EP1351892A2 - Method for accelerating biocatalytic and/or hormonal processes and use of the same - Google Patents
Method for accelerating biocatalytic and/or hormonal processes and use of the sameInfo
- Publication number
- EP1351892A2 EP1351892A2 EP01989600A EP01989600A EP1351892A2 EP 1351892 A2 EP1351892 A2 EP 1351892A2 EP 01989600 A EP01989600 A EP 01989600A EP 01989600 A EP01989600 A EP 01989600A EP 1351892 A2 EP1351892 A2 EP 1351892A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- biocatalytic
- processes
- accelerating
- photosensitizer
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims abstract description 88
- 230000002210 biocatalytic effect Effects 0.000 title claims abstract description 25
- 230000003054 hormonal effect Effects 0.000 title claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000002689 soil Substances 0.000 claims abstract description 27
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims abstract description 13
- 239000012736 aqueous medium Substances 0.000 claims abstract description 11
- 230000000694 effects Effects 0.000 claims description 26
- 102000004190 Enzymes Human genes 0.000 claims description 19
- 108090000790 Enzymes Proteins 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 239000003504 photosensitizing agent Substances 0.000 claims description 11
- 239000002609 medium Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 4
- 239000011942 biocatalyst Substances 0.000 claims description 3
- 239000004927 clay Substances 0.000 claims description 3
- 108010066830 dimethyl sulfoxide reductase Proteins 0.000 claims description 3
- 235000013305 food Nutrition 0.000 claims description 3
- 230000004936 stimulating effect Effects 0.000 claims description 3
- MHIITNFQDPFSES-UHFFFAOYSA-N 25,26,27,28-tetrazahexacyclo[16.6.1.13,6.18,11.113,16.019,24]octacosa-1(25),2,4,6,8(27),9,11,13,15,17,19,21,23-tridecaene Chemical class N1C(C=C2C3=CC=CC=C3C(C=C3NC(=C4)C=C3)=N2)=CC=C1C=C1C=CC4=N1 MHIITNFQDPFSES-UHFFFAOYSA-N 0.000 claims description 2
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 claims description 2
- 101710088194 Dehydrogenase Proteins 0.000 claims description 2
- 241000196324 Embryophyta Species 0.000 claims description 2
- 108010029541 Laccase Proteins 0.000 claims description 2
- 229960002749 aminolevulinic acid Drugs 0.000 claims description 2
- 230000015556 catabolic process Effects 0.000 claims description 2
- 235000017168 chlorine Nutrition 0.000 claims description 2
- 125000001309 chloro group Chemical class Cl* 0.000 claims description 2
- VVOLVFOSOPJKED-UHFFFAOYSA-N copper phthalocyanine Chemical compound [Cu].N=1C2=NC(C3=CC=CC=C33)=NC3=NC(C3=CC=CC=C33)=NC3=NC(C3=CC=CC=C33)=NC3=NC=1C1=CC=CC=C12 VVOLVFOSOPJKED-UHFFFAOYSA-N 0.000 claims description 2
- 238000006731 degradation reaction Methods 0.000 claims description 2
- 238000000605 extraction Methods 0.000 claims description 2
- 229940088597 hormone Drugs 0.000 claims description 2
- 239000005556 hormone Substances 0.000 claims description 2
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 235000015097 nutrients Nutrition 0.000 claims description 2
- -1 phthalocyanines Chemical class 0.000 claims description 2
- 150000004032 porphyrins Chemical class 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 238000005067 remediation Methods 0.000 claims description 2
- YNHJECZULSZAQK-UHFFFAOYSA-N tetraphenylporphyrin Chemical class C1=CC(C(=C2C=CC(N2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3N2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 YNHJECZULSZAQK-UHFFFAOYSA-N 0.000 claims description 2
- 239000002699 waste material Substances 0.000 claims description 2
- 239000013067 intermediate product Substances 0.000 claims 3
- 239000000758 substrate Substances 0.000 claims 3
- 102000004366 Glucosidases Human genes 0.000 claims 1
- 108010056771 Glucosidases Proteins 0.000 claims 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims 1
- 238000009833 condensation Methods 0.000 claims 1
- 230000005494 condensation Effects 0.000 claims 1
- 238000000855 fermentation Methods 0.000 claims 1
- 230000004151 fermentation Effects 0.000 claims 1
- 239000007850 fluorescent dye Substances 0.000 claims 1
- 239000011521 glass Substances 0.000 claims 1
- 239000000825 pharmaceutical preparation Substances 0.000 claims 1
- 229940127557 pharmaceutical product Drugs 0.000 claims 1
- 229920000642 polymer Polymers 0.000 claims 1
- 239000000047 product Substances 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 claims 1
- 230000001133 acceleration Effects 0.000 abstract description 4
- 238000011161 development Methods 0.000 abstract description 3
- 238000002474 experimental method Methods 0.000 description 16
- 102000006995 beta-Glucosidase Human genes 0.000 description 15
- 108010047754 beta-Glucosidase Proteins 0.000 description 15
- 230000007423 decrease Effects 0.000 description 12
- CQRYARSYNCAZFO-UHFFFAOYSA-N salicyl alcohol Chemical compound OCC1=CC=CC=C1O CQRYARSYNCAZFO-UHFFFAOYSA-N 0.000 description 11
- 239000008367 deionised water Substances 0.000 description 10
- 229910021641 deionized water Inorganic materials 0.000 description 10
- 238000012360 testing method Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000002028 Biomass Substances 0.000 description 5
- 230000000813 microbial effect Effects 0.000 description 5
- 239000010802 sludge Substances 0.000 description 5
- NGFMICBWJRZIBI-JZRPKSSGSA-N Salicin Natural products O([C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O1)c1c(CO)cccc1 NGFMICBWJRZIBI-JZRPKSSGSA-N 0.000 description 4
- NGFMICBWJRZIBI-UHFFFAOYSA-N alpha-salicin Natural products OC1C(O)C(O)C(CO)OC1OC1=CC=CC=C1CO NGFMICBWJRZIBI-UHFFFAOYSA-N 0.000 description 4
- NGFMICBWJRZIBI-UJPOAAIJSA-N salicin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=CC=C1CO NGFMICBWJRZIBI-UJPOAAIJSA-N 0.000 description 4
- 229940120668 salicin Drugs 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- 101000874334 Dalbergia nigrescens Isoflavonoid 7-O-beta-apiosyl-glucoside beta-glycosidase Proteins 0.000 description 1
