EP1354500B1 - Dispositif et procede de fonctionnement polyphase d'une lampe a decharge ou a vapeur metallique - Google Patents

Dispositif et procede de fonctionnement polyphase d'une lampe a decharge ou a vapeur metallique Download PDF

Info

Publication number
EP1354500B1
EP1354500B1 EP01273108A EP01273108A EP1354500B1 EP 1354500 B1 EP1354500 B1 EP 1354500B1 EP 01273108 A EP01273108 A EP 01273108A EP 01273108 A EP01273108 A EP 01273108A EP 1354500 B1 EP1354500 B1 EP 1354500B1
Authority
EP
European Patent Office
Prior art keywords
gas arc
arc lamp
controlling
illumination
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01273108A
Other languages
German (de)
English (en)
Other versions
EP1354500A1 (fr
Inventor
Dietrich Eckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
uv-technik Speziallampen GmbH
Original Assignee
Eckert Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eckert Elektronik GmbH filed Critical Eckert Elektronik GmbH
Publication of EP1354500A1 publication Critical patent/EP1354500A1/fr
Application granted granted Critical
Publication of EP1354500B1 publication Critical patent/EP1354500B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/05Starting and operating circuit for fluorescent lamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the present invention relates to devices and methods for operating a gas discharge lamp and relates in particular to lighting installations in which gas discharge lamps are operated by means of electronic ballasts.
  • gas discharge lamps and in particular of fluorescent tubes, is widely used in many industrial and commercial sectors because of the higher efficiency compared to the filament lamps and the broadly adjustable light characteristics through the choice of phosphor coating.
  • electronic ballasts used, which allow operation of the gas discharge lamp at high frequencies in the range of about 20 kHz to 50 kHz, so that the Flackem unlike gas discharge lamps, the be operated by means of a choke coil at mains frequency, is avoided or is no longer recognizable, with suitable control of the electronic ballast, the illuminance can be varied within wide limits.
  • the power factor regulator usually requires a further switch element and an inductance, so that the component cost increases significantly. Furthermore, an efficiency of the power factor regulator of about 95% at most can be achieved with reasonable effort, so that the overall efficiency of the system consisting of power factor controller, electronic ballast and gas discharge lamp is reduced.
  • the boost converter used in the power factor controller operates in the switch mode and thus contributes to a further increase in the interference, so that a considerable effort to filter the interference and corresponding expensive metallic housing are necessary.
  • Document EP 0 782 245 A2 shows a three-phase bridge rectifier for driving an inverter circuit according to the features of the preamble of claim 1.
  • EMC electromagnetic compatibility
  • the invention is extremely advantageous, since there usually 3 Phase connection is available anyway and the direct use of the rectified polyphase voltage without power factor controller significantly increases the efficiency.
  • Different mains voltages in different countries USA, Japan 220V, Europe 380V outer conductor voltage
  • the high rectified voltage of about 560 to 600 V European is advantageous for the ignition of the gas discharge lamp.
  • a backup capacitor is provided on the output side of the multi-phase full wave rectifier.
  • the short voltage dips when switching the half-bridge can be substantially offset.
  • the capacitance of the backup capacitor can be chosen to be relatively small, since this does not have to smooth the ripple of the rectified DC voltage, but must support the voltage only during the switching operations that take place at the high operating frequency, the half-bridge.
  • the half-bridge can be dispensed with expensive, large-volume and trouble-prone electrolytic capacitors.
  • the device also has a precontrol which modulates the external control signal in the opposite sense to a ripple of the rectified polyphase voltage. In this way even the slight variations in lighting, if these should be disturbing for certain applications, are largely taxed out.
  • a resonance capacitor which is connected in parallel with the gas discharge lamp, is provided directly on the gas discharge lamp.
  • the accommodation of the respective resonance capacitor directly to the respective gas discharge lamp allows only one supply line for each lamp and a common return line is required, the necessary monitoring functions for the individual gas discharge lamps can be exercised without additional supply lines.
  • the external resonance capacitor is accommodated in the starter housing.
  • a drive apparatus for a plurality of gas discharge lamps and / or metal halide lamps comprising an electronic board, a multi-phase full wave rectifier installed on the electronic board connectable to a polyphase AC power source and a plurality of electronic ballasts installed on the electronic board, each electronic ballast connected to the input side Multi-phase full wave rectifier is connected and the output side with each one of the plurality of gas discharge lamps and / or metal halide lamps is connectable.
