EP1359112B1 - Verfahren zur Überwachung von Schachttüren einer Aufzugsanlage - Google Patents

Verfahren zur Überwachung von Schachttüren einer Aufzugsanlage Download PDF

Info

Publication number
EP1359112B1
EP1359112B1 EP20030009423 EP03009423A EP1359112B1 EP 1359112 B1 EP1359112 B1 EP 1359112B1 EP 20030009423 EP20030009423 EP 20030009423 EP 03009423 A EP03009423 A EP 03009423A EP 1359112 B1 EP1359112 B1 EP 1359112B1
Authority
EP
European Patent Office
Prior art keywords
shaft
shaft door
receiver
door
doors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20030009423
Other languages
English (en)
French (fr)
Other versions
EP1359112A1 (de
Inventor
Philipp Masch.-Ing. Angst
Urs Masch.-Ing. Baumgartner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP20030009423 priority Critical patent/EP1359112B1/de
Publication of EP1359112A1 publication Critical patent/EP1359112A1/de
Application granted granted Critical
Publication of EP1359112B1 publication Critical patent/EP1359112B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/02Door or gate operation
    • B66B13/14Control systems or devices
    • B66B13/143Control systems or devices electrical

Definitions

  • the invention relates to a method for monitoring shaft doors of a lift installation as defined in the patent claims.
  • Elevator systems usually have shaft doors, which in the closed state separate the elevator shaft from the adjoining rooms on each floor.
  • the load-receiving means (elevator car) is equipped with a door, which is referred to as a car door and moves together with the elevator car from floor to floor.
  • the opening and closing of the doors is normally effected during a floor stop of the elevator car by a car door drive controlled by an elevator control.
  • the cabin door wings are coupled to the respective corresponding shaft door wings, so that the shaft door leaves join in the movement of the cabin door wings.
  • a shaft door may only be open when the elevator car stops on the assigned floor.
  • each shaft door latch is associated with a safety contact, which forms part of an electrical safety circuit and interrupts this when not correctly locking the shaft door leaf.
  • safety circuits which in the case of tall buildings a Series connection of more than twenty safety contacts are known as one of the main causes of disturbances of the elevator operation.
  • the contact resistance of the individual safety contacts increases in a relatively short time, which causes such a high voltage drop in series connection of many contacts that the safety circuit system shuts off the elevator even with correctly closed doors.
  • US 5,644,111 discloses a hoistway door monitoring system for a conventional elevator system, which is intended to counteract the problems described above.
  • a non-contact sensor in the form of a photoelectric detector with transmitter and receiver is installed on each floor on the shaft wall opposite the hoistway door. Its light beam is directed towards the closed edge area of the closed shaft door leaf and is reflected by the shaft door wing, provided that the shaft door leaf is completely closed and the elevator car is not located between the sensor and the shaft door. If the landing door wing is not completely closed and the elevator car is not in the sensor area, then the light beam exits into the elevator lobby, from where it no longer has sufficient strength is reflected, so that the receiver of the photoelectric detector can register this state.
  • a corresponding information is forwarded to the elevator control, which stops the elevator and triggers suitable alarm signals (siren, flashes of light on floor, etc.). If the elevator car is located on the floor with the shaft door not closed, the light beam of the sensor is reflected by the rear cabin wall, so that the sensor rightly does not detect an impermissible state.
  • suitable alarm signals siren, flashes of light on floor, etc.
  • the present invention has for its object to provide a method for monitoring shaft doors of an elevator system, with which the disadvantages mentioned can be avoided, that is, in which in particular a safety circuit with a plurality of successively connected shaft door safety contacts is avoided, in which the The number of required monitoring sensors is reduced, and its effectiveness can not be influenced by persons or objects present in front of the shaft door or by the light conditions in the elevator lobby.
  • the invention is therefore based on the idea to solve the problems that are known in connection with the hitherto conventional plurality of sensors and / or contacts for monitoring shaft doors by a method in which at least during the detection phases by a transmitter of a shaft door monitoring sensor a multilevel beam is emitted in the form of collimated electromagnetic waves detected by a receiver and is affected by a not completely closed shaft door leaf and / or by a non-latching shaft door latch such that a receiver the shaft door monitoring sensor is detected that a shaft door is not complete closed and / or not locked, this information being signaled by the shaft door monitoring sensor to the elevator control.
  • Detection phases are those periods of time in which all shaft doors must be closed and locked when the program is executed.
  • the monitoring of the locking state of the shaft door latch is preferably carried out in that the beam is interrupted or reflected by the Schachtfriegeln associated aperture, which protrude into the beam path when the respective shaft door latch is not in its locked position.
  • the advantages achieved by the invention are essentially to be seen in that with a single shaft door monitoring sensor, the closed position and the locking state of a large number of shaft doors can be monitored without contact. This eliminates a major cause of breakdown while greatly reducing the cost of purchasing, installing, and subsequently maintaining a large number of monitoring sensors and / or monitoring contacts. Moreover, in this method, the beam of the shaft door monitoring sensor can not be influenced in any situation by persons or objects standing in front of the shaft door or by the light conditions in the elevator lobby.
  • an elevator car in motion is stopped by the elevator control, and / or it becomes optical and / or audible warnings on at least one of the floors when the hoistway door monitoring sensor signals a not completely closed hoistway door and / or an unlocked hoistway door latch during an operating condition in which all hoistway doors must be fully closed and locked. Stopping the elevator car prevents a person from being injured by the moving elevator car in the area of a shaft door which is unlocked as a result of a malfunction or due to unauthorized opening. With warning signals such as flashlight and / or siren to prevent passengers from approaching an unlocked or unlocked shaft door to ban the risk of falling into the elevator shaft.
  • a beam for sensing the closed position of the shaft door wing and the locking position of the shaft door latch is any type of electromagnetic waves, with which a sufficient length over the required length beam can be generated, which are connected by the shaft door wings and / or with the shaft door bolts mechanical components can be influenced so that a receiver can detect this influence.
  • electromagnetic waves that can be a danger to living things or destroy materials.
  • Laser light beams are thanks to the coherence, ie the in-phase of the electromagnetic beam forming the light beam Waves, even with large beam lengths very well bundled, ie the increase of the beam cross-sectional diameter with increasing beam length is very low.
  • beams which are formed by incoherent infrared light it is also possible to use beams which are formed by incoherent infrared light in order to save costs.
  • the monitoring length required to monitor all shaft doors can be divided into several sections, each section of at least one beam generated by a separate shaft door monitoring sensor with transmitter and receiver is monitored.
  • shaft door monitoring sensors are used which emit light beams in the wavelength ranges of ultraviolet light, visible light or infrared light.
  • Such sensors are commercially available and have the advantage that the beam path of the eye is visible or verifiable with simple sensors.
  • the beam is emitted by a transmitter, which is preferably arranged in the region of one shaft end (eg in the shaft head) and received and evaluated by a receiver, preferably in the region of the other Shaft end (eg in the pit) is located.
  • a transmitter which is preferably arranged in the region of one shaft end (eg in the shaft head) and received and evaluated by a receiver, preferably in the region of the other Shaft end (eg in the pit) is located.
  • transmitter / receiver principle arrangement has the shortest possible length of the beam path, which is the application of simpler and cheaper jet systems allows no elaborate alignment of a reflective surface and minimizes sensitivity to contamination.
  • the required monitoring length can also be achieved by sequential arrangement of several sections, each with a transmitter / receiver system.
  • the beam is emitted from a preferably mounted in the region of one end of the shaft transmitter toward a preferably in the region of the opposite shaft end mounted reflection surface, from where the beam to a receiver present in the region of the transmitter is detected, wherein the receiver is detected, whether the beam reaches the receiver or is interrupted as a result of a not fully closed shaft door panel or not in the locked position located Schachtfriegels.
  • reflection principle method transmitter and receiver integrated in a single device, which reduces the manufacturing cost of the shaft door monitoring sensor and greatly simplifies the installation in the bay.
  • the required monitoring length can be achieved by sequentially arranging a plurality of monitoring sections, each with a shaft door monitoring sensor according to the reflection principle.
  • the shaft door monitoring sensor is designed as a distance measuring device, for example in the form of a laser distance measuring device.
  • the beam is at least during the detection phases of a preferably mounted in the region of the shaft end transmitter in Direction emitted to a preferably in the region of the opposite shaft end main reflecting surface, so that the beam from this main reflection surface or from a reflection surface, which is formed by an associated with the associated shaft door or the shaft door latch mechanical component, and which protrudes into the beam in the case of a not completely closed shaft door panel and / or not in the locked position located Schachtfriegels, is reflected to a receiver present in the region of the transmitter.
  • the transmitter and the receiver of the beam are designed so that the distance traveled by the beam on its way from the transmitter over one of the reflection surfaces back to the receiver can be determined.
  • This embodiment of the method has the advantage that not only can it be ascertained that one of the shaft door leaves is not completely closed and / or one of the shaft door latches is not in the locked position, but that it is also possible to determine where, ie on which, basis of the measured distance Floor, the source of the disturbance is located.
  • the division of the required monitoring length into several sections is also possible with this method variant.
  • a particularly expedient embodiment of the invention is that the measured distance measured during the detection phase to a momentarily acting reflection surface and / or a determined therefrom identification of the floor and / or displayed. From the storage data or the display, a maintenance expert can immediately recognize on which floor he has to search for a not fully closed shaft door wing or not located in the locked position shaft door latch.
  • An advantageous for certain arrangements of the shaft doors development of the inventive method is that for the shaft doors monitoring multiple independent beams can be applied. For example, so that the shaft door leaf and the associated shaft door latch can be monitored independently, or it can be monitored independently of each other several mechanically coupled shaft door leaves and / or the shaft door latch multi-leaf shaft doors. On the one hand, this results in a safety-related desirable redundancy of the shaft door monitoring. On the other hand, it is possible to distinguish between non-closed shaft door wings and unlocked shaft door locks, which makes it possible to respond optimally to different fault messages. For example, upon detection of an unlocked shaft door bolt while the shaft door is still closed, instead of an immediate emergency braking, a drive of the elevator car to the next stop can be continued, whereby a trapping of passengers can be avoided.
  • An interesting extension of the inventive method with beam deflection is that the beam of a equipped for distance measurement shaft door monitoring, after he has passed through the shaft door monitoring areas is directed by a further beam deflecting device in the vertical direction to a mounted on the elevator car reflecting surface, from where the beam to Recipient of the Shaft door monitoring sensor is reflected.
  • continuous information about the position of the elevator car can be generated within its shaft path, which can serve, for example, in a comparison circuit to increase the safety against malfunctions of a main cabin position detection.
  • remote-controlled additional locks acting on the shaft doors can be activated, preferably by the elevator control, if the shaft door monitoring sensor signals a not completely closed shaft door leaf and / or a shaft door latch not in locking position during an operating condition in which all Shaft doors should be closed.
  • the security against a person's fall and in particular against the intrusion of an unauthorized person into the elevator shaft can be substantially increased.
  • the additional locks are activated before the unlocked shaft door is opened so far that a person can pass through.
  • Another embodiment of the method which is particularly interesting in terms of safety can be achieved in elevator systems which are equipped with a shaft door monitoring sensor with distance measurement.
  • visual and / or audible warning signals and / or remotely controllable, acting on the shaft door latches on exclusively that floor can be activated at the shaft door during an operating condition in which all shaft doors should be closed and locked, not completely closed shaft door leaf and / or not located in the locked position shaft door latch can be detected.
  • Such a system has the advantage that alarms are only perceived on the floor concerned, so that people on the other floors are not unnecessarily disturbed. Additional latches for the landing door wings also act only on the floor concerned, so that maintenance personnel may be able to gain access to the elevator shaft via a separate, not additionally locked shaft door in the case of elevator cars that may have been shut down between two floors.