- 101000757733 Enterococcus faecalis (strain ATCC 700802 / V583) Autolysin Proteins 0.000 description 1
- 101000757734 Mycolicibacterium phlei 38 kDa autolysin Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 125000000188 beta-D-glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004177 carbon cycle Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229930187593 rose bengal Natural products 0.000 description 1
- AZJPTIGZZTZIDR-UHFFFAOYSA-L rose bengal Chemical compound [K+].[K+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 AZJPTIGZZTZIDR-UHFFFAOYSA-L 0.000 description 1
- 229940081623 rose bengal Drugs 0.000 description 1
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/10—Reclamation of contaminated soil microbiologically, biologically or by using enzymes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/68—Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F17/00—Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
- C05F17/20—Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation using specific microorganisms or substances, e.g. enzymes, for activating or stimulating the treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/02—Biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/06—Treatment of sludge; Devices therefor by oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/04—Oxidation reduction potential [ORP]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/02—Specific form of oxidant
- C02F2305/023—Reactive oxygen species, singlet oxygen, OH radical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/40—Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse
Definitions
- the present invention relates to a method for accelerating biocatalytic and / or hormonal processes in substances, for example aqueous media.
- the method is based on the fact that the water contained in the substance is activated with singlet oxygen or water is first activated with singlet oxygen and in a further step the
- Fabric is treated with this activated water.
- An exemplary use of this method are biocatalytic and / or hormonal processes in soils.
- a method for activating water is known from DE 198 55 881. This process is based on the excitation of, for example, atmospheric oxygen from the triplet to the singlet state.
- the energy stored in the oxygen in this way can be used in another Step, for example by introducing the oxygen into the water, to which water molecules are transferred (quenching).
- this energy transfer leads to a change in the structure of the hydrogen bonds, which could be shown by means of infrared spectra with characteristic band shifts.
- AquaNovalis activated water
- the present invention therefore has as its object to provide a method with which the targeted acceleration of biocatalytic and / or hormonal processes is made possible and can be implemented in a manner which is simple to practice.
- the process according to the invention is based on the fact that the water contained in an aqueous medium is activated with the aid of singlet oxygen.
- the water in the medium can thus be treated directly, so that the biocatalytic or hormonal processes in the medium are accelerated.
- water or an aqueous medium can also be treated and then added to the substance or material in which the biocatalytic or hormonal processes are to be accelerated.
- the water activated in this way is as follows also known as "AquaNovalis".
- the singlet oxygen can be generated photochemically in a gaseous, oxygen-containing medium and introduced into the aqueous medium for the subsequent activation. Generation directly in an oxygen-containing, aqueous medium is also possible.
- a photosensitizer is preferably introduced into the gaseous, oxygen-containing medium in order to enable subsequent generation of singlet oxygen by irradiation by a photochemical route.
- This photosensitizer is preferably selected from water-insoluble porphyrins, phthalocyanines, chlorines, tetraphenylporphyrins, benzoporphyrin derivatives, purpurins, pheophorbides and their metal complexes.
- copper (II) phthalocyanine, rose bengal and 5-aminolevulinic acid is particularly preferred.
- the irradiation to start the photochemical reaction can be carried out either by artificial light sources and / or solar radiation.
- the water can preferably be activated discontinuously at adjustable time intervals. It is also possible for the water to be activated simultaneously with the biocatalytic and / or hormonal processes.
- the biocatalysts and / or hormones are preferably pretreated with AquaNovalis before the reaction with the material. The dosage of the AquaNovalis depends on the respective biocatalytic and / or hormonal processes.
- the process of accelerating biocatalytic and / or hormonal processes can also be carried out in soils. Soils with a clay content above 15% by mass are preferred.
- the process for setting the redox potential in soils can be used here using the ratio between untreated and activated water (AquaNovalis). By adding AquaNovalis there is an increase in the redox potential.
- Accelerated nitrification can also be observed when using the AquaNovalis in soils.
- the use of the method for stimulating biocatalytic and / or hormonal processes can also extend to materials containing exogenous and endogenous enzymes. For example, the glucose, laccase, DMSO reductase and dehydrogenase activity is stimulated.
- Further fields of use of the present method are e.g. the degradation of hydrocarbons, waste treatment, remediation of contaminated sites, use in food and raw material extraction through biocatalytic processes, as well as generally all biocatalytic / hormonal processes that take place in aqueous media.
- Loess black earth from the Bad Lauch speed site was used to carry out the test.
- the samples come from the rAxp horizon (0-30 cm) of a test area that is fertilized annually with 100 dt of manure.