  • One or more of the electronic ballasts may be controllable, so that the illuminance of the lights can be adjusted individually, in groups or in total.
  • a dimmable lighting device comprising a 3-phase full-wave bridge rectifier, a back-up capacitor having a capacitance in the range of about 0.1 ⁇ F to 1 ⁇ F located on the output side of the 3-phase full-wave bridge rectifier, an electronic ballast having a control input, which is connected to the backup capacitor without the interposition of active components, and a gas discharge lamp or metal halide lamp, which is connected to the electronic ballast
  • the direct rectification of the 3-phase voltage using a small capacity backup capacitor can reduce material and manufacturing costs while providing excellent EMC and power factor.
  • a method of controlling a lighting system comprising a polyphase AC voltage source, a polyphase full wave rectifier, an electronic ballast, and a gas discharge lamp or metal halide lamp.
  • the method comprises the steps of rectifying the polyphase AC voltage, supplying the rectified voltage to the electronic ballast, generating a control signal for adjusting the illuminance of the gas discharge lamp or metal halide lamp, and supplying the control ballast signal to the electronic ballast, the illuminance of the gas discharge lamp or metal halide lamp adjust, where the power factor is greater than or equal to 0.95.
  • the generation of the control signal is based on one or more of: the duration of the intended emission of the gas discharge lamp or metal halide lamp, the current illuminance of the gas discharge lamp, integrated illuminance over a predefined period of time, operating age of the gas discharge lamp, physical and / or biological effect the emitted radiation to a specified object, operating temperature of the gas discharge lamp and operating temperature of a certain area of the electronic ballast.
  • the generation of the control signal can take place application-specific by means of suitable parameters. For example, when using the lighting installation in a sunbed, the problem arises that the emitted radiation should occur only in a certain frequency range and with a certain intensity.
  • the emitted radiation can be monitored and a signal output from the sensors can be used as a parameter to generate the control signal.
  • a corresponding sensor output signal may, for example, indicate the exceeding of a maximum instantaneous radiation intensity and / or a maximum or desired integrated intensity.
  • control can be performed by means of a setpoint and actual value as a controlled operation, so that one or more suitable parameters for the specific application can be selected and the associated parameter values are continuously or incrementally queried and used for the generation of the control signal ,
  • suitable parameters for the specific application can be selected and the associated parameter values are continuously or incrementally queried and used for the generation of the control signal .
  • suitable parameter values for the control or regulation of the lighting system can be obtained from corresponding predetermined models of the irradiation process or other aids.
  • an assigned sequence for the browning process can be determined in order to determine corresponding parameters such as intensity and duration of the irradiation.
  • the corresponding parameter values can be currently determined or present, for example, in tabulated form.
  • further parameters can be determined, for example the effect of the radiation on certain objects, such as skin areas, microorganisms, certain materials to be examined, etc., which can then be used to control and / or regulate the irradiation process.
  • the effect can be measured and / or determined by models or data.
  • the effect on certain microorganisms may be known for a specified type of irradiation, so that then the illuminance can be adjusted accordingly to achieve the desired result, eg, germ count reduction. It is advantageous that by the direct use of the rectified polyphase mains voltage a efficient and sensitive control or dimming of the illuminance over a range of about 20% to 100% of the power is possible.
  • FIG. 1a schematically shows a device 100 for activating a gas discharge lamp or metal vapor lamp 106, which in the embodiment shown here can be embodied, for example, as a fluorescent tube.
  • the apparatus 100 includes a three-way full wave rectifier 101 that rectifies a three-phase AC voltage R, S, T.
  • the voltage between two phases is about 380V, so that the output side voltage of the rectifier 101 is about 560 volts, with the residual ripple of the rectified voltage about 10%. Due to the six-pulse circuit of the rectifier 101, the ripple has six times the frequency of the input AC voltage.
  • a support capacitor 102 On the output side of the rectifier 101, a support capacitor 102 may be provided, the capacity of which may be very low, for example 0.1 ⁇ F to 1 ⁇ F, since the capacitor 102 does not have to smooth the ripple of the rectified voltage, but the voltage during the high-frequency switching operations should support.