  • FIG. 1 schematically an elevator 1 m an elevator shaft 2 and an elevator car 3 is shown.
  • the elevator car is equipped with a car door 4, which has two car door leaves 5, which are moved horizontally for opening and closing by a mounted on the elevator car 3 door drive unit 6.
  • the elevator shaft 2 comprises three shaft doors 7, each having two shaft door leaves 8.
  • the opening and closing of a hoistway door 7 takes place by horizontal movement of its hoistway door panels 8 when the elevator car is on the corresponding floor, wherein the driving force for this horizontal movement is transmitted from the car door panels 5 to the hoistway door panels 8 by means of a door actuation mechanism.
  • the shaft door panels 8 are locked to a fixed part of the shaft doors by means of a shaft door bolt (not shown here).
  • the beam 10.3 emitted by the transmitter 10.1 is directed to a receiver 10.2 fixed in the region of the shaft head, which receives the beam 10.3, provided it is not interrupted as a result of a not completely closed shaft door leaf 8 and / or a shaft door bolt not in the locked position.
  • Transmitter 10.1 and receiver 10.2 together form a shaft door monitoring sensor 10. The arrangement described here is referred to below as the transmitter / receiver principle.
  • the shaft door monitoring sensor of the elevator control signals that one of the landing door wings 8 is not completely closed or one of the shaft door latches is not in the locking position.
  • Detection phases are those periods of time in which all shaft doors must be closed and locked when the program is executed.
  • the jet 10.3 extends in a vertical plane lying between the shaft doors 7 and the car door 4 defined by the gap between the shaft door sills 14 and the car door sill 15. Since the jet in this embodiment of the method extends in the vertical direction between the shaft doors and the car door, it is advantageous if the radiation emission occurs only during the detection phase, so that passengers are not irritated by the - possibly visible - beam.
  • the beam 10.3 is influenced by apertures 12 associated with each shaft door 7, which are thus in communication with the shaft door wings and the shaft door bolts, so that they interrupt the jet 10.3 when the shaft door 7 is not completely closed and / or when a shaft door latch is not in the locking position this in Fig. 2 is shown in detail.
  • Fig. 2 represents (enlarged and schematically) the in Fig. 1 marked view A of the upper portion of one of the shaft doors 7 in Fig. 1
  • This shaft door has two shaft door leaves 8, which are fastened to a respective door leaf carrier 18.
  • These door leaf supports 18 are guided horizontally displaceable by means of guide rollers 19 on a guide rail 20, wherein the guide rail 20 is fastened to a door support 21 connected to the door frame.
  • 10.3 is related to Fig. 1 described beam of the shaft door monitoring sensor 10.
  • the shaft door latch 22 locks the door leaf support 18 with a locking stop 23 immovably connected to the door support 21 when the landing door leaf 8 is completely closed.
  • the shaft door latch 22 is held in an unlocking position, not shown here, by the door operating mechanism acting from the elevator car. Once the car and the shaft doors are closed, this effect is released, and the shaft door latch 22 tilts due to its closing weight 22.1 in its locking position.
  • the locking hook 22.2 of the shaft door latch acts on two mounted on the immovable locking stop and one of the blades 12 bearing handlebar lever 24, that these pivot from their - shown on the left - basic position to the right, causing a shift of the aperture 12 to the right - and thus the beam path of the beam 10.3 out - causes.
  • a landing door leaf 8 is shown, which is not completely closed (door gap 25), and its shaft door latch 22 is therefore - possibly for another reason - is not in its locked position. Because in this situation the locking hook 22.2 of the shaft door bolt 22 does not act on the diaphragm 12 bearing handlebar lever 24, the aperture remains in its resulting without external influence by itself from the handlebar lever basic position in which it interrupts the beam path of the beam 10.3.
  • a side view D of the shaft door arrangement described in accordance Fig. 2 which also shows the position of the beam 10.3, is in Fig. 5 shown.
  • Fig. 3 again shows an elevator system 1 with a shaft door monitoring sensor 10, which monitors the position of the shaft door leaf 8 and its shaft door latch with the help of at least one of bundled electromagnetic waves formed beam 10.3 - preferably a laser light beam.
  • transmitter 10.1 and receiver 10.2 are arranged in the same shaft end region, preferably in the same housing, and the beam 10.3 emitted by the transmitter 10.1 is directed to a reflection surface 11 mounted in the region of the opposite shaft end, which transmits the beam 10.3 to the transmitter 10.1, unless the beam is interrupted as a result of a not completely closed shaft door leaf 8 and / or a shaft door latch not in the locked position.
  • At least one laser light beam 10.3 extends along the shaft wall containing the shaft doors 7, so that it is interrupted by a shaft door 8 that is not completely closed and / or by one of the screens 17 which enter the beam 10.3 protrude if they are not prevented by the respectively associated, located in the locking position shaft door latch. Details on the arrangement of these - only schematically shown - aperture 17 are in the following Fig. 4 explained.
  • Fig. 4 shows (enlarges) the in Fig. 3 B is a view of the upper area of one of the Fig. 3
  • This shaft door also has two shaft door leaves 8, which are fastened to a respective door leaf carrier 18.
  • These door leaf supports 18 are guided horizontally displaceable by means of guide rollers 19 on a guide rail 20, wherein the guide rail 20 is fastened to a door support 21 connected to the door frame.
  • To the left and right of the two shaft door leaves 8 is ever a beam 10.3 - preferably a laser light beam - recognizable, as in connection with Fig. 1 and Fig. 3 already mentioned.
  • the two beams are emitted and detected by a shaft door monitoring sensor 10 which are installed in the elevator shaft for monitoring each of the left-side or right-side row of landing door panels. It is the one-way beam principle in which the transmitter and receiver are located away from each other, as well as the reflection principle, as related to Fig. 3 described, applicable.
  • a shaft door latch 22 is articulated to each of the two door leaf carrier 18. On the right side of Fig. 4 is recognizable as the Shaft door latch 22 locks the door leaf support 18 with a locking stop 23 immovably connected to the door support 21 when the landing door leaf 8 is completely closed.
  • the shaft door latch 22 is held in an unlocking position, not shown here, by the door operating mechanism acting from the elevator car. Once the car and the shaft doors are closed, this effect is canceled, and the shaft door latch tilts due to its closing weight 22.1 in its - shown here - on the right - locking position.
  • the locking hook 22.2 of the shaft door bolt acts on two mounted on the immovable locking stop 23 and one of the panels 17 bearing handlebar lever 24 that they pivot from their - recognizable on the left side - basic position to the left, causing a shift of the panel 17 to the left - And thus out of the beam path of the beam 10.3 - causes.
  • FIG. 4 again shows a shaft door leaf 8, which is not completely closed (door gap 25), and its shaft door latch 22 is therefore - possibly for another reason - is not in its locked position. Since in this situation the locking hook 22.2 of the shaft door bolt 22 does not act on the handlebar lever 24 carrying the panel 17, the panel 17 remains in its basic position resulting from the handlebar lever arrangement without outside influence, in which it interrupts the beam path of the beam 10.3. With a suitably mounted spring, the automatic assumption of the diaphragm basic position, in which the beam 10.3 is interrupted, could still be secured.
  • a side view E of the shaft door assembly described above Fig. 4 which also shows the position of the rays 10.3, is in Fig. 6 shown.
  • Fig. 4 described method has the advantage that no beam as in the arrangement according to Fig. 1 and 2 within the relatively narrow gap between the shaft door thresholds and the car door sill, but that the space is used laterally next to the shaft doors.
  • the emission of the beam need not be interrupted during the door opening phase here.
  • this method brings increased security in the shaft door monitoring, since on the one hand not completely closed shaft door panel directly interrupts and on the other hand from the separate monitoring of left-side and right-side shaft door wing results in a certain safety redundancy, even if their movements are not in each Case are mechanically synchronized.
  • Fig. 6 shows a side view of the shaft door assembly according to Fig. 4 (View E) in which the closed position of each shaft door leaf 8 is monitored together with the locking state of its shaft door bolt 22 by a beam 10.3.
  • the vertical beam 10.3 extends so close behind the closing edge opposite narrow side of the closed shaft door leaf 8 that it is interrupted when not completely closed shaft door leaf 8 by the lower edge 8.1 or the upper edge 8.2 and / or by the retracted from the shaft door latch 22 aperture 17.
  • illustrated components of the shaft door correspond, with the exception of the differently arranged aperture 17, in connection with Fig. 4 and 5 explained components.
  • Fig. 7 shows the side view of a variant of the shaft door monitoring with improved functionality. Such is achieved by the fact that the closed position of the shaft door 8 arranged one above the other in the elevator shaft and the locking state of the shaft door latch 22 assigned to the shaft door leaves 8 are monitored separately. Such monitoring can be realized, for example, by having each of them in Fig. 4 shown individual rays 10.3 by two parallel, in the direction of the plane of the drawing staggered rays 10.3 ( Fig. 7 ), one of which is the lower edge 8.1 or the upper edge 8.2 of the associated shaft door leaf 8 and the other arranged slightly laterally of the shaft door panel 8 aperture 17 (corresponding to the aperture 17 in Fig. 4 ) supervised.
  • the two parallel beams 10.3 are generated by two separate shaft door monitoring sensors, whereby the transmitter / receiver principle or the reflection principle can be used.
  • the advantages of the separate monitoring of the closed state and the locked state can be seen in the fact that different responses to a detected error state can be derived therefrom. For example, when a locking error occurs, the moving elevator car can continue to drive to the next floor, while an emergency stop is generated when an open shaft door is detected. For example, if two beams monitoring the interlocks and one beam monitoring the closed position of all left-hand landing door panels could signal correct states, while a non-closed status is reported for the right-hand landing door panels, it could be concluded that there is a detection error in the hoistway door reported as not closed must be present and that the journey can be continued to the destination floor. For a variety of different signal combinations each adapted reactions are programmable.
  • the shaft door monitoring sensor determines the distance traveled by the beam. From the measured distance, the elevator control can determine the floor on which a fault condition exists and store this information for the attention of maintenance personnel, transmit it to a maintenance center, and / or use it to activate an optical or acoustic warning signal in the area of the shaft door concerned.
  • the elevator control can determine the floor on which a fault condition exists and store this information for the attention of maintenance personnel, transmit it to a maintenance center, and / or use it to activate an optical or acoustic warning signal in the area of the shaft door concerned.
  • it is also possible to start a program in which, after all passengers have left the elevator car, the elevator car is driven in crawl to the faulty floor, where by opening and closing of cabins - And shaft door is trying to fix the locking error.
  • FIGS. 8 and 9 schematically show a group of stacked shaft doors 7, the closed state and locking state are monitored by means of a multi-deflected beam 10.3.
  • Fig. 9 represents a view F from the right on the said group of shaft doors.
  • the beam 10.3 is emitted from a transmitter 10.1 of a shaft door monitoring sensor 10 mounted below a lowermost shaft door of the group, vertically upwards next to the left-side shaft door wings 8.3. After passing through a first vertical section 10.3.1 of its beam path, it is deflected above the uppermost shaft door of the monitored group by a first beam deflection device 32.1 to the right to a second beam deflection device 32.2.
  • the beam is again deflected by 90 °, so that this laterally adjacent to the right-side shaft door leaves 8.4 a second vertical section 10.3.2 in Going downwards and pushes on a third beam deflecting 32.3.
  • the beam again runs upwards to the beam deflection device 32.2, which moves it by 90 ° to the left (in FIG Fig. 8 ) deflects to the beam deflecting 32.1.
  • the beam is deflected one last time by 90 °, after which it travels a fourth vertical section 10.3.4 and finally is detected by a receiver 10.2 of the shaft door monitoring sensor 10.
  • the beam can be influenced by not fully closed shaft door leaves or by panels 17, which are not retracted by their associated shaft door latch.
  • the left-side shaft door leaves 8.3 can affect the vertical section 10.3.1 and the right-side shaft door leaves 8.4 the vertical section 10.3.2 of the beam 10.3.
  • the left-side diaphragms 17.1 can influence the vertical section 10.3.4 and the right-side diaphragms 17.2 the vertical section 10.3.3 of the beam 10.3.
  • a beam deflecting 32.1, 32.2, 32.3, 32.4 mirrors and / or suitable optical prisms can be used.
  • a shaft door monitoring sensor 10 with distance measurement is used to monitor the shaft doors, it can be detected in the event of a fault in the event of a fault, using the method described, with the shaft door first being detected, if one of the shaft door leaves 8.3, 8.4 is not completely closed, or if only one of the positions of the Aperture 17.1, 17.2 determining shaft door latch is not in its locked position. Thanks to this distinction, the shaft door monitoring device having only a single jet can also be used in the event of a malfunction situation-adapted reactions are triggered.
  • the manner in which the impact of the shaft door position and / or shaft door lock position on the beams is realized can be varied almost indefinitely.
  • the shaft door lock position can be transmitted directly or via joints and linkages to the position of shutters or reflecting surfaces in the form of flaps, sliders, etc., so that they can influence the beams extending in suitable zones in the vicinity of the shaft doors.

