EP2425684B1 - Circuit de ballast régulé en puissance pour un luminaire, et procédé de fonctionnement - Google Patents

Circuit de ballast régulé en puissance pour un luminaire, et procédé de fonctionnement Download PDF

Info

Publication number
EP2425684B1
EP2425684B1 EP10716534.2A EP10716534A EP2425684B1 EP 2425684 B1 EP2425684 B1 EP 2425684B1 EP 10716534 A EP10716534 A EP 10716534A EP 2425684 B1 EP2425684 B1 EP 2425684B1
Authority
EP
European Patent Office
Prior art keywords
power
operating
lighting means
circuit
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10716534.2A
Other languages
German (de)
English (en)
Other versions
EP2425684A1 (fr
Inventor
Christian Nesensohn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP2425684A1 publication Critical patent/EP2425684A1/fr
Application granted granted Critical
Publication of EP2425684B1 publication Critical patent/EP2425684B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2828Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using control circuits for the switching elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules

Definitions

  • the invention relates to a power-controlled operating circuit for a lighting means having means for determining a power-related actual value associated with the circuit-specific power loss, with a controller to which a power actual value and a power setpoint are supplied and which generates a control difference.
  • the invention further relates to a method for operating a power-controlled operating circuit for a light source, wherein a power-related with the circuit-specific power loss actual power value is determined by means of one or more the performance yielding parameter and compared with a power setpoint, and wherein with a by the comparison obtained control difference which is controlled a size that determines the power supplied to the bulbs.
  • Power-controlled operating circuits of the aforementioned type are widely used in electronic ballasts for lighting.
  • the actual power value associated with the circuit-specific power loss is compared with a predetermined setpoint power.
  • the resulting control difference is used as a control value for the inverter frequency.
  • the circuit-specific power dissipation varies from device to device. Without countermeasure this has the consequence that the light output of the light sources operated with such power-controlled operating circuits is different despite equal power setpoints.
  • ballasts It is known for a certain type of ballasts to first measure the lamp current at each device after its completion in the production facility and to use a matched resistance corresponding to the measured value in the lamp circuit. In this way it is achieved that all devices after leaving the production site under otherwise identical conditions also have a same lamp current, which ensures that even the light bulbs operated with it give the same light output under the same conditions.
  • ballasts also to measure immediately after completion in the production facility, the difference between a predetermined setpoint power and the measured actual value power and to digitize the measured value.
  • the digitized measured value is then stored by means of an external programming device in the ASIC, with which the operating circuit is at least partially realized.
  • the invention is therefore based on the object to outsource the elimination of the influence of the circuit-specific power loss of a power-controlled Radionamiconductor (Ta) + to automate as much as possible.
  • the invention further relates to an integrated control circuit, in particular ASIC, microcontroller or hybrid version thereof, which is designed to perform a method according to any one of the preceding claims, and a control device for lighting means, comprising such a control circuit.
  • the solution according to the invention for both the operating circuit and for the method is that each operating circuit or each ballast, by incorporating such an operating circuit or such a method, is first implemented in use on site after being switched on. Must go through routine.
  • the circuit-specific power loss is first determined in a first phase.
  • the control parameters, ie the measured actual value power or the predetermined setpoint power or the control difference determined from the comparison is corrected or modified in such a way that the power loss no longer has any influence on the control result.
  • the power loss is either added to the setpoint power or subtracted from the actual power or added to the control difference.
  • the power loss is thus calculated from the calculation process for the control difference.