  • a filter 103 On the output side of the rectifier 101 may further be provided a filter 103 which improves the electromagnetic compatibility (EMC) of the device 100.
  • EMC electromagnetic compatibility
  • Also connected to the output side of the rectifier 101 is a switching device in the form of a half-bridge 104, which in the example shown comprises two MOSFET transistors T 1 and T 2 whose common terminal is connected to a coil 105 having an inductance L R.
  • the other terminal of the coil 105 is connectable to one terminal of the gas discharge lamp 106, the other electrode of which is connected to a capacitor 107 having a capacitance C R.
  • a drive circuit 108 is configured to provide the gate signals for the transistors T 1 and T 2 . Further, the drive circuit 108 has a control input 109 for supplying a control signal for adjusting the illuminance of the gas discharge lamp 106.
  • other circuit elements for example, the preheating of the electrodes of the gas discharge lamp 106 or various protection devices to avoid overcurrents and overvoltages, not shown.
  • various circuit variants with respect to the switch device 104 are possible. Thus, instead of the half bridge, a full bridge, or a single switching element can be used as a (resonant) boost converter.
  • the AC voltage RST is rectified by means of the diodes in the rectifier 101, whereby standard rectifier bridges or on demand fast switching diodes with a short recovery time can be used. Due to the direct rectification of the three-phase alternating current, the rectified voltage has only a small ripple of about 10% to 12%, so that in contrast to conventional electronic ballasts, this voltage is directly usable without a regulation of the power factor by means of an additional power factor regulator is necessary.
  • the drive circuit 108 generates the gate drive signals for the transistors T 1 and T 2 at a frequency and / or duty corresponding to the control signal in response to an externally supplied or internally generated control signal.
  • the resonant circuit formed by the coil 105, the gas discharge lamp 106 and the capacitor 107 is energized at the frequency predetermined by the external or internally generated control signal, so that the gas discharge tube 106 is lit.
  • a typical operating frequency is 20 to 60 kHz, and the slight variations in illuminance caused by the ripple of the rectified AC voltage are barely noticeable due to the sixfold frequency of the AC input voltage.
  • the capacitance of the backup capacitor 102 can advantageously be chosen such that the voltage remains approximately constant during the switching operations of the transistors T 1 and T 2 , so that values of 0.1 ⁇ F to 1 ⁇ F or preferably of 0.1 ⁇ F to 0.67 ⁇ F suffice.
  • the residual ripple can be compensated for by a corresponding feedforward control (not shown) by supplying the rectified AC voltage to the drive circuit 108, for example by means of a voltage divider, so that the illumination fluctuation caused by the residual ripple can be substantially compensated.
  • a support capacitor 102 can be provided with a large capacity to smooth the ripple on the bridge rectifier, in which case, however, would be dependent on the expected output current, a correspondingly large-sized electrolytic capacitor to use.
  • FIG. 1b shows an embodiment which is identical to the embodiment of FIG. 1a with regard to the control of the gas discharge lamp 106.
  • the same parts are therefore assigned the same reference numerals and the description of these components is omitted.
  • the coil 105 is connected in series with a coupling capacitor 120 having a capacitance C K , which is for example in the range between 50 and 200 nF.
  • the resonant capacitance C K in this embodiment is out of the structure for the Device 100 is provided directly on the gas discharge lamp 106.
  • a resistor 121 consisting for example of two or more individual resistors, can be provided parallel to the resonance capacitor C K.
  • This embodiment requires only two leads to the gas discharge lamp 106, while still monitoring the lamp filament and a corresponding lamp monitoring is possible. In the embodiment, the corresponding leads (four terminals in total per discharge lamp) are not shown for the sake of simplicity.
  • the resonant capacitor 107 and optionally the resistors 121 may be housed in the starter housing. Thus, existing light systems can be used with the present invention.
  • a plurality of discharge lamps 107 may each be driven with an associated resonance capacitor in the starter housing, in which case only one common ground line and only one supply line from a corresponding half bridge 104 are required.
  • the three-phase full-wave rectifier 101 and the capacitor with optionally additional filter elements is accommodated on a separate board from which a plurality of half-bridge circuits 104, which can be arranged on one or more boards, are supplied.