Description

  • Die Erfindung betrifft ein Verfahren zur Überwachung von Schachttüren einer Aufzugsanlage wie in den Patentansprüchen definiert.
  • Aufzugsanlagen weisen üblicherweise Schachttüren auf, die in geschlossenem Zustand auf jedem Stockwerk den Aufzugschacht von den angrenzenden Räumen abtrennen.
    Bei Aufzugsanlagen herkömmlicher Art ist auch das Lastaufnahmemittel (Aufzugskabine) mit einer Türe ausgerüstet, die als Kabinentüre bezeichnet wird und sich zusammen mit der Aufzugskabine von Stockwerk zu Stockwerk bewegt. Das Öffnen und Schliessen der Türen wird normalerweise während eines Stockwerkshalts der Aufzugskabine durch einen von einer Aufzugssteuerung gesteuerten Kabinentürantrieb bewirkt. Dabei werden die Kabinentürflügel mit den jeweils korrespondierenden Schachttürflügeln gekoppelt, so dass die Schachttürflügel die Bewegung der Kabinentürflügel mitmachen.
    Für die Sicherheit der Benutzer der Aufzugsanlage und der Passanten im Gebäude ist es von grosser Wichtigkeit, dass eine Schachttüre nur dann offen sein darf, wenn die Aufzugskabine auf dem zugeordneten Stockwerk anhält. Um dies zu gewährleisten, werden, neben anderen Aufzugs-Parametern, die Lagen sowohl der Schachttürflügel wie auch der die Schachttürflügel verriegelnden Schachttürriegel überwacht. Üblicherweise geschieht dies dadurch, dass jedem Schachttürriegel ein Sicherheitskontakt zugeordnet ist, der einen Teil eines elektrischen Sicherheitskreises bildet und diesen bei nicht korrekter Verriegelung der Schachttürflügel unterbricht.
    Solche Sicherheitskreise, die im Falle von hohen Gebäuden eine Reihenschaltung von mehr als zwanzig Sicherheitskontakten aufweisen können, sind als eine der Haupt-Ursachen für Störungen des Aufzugsbetriebs bekannt. Infolge von Korrosion und Verschmutzung erhöht sich in relativ kurzer Zeit der Kontaktwiderstand der einzelnen Sicherheitskontakte, was bei Reihenschaltung vieler Kontakte einen derart hohen Spannungsabfall bewirkt, dass das Sicherheitskreis-System den Aufzug auch bei korrekt geschlossenen Türen abschaltet. Ausserdem ist die Suche nach einem einzelnen defekten Sicherheitskontakt oder nach einer nicht korrekt geschlossenen Schachttüre in einem Gebäude mit vielen Stockwerken äusserst zeitraubend.
    Zusätzliche Probleme mit der Überwachung der Schachttüren haben sich in den letzten Jahren durch Personen ergeben, die in unerlaubter Weise in den Aufzugsschacht eindringen, sei es um das risikoreiche "Aufzug-Surfen" zu betreiben oder um die Aufzugskabine zwischen zwei Stockwerken zu blockieren und die Aufzugspassagiere zu bedrohen oder zu berauben.
  • Aus US 5,644,111 ist ein Schachttüren-Überwachungssystem für eine herkömmliche Aufzugsanlage bekannt, das den oben beschriebenen Problemen entgegenwirken soll. Bei diesem Schachttüren-Überwachungssystem ist auf jedem Stockwerk an der der Schachttüre gegenüberliegenden Schachtwand ein berührungsfrei wirkender Sensor in Form eines fotoelektrischen Detektors mit Sender und Empfänger installiert. Dessen Lichtstrahl ist auf den Schliesskantenbereich des geschlossenen Schachttürflügels gerichtet und wird vom Schachttürflügel reflektiert, sofern der Schachttürflügel vollständig geschlossen ist und sich nicht die Aufzugskabine zwischen Sensor und Schachttüre befindet. Ist der Schachttürflügel nicht vollständig geschlossen und die Aufzugskabine nicht im Sensorbereich, so tritt der Lichtstrahl in den Aufzugsvorraum aus, von wo er nicht mehr in genügender Stärke reflektiert wird, so dass der Empfänger des fotoelektrischen Detektors diesen Zustand registrieren kann. Eine entsprechende Information wird an die Aufzugssteuerung weiterleitet, die den Aufzug stillsetzt und geeignete Alarmsignale (Sirene, Lichtblitze auf Stockwerk, etc.) auslöst. Befindet sich die Aufzugskabine auf dem Stockwerk mit der nicht geschlossenen Schachttüre, so wird der Lichtstrahl des Sensors von der rückseitigen Kabinenwand reflektiert, so dass der Sensor zu Recht keinen unzulässigen Zustand detektiert.
  • Ein solches Schachttüren-Überwachungssystem löst zwar einige der vorstehend beschriebenen Probleme, weist jedoch gewisse Mängel auf.
  • Das Problem mit der Störanfälligkeit des Sicherheitskreises ist mit der offenbarten Lösung nicht behoben, da ein solcher offensichtlich unverändert existiert und zusätzlich zu den fotoelektrischen Detektoren überwacht, ob die Schachttüren geschlossen und verriegelt sind. Ausserdem könnte die sichere Funktion der fotoelektrischen Detektoren dadurch beeinträchtigt werden, dass eine vor dem Türspalt einer nicht vollständig geschlossenen Schachttüre stehende Person oder ein Gegenstand den in den Aufzugsvorraum austretenden Lichtstrahl reflektieren und somit das Überwachungssystem unwirksam machen. Auch eine starke Lichtquelle im Aufzugsvorraum könnte bei nicht vollständig geschlossener Schachttüre die sichere Funktion des Sensors beeinträchtigen. Weitere Nachteile ergeben sich daraus, dass auf jedem Stockwerk ein berührungsfreier Sensor vorhanden sein muss. Bei Gebäuden mit einer grossen Anzahl von Stockwerken wird durch die entsprechend grosse Anzahl von Sensoren zwangsläufig eine erhöhte Störungsanfälligkeit bewirkt, und der Aufwand für die periodische Überprüfung der Sensoren wird beträchtlich. Zudem fallen hohe Kosten für die Beschaffung und die Installation dieser Vielzahl von Sensoren an.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Überwachung von Schachttüren einer Aufzugsanlage zu schaffen, mit dem die genannten Nachteile vermieden werden können, das heißt, bei dem insbesondere ein Sicherheitskreis mit einer Vielzahl von hintereinandergeschalteten Schachttüren-Sicherheitskontakten vermieden wird, bei dem die Anzahl erforderlicher Überwachungssensoren reduziert ist, und dessen Wirksamkeit nicht durch vor der Schachttüre anwesende Personen oder Gegenstände oder durch die Lichtverhältnisse im Aufzugsvorraum beeinflusst werden kann.
  • Erfindungsgemäss wird die Aufgabe durch die im Patentanspruch 1 angegebenen Massnahmen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung gehen aus den abhängigen Ansprüchen 2 bis 10 hervor.
  • Die Erfindung beruht demnach auf dem Gedanken, die Probleme, die im Zusammenhang mit der bisher üblichen Vielzahl von Sensoren und/oder Kontakten für die Überwachung von Schachttüren bekannt sind, durch ein Verfahren zu beheben, bei dem während der Detektionsphasen durch einen Sender eines Schachttürüberwachungssensors mindestens ein sich über mehrere Stockwerke erstreckender Strahl in Form von gebündelten elektromagnetischen Wellen emittiert wird, der von einem Empfänger erfasst wird, und der durch einen nicht vollständig geschlossenen Schachttürflügel und/oder durch einen sich nicht in Verriegelungsstellung befindenden Schachttürriegel derart beeinflusst wird, dass von einem Empfänger des Schachttürüberwachungssensors erkannt wird, dass eine Schachttüre nicht vollständig geschlossen und/oder nicht verriegelt ist, wobei diese Information vom Schachttürüberwachungssensor an die Aufzugssteuerung signalisiert wird.
  • Als Detektionsphasen sind diejenigen Zeitabschnitte bezeichnet, in denen bei programmgemässem Betriebsablauf alle Schachttüren geschlossen und verriegelt sein müssen.
  • Die Überwachung des Verriegelungszustands der Schachttürriegel erfolgt vorzugsweise dadurch, dass der Strahl durch den Schachttürriegeln zugeordnete Blenden unterbrochen oder reflektiert wird, die in den Strahlenweg hineinragen, wenn der jeweilige Schachttürriegel sich nicht in seiner Verriegelungsstellung befindet.
  • Die durch die Erfindung erreichten Vorteile sind im Wesentlichen darin zu sehen, dass mit einem einzigen Schachttürüberwachungssensor die Geschlossenstellung und der Verriegelungszustand einer grossen Zahl von Schachttüren berührungslos überwacht werden kann. Dadurch werden eine wesentliche Ursache für Betriebsstörungen beseitigt und gleichzeitig die Kosten für die Beschaffung, die Installation und den späteren Unterhalt einer grossen Zahl von Überwachungssensoren und/oder Überwachungskontakten stark reduziert. Ausserdem ist bei diesem Verfahren der Strahl des Schachttürüberwachungssensors in keiner Situation durch vor der Schachttüre stehende Personen oder Gegenstände oder durch die Lichtverhältnisse im Aufzugsvorraum beeinflussbar.
  • Gemäss einer zweckmässigen Ausgestaltung des erfindungsgemässen Verfahrens wird durch die Aufzugssteuerung eine sich in Fahrt befindliche Aufzugskabine gestoppt, und/oder es werden optische und/oder akustische Warnsignale auf mindestens einem der Stockwerke aktiviert, wenn der Schachttürüberwachungssensor einen nicht vollständig geschlossenen Schachttürflügel und/oder einen sich nicht in Verriegelungsstellung befindenden Schachttürriegel während eines Betriebszustands signalisiert, in welchem alle Schachttüren vollständig geschlossen und verriegelt sein müssen. Durch ein Stoppen der Aufzugskabine wird verhindert, dass im Bereich einer infolge Fehlfunktion oder durch unbefugtes Öffnen unverschlossenen Schachttüre eine Person durch die fahrende Aufzugskabine verletzt wird. Mit Warnsignalen wie Blitzlicht und/oder Sirene sollen Passagiere daran gehindert werden, sich einer unverschlossenen oder einer unverriegelten Schachttüre zu nähern, um die Gefahr eines Sturzes in den Aufzugsschacht bannen.
  • Als Strahl zum Abtasten der Geschlossenstellung der Schachttürflügel und der Verriegelungsstellung der Schachttürriegel eignet sich dabei jede Art von elektromagnetischen Wellen, mit denen ein über die erforderliche Länge ausreichend bündelbarer Strahl erzeugt werden kann, der durch mit den Schachttürflügeln und/oder mit den Schachttürriegeln in Verbindung stehenden mechanische Komponenten so beeinflusst werden kann, dass ein Empfänger diese Beeinflussung detektieren kann. Von einer konkreten Anwendung ausgeschlossen sind selbstverständlich elektromagnetische Wellen, die eine Gefahr für Lebewesen bilden oder Materialien zerstören können.
  • Vorzugsweise kommen als Strahl für den Schachttürüberwachungssensor Laserlichtstrahlen oder - für geringere Strahllängen - Infrarotlichtschranken oder Infrarotlichttaster in Betracht. Laserlichtstrahlen sind dank der Kohärenz, d. h. der Gleichphasigkeit der den Lichtstrahl bildenden elektromagnetischen Wellen, auch bei grossen Strahllängen sehr gut bündelbar, d. h. die Zunahme des Strahlquerschnitt-Durchmessers mit zunehmender Strahllänge ist sehr gering. Für Gebäude mit wenigen Stockwerken, d. h. für Schachttürüberwachungssensoren mit relativ kurzer Strahllänge, sind, um Kosten zu sparen, auch Strahlen anwendbar, die durch inkohärentes Infrarotlicht gebildet werden.
  • Bei Aufzügen mit einer grossen Anzahl von Stockwerken und demzufolge mit grossen Schachthöhen, kann bei allen im Folgenden beschriebenen Verfahrensvarianten die zur Überwachung aller Schachttüren erforderliche Überwachungslänge in mehrere Abschnitte aufgeteilt werden, wobei jeder Abschnitt von mindestens einem durch einen separaten Schachttürüberwachungssensor mit Sender und Empfänger erzeugten Strahl überwacht wird.
  • Zweckmässigerweise werden Schachttürüberwachungssensoren angewendet, die Lichtstrahlen in den Wellenlängenbereichen von Ultraviolett-Licht, von sichtbarem Licht oder von Infrarot-Licht emittieren. Solche Sensoren sind handelsüblich erhältlich und haben den Vorteil, dass der Strahlverlauf von Auge sichtbar oder mit einfachen Sensoren überprüfbar ist.