  • the light output of the light source therefore always corresponds to the setpoint power. This is - with otherwise the same preconditions - the light output of bulbs that are operated with such corrected power-controlled operating circuits, always the same.
  • the measurement of the power loss during the pre-routine is carried out according to a first possibility with the regular operating parameters for the light source before it absorbs useful power for light emission in a time-starting process. It is known that certain light sources, in particular gas discharge lamps after switching on the operating circuit ignite only with a certain time delay before they absorb useful power for light emission. If one measures the actual powers within this phase, then the measurement result represents the power loss of the operating circuit.
  • a second possibility is that at least one operating parameter for the lighting means is selected such that the lighting means can not absorb any useful power for emitting light.
  • an operating parameter can be, for example, a Be inverter frequency. This can either be so much lower than the resonant frequency of the resonant circuit or so much higher than the latter can be chosen so that the operating voltage for the lamp is not sufficient for the lamp can absorb useful power for light emission. In the case of a gas discharge lamp, this means that the operating voltage is below the ignition voltage. In the case of a light emitting diode there is no recording of useful power, provided that the operating voltage is less than the breakdown voltage of the light emitting diode.
  • a third possibility may be to replace the bulbs with a known substitution resistance.
  • the operating circuit includes an inverter
  • the inverter frequency may assume a value at which normally ignition of the gas discharge lamp or breakthrough of the LED would occur.
  • the measured power loss is then composed of the power loss of the operating circuit and the power loss of the substitution resistor.
  • the operating voltage across the substitution resistance or the current through the substitution resistance is additionally measured, then one can calculate the power loss of the substitution resistance, since its resistance value is known. In order to determine the power loss of the operating circuit, then the calculated power loss of the substitution resistance must be subtracted from the measured power loss.
  • the method of determining the power loss of the operating circuit using a substitution resistor has the advantage that the choice the inverter frequency during the pre-routine phase, in which the power loss of the operating circuit to be measured, is not subject to any restriction. This is important because the power dissipation of the operating circuit in this example is frequency dependent. This means that the correction values for the control parameters must also be frequency-dependent if the desired independence from the power loss is to apply for each operating frequency.
  • a first approximation of the desired goal is possible in that the measurement of the power loss in the pre-routine phase is carried out at a fixed frequency, which is chosen so that the operated with the operating circuit bulbs does not absorb useful power for light emission.
  • a further approximation is possible by measuring the power loss at a plurality of such frequencies, all of which are still in the frequency range at which the luminous means does not yet absorb any useful power for the light emission. Due to the plurality of measured values, an extrapolation can then take place into those frequency ranges in which the luminous means would normally receive useful power for emitting light. The measured values and the extrapolation values can be recorded in a table, which is then queried in the control process to correct the relevant control parameter.
  • the correction of the control parameters then takes place in an operating phase following the pre-routine phase, during which the light-emitting means absorbs useful power for light emission.
  • the operating device may have a DC-DC converter and / or an inverter (DC / AC converter).
  • DC / AC converter DC / AC converter
  • the bulbs can be operated with AC or DC voltage within the scope of the invention.
  • FIG. 1 shows an operating circuit 1 for a gas discharge lamp LP.
  • an inverter formed by a half-bridge, which consists of a series connection of two push-pull connected electronic switches S1, S2 and a shunt resistor R1.
  • This series circuit is powered by a DC voltage, which is characterized by a positive pole + and ground is marked.