  • a device 200 for driving a plurality of gas discharge lamps or metal halide lamps 206 includes a rectifier 201, which in turn is a three-phase full wave rectifier, optionally a back-up capacitor 202 on the output side of the rectifier 201 and a plurality of electronic ballasts 204 with corresponding control inputs 206 includes. Due to the omission of the conventional lighting controls necessary power factor regulators, several electronic ballasts can be arranged in a compact manner on a single electronic board. By avoiding the additional, heat-generating power factor controller thus relatively large power can be controlled by relatively compact drive units. Furthermore, instead of or in addition, an EMC filter can be provided.
  • FIG. 3 schematically shows a further embodiment of a device 300 for operating a gas discharge lamp or metal halide lamp 306.
  • a backup capacitor 302 having a capacitance in the range from 0.1 ⁇ F to 1 ⁇ F is provided.
  • a half-bridge circuit 304 is connected to a resonant circuit comprising a coil 305 with an inductance L R and a capacitor 307 with a capacitance C R , and a transformer 310 for adjusting the voltage to the gas discharge lamp 306.
  • a diode half bridge 311, 312 is provided for clamping the capacitor voltage.
  • a rectifier 313 is provided with an output capacitor 314.
  • F R 1 / ( 2 ⁇ L R C R )
  • the transformer 310 merely serves as a current source which has a voltage which corresponds to the back-transformed output voltage at the capacitor 314 and thus from the voltage at the gas discharge lamp 306.
  • the winding ratio of the transformer 310 is selected such that at rated operation approximately half the bridge voltage is established at the primary side of the transformer 310.
  • a corresponding behavior results when switching on the lower transistor, whereby the capacitor 307 is discharged by the sinusoidal resonant circuit current and energy is transmitted to the gas discharge lamp 306.
  • the lower transistor can then also be switched off without losses. Due to this arrangement, very high switching frequencies can be achieved due to the significantly reduced switching losses, so that the resonance frequency determining elements can be very small and therefore cost-effective.
  • the leakage inductance of the transistor 310 may be used as the inductance L R , so that no additional coil 305 is necessary.
  • the energy transfer to the gas discharge lamp 306 can be easily controlled by changing the switching frequency of the bridge 304. Due to the reduced switching losses results in a significantly improved EMC behavior, so that under certain circumstances, no or only a small low-cost EMC filter is necessary. By this arrangement, switching frequencies in the range of 20 to 1000 kHz can be achieved with high efficiency.
  • FIG. 4 schematically shows another device 400 for operating a gas discharge lamp or metal halide lamp 406, wherein a three-phase full-wave rectifier 401 is connected to an electronic ballast 404, to which the gas discharge lamp 406 is connected.
  • the electronic ballast 404 has an external or integral drive circuit 408, which is connected to a parameter generator 409 and / or one or more sensors 420, for example as a photosensitive sensor, current sensor, temperature sensor and the like.
  • the device 400 for example, represents a lighting system that can be used in solariums, light therapy facilities, applications, the sterilization of rooms or objects or medical equipment, and the like.
  • the control of the illuminance can be carried out on the basis of parameters whose parameter values are determined, for example, on the basis of the signals supplied by the sensors 420.
  • the sensor 420 may detect the spectral distribution and / or the intensity of the currently emitted radiation and provide a corresponding signal to the drive circuit 408.
  • the drive circuit may have an integrator, for example, so that in addition the illumination intensity integrated over a predefined period of time can be determined. From the current and / or average illuminance, a drive signal for the desired illuminance can then be generated.
  • the parameter generation device 409 may have appropriate means for generating the drive signal in accordance with corresponding parameter values.
  • the means 409 in tabular form may include respective illuminance and illumination duration limits of the gas discharge lamp 406, each associated with a particular main type. This is particularly advantageous in solariums, wherein the main type can be determined before the onset of tanning, and the illuminance is carried out as a function of the corresponding maximum value or the maximum duration of illumination.
  • the physical or biological effects on, for example, microorganisms and certain materials can be stored or calculated, so that the control of the gas discharge lamp 406 is carried out with regard to a desired effect of the emitted radiation.
  • a special lighting or irradiation procedure is required for an optimal result.
  • a feedback loop is provided, so that a setpoint and an actual value of a corresponding controlled variable, e.g. the illuminance, are formed, and the actual value of the setpoint is constantly tracked.
  • a corresponding determination of desired and actual values or of parameter values can be achieved by means of a microcomputer and / or an external source, for example a personal computer, and corresponding storage means.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Chemical Vapour Deposition (AREA)