  • Gemäss einer besonders einfachen Ausführung des erfindungsgemässen Verfahrens wird der Strahl von einem Sender emittiert, der vorzugsweise im Bereich des einen Schacht-Endes (z. B. im Schachtkopf) angeordnet ist und von einem Empfänger empfangen und ausgewertet, der sich vorzugsweise im Bereich des anderen Schacht-Endes (z. B. in der Schachtgrube) befindet. Eine solche, im Folgenden als Sender/Empfänger-Prinzip bezeichnete Anordnung weist die kürzestmögliche Länge des Strahlwegs auf, was die Anwendung von einfacheren und preisgünstigeren Strahlsystemen erlaubt, kein aufwändiges Ausrichten einer Reflexionsfläche erfordert und die Empfindlichkeit bezüglich Verschmutzung minimiert. Wie vorstehend bereits erwähnt, kann die erforderliche Überwachungslänge auch durch Hintereinanderanordnung mehrerer Abschnitte mit je einem Sender/Empfänger-System erreicht werden.
  • Nach einer weiteren Ausgestaltung der Erfindung wird der Strahl von einem vorzugsweise im Bereich des einen Schacht-Endes angebrachten Sender in Richtung auf eine vorzugsweise im Bereich des. gegenüberliegenden Schacht-Endes angebrachten Reflexionsfläche emittiert, von wo der Strahl zu einem im Bereich des Senders vorhandenen Empfänger reflektiert wird, wobei vom Empfänger detektiert wird, ob der Strahl den Empfänger erreicht oder infolge eines nicht vollständig geschlossenen Schachttürflügels oder eines sich nicht in Verriegelungsstellung befindenden Schachttürriegels unterbrochen ist. Vorteilhafterweise werden bei diesem, im Folgenden als Reflexionsprinzip bezeichneten Verfahren Sender und Empfänger in einem einzigen Gerät integriert, was die Herstellkosten für den Schachttürüberwachungssensor reduziert und die Installation im Schacht wesentlich vereinfacht. Auch bei dieser Verfahrensvariante kann die erforderliche Überwachungslänge durch Hintereinanderanordnung mehrerer Überwachungsabschnitte mit je einem Schachttürüberwachungssensor nach dem Reflexionsprinzip erreicht werden.
  • Eine besonders vorteilhafte Weiterbildung des erfindungsgemässen Verfahrens besteht darin, dass der Schachttürüberwachungssensor als Distanzmessgerät ausgebildet ist, beispielsweise in Form eines Laser-Distanzmessgeräts. Dabei wird der Strahl mindestens während der Detektionsphasen von einem vorzugsweise im Bereich des einen Schacht-Endes angebrachten Sender in Richtung auf eine vorzugsweise im Bereich des gegenüberliegenden Schacht-Endes angebrachten Haupt-Reflexionsfläche emittiert, so dass der Strahl von dieser Haupt-Reflexionsfläche oder von einer Reflexionsfläche, die durch eine mit dem zugehörigen Schachttürflügel oder dem Schachttürriegel in Verbindung stehenden mechanischen Komponente gebildet wird, und die im Falle eines nicht vollständig geschlossenen Schachttürflügels und/oder eines sich nicht in Verriegelungsstellung befindenden Schachttürriegels in den Strahl hineinragt, zu einem im Bereich des Senders vorhandenen Empfänger reflektiert wird. Sender und der Empfänger des Strahls werden so ausgebildet, dass die vom Strahl auf seinem Weg vom Sender über eine der Reflexionsflächen zurück zum Empfänger zurückgelegte Distanz ermittelt werden kann. Diese Ausführung des Verfahrens hat den Vorteil, dass nicht nur festgestellt werden kann, ob einer der Schachttürflügel nicht vollständig geschlossen und/oder einer der Schachttürriegel sich nicht in Verriegelungsstellung befindet, sondern dass anhand der gemessenen Distanz auch ermittelt werden kann, wo, d. h. auf welchem Stockwerk, sich die Störungsquelle befindet. Die Aufteilung der erforderlichen Überwachungslänge in mehrere Abschnitte ist auch bei dieser Verfahrensvariante möglich.
  • Eine besonders zweckmässige Ausgestaltung der Erfindung besteht darin, dass die während der Detektionsphase gemessene Distanz zu einer momentan wirkenden Reflexionsfläche und/oder eine daraus ermittelte Identifikation des Stockwerks gespeichert und/oder angezeigt werden können. Aus den Speicherdaten oder der Anzeige kann ein Wartungsfachmann sofort erkennen, auf welchem Stockwerk er einen nicht vollständig geschlossenen Schachttürflügel oder einen sich nicht in Verriegelungsstellung befindenden Schachttürriegel zu suchen hat.
  • Mit Vorteil erfolgt die Distanzmessung nach einer der folgenden, bei Verwendung elektromagnetischer Wellen anwendbaren, Distanzmessmethoden:
    • Messung der Laufzeit einzelner Impulse der den Strahl bildenden elektromagnetischen Welle. Dieses als "Time of Flight Measurement (TOF)" bekannte Verfahren beruht darauf, dass von einem Sender einzelne elektromagnetische Impulse emittiert werden, die - in der vorliegenden Anwendung nach Reflexion an einer reflektierenden Fläche - von einem Empfänger detektiert werden. Die "Flugzeit" der einzelnen Impulse wird mittels einer elektronischen Schaltung erfasst, woraus sich, unter Berücksichtigung der bekannten Ausbreitungsgeschwindigkeit von elektromagnetischen Wellen, die vom Impuls zurückgelegte Distanz errechnen lässt. Die Anwendung dieses Prinzips erfolgt vorzugsweise mit Laserlichtstrahlen oder - für geringere Distanzen - mit gebündeltem, inkohärentem Infrarotlicht. TOF-Lasergeräte eignen sich für den Einsatz in höchsten Gebäuden, liefern Messwerte mit hoher Auflösung, sind vielfach erprobt und handelsüblich erhältlich.
    • Messung der Phasenverschiebung (Phase Shift Measurement) zwischen Emission und Empfang einer den Strahl bildenden, kontinuierlich emittierten elektromagnetischen Welle. Vorzugsweise werden bei diesem Messprinzip kohärentes Licht abstrahlende Laser als Strahlerzeuger verwendet. Die Erfassung der vom Strahl zwischen Sender und Empfänger - hier via Reflexionsfläche - zurückgelegten Distanz beruht auf der Messung der Verschiebung der Phasenlage der abgestrahlten sinusförmigen Welle auf ihrem Weg vom Sender (Emitter) zum Empfänger (Detektor). Die Wellenlänge muss dabei mindestens der zu messenden Distanz entsprechen. Bei relativ grossen Distanzen wird dabei die Messauflösung gegebenenfalls zu gering. In diesem Fall werden mehrere Wellen unterschiedlicher Wellenlänge abgestrahlt, wobei diejenige mit der grossen Wellenlänge einen relativ ungenauen Absolutwert ergibt und diejenige(n) mit der(den) kleineren Wellenlänge(n) eine höhere Auflösung ermöglicht (ermöglichen).
  • Eine für gewisse Anordnungen der Schachttüren vorteilhafte Weiterbildung des erfindungsgemässen Verfahrens besteht darin, dass für die Schachttüren-Überwachung mehrere unabhängige Strahlen angewendet werden können.
    Beispielsweise können damit der Schachttürflügel und der zugehörige Schachttürriegel unabhängig voneinander überwacht werden, oder es können mehrere untereinander mechanisch gekoppelte Schachttürflügel und/oder die Schachttürriegel mehrflügeliger Schachttüren unabhängig voneinander überwacht werden. Damit ergibt sich einerseits eine sicherheitstechnisch wünschbare Redundanz der Schachttüren-Überwachung. Andererseits kann zwischen nicht geschlossenen Schachttürflügeln und nicht verriegelten Schachttürriegeln unterschieden werden, was ermöglicht, optimal auf unterschiedliche Störungsmeldungen zu reagieren. Beispielsweise kann bei Detektion eines nicht verriegelten Schachttürriegels bei noch geschlossener Schachttüre, anstelle einer sofortigen Notbremsung, eine Fahrt der Aufzugskabine bis zum nächsten Halt fortgesetzt werden, wodurch eine Einschliessung von Passagieren vermieden werden kann.
  • Eine zweckmässige Ausgestaltung der Erfindung kann darin bestehen, dass der von einem Sender emittierte Strahl auf seinem Weg zum Empfänger mindestens einmal mittels Spiegel(n) oder optischem Prisma (optischen Prismen) so umgelenkt wird, dass er mindestens zwei bezogen auf den Schachtquerschnitt versetzte vertikale Strahlwege durchläuft. Damit können beispielsweise folgende Vorteile erreicht werden:
    • Mit einem einzigen Strahl, d. h. mit einem einzigen Schachttürüberwachungssensor, können jeweils zwei oder mehrere seitlich versetzt angeordnete Schachttürflügel von mehreren übereinander angeordneten Schachttüren überwacht werden.
    • Mit einem einzigen Strahl können die Schachttürflügel mehrerer übereinander angeordneter Schachttüren und zu diesen im Schachtquerschnitt versetzt angeordnete, abhängig vom Verriegelungszustand zugehöriger Schachttürriegel positionierte Blenden überwacht werden.
    • Mit einem einzigen Strahl eines Schachttürüberwachungssensors mit Distanzmessung können mit mindestens einem vertikalen Abschnitt des Strahlenwegs zuerst alle Schachttürflügel und, mit mindestens einem durch Umlenkung erzeugten, seitlich versetzten, weiteren Abschnitt des Strahlenwegs, alle abhängig vom Verriegelungszustand zugehöriger Schachttürriegel positionierten Blenden überwacht werden. Wird der Strahl durch einen nicht vollständig geschlossenen Schachttürflügel und/oder durch eine der Blenden reflektiert, so kann aufgrund der detektierten Distanz zum Störobjekt erkannt werden, ob wenigstens alle Schachttürflügel geschlossen sind, was bereits beschriebene, differenzierte Steuerungsreaktionen auf die signalisierte Störung ermöglicht.
  • Eine interessante Erweiterung des erfindungsgemässen Verfahrens mit Strahlumlenkung besteht darin, dass der Strahl eines für Distanzmessung ausgerüsteten Schachttürüberwachungssensors, nachdem er die Schachttürüberwachungsbereiche durchlaufen hat, durch eine weitere Strahlumlenkungseinrichtung in vertikaler Richtung auf eine an der Aufzugskabine angebrachte Reflexionsfläche gelenkt wird, von wo aus der Strahl zum Empfänger des Schachttürüberwachungssensors reflektiert wird. Auf diese Weise kann zusätzlich eine kontinuierliche Information über die Position der Aufzugskabine innerhalb ihres Schachtwegs generiert werden, die beispielsweise in einer Vergleichsschaltung zur Erhöhung der Sicherheit gegenüber Fehlfunktionen einer Haupt-Kabinenpositionserfassung dienen kann.
  • Gemäss einer weiteren Ausgestaltung des erfindungsgemässen Verfahrens können - vorzugsweise durch die Aufzugssteuerung - ferngesteuerte, auf die Schachttüren wirkende Zusatzverriegelungen aktiviert werden, wenn der Schachttürüberwachungssensor einen nicht vollständig geschlossenen Schachttürflügel und/oder einen sich nicht in Verriegelungsstellung befindenden Schachttürriegel während eines Betriebszustands signalisiert, in welchem alle Schachttüren geschlossen sein sollten. Mit einer solchen Einrichtung kann die Sicherheit gegen Absturz einer Person und insbesondere gegen Eindringen einer unbefugten Person in den Aufzugsschacht wesentlich erhöht werden. Sobald eine der Schachttüren als nicht vollständig geschlossen detektiert wird, erfolgt eine Aktivierung der Zusatzverriegelungen, bevor die entriegelte Schachttüre soweit geöffnet ist, dass eine Person durchtreten kann.
  • Eine weitere, sicherheitstechnisch besonders interessante Ausgestaltung des Verfahrens kann bei Aufzugsanlagen erreicht werden, die mit einem Schachttürüberwachungssensor mit Distanzmessung ausgerüstet sind. Dabei können optische und/oder akustische Warnsignale und/oder fernsteuerbare, auf die Schachttürflügel wirkende Zusatzverriegelungen auf ausschliesslich demjenigen Stockwerk aktiviert werden, bei dessen Schachttüre während eines Betriebszustands, in dem alle Schachttüren geschlossen und verriegelt sein sollten, ein nicht vollständig geschlossener Schachttürflügel und/oder ein sich nicht in Verriegelungsstellung befindender Schachttürriegel detektiert werden. Ein solches System hat den Vorteil, dass Alarmeinrichtungen nur auf dem betroffenen Stockwerk wahrgenommen werden, so dass Personen auf den anderen Stockwerken nicht unnötig beunruhigt werden. Zusatzverriegelungen für die Schachttürflügel wirken ebenfalls nur auf dem betroffenen Stockwerk, so dass sich bei eventuell zwischen zwei Stockwerken stillgesetzter Aufzugskabine das Wartungspersonal problemlos über eine andere, nicht zusätzlich verriegelte Schachttüre Zugang zum Aufzugsschacht verschaffen kann.