  • the DC voltage is normally generated from the AC mains by rectification and smoothing.
  • a series resonant circuit is coupled, which is formed by an inductance L and a resonance capacitor C1.
  • the series resonant circuit is located between the connection point of the two switches S1, S2 and ground.
  • the voltage drop across the resonant capacitor C1 is supplied via a coupling capacitor C2 to a gas discharge lamp LP.
  • a coupling capacitor C2 To the gas discharge lamp LP is a series circuit of two resistors R2, R3 connected in parallel, whose task later in conjunction with FIG. 3 is described.
  • the two switches S1, S2 of the inverter are controlled by a variable oscillator with a switching frequency f s , such that one switch is open and the other is closed.
  • a voltage dependent on the switching frequency f s arises across the resonance capacitor C1. This can reach well over 1000 volts in the vicinity of the resonant frequency depending on the circuit losses of the devices for the operation of a gas discharge lamp.
  • the gas discharge lamp LP ignites and absorbs useful energy for emitting light.
  • the operating voltage is usually considerably lower.
  • the gas discharge lamp LP can be dimmed. Dimming is carried out with simultaneous power control. For example. via a bus 7 the operating circuit is next to a signal to and turn off a power setpoint P soll is supplied.
  • the power setpoint P soll is normally compared in a controller 3 with a measured actual power value P ist .
  • the actual power value P ist is obtained in this example by means of the voltage drop across the shunt resistor R1 as a power-reproducing parameter (indirectly).
  • the controller 3 provides a control difference P diff, which is supplied to the variable oscillator 2 as a control value for the switching frequency of f s.
  • the power control to be a performance-determining variable, which may be, for example, the timing of one or more switches (in this example frequency of the clocking of the switches of the inverter) of a DC-DC converter or an inverter.
  • the power actual value can not be determined indirectly because this measured value is still associated with a contribution of the power loss of the operating circuit.
  • This is disadvantageous in that the power loss from operating circuit to operating circuit, for example, is different due to the different component tolerances.
  • the aim of the invention is therefore to eliminate or compensate for the power loss from the control process, so that the output from the gas discharge lamp LP light line always the predetermined power setpoint P soll corresponds, regardless of the individual operating circuit, or the ballast , in which this operating circuit is used.
  • the actual power loss P v measured and used to correct the power setpoint by this by the power loss P v is increased.
  • the corrected power setpoint P soll (korr) is equal to the sum of the predetermined setpoint P soll and the measured power loss P v .
  • the actual power loss P v is at the in FIG. 1 shown embodiment, at a switching frequency f s measured by a processor 6 for a Vorab routine the variable oscillator 2 for the switching frequency f s .
  • This frequency is a fixed frequency and is chosen such that the voltage dropping thereby at the resonance capacitor C1 is not or no longer sufficient to cause the gas discharge lamp LP to absorb useful energy for emitting light. If the switching frequency f s lies in the inductive range of the resonance curve, this means that the gas discharge lamp does not yet ignite at this frequency. If the switching frequency f s is in the capacitive range of the resonance curve, this means that the gas discharge lamp LP - after it was in operation - no longer emits light. Due to the fact that the gas discharge lamp LP is inoperative, the voltage drop across the shunt resistor R1 then gives the power loss of the operating circuit 1. The measured power loss P v is fed to a memory 5.
  • the processor 6 causes the oscillator 2 to change the switching frequency f s so that the Gas discharge lamp LP ignites or ignites again.
  • a voltage drops across the shunt resistor R1, which represents the sum of the actual power loss P v of the operating circuit 1 and the power consumed by the gas discharge lamp LP for the light emission.
  • This voltage is fed to the controller as a power actual value P ist .
  • the power setpoint in block 4 is corrected by increasing it by the stored actual power dissipation P v . Accordingly, a corrected setpoint value P soll (korr) is supplied to the controller as setpoint, which is compared with the actual value P ist .