Claims (26)

  1. Dispositif (100) avec :
    - un redresseur pleine-onde polyphasé (101) qui doit être relié, côté entrée, à une source de tension polyphasée,
    - un dispositif à commutateur commandé (104 qui est relié, côté entrée, au côté sortie du redresseur pleine-onde polyphasé (101), et
    - un circuit de commande (108) pour exciter le dispositif à commutateur (104) selon un signal de commande (109) amené de l'extérieur et/ou produit à l'intérieur,
    caractérisé en ce que le redresseur pleine-onde polyphasé est un redresseur en pont pleine-onde passif et est relié au dispositif à commutateur (104) à l'aide d'un condensateur de soutien, sans l'insertion de composants actifs, et
    le dispositif à commutateur commandé (104) est relié, côté sortie, à un circuit résonnant (105, 107) pour faire fonctionner une lampe à décharge (106), l'énergie introduite dans ladite lampe (106) pour commander son éclairement étant commandée à l'aide du signal de commande (109).
  2. Dispositif pour commander l'éclairement d'une lampe à décharge selon la revendication 1, caractérisé en ce qu'un condensateur de soutien est prévu sur le côté sortie du redresseur pleine-onde polyphasé.
  3. Dispositif pour commander l'éclairement d'une lampe à décharge selon la revendication 1 ou 2, caractérisé en ce qu'une fréquence pour l'excitation du demi-pont est située dans la plage de 20 kHz à 1 MHz.
  4. Dispositif pour commander l'éclairement d'une lampe à décharge selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte également une commande pilote qui module le signal de commande extérieur en sens inverse par rapport à une ondulation résiduelle de la tension polyphasée redressée.
  5. Dispositif pour commander l'éclairement d'une lampe à décharge selon l'une des revendications 1 à 4, caractérisé en ce que le dispositif est conçu pour fonctionner dans un réseau de courant alternatif triphasé.
  6. Dispositif pour commander l'éclairement d'une lampe à décharge selon l'une des revendications 1 à 5, caractérisé en ce qu'il est prévu une ligne de rétroaction, de sorte que l'énergie amenée dans la lampe à décharge est réglable en ce qui concerne une grandeur réglée.
  7. Dispositif pour commander l'éclairement d'une lampe à décharge selon la revendication 6, caractérisé en ce que la grandeur réglée du dispositif est amenée par une source extérieure.
  8. Dispositif pour commander l'éclairement d'une lampe à décharge selon la revendication 6, caractérisé en ce qu'il est prévu un capteur, la grandeur réglée étant déterminée en réaction au signal émis par le capteur.
  9. Dispositif pour commander l'éclairement d'une lampe à décharge selon la revendication 6, caractérisé en ce que la grandeur réglée tient compte du courant amené dans la lampe à décharge et/ou de l'intensité de rayonnement émise par la lampe à décharge et/ou de la répartition spectrale émise par la lampe à décharge et/ou de l'action du rayonnement émis par la lampe à décharge et/ou de la température de la lampe à décharge et/ou de la température du demi-pont.
  10. Dispositif pour commander l'éclairement d'une lampe à décharge selon l'une des revendications 1 à 9, caractérisé en ce qu'il est prévu un dispositif de production de paramètre qui produit un paramètre utilisé pour la commande de l'éclairement.
  11. Dispositif pour commander l'éclairement d'une lampe à décharge selon la revendication 10, caractérisé en ce que le paramètre décrit la durée de l'excitation de la lampe à décharge et/ou la courbe dans le temps de l'éclairement.
  12. Dispositif pour commander l'éclairement d'une lampe à décharge selon la revendication 10 ou 11, caractérisé en ce que le paramètre est produit sur la base d'un signal amené de l'extérieur et/ou d'un modèle théorique.
  13. Dispositif pour commander l'éclairement d'une lampe à décharge selon la revendication 12, caractérisé en ce que le paramètre caractérise l'action physique qu'a sur un objet le rayonnement émis par la lampe à décharge.
  14. Dispositif pour commander l'éclairement d'une lampe à décharge selon l'une des revendications 1 à 13, caractérisé en ce que le circuit résonnant comporte une bobine et un condensateur de couplage montés en série, et un condensateur est monté en parallèle par rapport à la lampe à décharge et est fixé à celle-ci.
  15. Dispositif selon la revendication 1, qui comprend un dispositif d'excitation (100 ; 200) pour plusieurs lampes à décharge (106 ; 206) et/ou lampes à vapeur métallique, avec :
    - une carte électronique et
    - plusieurs ballasts électroniques (204) installés sur la carte électronique, chaque ballast pouvant être relié côté entrée au redresseur pleine-onde polyphasé (101 ; 201) et côté sortie à l'une des lampes à décharge (106 ; 206) et/ou des lampes à vapeur métallique.