- the soil type was described as a strongly clayey silt. Accordingly, the grain size of this horizon consists of approx. 21% clay, approx. 68% silt and approx. 11% sand.
- the total carbon content (C t ) of the soil was 3.04%, the total carbon content (C t )
- the redox potential in the microcosms to which synthetic air moistened with deionized water was added rose continuously in the first nine days and reached an equilibrium state at approx. 550 mV.
- the concentration of ammonium decreases sharply during the test period.
- the variant with AquaNovalis sinks faster than the other variant (Fig. 2).
- the nitrite concentration increases in both variants in the first days after the start of the experiment, but decreases after four or five days and reaches concentrations that tend towards zero (Fig. 3).
- the AquaNovalis variant shows more than twice as high concentrations as the other two variants in the first days, but then shows a much faster drop in concentration from the fourth day on.
- Beta-glycosidase is an exogenous enzyme that is part of the carbon cycle and hydrolyzes carbohydrates with a beta-D-glucosidic bond by splitting off the terminal beta-D-glucose. With the help of beta-glucosidase, cellulose is broken down into cellobiose and glucose. sets.
- beta glucosidase 3 mg were dissolved in 300 ml AquaNovalis and deionized water.
- partial experiment 1 (FIG. 5) samples were taken immediately after addition of the enzyme and after 3 h and 6 h and the beta-glucosidase activity was determined according to HOFFMANN and DEDEKEN (1965).
- partial experiment 2 (FIG. 6), in addition to the beta-glucosidase (enzyme, 3 mg / 300 ml), 1.5 g of salicin were added as an additional energy source, and the beta-glucosidase activity immediately after addition of salicin and enzyme, after 3 hours and measured after 6 h.
- the enzyme (3 mg / 300 ml) was added immediately after activation. After 3 days, the salicin was added. Immediately afterwards and 3 h and 6 h after the addition of salicin, the beta-glucosidase was determined.
- the enzyme activity decreases from 376 ⁇ g saligenin / ml / 3 h to 236 or 183 ⁇ g saligenin / ml / 3 h during the course of the experiment. This corresponds to an overall decrease of 51%.
- the AquaNovalis variant showed a strong increase in enzyme activity during the course of the experiment (126% at 0 h, 216% after 3 h, 295% after 6 h) compared to the reference.
- the kinetics of the decrease in enzyme activity were significantly slower than in the AquaNovalis variant (851 ⁇ g saligenin / ml / 3 h after 0 h, 747 ⁇ g saligenin / ml / 3 h after 3 h, 723 ⁇ g saligenin / ml / 3 h after 6 h).
- the decrease during the course of the test was 15%.
- the enzyme activity of cellulose decomposers (beta-glucosidase) and the microbial biomass (DMSO reductase) were determined on the sludges of the microcosms (see FIG. 8). Compared to the original soil sample, all sludge variants showed a significant decrease in the microbial biomass. Of the sludges, the variant treated with atmospheric oxygen and the non-humidified one showed the same behavior. In the variant treated with moistened singlet oxygen, a slight but insignificant decrease in microbial biomass was recorded.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Tropical Medicine & Parasitology (AREA)
- Inorganic Chemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Mycology (AREA)
- Soil Sciences (AREA)
- Medicinal Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Verfahren zur Beschleunigung biokatalytischer und/oder hor oneller Prozesse und dessen Verwendung Process for the acceleration of biocatalytic and / or hor onal processes and its use
Die vorliegende Erfindung betrifft ein Verfahren zur Beschleunigung biokatalytischer und/oder hormoneller Prozesse in Stoffen, beispielsweise wäßrigen Medien. Das Verfahren beruht darauf, daß das in dem Stoff enthaltene Wasser mit Singulett-Sauerstoff aktiviert wird oder zunächst Wasser mit Singulett-Sauerstoff aktiviert wird und in einem weiteren Schritt derThe present invention relates to a method for accelerating biocatalytic and / or hormonal processes in substances, for example aqueous media. The method is based on the fact that the water contained in the substance is activated with singlet oxygen or water is first activated with singlet oxygen and in a further step the
Stoff mit diesem aktivierten Wasser behandelt wird. Eine beispielhafte Verwendung dieses Verfahren sind biokatalytische und/oder hormoneile Prozessen in Böden.Fabric is treated with this activated water. An exemplary use of this method are biocatalytic and / or hormonal processes in soils.
Aus der DE 198 55 881 ist ein Verfahren zur Aktivierung von Wasser bekannt. Dieses Verfahren basiert auf der Anregung von z.B. Luftsauerstoff vom Triplett- in den Singulett-Zustand. Die auf diese Weise im Sauer- stoff gespeicherte Energie kann in einem weiteren Schritt, z.B. indem der Sauerstoff in das Wasser eingeleitet wird, auf die Wassermoleküle übertragen werden (Quenching) . Wie aus der PCT/EP99/09488 bekannt ist, kommt es bei dieser Energieübertragung zu einer Veränderung der Struktur der Wasserstoffbrückenbindungen, was anhand von Infrarotspektren an charakteristischen Bandenverschiebungen gezeigt werden konnte. Eine Verwendung von aktiviertem Wasser (im folgenden als "AquaNovalis" bezeichnet) in biokatalyti- sehen Prozeßkreisläufen ist dagegen bis jetzt noch nicht bekannt.A method for activating water is known from DE 198 55 881. This process is based on the excitation of, for example, atmospheric oxygen from the triplet to the singlet state. The energy stored in the oxygen in this way can be used in another Step, for example by introducing the oxygen into the water, to which water molecules are transferred (quenching). As is known from PCT / EP99 / 09488, this energy transfer leads to a change in the structure of the hydrogen bonds, which could be shown by means of infrared spectra with characteristic band shifts. However, the use of activated water (hereinafter referred to as "AquaNovalis") in biocatalytic process cycles is not yet known.