  • the embodiment of the power-controlled operating circuit according to FIG. 2a differs from the one after FIG. 1 in that here not the power setpoint, but the actual power value is corrected.
  • the same components or function blocks have the same reference numerals.
  • FIG. 2a Also in FIG. 2a is the power loss P v by means of the voltage drop across the shunt resistor R1 in a.
  • Pre-routine phase measured and stored in a memory 15. Since the power loss P V, however, is frequency-dependent, here are several power loss values at different frequencies measured and stored in the memory 15. All frequencies are however - as in the case of FIG. 1 - Selected so that the light source, which is here a light emitting diode LD, which is connected in series with a series resistor R14, still no useful energy for light emission receives. In other words, this means that the operating voltage at the light-emitting diode LP is still below the breakdown voltage of the light-emitting diode. Because of frequency dependence, additional loss power values are extrapolated from the measured power loss values for the frequency range at which the light-emitting diode LD would emit light. The measured values and the extrapolation values are stored as a table in the memory 15.
  • the measured in the operating phase actual power value P is , as in connection with FIG. 1 has been described, still with the power loss P v afflicted, ie excessive, in this case a block 14 is supplied for correction.
  • the determined corrected actual power value P ist (korr) is therefore the measured actual power value P ist reduced by the power loss P v .
  • the corrected actual power value P ist (korr) is supplied to the controller simultaneously with the power setpoint P soll .
  • the controller 13 forms from this the control difference, which is also adjusted in this case of the power loss P v .
  • a rectifier present (diode DG) or the LED (s) are connected in anti-parallel.
  • the inductance L may be designed as a transformer or in the output circuit, an additional transformer may be present, so that a potential separation can be achieved.
  • FIG. 2b shows an example of the operation of lighting means DC voltage, which is here generated by rectifying an AC voltage of an inverter, but can also be generated by a DC-DC converter.
  • the third embodiment of the power-controlled operating circuit according to FIG. 3 has three special features.
  • the first special feature is that the control difference is corrected here as a control parameter.
  • the second peculiarity is that in this case not - as in FIG. 2a - Measured several individual values of the power loss at different frequencies in the pre-routine phase, extrapolated and stored, but it is measured power loss over a whole range of interest frequency as a function and stored in a memory 25.
  • the frequency range should in particular encompass all those frequencies which are controlled during the power regulation of the luminous means that here again is a gas discharge lamp LP.
  • the operating circuit designated here by the reference numeral 21 has as a third feature a substitution resistor RS, which is connected to the operating circuit 21 by means of a switch S3 during the pre-routine phase instead of the gas discharge lamp LP.
  • the function memory 25 is now supplied not only with the power loss P v as a voltage drop across the shunt resistor R 1, but also with a voltage drop across the resistor R 3 of the voltage divider R 2 / R 3 ,
  • the voltage drop across the resistor R3 is a measure of the voltage drop across the substitution resistor RS whose resistance value is known. Accordingly, it is also possible to calculate the power loss P RS , which is absorbed by the substitution resistor RS. It is understood that the power loss P v measured as a voltage drop across the shunt resistor R 1 must be reduced by the power loss P RS .
  • the function memory 25 now supplies the correction block 23 with the power loss P v as a function of the switching frequency f s and the power loss P RS recorded by the substitution resistor RS .
  • the block 23 forms from a control value P diff (corr) which is adjusted by both the power loss P v of the operation circuit as well as the substitution caused by the resistance RS power loss P RS.
  • the switching of the switch S3 from the gas discharge lamp LP to the substitution resistor RS is performed by the processor 6.
  • the processor 6 thus ensures that the operating phase precedes a pre-routine phase in which the power loss P v is determined and stored.