  • Ausführungsbeispiele der Erfindung werden anhand der beigefügten Zeichnungen erläutert.
  • Es zeigen:
  • Fig. 1
    einen Vertikalschnitt durch einen Aufzugschacht mit einer Aufzugskabine und mehreren Schachttüren, wobei die Schachttüren mittels eines von einem Sender zu einem Empfänger emittierten Strahls überwacht werden,
    Fig. 2
    eine vom Schachtinneren her gesehene zweiflügelige Schachttüre mit zwei Verriegelungseinrichtungen und einem Überwachungsstrahl,
    Fig. 3
    einen Vertikalschnitt durch einen Aufzugschacht mit einer Aufzugskabine und mehreren Schachttüren, wobei die Schachttüren mittels eines Strahls überwacht werden, der von einem Sender zu einer Reflexionsfläche emittiert und von dieser zu einem Empfänger reflektiert wird,
    Fig. 4
    eine vom Schachtinneren her gesehene zweiflügelige Schachttüre mit zwei Verriegelungseinrichtungen und zwei Überwachungsstrahlen.
    Fig. 5, 6, 7
    Seitenansichten der in Fig. 2 und Fig. 4 dargestellten Schachttüren mit der Lage der Überwachungsstrahlen
    Fig. 8
    eine Ansicht vom Schachtinneren auf eine Gruppe von Schachttüren, deren Geschlossenzustand und deren Verriegelung mittels eines umgelenkten Strahls überwacht werden
    Fig. 9
    eine Seitenansicht auf die Gruppe von Schachttüren gemäss Fig. 8
  • In Fig. 1 ist schematisch eine Aufzugsanlage 1 m einem Aufzugsschacht 2 und einer Aufzugskabine 3 dargestellt. Die Aufzugskabine ist mit einer Kabinentüre 4 ausgerüstet, die zwei Kabinentürflügel 5 aufweist, welche zum Öffnen und Schliessen durch eine an der Aufzugskabine 3 angebrachte Türantriebseinheit 6 horizontal verschoben werden. Der Aufzugsschacht 2 umfasst drei Schachttüren 7, die je zwei Schachttürflügel 8 aufweisen. Das Öffnen und Schliessen einer Schachttüre 7 erfolgt durch Horizontalbewegung ihrer Schachttürflügel 8, wenn sich die Aufzugskabine auf dem korrespondierenden Stockwerk befindet, wobei die Antriebskraft für diese Horizontalbewegung mittels eines Türbetätigungsmechanismus von den Kabinentürflügeln 5 auf die Schachttürflügel 8 übertragen wird.
    Im geschlossenen Zustand sind die Schachttürflügel 8 mittels eines - hier nicht gezeigten - Schachttürriegels mit einem feststehenden Teil der Schachttüren verriegelt.
    Mit 10.1 ist ein im Bereich der Schachtgrube nahe bei der die Schachttüren enthaltenden Schachtwand installierter Sender bezeichnet. Dieser emittiert - mindestens während einer Detektionsphase - einen Strahl 10.3 in Form von gebündelten elektromagnetischen Wellen, vorzugsweise einen Laserlichtstrahl. Der vom Sender 10.1 emittierte Strahl 10.3 ist auf einen im Bereich des Schachtkopfs fixierten Empfänger 10.2 gerichtet, der den Strahl 10.3 empfängt, sofern dieser nicht infolge eines nicht vollständig geschlossenen Schachttürflügels 8 und/oder eines sich nicht in Verriegelungsstellung befindenden Schachttürriegels unterbrochen wird. Sender 10.1 und Empfänger 10.2 bilden zusammen einen Schachttürüberwachungssensor 10. Die hier beschriebene Anordnung ist im Folgenden als Sender/Empfänger-Prinzip bezeichnet. Wird der Strahl 10.3 während der Detektionsphase unterbrochen, so signalisiert der Schachttürüberwachungssensor der Aufzugssteuerung, dass einer der Schachttürflügel 8 nicht vollständig geschlossen ist oder einer der Schachttürriegel sich nicht in Verriegelungsstellung befindet. Als Detektionsphasen sind diejenigen Zeitabschnitte bezeichnet, in denen bei programmgemässem Betriebsablauf alle Schachttüren geschlossen und verriegelt sein müssen.
  • In der dargestellten Version erstreckt sich der Strahl 10.3 in einer vertikalen, zwischen den Schachttüren 7 und der Kabinentüre 4 liegenden Ebene, die durch den Spalt zwischen den Schachttürschwellen 14 und der Kabinentürschwelle 15 definiert ist. Da sich der Strahl bei dieser Ausführung des Verfahrens in vertikaler Richtung zwischen den Schachttüren und der Kabinentüre erstreckt, ist es von Vorteil, wenn die Strahlenemission nur während der Detektionsphase erfolgt, damit Passagiere nicht durch den - eventuell sichtbaren - Strahl irritiert werden. Beeinflusst wird der Strahl 10.3 durch jeder Schachttüre 7 zugeordnete Blenden 12, die so mit den Schachttürflügeln und den Schachttürriegeln in Verbindung stehen, dass sie bei nicht vollständig geschlossener Schachttüre 7 und/oder bei einem sich nicht in Verriegelungsstellung befindendem Schachttürriegel den Strahl 10.3 unterbrechen, wie dies in Fig. 2 im Detail dargestellt ist.
  • Fig. 2 stellt (vergrössert und schematisch) die in Fig. 1 gekennzeichnete Ansicht A des oberen Bereichs einer der Schachttüren 7 in Fig. 1 dar. Diese Schachttüre weist zwei Schachttürflügel 8 auf, die an je einem Türflügelträger 18 befestigt sind. Diese Türflügelträger 18 sind mittels Führungsrollen 19 an einer Führungsschiene 20 horizontal verschiebbar geführt, wobei die Führungsschiene 20 an einem mit dem Türrahmen verbundenen Türsupport 21 befestigt ist.
    Mit 10.3 ist der im Zusammenhang mit Fig. 1 beschriebene Strahl des Schachttürüberwachungssensors 10 bezeichnet. An jedem der beiden Türflügelträger 18 ist jeweils ein Schachttürriegel 22 gelenkig montiert.
    Auf der rechten Seite von Fig. 2 ist dargestellt, wie der Schachttürriegel 22 den Türflügelträger 18 mit einem unbeweglich mit dem Türsupport 21 verbundenen Verriegelungsanschlag 23 verriegelt, wenn der Schachttürflügel 8 vollständig geschlossen ist. Während des Öffnens und Schliessens des Schachttürflügels 8 wird der Schachttürriegel 22 durch den von der Aufzugskabine aus wirkenden Türbetätigungsmechanismus auf eine hier nicht dargestellte Weise in Entriegelungsstellung gehalten. Sobald die Kabinen- und die Schachttüre geschlossen sind, wird diese Wirkung aufgehoben, und der Schachttürriegel 22 kippt infolge seines Schliessgewichts 22.1 in seine Verriegelungsstellung. Dabei wirkt der Verriegelungshaken 22.2 des Schachttürriegels so auf zwei auf dem unbeweglichen Verriegelungsanschlag montierte und eine der Blenden 12 tragende Lenkerhebel 24 ein, dass diese aus ihrer - links dargestellten - Grundstellung nach rechts schwenken, was eine Verschiebung der Blende 12 nach rechts - und damit aus dem Strahlweg des Strahls 10.3 heraus - bewirkt.
  • Auf der linken Seite von Fig. 2 ist ein Schachttürflügel 8 dargestellt, der nicht vollständig geschlossen ist (Türspalt 25), und dessen Schachttürriegel 22 sich deswegen - eventuell aus einem anderen Grund - sich nicht in seiner Verriegelungsstellung befindet. Da in dieser Situation der Verriegelungshaken 22.2 des Schachttürriegels 22 nicht auf die die Blende 12 tragenden Lenkerhebel 24 einwirkt, bleibt die Blende in ihrer sich ohne Fremdeinwirkung von selbst aus der Lenkerhebelanordnung ergebenden Grundstellung, in welcher sie den Strahlweg des Strahls 10.3 unterbricht.
  • Das vorstehend beschriebene Verfahren ermöglicht also die Überwachung des Geschlossenzustands und des Verriegelungszustands einer Vielzahl von zentrisch oder seitlich schliessenden ein-, zwei- oder mehrflügeligen Schachttüren mit Hilfe eines einzigen Strahls.
    Eine Seitenansicht D der beschriebenen Schachttüranordnung gemäss Fig. 2, aus der auch die Lage des Strahls 10.3 hervorgeht, ist in Fig. 5 dargestellt.
  • Fig. 3 zeigt wiederum eine Aufzugsanlage 1 mit einem Schachttürüberwachungssensor 10, der die Stellung der Schachttürflügel 8 und ihrer Schachttürriegel mit Hilfe von mindestens einem von bündelbaren elektromagnetischen Wellen gebildeten Strahl 10.3 - vorzugsweise einem Laserlichtstrahl - überwacht. Bei diesem Schachttürüberwachungssensor sind jedoch Sender 10.1 und Empfänger 10.2 im selben Schachtendbereich, vorzugsweise im selben Gehäuse, angeordnet, und der vom Sender 10.1 emittierte Strahl 10.3 ist auf eine im Bereich des gegenüberliegenden Schacht-Endes angebrachte Reflexionsfläche 11 gerichtet, die den Strahl 10.3 zum Sender 10.1 reflektiert, sofern der Strahl nicht infolge eines nicht vollständig geschlossenen Schachttürflügels 8 und/oder eines sich nicht in Verriegelungsstellung befindenden Schachttürriegels unterbrochen wird.
  • Die vorstehend beschriebene Anordnung von Sender, Empfänger und Reflexionsfläche wird im Folgenden als Reflexionsprinzip bezeichnet. Emittierter und reflektierter Strahl liegen dabei eng beieinander, so dass die Sensoreigenschaften von Schachttürüberwachungssensoren nach dem Reflexionsprinzip weitgehend denjenigen von Schachttürüberwachungssensoren nach dem Sender/Empfänger-Prinzip entsprechen. In den anschliessenden Darstellungen wird daher nicht mehr zwischen den beiden Prinzipien unterschieden und jeweils nur ein Strahl gezeichnet.
  • In der in Bild 3 gezeigten Anordnungsversion des Schachttürüberwachungssensors 10 erstreckt sich mindestens ein Laserlichtstrahl 10.3 so entlang der die Schachttüren 7 enthaltenden Schachtwand, dass er durch einen nicht vollständig geschlossenen Schachttürflügel 8 und/oder durch eine der Blenden 17 unterbrochen wird, welche in den Strahl 10.3 hineinragen, wenn sie nicht durch den jeweils zugehörigen, sich in Verriegelungsstellung befindenden Schachttürriegel daran gehindert werden. Details zur Anordnung dieser - hier nur schematisch dargestellten - Blenden 17 sind in der folgenden Fig. 4 erläutert.
  • Fig. 4 zeigt (vergrössert) die in Fig. 3 mit B gekennzeichnete Ansicht des oberen Bereichs einer der in Fig. 3 dargestellten Schachttüren 7. Diese Schachttüre weist ebenfalls zwei Schachttürflügel 8 auf, die an je einem Türflügelträger 18 befestigt sind. Diese Türflügelträger 18 sind mittels Führungsrollen 19 an einer Führungsschiene 20 horizontal verschiebbar geführt, wobei die Führungsschiene 20 an einem mit dem Türrahmen verbundenen Türsupport 21 befestigt ist.
    Links und rechts der beiden Schachttürflügel 8 ist je ein Strahl 10.3 - vorzugsweise ein Laserlichtstrahl - erkennbar, wie im Zusammenhang mit Fig. 1 und Fig. 3 bereits erwähnt. Die beiden Strahlen werden von je einem Schachttürüberwachungssensor 10 emittiert und detektiert, die zur Überwachung von jeweils der linksseitigen oder der rechtsseitigen Reihe von Schachttürflügeln im Aufzugsschacht installiert sind. Es sind das Einwegstrahlprinzip, bei dem Sender und Empfänger voneinander entfernt angeordnet sind, wie auch das Reflexionsprinzip, wie im Zusammenhang mit Fig. 3 beschrieben, anwendbar.
    Auch hier ist an jedem der beiden Türflügelträger 18 jeweils ein Schachttürriegel 22 gelenkig montiert.
    Auf der rechten Seite von Fig. 4 ist erkennbar, wie der Schachttürriegel 22 den Türflügelträger 18 mit einem unbeweglich mit dem Türsupport 21 verbundenen Verriegelungsanschlag 23 verriegelt, wenn der Schachttürflügel 8 vollständig geschlossen ist. Während des Öffnens und Schliessens des Schachttürflügels 8 wird der Schachttürriegel 22 durch den von der Aufzugskabine aus wirkenden Türbetätigungsmechanismus auf eine hier nicht dargestellte Weise in Entriegelungsstellung gehalten. Sobald die Kabinen- und die Schachttüre geschlossen sind, wird diese Wirkung aufgehoben, und der Schachttürriegel kippt infolge seines Schliessgewichts 22.1 in seine - hier auf der rechten Seite gezeigten - Verriegelungsstellung. Dabei wirkt der Verriegelungshaken 22.2 des Schachttürriegels so auf zwei auf dem unbeweglichen Verriegelungsanschlag 23 montierte und eine der Blenden 17 tragende Lenkerhebel 24 ein, dass diese aus ihrer - auf der linken Seite erkennbaren - Grundstellung nach links schwenken, was eine Verschiebung der Blende 17 nach links - und damit aus dem Strahlweg des Strahls 10.3 heraus - bewirkt.