Die vorliegende Erfindung stellt sich daher die Aufgabe, nun ein Verfahren bereitzustellen, mit dem die gezielte Beschleunigung biokatalytischer und/oder hormoneller Prozesse ermöglicht und in einfach zu praktizierender Weise umzusetzen ist.The present invention therefore has as its object to provide a method with which the targeted acceleration of biocatalytic and / or hormonal processes is made possible and can be implemented in a manner which is simple to practice.
Diese Aufgabe wird durch das gattungsgemäße Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Die Unteransprüche 2 bis 17 zeigen vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens auf. Die Verwendungen des Verfahrens werden in den Ansprüchen 18 bis 39 gegeben.This object is achieved by the generic method with the features of claim 1. The subclaims 2 to 17 show advantageous developments of the method according to the invention. The uses of the method are given in claims 18 to 39.
Das erfindungsgemäße Verfahren beruht darauf, daß eine Aktivierung des in einem wäßrigen Medium enthaltenen Wassers mit Hilfe von Singulett-Sauerstoff durchgeführt wird. So kann das Wasser in dem Medium unmit- telbar behandelt werden, so daß die biokatalytischen oder hormoneilen Prozesse in dem Medium beschleunigt werden. Zum anderen kann auch Wasser oder ein wäßriges Medium behandelt und anschließend zu dem Stoff bzw. Material zugegeben werden, in dem die biokataly- tischen bzw. hormoneilen Prozesse beschleunigt werden sollen. Das so aktivierte Wasser wird im folgenden auch als "AquaNovalis" bezeichnet.The process according to the invention is based on the fact that the water contained in an aqueous medium is activated with the aid of singlet oxygen. The water in the medium can thus be treated directly, so that the biocatalytic or hormonal processes in the medium are accelerated. On the other hand, water or an aqueous medium can also be treated and then added to the substance or material in which the biocatalytic or hormonal processes are to be accelerated. The water activated in this way is as follows also known as "AquaNovalis".
Der Singulett-Sauerstoff kann dabei in einem gasförmigen, sauerstoffhaltigen Medium photochemisch er- zeugt werden und für die anschließende Aktivierung in das wäßrige Medium eingeleitet werden. Auch eine Erzeugung unmittelbar in einem sauerstoffhaltigen, wäßrigen Medium ist möglich. Bevorzugt wird ein Photo- sensibilisator in das gasförmige, sauerstoffhaltige Medium eingebracht, um eine sich anschließende Erzeugung von Singulett-Sauerstoff durch Bestrahlung auf photochemischem Weg zu ermöglichen. Dieser Photosen- sibilisator ist bevorzugt ausgewählt aus wasserunlöslichen Porphyrinen, Phthalocyaninen, Chlorinen, Te- traphenylporphyrinen, Benzoporphyrin-Derivaten, Purpurinen, Pheophorbiden und deren Metallkomplexen. Besonders bevorzugt ist die Verwendung von Kupfer (II)- Phthalocyanin, Rose Bengal und 5-Aminolävulinsäure als Photosensibilisator .The singlet oxygen can be generated photochemically in a gaseous, oxygen-containing medium and introduced into the aqueous medium for the subsequent activation. Generation directly in an oxygen-containing, aqueous medium is also possible. A photosensitizer is preferably introduced into the gaseous, oxygen-containing medium in order to enable subsequent generation of singlet oxygen by irradiation by a photochemical route. This photosensitizer is preferably selected from water-insoluble porphyrins, phthalocyanines, chlorines, tetraphenylporphyrins, benzoporphyrin derivatives, purpurins, pheophorbides and their metal complexes. The use of copper (II) phthalocyanine, rose bengal and 5-aminolevulinic acid as photosensitizer is particularly preferred.
Die Bestrahlung zum Starten der photochemischen Reaktion kann dabei entweder durch künstliche Lichtquellen und/oder Sonneneinstrahlung durchgeführt werden.The irradiation to start the photochemical reaction can be carried out either by artificial light sources and / or solar radiation.
Bevorzugt kann die Aktivierung des Wassers diskontinuierlich in einstellbaren Zeitintervallen erfolgen. Ebenso ist es möglich, daß die Aktivierung des Wassers gleichzeitig mit den biokatalytischen und/oder hormoneilen Prozessen erfolgt. Vorzugsweise werden die Biokatalysatoren und/oder Hormone vor der Umsetzung mit dem Material mit AquaNovalis vorbehandelt. Die Dosierung des AquaNovalis hängt dabei von den jeweiligen biokatalytischen und/oder hormoneilen Prozessen ab.The water can preferably be activated discontinuously at adjustable time intervals. It is also possible for the water to be activated simultaneously with the biocatalytic and / or hormonal processes. The biocatalysts and / or hormones are preferably pretreated with AquaNovalis before the reaction with the material. The dosage of the AquaNovalis depends on the respective biocatalytic and / or hormonal processes.