  • the stored values can then be used in the subsequent operating phase to correct a control parameter, in order in this way ensure that the control is independent of the circuit-specific power loss and therefore the light output emitted by the light source always corresponds to the specified power setpoint.
  • the substitution resistance RS can also be easily formed by a bridge (that is, a 0 ohm resistor), which bridges the light source in the pre-phase (ie during scanning), ie short-circuiting.
  • the switch S3 can also be arranged externally or the switchover or bridging can also take place externally (ie the user connects a reference load or a substitution resistance in the pre-stage instead of the light source).
  • the values of the useful power of the luminous means or of the substitution resistor RS caused by the light emission PRS can also be determined by an external circuit (ie external connection of the voltage divider R2 / R3 and the series resistor R14) and via an existing control line Operating circuit 1 (in particular the function memory 25) are supplied. This offers the advantage that the circuit parts required for the measurement in the pre-phase need not be present in the operating circuit 1 itself, but only have to be connected to the operating circuit 1 for the measurement in the pre-phase.
  • the measurement in the pre-phase can be done as a kind of calibration measurement, for example during the manufacture of the operating circuit 1 or during the first start-up or even installation of the operating circuit 1 and only for the implementation of the measurement in the pre-phase required circuit parts can be arranged in a kind of programming device, wherein the programming device can be used for a plurality of operating circuits according to the invention.
  • the control line present in the operating circuit 1 may be a programming input or a digital interface for receiving control commands (in particular dimming commands).
  • the measurement can also be repeated at regular intervals, if necessary, an error message can be issued (eg. By signal via bus or optical).
  • the losses can also be integrated over predefined periods.
  • the measurement in the measurement phase (ie the scanning) can be performed by a control command or similar. be initiated by the user or a center, for example, practice pure Control command.
  • the detection of a substitution resistance as a load can also be detected by a load detection, and thus the measurement in the preliminary phase can be initiated with the aid of load detection.
  • Fig. 4 is an example of the application of a DC-DC converter (here a buck converter or Buck converter) shown.
  • a DC-DC converter here a buck converter or Buck converter
  • the inductance L is magnetized, this magnetizing current also flows through the light-emitting diode LD, while the freewheeling diode DF is blocked.
  • the voltage across the light emitting diode LD and the series resistor R14 can be determined by the light emitting diode LD, whereby the power absorbed by the light emitting diode LD can be determined (at least in the measuring phase, these components similar to Fig. 3 described specifically for the measuring phase with the operating circuit 1 can be connected).
  • the power consumed by the operating circuit 1 can, for example, by a current monitoring in the Supply of the operating circuit 1 (for example via a current measurement by means of differential measurement, current sensor such as current transformer or potential offset stage or by a current measurement between ground and the feedback of the operating circuit 1). Knowing the supply voltage can be concluded on the recorded power.
  • the capacitor C1 acts in this example as a smoothing capacitor (parallel to the light emitting diode LD).
  • the light-emitting diode LD can, as in the embodiment of the Fig. 3 for the measurement of the losses in the measurement phase, for example a pre-phase (ie the scanning) by a substitution resistor RS (this can also be simply a bridge (ie a 0 ohm resistor)) bridged or replaced.
  • a pre-phase ie the scanning
  • a substitution resistor RS this can also be simply a bridge (ie a 0 ohm resistor)) bridged or replaced.
  • the switching or bridging can also take place externally (i.e., the user connects a reference load or a substitution resistance in the measuring phase instead of the luminous means).
  • the losses (ie, the power loss) of the operating circuit 1 can be determined.
  • the losses (ie, the power loss) of the operating circuit 1 can be determined.
  • the power loss over a whole interesting range of the duty cycle can be measured as a function and stored in a memory 25.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Claims (17)