  • Die linke Seite von Fig. 4 zeigt wiederum einen Schachttürflügel 8, der nicht vollständig geschlossen ist (Türspalt 25), und dessen Schachttürriegel 22 sich deswegen - eventuell aus einem anderen Grund - sich nicht in seiner Verriegelungsstellung befindet. Da in dieser Situation der Verriegelungshaken 22.2 des Schachttürriegels 22 nicht auf die die Blende 17 tragenden Lenkerhebel 24 einwirkt, bleibt die Blende 17 in ihrer sich ohne Fremdeinwirkung von selbst aus der Lenkerhebelanordnung ergebenden Grundstellung, in welcher sie den Strahlweg des Strahls 10.3 unterbricht. Mit einer geeignet angebrachten Feder könnte das selbsttätige Einnehmen der Blenden-Grundstellung, in welcher der Strahl 10.3 unterbrochen wird, noch gesichert werden. Eine Seitenansicht E der vorstehend beschriebenen Schachttüranordnung gemäss Fig. 4, aus der auch die Lage der Strahlen 10.3 hervorgeht, ist in Fig. 6 dargestellt.
  • Das vorstehend im Zusammenhang mit Fig. 4 beschriebene Verfahren hat den Vorteil, dass sich kein Strahl wie in der Anordnung gemäss Fig. 1 und 2 innerhalb des relativ schmalen Spalts zwischen den Schachttürschwellen und der Kabinentürschwelle fortpflanzen muss, sondern dass dafür der Raum seitlich neben den Schachttüren genutzt wird. Die Emission des Strahls muss hier während der Türöffnungsphase nicht unterbrochen werden. Ausserdem bringt dieses Verfahren eine erhöhte Sicherheit in der Schachttürüberwachung, da einerseits ein nicht vollständig geschlossener Schachttürflügel den Strahl direkt unterbricht und da sich andererseits aus der separaten Überwachung der linksseitigen und der rechtsseitigen Schachttürflügel eine gewisse Sicherheits-Redundanz ergibt, selbst wenn deren Bewegungen nicht in jedem Fall mechanisch synchronisiert sind.
  • Fig. 5 zeigt eine Seitenansicht der Schachttüranordnung gemäss Fig. 2 (Ansicht D) bei der die Geschlossenstellung der Schachttürflügel 8 wie auch der Verriegelungszustand der Schachttürriegel 22 mit einem einzigen Strahl 10.3 überwacht wird, wobei der vertikale Strahl 10.3 etwa im Zentrum der Türöffnungen und im Spalt zwischen den Schachttürschwellen und der Kabinentürschwelle verläuft.
    Zu erkennen sind in Fig. 5 die folgenden Komponenten:
    • die die Schachttüren 7 enthaltende Schachtwand 30 mit der Türöffnung 31,
    • der an der Schachtwand fixierte Türsupport 21 mit der an ihm befestigten Führungsschiene 20
    • der den Schachttürflügel 8 tragende Türflügelträger 18, der mittels der an ihm angebrachten Führungsrollen 19 an der Führungsschiene 20 geführt ist
    • der am Türflügelträger 18 gelenkig gelagerte Schachttürriegel 22, der den Türflügelträger 18 mit dem Verriegelungsanschlag 23 verriegelt
    • die durch den Schachttürriegel 22 bewegten Lenkerhebel 24, die, in Abhängigkeit von der Stellung des Schachttürriegels 22, die Blende 12 in den Strahlweg des zentralen Strahls 10.3 hinein oder aus diesem heraus bewegen.
  • Fig. 6 zeigt eine Seitenansicht der Schachttüranordnung gemäss Fig. 4 (Ansicht E) bei der die Geschlossenstellung eines jeden Schachttürflügels 8 gemeinsam mit dem Verriegelungszustand seines Schachttürriegels 22 durch einen Strahl 10.3 überwacht wird. Dabei verläuft der vertikale Strahl 10.3 so nahe hinter der der Schliesskante gegenüberliegenden Schmalseite des geschlossenen Schachttürflügels 8, dass er bei nicht vollständig geschlossenem Schachttürflügel 8 durch dessen Unterkante 8.1 oder dessen Oberkante 8.2 und/oder durch die nicht vom Schachttürriegel 22 zurückgezogene Blende 17 unterbrochen wird. Die in Fig. 6 dargestellten Komponenten der Schachttüre entsprechen, mit Ausnahme der anders angeordneten Blende 17, den im Zusammenhang mit Fig. 4 und 5 erläuterten Komponenten.
  • Fig. 7 zeigt die Seitenansicht einer Variante der Schachttürüberwachung mit verbesserter Funktionalität. Eine solche wird dadurch erreicht, dass die Geschlossenstellung der im Aufzugsschacht übereinander angeordneten Schachttürflügel 8 und der Verriegelungszustand der den Schachttürflügeln 8 zugeordneten Schachttürriegel 22 separat überwacht werden. Realisiert werden kann eine solche Überwachung beispielsweise dadurch, dass jeder der beiden in Fig. 4 gezeigten Einzel-Strahlen 10.3 durch zwei parallele, in Richtung der Zeichnungsebene gegeneinander versetzte Strahlen 10.3 (Fig. 7) ersetzt wird, von denen der eine die Unterkante 8.1 oder die Oberkante 8.2 des zugeordneten Schachttürflügels 8 und der andere die etwas seitlich des Schachttürflügels 8 angeordnete Blende 17 (entsprechend der Blende 17 in Fig. 4) überwacht. Die beiden parallelen Strahlen 10.3 werden dabei durch zwei separate Schachttürüberwachungssensoren erzeugt, wobei das Sender/Empfänger-Prinzip oder das Reflexionsprinzip zur Anwendung kommen können.
  • Eine andere Realisierungsmöglichkeit der genannten separaten Überwachung ergibt sich, indem der Verriegelungszustand der Schachttürriegel 22, wie in Fig. 2 dargestellt, durch einen beide Blenden 12 erfassenden zentralen Strahl 10.3 und der Geschlossenzustand der Schachttürflügel durch zwei entsprechend Fig. 4 angeordnete Strahlen 10.3 überwacht werden. Die in Fig. 7 gezeigte Seitenansicht ist auch für diese Realisierungsmöglichkeit gültig.
  • Die Vorteile der getrennten Überwachung von Geschlossenzustand und Verriegelungszustand sind darin zu sehen, dass sich daraus unterschiedliche Reaktionen auf einen detektierten Fehlerzustand ableiten lassen. Beispielsweise kann die fahrende Aufzugskabine beim Auftreten eines Verriegelungsfehlers noch bis zum nächsten Stockwerk weiterfahren, während bei Detektion einer offenen Schachttüre ein Notstopp generiert wird. Beispielsweise könnte aber auch, wenn zwei die Verriegelungen überwachende Strahlen und ein die Geschlossenstellung aller linksseitigen Schachttürflügel überwachender Strahl korrekte Zustände signalisieren, während für die rechtsseitigen Schachttürflügel ein nicht geschlossener Zustand gemeldet wird, darauf geschlossen werden, dass bei der als nicht geschlossen gemeldeten Schachttüre ein Detektionsfehler vorliegen muss, und dass die Fahrt bis zum Ziel-Stockwerk fortgesetzt werden kann. Für eine Vielzahl von unterschiedlichen Signal-Kombinationen sind jeweils angepasste Reaktionen programmierbar.
  • Besonders effiziente Reaktionen auf Fehlersignale lassen sich ableiten, wenn, wie im Folgenden beschrieben, zusätzlich die Lage der die Fehlersignale verursachenden Komponenten detektierbar ist. Aus den bisherigen Beschreibungen und den Fig. 1 bis 7 lässt sich mühelos erkennen, dass durch Verwendung von für Distanzmessung ausgebildeten Schachttürüberwachungssensoren die Distanz zwischen einem Schachttürüberwachungssensor und einem nicht vollständig geschlossenen Schachttürflügel oder einer einem sich nicht in Verriegelungsstellung befindlichen Schachttürriegel zugeordneten Blende detektierbar ist. Der vom Sender eines Schachttürüberwachungssensors emittierte Strahl wird dabei durch die Blenden und/oder die Unter- bzw. Oberkanten der Schachttürflügel nicht einfach unterbrochen, sondern zu einem Empfänger reflektiert. Blenden und Unter- bzw. Oberkanten sind zu diesem Zweck an den geeigneten Stellen mit Reflektoren ausgerüstet oder mit reflektierendem Material beschichtet. Dabei kann der Schachttürüberwachungssensor, beispielsweise aufgrund der Laufzeit einzelner Lichtimpulse oder der Phasenlage des beim Empfänger detektierten Laserlichts, die vom Strahl zurückgelegte Distanz ermitteln. Aus der gemessenen Distanz kann die Aufzugssteuerung das Stockwerk bestimmen, auf welchem ein Fehlerzustand existiert und diese Information zuhanden des Wartungspersonals speichern, an ein Wartungszentrum übermitteln, und/oder dazu nutzen, im Bereich der betroffenen Schachttüre ein optisches oder akustisches Warnsignal zu aktivieren. Im Falle eines an sich geschlossenen, jedoch nicht korrekt verriegelten Schachttürflügels ist es auch möglich, ein Programm zu starten, bei dem, nachdem alle Passagiere die Aufzugskabine verlassen haben, die Aufzugskabine im Kriechgang zum fehlerbehafteten Stockwerk gefahren wird, wo durch Öffnen und Schliessen von Kabinen- und Schachttüre versucht wird, den Verriegelungsfehler zu beheben.
  • Fig. 8 und Fig. 9 zeigen schematisch eine Gruppe von übereinander angeordneten Schachttüren 7, deren Geschlossenzustand und Verriegelungszustand mittels eines mehrfach umgelenkten Strahls 10.3 überwacht werden. Fig. 9 stellt dabei eine Ansicht F von rechts auf die genannte Gruppe von Schachttüren dar.
    Wie in Fig. 8 erkennbar, wird der Strahl 10.3 von einem unterhalb einer untersten Schachttüre der Gruppe angebrachten Sender 10.1 eines Schachttürüberwachungssensors 10 seitlich neben den linksseitigen Schachttürflügeln 8.3 vertikal nach oben emittiert. Nach dem Durchlaufen eines ersten Vertikalbschnitts 10.3.1 seines Strahlwegs wird er oberhalb der obersten Schachttüre der überwachten Gruppe durch eine erste Strahlumlenkeinrichtung 32.1 nach rechts zu einer zweiten Strahlumlenkeinrichtung 32.2 umgelenkt. Durch diese wird der Strahl erneut um 90° umgelenkt, so dass dieser seitlich neben den rechtsseitigen Schachttürflügeln 8.4 einen zweiten Vertikalabschnitt 10.3.2 in Abwärtsrichtung durchläuft und auf eine dritte Strahlumlenkeinrichtung 32.3 stösst. Diese lenkt den Strahl 10.3 um 180° um, wobei gleichzeitig eine Versetzung des Strahls um eine gewisse Distanz X in Richtung auf die Schachtwand zu erfolgt, wie in Fig. 9 erkennbar ist. Anschliessend läuft der Strahl in einem dritten Vertikalabschnitt 10.3.3 wieder nach oben zur Strahlumlenkeinrichtung 32.2, die ihn um 90° nach links (in Fig. 8) zur Strahlumlenkeinrichtung 32.1 ablenkt. Hier wird der Strahl ein letztes Mal um 90° abgelenkt, wonach er einen vierten Vertikalabschnitt 10.3.4 zurücklegt und schliesslich von einem Empfänger 10.2 des Schachttürüberwachungssensors 10 detektiert wird. Im Bereich seiner Vertikalabschnitte kann der Strahl durch nicht vollständig geschlossene Schachttürflügel oder durch Blenden 17, welche nicht durch ihren zugehörigen Schachttürriegel zurückgezogen sind, beeinflusst werden. Die linksseitigen Schachttürflügel 8.3 können den Vertikalabschnitt 10.3.1 und die rechtsseitigen Schachttürflügel 8.4 den Vertikalabschnitt 10.3.2 des Strahls 10.3 beeinflussen. Die linksseitigen Blenden 17.1 können den Vertikalabschnitt 10.3.4 und die rechtsseitigen Blenden 17.2 den Vertikalabschnitt 10.3.3 des Strahls 10.3 beeinflussen.
  • Als Strahlumlenkeinrichtung 32.1, 32.2, 32.3, 32.4 können Spiegel und/oder geeignete optische Prismen verwendet werden.
  • Wird zur Überwachung der Schachttüren ein Schachttürüberwachungssensor 10 mit Distanzmessung verwendet, so kann mit dem beschriebenen Verfahren mit dem zuerst die Schachttürflügel erfassenden Strahlverlauf im Störfall erkannt werden, ob einer der Schachttürflügel 8.3, 8.4 nicht vollständig geschlossen ist, oder ob nur einer der die Stellung der Blenden 17.1, 17.2 bestimmenden Schachttürriegel sich nicht in seiner Verriegelungsstellung befindet. Dank dieser Unterscheidung können auch bei dieser nur einem einzigen Strahl aufweisenden Schachttürüberwachungseinrichtung im Störfall die bereits erwähnten situationsangepassten Reaktionen ausgelöst werden.
  • Selbstverständlich lassen sich alle vorstehend beschriebenen Verfahren sinngemäss auch auf Schachttüren mit nur einem oder mit mehr als zwei Schachttürflügeln anwenden.
  • Die Art und Weise, wie die Einwirkung der Schachttürstellung und/oder der Schachttürriegelstellung auf die Strahlen realisiert wird, lässt sich beinahe unbegrenzt variieren.
    Beispielsweise kann die Schachttürriegelstellung direkt oder über Gelenke und Gestänge auf die Position von Blenden oder Reflexionsflächen in Form von Klappen, Schiebern, etc. übertragen werden, damit diese die sich in geeigneten Zonen in Nähe der Schachttüren erstreckenden Strahlen beeinflussen können.