Das Verfahren zur Beschleunigung biokatalytischer und/oder hormoneller Prozesse kann auch in Böden durchgeführt. Hierbei sind vor allem Böden mit einem Tongehalt über 15 Masse-% bevorzugt. Dabei kann das Verfahren zur Einstellung des Redoxpotentials in Bö- den über das Verhältnis zwischen unbehandeltem und aktiviertem Wasser (AquaNovalis) genutzt werden. Durch Zugabe von AquaNovalis kommt es dabei zu einer Erhöhung des Redoxpotentials.The process of accelerating biocatalytic and / or hormonal processes can also be carried out in soils. Soils with a clay content above 15% by mass are preferred. The process for setting the redox potential in soils can be used here using the ratio between untreated and activated water (AquaNovalis). By adding AquaNovalis there is an increase in the redox potential.
Ebenso ist eine beschleunigte Nitrifikation bei Verwendung des AquaNovalis in Böden zu beobachten. Die Verwendung des Verfahrens zur Anregung biokatalytischer und/oder hormoneller Prozesse kann sich ebenso auf exogene wie endogene Enzyme enthaltende Materia- lien erstrecken. So wird beispielsweise die Glukosi- dase-, Laccase-, DMSO-Reduktase- und Dehydrogenase- Aktivität angeregt.Accelerated nitrification can also be observed when using the AquaNovalis in soils. The use of the method for stimulating biocatalytic and / or hormonal processes can also extend to materials containing exogenous and endogenous enzymes. For example, the glucose, laccase, DMSO reductase and dehydrogenase activity is stimulated.
Weitere Verwendungsfeider des vorliegenden Verfahrens sind z.B. der Abbau von Kohlenwasserstoffen, die Abfallbehandlung, die Altlastensanierung, die Verwendung in Lebensmitteln sowie die Rohstoffgewinnung durch biokatalytische Prozesse, sowie generell alle biokatalytischen/hormonellen Prozesse, die in wäßri- gen Medien ablaufen.Further fields of use of the present method are e.g. the degradation of hydrocarbons, waste treatment, remediation of contaminated sites, use in food and raw material extraction through biocatalytic processes, as well as generally all biocatalytic / hormonal processes that take place in aqueous media.
Anhand der folgenden Beispiele und Figuren soll das Verfahren näher erläutert werden, um weitere vorteilhafte Weiterbildungen aufzuzeigen, ohne das Verfahren dadurch einzuschränken.The method is to be explained in more detail with the aid of the following examples and figures, in order to show further advantageous developments, without thereby restricting the method.
Beispiel 1example 1
Oxidations- und Reduktionsreaktionen im Boden bestimmen maßgeblich die Verfügbarkeit von Nährstoffen für Pflanzen.Oxidation and reduction reactions in the soil largely determine the availability of nutrients for Plants.
Von großer Bedeutung für die Intensität der Reduktionsprozesse ist der Gehalt des Bodens an organischer Substanz. Eine Überstauung des Bodens führt zum Absinken des Redoxpotentials. Stellt man dem überstauten Boden wieder Sauerstoff zur Verfügung (wie in unserem Versuch geschehen) laufen die oben genannten Prozesse rückwärts ab. Durch den Anstieg des Redoxpo- tentials laufen nun Oxidationsprozesse ab.The soil content of organic matter is of great importance for the intensity of the reduction processes. Clogging the soil leads to a reduction in the redox potential. If oxygen is once again made available to the flooded soil (as happened in our experiment), the above-mentioned processes run backwards. Oxidation processes are now taking place due to the increase in the redox potential.
Zur Durchführung des Versuches wurde Löß-Schwarzerde vom Standort Bad Lauchstädt verwendet. Die Proben stammen aus dem rAxp-Horizont (0-30 cm) einer Ver- suchsfläche, die jährlich mit 100 dt Stallmist gedüngt wird. Die Bodenart wurde als stark toniger Schluff beschrieben. Demnach setzt sich die Körnung dieses Horizontes aus ca. 21 % Ton, ca. 68 % Schluff und ca. 11 % Sand zusammen. Der Gesamt-Kohlenstoff- gehalt (Ct) des Bodens betrug 3,04 %, der Gesamt-Loess black earth from the Bad Lauchstädt site was used to carry out the test. The samples come from the rAxp horizon (0-30 cm) of a test area that is fertilized annually with 100 dt of manure. The soil type was described as a strongly clayey silt. Accordingly, the grain size of this horizon consists of approx. 21% clay, approx. 68% silt and approx. 11% sand. The total carbon content (C t ) of the soil was 3.04%, the total
Stickstoffgehalt 0,26 % . Der pH-Wert (CaCl2) beträgt 6,2.Nitrogen content 0.26%. The pH (CaCl 2 ) is 6.2.
Es wurden 200g Boden in biogeochemischen Mikrokosmen in 2 1 destilliertem Wasser gelöst und während der gesamten Versuchsdauer gerührt. Die Untersuchungen wurden unter Laborbedingungen in biogeochemische Mikrokosmen durchgeführt, da diese über geregelte Gasphasen-, pH-, Temperatur- und Eh-Bedingungen verfügen und eine Einstellung quasi natürlicher Feldbedingungen dieser Parameter erlauben. Das Redoxpotential dieser Bodensuspension konnte durch Zugabe von Sauerstoff bzw. Stickstoff reguliert werden. Vor Versuchsbeginn wurde mit Hilfe von Stickstoff (N2) ein Redox- potential von 0 mV eingestellt. Nach der Einregulierung des Redoxpotentials wurden jeweils zwei der vier Mikrokosmen kontinuierlich mit AquaNovalis befeuchtete Luft bzw. mit deionisiertem Wasserdampf befeuchtete Luft zugeführt.200 g of soil were dissolved in biogeochemical microcosms in 2 l of distilled water and stirred for the entire duration of the experiment. The investigations were carried out under laboratory conditions in biogeochemical microcosms, as these have controlled gas phase, pH, temperature and E h conditions and allow the setting of quasi-natural field conditions for these parameters. The redox potential of this soil suspension could be regulated by adding oxygen or nitrogen. Before the start of the experiment, a redox potential of 0 mV was set using nitrogen (N 2 ). After the redox potential had been adjusted, two of the four microcosms were fed with air continuously humidified with AquaNovalis or air humidified with deionized water vapor.