  1. Procédé de fonctionnement d'un circuit de fonctionnement régulé en puissance (1, 21) pour un moyens d'éclairage, dans lequel un paramètre qui spécifie la puissance, sujet à la dissipation d'énergie (Pv) spécifique du circuit, est mesuré pour réguler la puissance, ledit paramètre spécifiant la valeur réelle de la puissance et étant comparé à une valeur cible de la puissance,
    et dans lequel, selon un écart de régulation obtenu par la comparaison, une variable de détermination de puissance, en particulier, la temporisation, d'un ou plusieurs interrupteurs, est réglée,
    et dans une phase de fonctionnement, lorsque le moyen d'éclairage absorbe l'énergie effective pour l'émission de lumière, au moins un des paramètres de régulation, tel que la valeur réelle de la puissance, la valeur cible de la puissance, l'écart de régulation, est corrigé de manière à ce que la puissance lumineuse émise par les moyens d'éclairage corresponde mieux à la valeur cible de la puissance ;
    caractérisé en ce que la dissipation d'énergie réelle (Pv) du circuit de fonctionnement est déterminée et mémorisée lors d'une phase de mesure dans laquelle le moyen d'éclairage n'absorbe pas la puissance effective pour l'émission de lumière.
  2. Procédé selon la revendication 1, dans lequel le circuit de fonctionnement (1, 21) est un inverseur (S1, S2, R1), alimenté par une source de tension de courant continu, ayant un circuit résonnant en aval (L, C1), dans lequel le moyen d'éclairage est couplé au circuit résonnant (LP, LD) de manière à ce qu' il soit alimenté par une tension de fonctionnement déterminée par la fréquence de l'inverseur et la courbe de résonance.
  3. Procédé selon la revendication 2, caractérisé en ce que la mesure de la dissipation d'énergie s'effectue, lors de la phase de mesure, avec au moins deux fréquences différentes (fS1, fsn), et en ce qu' un tableau soit généré, en se basant sur les valeurs mesurées par extrapolation, qui indique la dissipation d'énergie (PV1, PVn) selon les fréquences (fS1, fsn), au moyen duquel la dissipation d'énergie (PV1, PVn) pertinente pour la fréquence d'inverseur correspondante (fS1, fsn) est fournie lors de la phase de fonctionnement pour corriger la valeur réelle mesurée de la puissance (Pist).
  4. Procédé selon la revendication 2, caractérisé en ce que la mesure de la dissipation d'énergie s'effectue, lors de la phase de mesure, via une échelle de fréquences pertinente, et en ce qu' un tableau soit généré, en se basant sur les valeurs mesurées, qui indique la dissipation d'énergie (Pv) selon la fréquence (fs), au moyen duquel la dissipation d'énergie (PV1) pertinente pour la fréquence d'inverseur correspondante (fs) est fournie lors de la phase de fonctionnement pour corriger la valeur réelle mesurée de la puissance (Pist).
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la dissipation d'énergie (Pv) du circuit de fonctionnement (1, 31) est mesurée lors de la phase de mesure
    (a) avec les paramètres de fonctionnement normaux pour le moyen d'éclairage (LP, LD) avant qu'il absorbe la puissance effective pour l'émission de lumière dans un processus de démarrage temporel,
    soit
    (b) avec au moins un paramètre de fonctionnement (tension de fonctionnement, courant de fonctionnement ou fréquence d'inverseur) pour le moyen d'éclairage, qui est sélectionné de manière à ce que le moyen d'éclairage (LP, LD) n' ait pas encore absorbé de puissance effective pour l'émission de lumière, soit
    (c) avec une résistance de remplacement connue (RS), remplaçant le moyen d'éclairage (LP, LD), en réduisant sa dissipation d'énergie mesurée (Pv) par la puissance de substitution (PRS).
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que la correction d'un paramètre de régulation s'effectue lors de la phase de fonctionnement de manière à ce que la dissipation d'énergie (Pv) est soit ajoutée à la valeur cible de la puissance (Psoll) ou soustraite de la valeur réelle de la puissance (Pist) ou ajoutée à l'écart de régulation (Pdiff).
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que le paramètre spécifiant la puissance est remis de la zone des moyens d'éclairage et/ou de la zone d'un circuit d'alimentation en amont.
  8. Procédé selon l'une des revendications précédentes, dans lequel les moyens d'éclairage fonctionnent avec une tension continue, par exemple une tension continue rectifiée correspondante, ou une tension alternative.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que le moyen d'éclairage est une lampe à décharge de gaz (LP) ou une ou plusieurs DEL (LD).