Claims (13)

  1. Verfahren zur Überwachung von Schachttüren (7) einer Aufzugsanlage (1) mit einem Aufzugsschacht (2) und einer entlang einer Schachtwand (30) vertikal bewegbaren Aufzugskabine (3), wobei die Schachtwand (30) mehrere Schachttüren (7) mit je mindestens einem horizontal verschiebbaren Schachttürflügel (8) aufweist, wobei beim Halten der Aufzugskabine (3) auf einem Stockwerk mindestens ein Schachttürflügel (8) der jeweils der Aufzugskabine gegenüberliegenden Schachttüre (7) durch einen korrespondierenden Kabinentürflügel (5) geöffnet und geschlossen wird, wobei die Aufzugsanlage (1) eine Aufzugssteuerung umfasst, durch die die Bewegungen der Aufzugskabine (3), des Kabinentürflügels (5) und damit des jeweils korrespondierenden Schachttürflügels (8) gesteuert werden, und wobei eine Geschlossenstellung der Schachttürflügel (8) durch mindestens einen berührungslos wirkenden, elektromagnetische Wellen emittierenden Schachttürüberwachungssensor überwacht wird,
    dadurch gekennzeichnet,
    dass mindestens während gewissen Detektionsphasen von einem im Aufzugsschacht angebrachten Sender (10.1) des Schachttürüberwachungssensors (10) ein sich über mehrere Stockwerke frei im Raum erstreckender Strahl (10.3) in Form von elektromagnetischen Wellen emittiert wird, der von einem Empfänger (10.2) des Schachttürüberwachungssensors (10) detektiert wird, wobei der Strahl (10.3) so angeordnet ist, dass er, wenn einer der Schachttürflügel (8) nicht vollständig geschlossenen ist und/oder ein Schachttürriegel (22) sich nicht in Verriegelungsstellung befindet, derart beeinflusst wird, dass vom Empfänger (10.2) des Schachttürüberwachungssensors (10) erkannt wird, dass eine der Schachttüren (7) nicht vollständig geschlossen und/oder nicht verriegelt ist, wobei diese Information vom Schachttürüberwachungssensor (10) an die Aufzugssteuerung signalisiert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass durch die Aufzugssteuerung eine sich in Fahrt befindliche Aufzugskabine (3) gestoppt wird, und/oder dass optische und/oder akustische Warnsignale auf mindestens einem der Stockwerke aktiviert werden können, wenn der Schachttürüberwachungssensor (10) während eines Betriebszustands, in welchem alle Schachttüren (7) vollständig geschlossen und verriegelt sein sollten, einen nicht vollständig geschlossenen Schachttürflügel (8) und/oder einen sich nicht in Verriegelungsstellung befindenden Schachttürriegel (22) signalisiert.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Strahl (10.3) ein gebündelter Strahl aus inkohärenten Lichtwellen oder ein Laserlichtstrahl aus kohärenten Lichtwellen verwendet wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass für den emittierten Lichtstrahl Licht aus den Wellenlängenbereichen von Ultraviolett-Licht, von sichtbarem Licht oder von Infrarot-Licht verwendet wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass mindestens während der Detektionsphasen der Strahl (10.3) von einem Sender (10.1) in Richtung auf einen mehrere Stockwerkdistanzen von diesem entfernt angebrachten Empfänger (10.2) emittiert wird, und dass vom Empfänger (10.2) detektiert wird, ob der Strahl (10.3) den Empfänger (10.2) erreicht oder infolge eines nicht vollständig geschlossenen Schachttürflügels (8) oder eines sich nicht in Verriegelungsstellung befindenden Schachttürriegels (22) unterbrochen ist.
  6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass mindestens während der Detektionsphasen der Strahl (10.3) von einem Sender (10.1) in Richtung auf eine mehrere Stockwerkdistanzen von diesem entfernt angebrachte Reflexionsfläche (11) emittiert wird, die so ausgerichtet ist, dass ein ankommender Strahl (10.3) zu einem im Bereich des Senders (10.1) installierten Empfänger (10.2) reflektiert wird, wobei vom Empfänger (10.2) detektiert wird, ob der emittierte Strahl (10.3) den Empfänger (10.2) erreicht oder infolge eines nicht vollständig geschlossenen Schachttürflügels (8) oder eines sich nicht in Verriegelungsstellung befindenden Schachttürriegels (22) unterbrochen ist.
  7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,
    dass mindestens während der Detektionsphase der Strahl (10.3) von einem Sender (10.1) in Richtung auf eine mehrere Stockwerksdistanzen von diesem entfernt angebrachten Haupt-Reflexionsfläche (13) emittiert wird,
    dass der Strahl von dieser Haupt-Reflexionsfläche (13) oder von einer Reflexionsfläche (8.1, 8.2, 17), die im Falle eines nicht vollständig geschlossenen Schachttürflügels (8) und/oder eines sich nicht in Verriegelungsstellung befindenden Schachttürriegels (22) in den Strahl hineinragt, zu einem im Bereich des Senders (10.1) vorhandenen Empfänger (10.2) reflektiert wird, und
    dass der Schachttürüberwachungssensor (10) mit Sender (10.1) und Empfänger (10.2), so ausgebildet ist, dass die vom Strahl (10.3) auf seinem Weg vom Sender (10.1) über eine der Reflexionsflächen (13, 8.1, 8.2, 17) zurück zum Empfänger (10.2) zurückgelegte Distanz ermittelt und an die Aufzugssteuerung signalisiert werden kann.
  8. Verfahren nach Anspruch 7 dadurch gekennzeichnet, dass, sobald und solange die ermittelte, vom Strahl (10.3) zurückgelegte Distanz kürzer als der Weg vom Sender (10.1) zur Haupt-Reflexionsfläche (13) und zurück zum Empfänger (10.2) ist, durch den Schachttürüberwachungssensor (10) oder durch eine nachgeschaltete Auswerteeinrichtung ein nicht vollständig geschlossener Schachttürflügel (8) und/oder ein sich nicht in Verriegelungsstellung befindender Schachttürriegel (22) an die Aufzugssteuerung signalisiert wird, wobei, wenn eine solche Situation während eines Betriebszustands auftritt, in dem alle Schachttüren (7) geschlossen und verriegelt sein sollten, die Distanz zur momentan wirkenden Reflexionsfläche und/oder eine daraus ermittelte Identifikation des Stockwerks, von welchem aus der Strahl (10.3) reflektiert wird, gespeichert und/oder angezeigt werden.
  9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die vom reflektierten Strahl (10.3) zurückgelegte Distanz unter Anwendung einer der folgenden Methoden ermittelt wird:
    - Messung der Laufzeit einzelner Impulse der den Strahl (10.3) bildenden elektromagnetischen Welle (Time of Flight Measurement)
    - Messung der zwischen Emission und Empfang stattfindenden Verschiebung der Phasenlage der den Strahl (10.3) bildenden, kohärent emittierten elektromagnetischen Wellen (Phase Shift Measurement).
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Überwachung der Schachttüren (7) mehrere unabhängige Strahlen (10.3) angewendet werden,
    - wobei Schachttürflügel (8) und Schachttürriegel (22) unabhängig voneinander überwacht werden, oder
    - wobei die Schächttürflügel (8) und/oder die Schachttürriegel (22) mehrflügeliger Schachttüren unabhängig voneinander überwacht werden.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein von einem Sender 10.1 emittierter Strahl 10.3 auf seinem Weg zu einem Empfänger 10.2 mit Hilfe von wenigstens einer im Aufzugsschacht (2) fixierten Strahlumlenkeinrichtung (33) so im Aufzugsschacht umgelenkt wird, dass vom Strahl (10.3) eine mehreren Stockwerkshöhen entsprechende vertikale Distanz mehrmals an unterschiedlichen Positionen des horizontalen Schachtquerschnitts durchlaufen wird, wobei der Strahl durch nicht vollständig geschlossene Schachttürflügel (8) und/oder durch vom Verriegelungszustand der Schachttürriegel 22 abhängig positionierte Blenden (12; 17) beeinflusst werden kann, deren vom Strahl erfasste Bereiche an den genannten unterschiedlichen Positionen angeordnet sind.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass, wenn während eines Betriebszustands, in dem alle Schachttüren (7) geschlossen sein sollten, ein nicht vollständig geschlossener Schachttürflügel (8) signalisiert wird, fernsteuerbare, auf die Schachttürflügel (8) wirkende Zusatzverriegelungen aktiviert werden können.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in Aufzugsanlagen, die mit einem Schachttürüberwachungssensor (10) mit Distanzerkennung ausgerüstet sind, optische und/oder akustische Warnsignale und/oder fernsteuerbare, auf die Schachttürflügel wirkende Zusatzverriegelungen auf ausschliesslich demjenigen Stockwerk aktiviert werden können, bei dessen Schachttüre (7) während eines Betriebszustands, in dem alle Schachttüren geschlossen und verriegelt sein sollten, ein nicht vollständig geschlossener Schachttürflügel (8) und/oder ein sich nicht in Verriegelungsstellung befindender Schachttürriegel (22) detektiert wird (werden).
EP20030009423 2002-05-03 2003-04-25 Verfahren zur Überwachung von Schachttüren einer Aufzugsanlage Expired - Lifetime EP1359112B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20030009423 EP1359112B1 (de) 2002-05-03 2003-04-25 Verfahren zur Überwachung von Schachttüren einer Aufzugsanlage