Die Probenahme erfolgte einmal täglich über einen Zeitraum von zwei Wochen. Aus jedem Mikrokosmos wurden dabei je 30 ml Bodensuspension entnommen, zentri- fugiert und filtriert. Die Bodenlösungen wurden an- schließend am EPOS-Analyzer spektralphotometrisch auf ihren Gehalt an NH4 +,N03 ~ und N02 " untersucht. Das Redoxpotential sowie die Temperatur und der pH-Wert wurden alle 15 min online gemessen.Samples were taken once a day for a period of two weeks. 30 ml of soil suspension were removed from each microcosm, centrifuged and filtered. The soil solutions were then examined spectrophotometrically on the EPOS analyzer for their content of NH 4 + , N0 3 ~ and N0 2 " . The redox potential as well as the temperature and pH were measured online every 15 minutes.
a) Redoxpotentiala) Redox potential
In den ersten Tagen nach Versuchsbeginn konnte ein relativ schneller Anstieg des Redoxpotentials beobachtet werden.A relatively rapid increase in the redox potential was observed in the first days after the start of the experiment.
Das Redoxpotential in den Mikrokosmen, denen mit deionisiertem Wasser befeuchtete synthetische Luft zugefügt wurde, stieg in den ersten neun Tagen kontinuierlich an und erreichte bei ca. 550 mV einen Gleichgewichtszustand.The redox potential in the microcosms to which synthetic air moistened with deionized water was added rose continuously in the first nine days and reached an equilibrium state at approx. 550 mV.
In der Variante, bei der AquaNovalis verwendet wurde, stieg das Redoxpotential deutlich schneller auf höhere Eh-Werte um 600 mV an (Fig.l) .In the variant in which AquaNovalis was used, the redox potential increased significantly faster to higher Eh values by 600 mV (Fig. 1).
Der Versuch zeigt, daß durch AquaNovalis ein höheres Redoxpotential bei Anwesenheit von Mikroorganismen bzw. deren Biokatalysatoren erreichbar ist. Hierdurch können biologische Umsetzungen beschleunigt werden. b) NitrifikationThe experiment shows that AquaNovalis achieves a higher redox potential in the presence of microorganisms or their biocatalysts. This can accelerate biological conversions. b) nitrification
Die Konzentration an Ammonium nimmt während der Versuchsdauer stark ab. Die Variante mit AquaNovalis sinkt schneller ab als die andere Variante (Fig.2).The concentration of ammonium decreases sharply during the test period. The variant with AquaNovalis sinks faster than the other variant (Fig. 2).
Die Nitritkonzentration steigt bei beiden Varianten in den ersten Tagen nach Versuchsbeginn an, sinkt aber nach vier bzw. fünf Tagen und erreicht gegen Null tendierende Konzentrationen (Fig.3). Die AquaNo- valis-Variante zeigt in den ersten Tagen mehr als doppelt so hohe Konzentrationen wie die anderen beiden Varianten, weist dann aber ab dem vierten Tag einen wesentlich schnelleren Konzentrationsabfall auf.The nitrite concentration increases in both variants in the first days after the start of the experiment, but decreases after four or five days and reaches concentrations that tend towards zero (Fig. 3). The AquaNovalis variant shows more than twice as high concentrations as the other two variants in the first days, but then shows a much faster drop in concentration from the fourth day on.
Die Nitratkonzentration stieg während der gesamten Versuchsdauer in allen Varianten an. Die mit AquaNovalis belüftete Variante wies zu Versuchsbeginn die schnellste Konzentrationszunahme auf, zeigte aber ge- gen Ende des Versuches Konzentrationen, die unterhalb der Nitratgehalte der anderen Variante liegt (Fig.4).The nitrate concentration rose in all variants during the entire test period. The variant aerated with AquaNovalis showed the fastest increase in concentration at the beginning of the experiment, but showed concentrations towards the end of the experiment that are below the nitrate content of the other variant (Fig. 4).
Die Ammonium-, Nitrit- und Nitratkonzentrationsunterschiede zwischen mit AquaNovalis und normalen Wasser- dampf durchlüftenden Mikrokosmen belegen die Beschleunigung der Nitrifikation durch AquaNovalis.The ammonium, nitrite and nitrate concentration differences between microcosms aerated with AquaNovalis and normal water vapor demonstrate the acceleration of nitrification by AquaNovalis.
Beispiel 2Example 2
Die beta-Glykosidase stellt ein exogenes Enzym dar, welches dem Kohlenstoffkreislauf angehört und Kohlenhydrate mit beta-D-glukosidischer Bindung hydroli- siert, in dem es die terminale beta-D-Glukose abspal- tet. So wird mit Hilfe der beta-Glukosidase die Cel- lulose über die Cellobiose bis hin zur Glukose zer- legt.Beta-glycosidase is an exogenous enzyme that is part of the carbon cycle and hydrolyzes carbohydrates with a beta-D-glucosidic bond by splitting off the terminal beta-D-glucose. With the help of beta-glucosidase, cellulose is broken down into cellobiose and glucose. sets.