  16. Dispositif selon la revendication 15, caractérisé en ce que l'un au moins des ballasts électroniques est apte à être commandé afin de commander l'éclairement de la lampe à décharge ou à vapeur métallique qui peut être reliée au(x) ballast(s) apte(s) à être commandé(s).
  17. Dispositif selon la revendication 2, dans lequel le condensateur de soutien présente une capacité nominale située dans la plage de 0,1 µF à 1 µF.
  18. Dispositif selon la revendication 2, dans lequel le condensateur de soutien présente une capacité nominale située dans la plage de 0,1 µF à 0,67 µF.
  19. Installation d'éclairage pour éclairer un objet, avec :
    - une lampe à décharge ou une lampe à vapeur métallique,
    - un système électronique d'excitation qui comporte un dispositif selon l'une des revendications 1 à 17 pour l'excitation résonnante de la lampe à décharge ou à vapeur métallique, le système électronique d'excitation étant alimenté à l'aide d'une tension triphasée redressée, et
    - un condensateur résonnant qui est raccordé en parallèle à la lampe à décharge ou à vapeur métallique, le condensateur résonnant étant monté sur la lampe à décharge ou à vapeur métallique.
  20. Installation d'éclairage selon la revendication 19, caractérisée en ce qu'il est prévu deux lampes à décharge ou à vapeur métallique, ou plus, un condensateur résonnant étant monté sur chacune des lampes.
  21. Installation d'éclairage selon la revendication 20, caractérisée en ce que le système électronique d'excitation comporte un circuit résonnant distinct pour chacune des lampes à décharge ou à vapeur métallique, une bobine étant reliée en série à un condensateur de couplage.
  22. Procédé pour commander une installation d'éclairage, laquelle installation d'éclairage comprend :
    - un redresseur pleine-onde polyphasé (101) qui doit être relié, côté entrée, à une source de tension polyphasée,
    - un dispositif à commutateur commandé (104) qui doit être relié, côté entrée, au côté sortie du redresseur pleine-onde polyphasé (101),
    - un circuit de commande (108) pour exciter le dispositif à commutateur (104) selon un signal de commande (109) amené de l'extérieur et/ou produit à l'intérieur,
    étant précisé que le redresseur pleine-onde polyphasé est un redresseur en pont pleine-onde passif et est relié au dispositif à commutateur (104) à l'aide d'un condensateur de soutien, sans l'insertion de composants actifs, et que
    le dispositif à commutateur commandé (104) est relié, côté sortie, à un circuit résonnant (105, 107) pour faire fonctionner une lampe à décharge (106), l'énergie introduite dans ladite lampe (106) pour commander son éclairement pouvant être commandée à l'aide du signal de commande (109),
    le procédé comprenant les étapes suivantes :
    - redressement de la tension alternative polyphasée,
    - amenée de la tension alternative polyphasée redressée dans le ballast électronique, sans insertion de composants actifs,
    - production du signal de commande qui sert à régler l'éclairement de la lampe à décharge, et
    - transmission du signal de commande au ballast afin de régler l'éclairement de la lampe à décharge.
  23. Procédé pour commander une installation d'éclairage selon la revendication 22, caractérisé en ce que la production du signal de commande se fait sur la base de l'un au moins des paramètres suivants : durée de l'émission de rayonnement voulue pour la lampe à décharge, éclairement actuel de la lampe, éclairage intégré sur une période prédéfinie, âge de la lampe, action physique et/ou biologique du rayonnement émis sur un objet spécifié, température de service de la lampe et température de service d'une zone définie du ballast électronique.
  24. Procédé pour commander une installation d'éclairage selon la revendication 23, caractérisé en ce que l'un des paramètres ou plusieurs des paramètres sont définis grâce à une mesure et/ou grâce à un modèle théorique.
  25. Procédé pour commander une installation d'éclairage selon la revendication 23, caractérisé en ce que la mesure et/ou le modèle théorique spécifient l'action du rayonnement émis et/ou à émettre sur la surface de la peau d'une personne.
  26. Procédé pour commander une installation d'éclairage selon l'une des revendications 22 à 25, caractérisé en ce qu'il est prévu une boucle de régulation, de sorte que le signal de commande est formé sur la base d'au moins une grandeur réglée dépendante de l'état de fonctionnement actuel de l'installation d'éclairage.
EP01273108A 2001-01-15 2001-11-08 Dispositif et procede de fonctionnement polyphase d'une lampe a decharge ou a vapeur metallique Expired - Lifetime EP1354500B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10102408 2001-01-15
DE10102408A DE10102408A1 (de) 2001-01-15 2001-01-15 Verfahren für Drehstromanschluß für EVG
PCT/EP2001/012950 WO2002056644A1 (fr) 2001-01-15 2001-11-08 Dispositif et procede de fonctionnement polyphase d'une lampe a decharge ou a vapeur metallique