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP02405360 2002-05-03
EP02405360 2002-05-03
EP20030009423 EP1359112B1 (de) 2002-05-03 2003-04-25 Verfahren zur Überwachung von Schachttüren einer Aufzugsanlage

Publications (2)

Publication Number Publication Date
EP1359112A1 EP1359112A1 (de) 2003-11-05
EP1359112B1 true EP1359112B1 (de) 2008-03-26

Family

ID=29217242

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030009423 Expired - Lifetime EP1359112B1 (de) 2002-05-03 2003-04-25 Verfahren zur Überwachung von Schachttüren einer Aufzugsanlage

Country Status (1)

Country Link
EP (1) EP1359112B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139747A1 (en) * 2014-03-19 2015-09-24 Otis Elevator Company Method and device for monitoring the movement of at least one door, in particular an elevator door
DE102019212726A1 (de) * 2019-08-26 2021-03-04 Thyssenkrupp Elevator Innovation And Operations Ag Aufzugsanlage die einen Fahrkorb abhängig von einem Schließzustandssignal und einer Position des Fahrkorbs in einen Sicherheitsbetriebszustand überführt

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2132152C (en) * 1993-10-06 2005-02-15 Peter Spiess Door safety circuit for the monitoring of storey doors in lift installations
US5644111A (en) * 1995-05-08 1997-07-01 New York City Housing Authority Elevator hatch door monitoring system
FR2775272A1 (fr) * 1998-02-25 1999-08-27 Otis Elevator Co Chaine de securite optique pour ascenseur

Also Published As

Publication number Publication date
EP1359112A1 (de) 2003-11-05

Similar Documents

Publication Publication Date Title
EP1490284B1 (de) Schachtüberwachungssystem für aufzug
EP2404859B1 (de) Überwachungsvorrichtung zur Absicherung eines angetriebenen Elements
EP3194241B1 (de) Türsystem mit sensoreinheit und kommunikationselement
EP1456823B1 (de) Vorrichtung zur berwachung von raumbereichen
EP1700763B1 (de) System zur Absicherung von mit Türen verschliessbaren Personeneinstiegsöffnungen an Fahrzeugen zur Personenbeförderung
EP2506034B1 (de) Sensorvorrichtung, Sicherheitsvorrichtung, Tor und Verfahren zur Kontrolle der Bewegung
EP1621504B1 (de) Signalband und System zum Bestimmen eines Bewegungszustandes eines bewegten Körpers
EP0232866B1 (de) Vorrichtung zur Steuerung des Öffnungs- und/oder Schliessvorgangs von Schnelllauf-Toren
DE102007038421B3 (de) Sicherheitsvorrichtung und Verfahren zum Überwachen einer automatischen Tür
DE102008044990B4 (de) Verfahren und Vorrichtung zur Ansteuerung und/oder Überwachung eines motorisch angetriebenen Flügels während der Öffnungsphase
EP1841942B1 (de) Vorrichtung zur absicherung eines angetriebenen bewegungselements
EP2562117B1 (de) Aufzugvorrichtung mit Positionsbestimmungsvorrichtung
WO2006094751A1 (de) Sicherheitsvorrichtung für tür-, tor- oder fensterelemente sowie zugehöriges verfahren
EP3660251B1 (de) Schutzvorrichtung, insbesondere industrietor
EP1336122B1 (de) Sensoranordnung für die überwachung einer raumzone
EP1359112B1 (de) Verfahren zur Überwachung von Schachttüren einer Aufzugsanlage
EP2818620B1 (de) Automatische Fenster- oder Türanlage
EP0236755B1 (de) Vorrichtung zur Erkennung einer Abschattung eines von mindestens einem Sender ausgesandten Signals in einem zwischen dem Sender und Empfänger befindlichen Zwischenraum
EP3293333B1 (de) Schiebetür, insbesondere aufzugschiebetür
WO2021074252A1 (de) Verfahren zur überwachung einer aufzugskabine
EP3728096A1 (de) Aufzugsanlage mit einer lichtvorhangseinheit
EP0935044A2 (de) Verfahren und Vorrichtung zur Ansteuerung und/oder Überwachung eines motorisch angetriebenen Flügels
EP3556700A1 (de) Aufzuganlage mit einer positionsmesseinrichtung sowie verfahren zum ermitteln einer position einer aufzugkabine in einem aufzugschacht
EP3196160B1 (de) Verfahren zum steuern eines schliessvorgangs einer aufzugtür einer aufzugkabine
DE102020119925A1 (de) Automatische Drehflügeltür und Sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040419

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1060107

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50309444

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080425

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20080528

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20080401403

Country of ref document: GR

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1060107

Country of ref document: HK

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2303573

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080425

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140430

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150420

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150420

Year of fee payment: 13

Ref country code: PT

Payment date: 20150420

Year of fee payment: 13

Ref country code: CZ

Payment date: 20150424

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150420

Year of fee payment: 13

Ref country code: GR

Payment date: 20150416

Year of fee payment: 13

Ref country code: AT

Payment date: 20150421

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50309444

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160501

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 390381

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160425

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160501

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20080401403

Country of ref document: GR

Effective date: 20161104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160425

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160426

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161104

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161025

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170419

Year of fee payment: 15

Ref country code: DE

Payment date: 20170419

Year of fee payment: 15

Ref country code: FR

Payment date: 20170419

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20170412

Year of fee payment: 15

Ref country code: IT

Payment date: 20170424

Year of fee payment: 15

Ref country code: ES

Payment date: 20170517

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170412

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50309444

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425