In jeweils 300 ml AquaNovalis bzw. deionisiertem Wasser wurden jeweils 3 mg beta Glukosidase gelöst. Im Teilversuch 1 (Fig. 5) wurden unmittelbar nach Zugabe des Enzyms sowie nach 3 h und 6 h Proben genommen und die beta-Glukosidaseaktivität nach HOFFMANN und DEDE- KEN (1965) bestimmt. Im Teilversuch 2 (Fig. 6) wurden neben der beta-Glukosidase (Enzym, 3 mg/300 ml) noch 1,5 g Salicin als zuzügliche Energiequelle zugegeben und die beta-Glukosidaseaktivität unmittelbar nach Zugabe von Salicin und Enzym, nach 3 h und nach 6 h vermessen.3 mg beta glucosidase were dissolved in 300 ml AquaNovalis and deionized water. In partial experiment 1 (FIG. 5), samples were taken immediately after addition of the enzyme and after 3 h and 6 h and the beta-glucosidase activity was determined according to HOFFMANN and DEDEKEN (1965). In partial experiment 2 (FIG. 6), in addition to the beta-glucosidase (enzyme, 3 mg / 300 ml), 1.5 g of salicin were added as an additional energy source, and the beta-glucosidase activity immediately after addition of salicin and enzyme, after 3 hours and measured after 6 h.
Unmittelbar nach der Aktivierung erfolgte die Zugabe des Enzyms (3 mg/300 ml) . Nach 3 Tagen erfolgte die Zugabe des Salicins. Unmittelbar danach und 3 h und 6 h nach Salicinzugabe erfolgte die beta- Glukosidasebestimmung.The enzyme (3 mg / 300 ml) was added immediately after activation. After 3 days, the salicin was added. Immediately afterwards and 3 h and 6 h after the addition of salicin, the beta-glucosidase was determined.
Sämtliche Versuche wurden in jeweils 8 Wiederholungen durchgeführt.All experiments were carried out in 8 repetitions.
In Fig. 5 bleibt der Verlauf der Enzymaktivität in der Referenz (deionisiertes Wasser) während des Versuchsverlaufes mit 748 μg Saligenin/ml/3 h am Versuchsbeginn und 714 bzw. 774 nach 3 bzw. 6 h relativ konstant (leichte Zunahme um 3 %) .5, the course of the enzyme activity in the reference (deionized water) remains relatively constant during the course of the test with 748 μg saligenin / ml / 3 h at the start of the test and 714 or 774 after 3 or 6 h (slight increase of 3%) ,
In der Variante AquaNovalis kam es zu einer anfänglichen starken Erhöhung der Enzymaktivität auf 882 μg Saligenin/ml/3 h, was einer Erhöhung um 18 % im Vergleich zum deionisierten Wasser entspricht. Aufgrund einer fehlenden Energiequelle sinkt die beta- Glukosidaseaktivität dann im Versuchsverlauf auf 699 bzw. 634 μg Saligenin/ml/3 h ab. Im gesamten Ver- suchsverlauf kommt das einer Abnahme um 28 % gleich.In the AquaNovalis variant, there was an initial strong increase in enzyme activity to 882 μg saligenin / ml / 3 h, which corresponds to an increase of 18% compared to deionized water. Due to the lack of an energy source, the beta-glucosidase activity then drops to 699 or 634 μg saligenin / ml / 3 h in the course of the experiment. In the entire sales search history is equivalent to a decrease of 28%.
In Fig. 6 nimmt bei der Referenz (deionisiertes Wasser) die Enzymaktivität während des Versuchsverlaufes von 376 μg Saligenin/ml/3 h auf 236 bzw. 183 μg Sali- genin/ml/3 h ab. Dies entspricht einer Gesamtabnahme von 51 %.In the case of the reference (deionized water) in FIG. 6, the enzyme activity decreases from 376 μg saligenin / ml / 3 h to 236 or 183 μg saligenin / ml / 3 h during the course of the experiment. This corresponds to an overall decrease of 51%.
Die Variante AquaNovalis zeigte während des Versuchs- Verlaufes eine starke Erhöhung der Enzymaktivität (126 % bei 0 h, 216 % nach 3 h, 295 % nach 6 h) im Vergleich zur Referenz. Im Versuchsverlauf kam es zu einer im Vergleich zur Variante AquaNovalis deutlich langsameren Kinetik der Abnahme der Enzymaktivität (851 μg Saligenin/ml/3 h nach 0 h, 747 μg Salige- nin/ml/3 h nach 3 h, 723 μg Saligenin/ml/3 h nach 6 h) . Die Abnahme während des Versuchsverlaufes betrug 15 %.The AquaNovalis variant showed a strong increase in enzyme activity during the course of the experiment (126% at 0 h, 216% after 3 h, 295% after 6 h) compared to the reference. In the course of the experiment, the kinetics of the decrease in enzyme activity were significantly slower than in the AquaNovalis variant (851 μg saligenin / ml / 3 h after 0 h, 747 μg saligenin / ml / 3 h after 3 h, 723 μg saligenin / ml / 3 h after 6 h). The decrease during the course of the test was 15%.