  10. Circuit de commande intégré, en particulier un circuit intégré à application spécifique (ASIC), un microcontrôleur ou un hybride de ceux-ci, étant conçu pour effectuer un procédé selon l'une des revendications précédentes.
  11. Dispositif de fonctionnement pour moyens d'éclairage, ayant un circuit de commande selon la revendication 10.
  12. Circuit de fonctionnement régulé en puissance (1, 21) pour un moyen d'éclairage (LP, LD),
    ayant une unité de régulation (3, 13, 23) à laquelle une valeur réelle de la puissance ainsi qu' une valeur cible de la puissance sont alimentées, hors duquel il génère un écart de régulation, et un moyen destiné à corriger au moins un des paramètres de régulation lors d'une phase de fonctionnement dans laquelle le moyen d'éclairage absorbe l'énergie effective pour l'émission de lumière de manière à ce que la puissance lumineuse émise par les moyens d'éclairage corresponde mieux à la valeur cible de la puissance,
    caractérisé par des moyens (R1, R3) destinés à mesurer et à mémoriser la dissipation d'énergie réelle (Pv) du circuit de fonctionnement (1, 31) lors d'une phase de mesure dans laquelle le moyen d'éclairage (LP, LD) n' absorbe pas la puissance effective pour l'émission de lumière.
  13. Circuit de fonctionnement régulé en puissance selon la revendication 12, caractérisé en ce qu'il comporte un convertisseur de courant continu et/ou un convertisseur de courant continu/alternatif, de préférence temporisé au moyen d'un ou plusieurs interrupteurs, dans lequel la temporisation du/des interrupteur(s) est la variable de commande déterminant la puissance de la régulation en puissance.
  14. Circuit de fonctionnement régulé en puissance selon les revendications 12 ou 13,
    ayant un inverseur (S1, S2, R1) alimenté par une source de courant continu, ayant un circuit résonnant (L, C1) situé en aval de l'inverseur (S1, S2, R1), dans lequel le moyen d'éclairage (LP, LD) est couplé au circuit résonnant (L, C1) de manière à ce qu' il soit alimenté par une tension de fonctionnement déterminée par la fréquence de l'inverseur (fs) et la courbe de résonance,
    ayant des moyens destinés à déterminer une valeur réelle de la puissance (Pist) sujet à la dissipation d'énergie (Pv) spécifique du circuit.
  15. Circuit de fonctionnement régulé en puissance selon l'une des revendications de 12 à 14, caractérisé en ce que la dissipation d'énergie (Pv) du circuit de fonctionnement (1, 21) est mesurée lors de la phase de mesure
    (a) avec les paramètres de fonctionnement normaux pour le moyen d'éclairage (LP, LD) avant qu' il absorbe la puissance effective pour l'émission de lumière dans un processus de démarrage temporel,
    soit
    (b) avec au moins un paramètre de fonctionnement pour le moyen d'éclairage (LP, LD), qui est sélectionné de manière à ce que le moyen d'éclairage n' ait pas encore absorbé de puissance effective pour l'émission de lumière,
    soit
    (c) avec une résistance de remplacement connue (RS) remplaçant le moyen d'éclairage (LP, LD), en réduisant sa dissipation d'énergie mesurée (Pv) par la puissance de substitution (PRS).
  16. Circuit de fonctionnement régulé en puissance selon l'une des revendications de 12 à 15, caractérisé en ce que les moyens (4, 14, 23, 34), destinés à corriger au moins un paramètre de régulation lors de la phase de fonctionnement, sont tels que la dissipation d'énergie (Pv) est soit ajoutée à la valeur cible de la puissance (Psoll) ou soustraite de la valeur réelle de la puissance (Pist) ou ajoutée à l'écart de régulation (Pdiff).
  17. Circuit de fonctionnement régulé en puissance selon l'une des revendications de 12 à 16, caractérisé en ce que les moyens (R1, R3), destinés à mesurer et à mémoriser la dissipation d'énergie (Pv) réelle du circuit de fonctionnement (1 31), sont constitués d'un processeur (6) lors d'une phase de mesure.
EP10716534.2A 2009-04-28 2010-04-27 Circuit de ballast régulé en puissance pour un luminaire, et procédé de fonctionnement Active EP2425684B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009019229A DE102009019229A1 (de) 2009-04-28 2009-04-28 Leistungsgeregelte Betriebsschaltung für ein Leuchtmittel sowie Verfahren zum Betreiben derselben
PCT/EP2010/055610 WO2010125053A1 (fr) 2009-04-28 2010-04-27 Circuit de ballast régulé en puissance pour un luminaire, et procédé de fonctionnement