Publications (2)

Publication Number Publication Date
EP1354500A1 EP1354500A1 (fr) 2003-10-22
EP1354500B1 true EP1354500B1 (fr) 2006-03-22

Family

ID=7671146

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01273108A Expired - Lifetime EP1354500B1 (fr) 2001-01-15 2001-11-08 Dispositif et procede de fonctionnement polyphase d'une lampe a decharge ou a vapeur metallique

Country Status (7)

Country Link
US (1) US7157863B2 (fr)
EP (1) EP1354500B1 (fr)
AT (1) ATE321435T1 (fr)
DE (2) DE10102408A1 (fr)
DK (1) DK1354500T3 (fr)
ES (1) ES2260167T3 (fr)
WO (1) WO2002056644A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906474B2 (en) * 2003-09-29 2005-06-14 Osram Sylvania, Inc. Three-phase electronic ballast
US20070090767A1 (en) * 2005-10-24 2007-04-26 American Electrolier, Inc. Lighting system with multi-ballast AC-to-DC converter
US7276859B1 (en) 2006-09-28 2007-10-02 Osram Sylvania Inc. Three-phase electronic ballast with improved three-phase EMI filter
US7436126B2 (en) * 2006-12-07 2008-10-14 System General Corp. Resonant ballast circuit
CN101989817B (zh) * 2009-07-29 2014-12-03 通用电气公司 三相led电源
CN102045925B (zh) * 2010-11-02 2013-11-27 华南理工大学 一种led集中式直流供电系统及其运行方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE33057E (en) * 1980-06-23 1989-09-12 Brigham Young University High frequency supply system for gas discharge lamps and electronic ballast therefor
NL9002681A (nl) * 1990-12-05 1992-07-01 Nedap Nv Voorschakelapparaat voor fluorescentielampen.
US6037722A (en) * 1994-09-30 2000-03-14 Pacific Scientific Dimmable ballast apparatus and method for controlling power delivered to a fluorescent lamp
US5633793A (en) * 1995-01-23 1997-05-27 Center For Innovative Technology Soft switched three-phase boost rectifiers and voltage source inverters
JP2857094B2 (ja) * 1995-12-28 1999-02-10 株式会社東芝 三相整流装置
US6034489A (en) * 1997-12-04 2000-03-07 Matsushita Electric Works R&D Laboratory, Inc. Electronic ballast circuit
US6963178B1 (en) * 1998-12-07 2005-11-08 Systel Development And Industries Ltd. Apparatus for controlling operation of gas discharge devices
DE19908697A1 (de) * 1999-02-26 2000-09-07 Bosch Gmbh Robert Gleichrichteranordnung, vorzugsweise für einen Drehstromgenerator für Kraftfahrzeuge

Also Published As

Publication number Publication date
DK1354500T3 (da) 2006-07-31
EP1354500A1 (fr) 2003-10-22
US7157863B2 (en) 2007-01-02
WO2002056644A1 (fr) 2002-07-18
ATE321435T1 (de) 2006-04-15
ES2260167T3 (es) 2006-11-01
US20040085032A1 (en) 2004-05-06
DE50109284D1 (de) 2006-05-11
DE10102408A1 (de) 2002-07-18

