en) * 2010-09-07 2013-05-21 Timotion Technology Co., Ltd. Linear actuator and safety mechanism for the same
JP5803495B2 (ja) * 2011-09-26 2015-11-04 アイシン精機株式会社 車両のステアリング装置
US8931805B2 (en) * 2012-11-30 2015-01-13 Steering Solutions Ip Holding Corporation Telescoping shaft roller assembly in steering column
KR101687554B1 (ko) * 2014-12-30 2016-12-19 한국항공우주산업 주식회사 항공기 동체 자동 장착 및 탈착 장치
US10295028B2 (en) 2016-07-26 2019-05-21 Blockwise Engineering Llc Linear actuator
JP6991658B2 (ja) * 2017-11-30 2022-01-12 株式会社山田製作所 ステアリング装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1291388A (en) * 1918-06-17 1919-01-14 Arvac Mfg Company Shaft-joint and method of forming the same.
US1775055A (en) * 1929-05-31 1930-09-02 Tarbox Gurdon Lucius Method of making tube joints
US2023796A (en) * 1933-02-21 1935-12-10 Lee S Sorensen Driving bushing for rotary tables
DE649218C (de) * 1935-06-08 1937-08-18 Zeiss Carl Fa Lagerung
US3169407A (en) * 1962-02-28 1965-02-16 Westinghouse Air Brake Co Motion converting device
US3427656A (en) * 1966-01-19 1969-02-11 Donald E Miller Bearing
FR2169475A5 (de) * 1972-01-26 1973-09-07 Glaenzer Spicer Sa
DE2705331A1 (de) * 1977-02-09 1978-08-10 Walter Schaefer Keilwelle
DE2804778C3 (de) * 1978-02-04 1982-04-08 Uni-Cardan Ag, 5200 Siegburg Teleskopantriebswelle
DE3124927A1 (de) * 1981-06-25 1983-03-31 INA Wälzlager Schaeffler KG, 8522 Herzogenaurach Wellenkupplung zur drehmomentuebertragung
SE461605B (sv) * 1987-03-12 1990-03-05 Ffv Autotech Ab Vridmomentoeverfoerande teleskopaxel med oeverbelastningsskydd
DE3730393C2 (de) * 1987-09-10 1994-01-13 Lemfoerder Metallwaren Ag Lenkwelle für Kraftfahrzeuge, bestehend aus axial ineinander verschieblichen Wellenteilen
DE8816516U1 (de) * 1988-03-22 1989-12-14 J.M. Voith Gmbh, 7920 Heidenheim Teleskop-Gelenkwelle
DE3834900A1 (de) * 1988-10-13 1990-04-19 Boening Manfred Linearfuehrung - mit selbstnachstellender spieleinstellung ein- und mehrspurig nicht verdrehbar
DE8906246U1 (de) * 1989-05-20 1990-02-15 INA Wälzlager Schaeffler KG, 8522 Herzogenaurach Axial-Radialwälzlager
FR2730773B1 (fr) * 1995-02-17 1997-04-30 Guimbretiere Pierre Joint de transmission coulissant, notamment a tripode
DE19619449A1 (de) * 1995-06-03 1996-12-05 Doma Tech Pneumatische Kompone Linearführung
DE19621464A1 (de) * 1996-05-29 1997-12-04 Schaeffler Waelzlager Kg Werkzeugmaschine
FR2759436B1 (fr) * 1997-02-11 1999-04-30 Pierre Guimbretiere Joint homocinetique coulissant a tripode
ES2162713T3 (es) * 1999-12-10 2002-01-01 Skf Linearsysteme Gmbh Cojinete de rodamientos para movimientos longitudinales.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02064989A1 *

Also Published As

Publication number Publication date
US7147375B2 (en) 2006-12-12
US20040109620A1 (en) 2004-06-10
JP2004518099A (ja) 2004-06-17
KR20030077008A (ko) 2003-09-29
WO2002064989A1 (de) 2002-08-22
DE10106982A1 (de) 2002-08-29
US6948401B2 (en) 2005-09-27
US20060005659A1 (en) 2006-01-12

Similar Documents

Publication Publication Date Title
EP1360423A1 (de) Linearführung zum übertragen von drehmomenten
EP2171297B1 (de) Schrägkugellager in tandemanordnung sowie lageranordnung mit dem schrägkugellager
DE102011117723B4 (de) Kugelgewindetrieb mit Lagerausgleich
DE102005003987B4 (de) Spielfreies Radialkugellager
DE19933875B4 (de) Linearwälzlager zum Übertragen von Drehmomenten
WO2006021273A1 (de) Radiallageranordnung und radiallager, insbesondere für eine spindellagerung
DE10301082B4 (de) Wälzlager für Linearbewegungen
DE102005025051A1 (de) Lenksäulenanordnung und Wälzlager hierfür
DE102009014339B4 (de) Bremseinrichtung insbesondere für ein Kraftfahrzeug
DE102019008119A1 (de) Kupplungsvorrichtung zwischen zwei koaxialen Wellen, insbesondere für eine Lenksäule eines Kraftfahrzeugs
DE60213041T2 (de) Kugelgewindespindel
EP1128097A2 (de) Vorrichtung zum Übertragen von Wähl- und/oder Schaltbewegungen
EP1774190B1 (de) Gleichlaufdrehgelenk
EP3132151B1 (de) Wälzlager
DE102005027516A1 (de) Pedale
DE10153912A1 (de) Lagerung in einem Schaltgetriebe
DE10062680A1 (de) Lagerung für lineare Bewegungen mit unendlichem Hub und zur Übertragung von Drehmomenten
WO2003033925A1 (de) Linearwälzlager
DE102019129710B4 (de) Kombiniertes Radial-Axiallager mit spezieller Axialspieleinstellung
DE112007001546B4 (de) Stufenlose Toroid-Getriebeeinheit
DE3628584A1 (de) Brenneraufhaengung
EP0964186A2 (de) Kugelrollspindel
WO2024051877A1 (de) Verstelleinheit einer lenksäule
DE10025370A1 (de) Teleskopvorrichtung zur Drehmomentübertragung
DE2522108A1 (de) Teleskopische welle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030612

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070801

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522