Publications (2)

Publication Number Publication Date
EP2425684A1 EP2425684A1 (fr) 2012-03-07
EP2425684B1 true EP2425684B1 (fr) 2016-06-29

Family

ID=42262670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10716534.2A Active EP2425684B1 (fr) 2009-04-28 2010-04-27 Circuit de ballast régulé en puissance pour un luminaire, et procédé de fonctionnement

Country Status (4)

Country Link
EP (1) EP2425684B1 (fr)
CN (1) CN102428761A (fr)
DE (2) DE102009019229A1 (fr)
WO (1) WO2010125053A1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3928810A1 (de) * 1989-08-31 1991-03-07 Philips Patentverwaltung Schaltungsanordnung zum speisen einer last
TW235383B (fr) * 1991-04-04 1994-12-01 Philips Nv
DE10018860A1 (de) * 2000-04-14 2001-10-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Stabilisierung des Betriebs von Gasentladungslampen
JP4429696B2 (ja) * 2003-11-18 2010-03-10 パナソニック株式会社 高圧放電灯装置
KR101245121B1 (ko) * 2005-06-10 2013-03-25 에이저 시스템즈 엘엘시 저항 부하를 통한 전류 조정
DE102006030655A1 (de) * 2006-04-21 2007-10-25 Tridonicatco Gmbh & Co. Kg Notlichtgerät zum Betreiben einer Lichtquelle, insbesondere einer LED

Also Published As

Publication number Publication date
WO2010125053A1 (fr) 2010-11-04
CN102428761A (zh) 2012-04-25
DE112010001791A5 (de) 2012-11-08
EP2425684A1 (fr) 2012-03-07
DE102009019229A1 (de) 2010-11-04

Similar Documents

Publication Publication Date Title
DE69919138T2 (de) Electronischer dimmer
DE102012007478B4 (de) Wandler für ein Leuchtmittel, LED-Konverter und Verfahren zum Betreiben eines Wandlers
EP1872627B1 (fr) Pfc numerique parametrable
EP2548409B1 (fr) Commande d'une chaîne de diodes électroluminescentes par une surce de courant constante commutée
EP2795998B1 (fr) Circuit de commande de led avec convertisseur resonant
DE102012007477A1 (de) Verfahren zum Betreiben eines LLC-Resonanzwandlers für ein Leuchtmittel, Wandler und LED-Konverter
DE19923945A1 (de) Elektronisches Vorschaltgerät für mindestens eine Niederdruck-Entladungslampe
EP2160823A1 (fr) Circuit de correction de facteur de puissance pour un ballast électronique de luminaire
EP2292079B1 (fr) Identification du type d'une ampoule au moyen d'un circuit de correction de facteur de puissance
EP3202235B1 (fr) Convertisseur électronique de puissance cadencé
EP2859652B1 (fr) Circuit de correction du facteur de puissance, appareil pour faire fonctionner un élément luminescent et procédé pour commander un circuit de correction du facteur de puissance
EP2368410B1 (fr) Procédé et ballast pour le fonctionnement d'un moyen d'éclairage avec un courant régulé
WO2017046039A1 (fr) Module pfc pour fonctionnement en mode de conduction discontinu
DE102007015508B4 (de) Digitale Steuerschaltung eines Betriebsgeräts für Leuchtmittel sowie Verfahren zum Betreiben eines Betriebsgerätes
WO2006122525A1 (fr) Ballast electronique destine a une lampe a decharge gazeuse basse pression comportant un microcontroleur
DE112015005931B4 (de) Leuchtsystem und Verfahren zum Steuern des Leuchtsystems
EP2425684B1 (fr) Circuit de ballast régulé en puissance pour un luminaire, et procédé de fonctionnement
AT15534U1 (de) Betriebsschaltung für LEDs
EP2849538B1 (fr) Dispositif et procédé de détermination indirecte d'une alimentation électrique
EP3449692A1 (fr) Procédé de réglage d'un module del
DE102020103921B4 (de) Betriebsvorrichtung und Verfahren zum Betreiben einer Leuchtmittelanordnung
DE202016106926U1 (de) Anpassen der Totzeit einer LLC-Schaltung
WO2011026926A2 (fr) Correction de cosinus (phi) dans des ballasts à régulation du courant ou de la puissance pour des lampes
AT15949U1 (de) PFC-Schaltung
WO2015113090A1 (fr) Détection d'un module led

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160401

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 809998

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011915

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161029

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161031

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011915

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

26N No opposition filed

Effective date: 20170330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170428

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170427

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 809998

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010011915

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200429

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230427

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230418

Year of fee payment: 14