Similar Documents

Publication Publication Date Title
DE102012007477B4 (de) Verfahren zum Betreiben eines LLC-Resonanzwandlers für ein Leuchtmittel, Wandler und LED-Konverter
DE60101978T2 (de) Dimmbares EVG
DE60302181T2 (de) Verfahren zum Zünden einer Gasentladungslampe mittels eines hochenergetischen Startimpulses
EP1872627B1 (fr) Pfc numerique parametrable
EP0056642B1 (fr) Méthode et circuit pour chauffer, allumer ainsi que pour commander ou régler le courant électrique de lampes de décharge à gaz à basse pression
EP1603219A1 (fr) Procédé et dispositif pour la correction du facteur de puissance
DE3829388A1 (de) Schaltungsanordnung zum betrieb einer last
EP1354500B1 (fr) Dispositif et procede de fonctionnement polyphase d'une lampe a decharge ou a vapeur metallique
EP1635620B1 (fr) Ballast électronique de pompe a charge pour lampes a décharge avec électrodes de préchauffage
DE102005047613A1 (de) Verfahren und Schaltung zum Zünden und zur Energieversorgung einer Hochintensitäts-Entladungslampe
EP3350911A1 (fr) Module pfc pour fonctionnement en mode de conduction discontinu
EP2939501B1 (fr) Fonctionnement de dispositifs lumineux au moyen d'un convertisseur résonant
EP0563804A1 (fr) Ballast électronique
DE102004051162B4 (de) Modulation eines PFC bei DC-Betrieb
WO2012083328A1 (fr) Ballast et procédé pour faire fonctionner des lampes à décharge gazeuse
DE102010028296A1 (de) DC-AC Wandler für ein Notlichtbetriebsgerät
DE10044574A1 (de) Schaltungsanordnung zum variablen Steuern von Wechselstromverbrauchern
EP2080423A1 (fr) Procédé de fonctionnement d'une lampe à uv
EP2132965A1 (fr) Circuit pour le chauffage d'un filament
EP3826160B1 (fr) Convertisseur continu-continu et procédé de réglage pour convertisseur continu-continu
EP1860925B1 (fr) Appareil de montage de lampe électronique à connexion à chaud
DE102004050110A1 (de) Verfahren und Schaltungsanordnung zum Betreiben von Entladungslampen an ein- oder mehrphasigen Netzen mittels Vorschaltgerät
EP2335457B1 (fr) Determination du type de lampe et topologie du circuit pour plusieurs lampes
EP2425684B1 (fr) Circuit de ballast régulé en puissance pour un luminaire, et procédé de fonctionnement
DE102011000441B4 (de) Betriebssteuergerät und Verfahren zum Dimmen eines Leuchtmittels über die Versorgungsspannung und die Spannungsfrequenz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030813

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060322

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060322

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50109284

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060622

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060822

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2260167

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: UV-TECHNIK SPEZIALLAMPEN GMBH

Free format text: ECKERT ELEKTRONIK GMBH#GROSSWIESENSTRASSE 20#78591 DURCHHAUSEN (DE) -TRANSFER TO- UV-TECHNIK SPEZIALLAMPEN GMBH#GEWERBEGEBIET OST 1#98704 WUEMBACH (DE)

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20091008 AND 20091014

NLS Nl: assignments of ep-patents

Owner name: UV-TECHNIK SPEZIALLAMPEN GMBH

Effective date: 20090922

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: UV-TECHNIK SPEZIALLAMPEN GMBH

Free format text: UV-TECHNIK SPEZIALLAMPEN GMBH#GEWERBEGEBIET OST 1#98704 WUEMBACH (DE) -TRANSFER TO- UV-TECHNIK SPEZIALLAMPEN GMBH#GEWERBEGEBIET OST 1#98704 WUEMBACH (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50109284

Country of ref document: DE

Representative=s name: PATENTANWAELTE LIEDTKE & PARTNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50109284

Country of ref document: DE

Representative=s name: HEISSE KURSAWE EVERSHEDS RECHTSANWAELTE PATENT, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50109284

Country of ref document: DE

Representative=s name: PATENTANWAELTE LIEDTKE & PARTNER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20161121

Year of fee payment: 16

Ref country code: NL

Payment date: 20161118

Year of fee payment: 16

Ref country code: DE

Payment date: 20161121

Year of fee payment: 16

Ref country code: LU

Payment date: 20161121

Year of fee payment: 16

Ref country code: GB

Payment date: 20161122

Year of fee payment: 16

Ref country code: FR

Payment date: 20161118

Year of fee payment: 16

Ref country code: DK

Payment date: 20161118

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161114

Year of fee payment: 16

Ref country code: IT

Payment date: 20161123

Year of fee payment: 16

Ref country code: BE

Payment date: 20161118

Year of fee payment: 16

Ref country code: AT

Payment date: 20161121

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109284

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20171130

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 321435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171108

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171109