Der Verlauf der Referenz in Fig. 7 mit deionisiertem Wasser ist identisch zur Fig.6. Auch 3 Tage nach Herstellung zeigte AquaNovalis noch eine im Vergleich zum deionisiertem Wasser deutlich erhöhte Enzymaktivität (793 μg Saligenin/ml/3 h, 110 % höhere Aktivi- tat als deionisiertes Wasser) , die dann allerdings nach 3 h und 6 h deutlich abnahm (530 μg Sali- genin/ml/3 h nach 3 h und 362 μg Saligenin/ml/3h nach 6h) aber immer noch deutlich höher als die Variante deionisiertes Wasser (114 % nach 3 h, 97 % nach 6 h) lag. Die Gesamtabnahme der Enzymaktivität bei AquaNovalis betrug 54 % während des Versuchsverlaufes.The course of the reference in FIG. 7 with deionized water is identical to that of FIG. 6. Even 3 days after production, AquaNovalis showed a significantly increased enzyme activity compared to deionized water (793 μg saligenin / ml / 3 h, 110% higher activity than deionized water), which then decreased significantly after 3 h and 6 h ( 530 μg saligenin / ml / 3 h after 3 h and 362 μg saligenin / ml / 3 h after 6 h) but still significantly higher than the variant deionized water (114% after 3 h, 97% after 6 h). The total decrease in enzyme activity at AquaNovalis was 54% during the course of the experiment.
Im Vergleich zur Originalbodenprobe zeigten alle Schlammvarianten einen deutlichen Rückgang der mikro- biellen Biomasse. Von den Schlämmen zeigte die mit Luftsauerstoff behandelte und die nicht befeuchtete Variante ein gleiches Verhalten. In der mit befeuchtetem Singulettsauerstoff behandelten Variante wurde ein leichter aber nicht signifikanter Rückgang der mikrobiellen Biomasse verzeichnet (zu geringe Stich- probenzahl für gesicherte Aussage) .Compared to the original soil sample, all sludge variants showed a significant decrease in microbial biomass. Of the sludges, the one treated with atmospheric oxygen and the one not moistened Variant same behavior. In the variant treated with moistened singlet oxygen, there was a slight but insignificant decline in microbial biomass (insufficient number of samples for reliable information).
Im Vergleich zur Originalbodenprobe zeigten alle Schlammvarianten einen deutlichen Anstieg der beta-Glukosidaseaktivität. Im Vergleich zur mit Luft- Sauerstoff behandelten Variante zeigte auch hier die mit nicht befeuchtetem Singulettsauerstoff behandelte Variante einen leichten (nicht signifikanten) Anstieg der beta-Glukosidaseaktivität. Deutlich ist dieser Effekt in der Variante mit befeuchtetem Singulettsau- erstoff zu beobachten. Hier kommt es zu einer Erhöhung der beta-Glukosidaseaktivität um 40 % im Vergleich zum Originalboden bzw. 17 % im Vergleich zur mit Luftsauerstoff behandelten Variante (der eigentlichen Null) .All sludge variants showed a significant increase in beta-glucosidase activity compared to the original soil sample. In comparison to the variant treated with air-oxygen, the variant treated with non-humidified singlet oxygen also showed a slight (insignificant) increase in beta-glucosidase activity. This effect can be clearly observed in the variant with moistened singlet oxygen. Here there is an increase in beta-glucosidase activity by 40% compared to the original soil or 17% compared to the variant treated with atmospheric oxygen (the actual zero).
Beispiel 3Example 3
An den Schlämmen der Mikrokosmen wurden die Enzymaktivität von Zellulosezersetzern (beta-Glukosidase) und die mikrobielle Biomasse (DMSO-Reduktase) bestimmt (s. Fig. 8). Im Vergleich zur Originalbodenprobe zeigten alle Schlammvarianten einen deutlichen Rückgang der mikrobiellen Biomasse. Von den Schlämmen zeigte die mit Luftsauerstoff behandelte und die nicht befeuchtete Variante ein gleiches Verhalten. In der mit befeuchtetem Singulettsauerstoff behandelten Variante wurde ein leichter aber nicht signifikanter Rückgang der mikrobiellen Biomasse verzeichnet.The enzyme activity of cellulose decomposers (beta-glucosidase) and the microbial biomass (DMSO reductase) were determined on the sludges of the microcosms (see FIG. 8). Compared to the original soil sample, all sludge variants showed a significant decrease in the microbial biomass. Of the sludges, the variant treated with atmospheric oxygen and the non-humidified one showed the same behavior. In the variant treated with moistened singlet oxygen, a slight but insignificant decrease in microbial biomass was recorded.
Fig. 9 zeigt den Verlauf der beta-Glukosidaseaktivität in Abhängigkeit von der zugegebenen Sauer- stoffart gemessen in Schlamm im Vergleich zur unbe- handelten Bodenprobe. Im Vergleich zur Originalbodenprobe zeigten alle Schlammvarianten einen deutlichen Anstieg der beta-Glukosidaseaktivität. Im Vergleich zur mit Luftsauerstoff behandelten Variante zeigte auch hier die mit nicht befeuchtetem Singulettsauer- stoff behandelte Variante einen leichten (nicht signifikanten) Anstieg der beta-Glukosidaseaktivität. Deutlich ist dieser Effekt in der Variante mit be- feuchtetem Singulettsauerstoff zu beobachten. Hier kommt es zu einer Erhöhung der beta- Glukosidaseaktivität um 40% im Vergleich zum Originalboden bzw. 17% im Vergleich zur mit Luftsauerstoff behandleten Variante (der eigentlichen Null) . 9 shows the course of the beta-glucosidase activity as a function of the added acid. Type of substance measured in sludge compared to the untreated soil sample. All sludge variants showed a significant increase in beta-glucosidase activity compared to the original soil sample. In comparison to the variant treated with atmospheric oxygen, the variant treated with non-moistened singlet oxygen also showed a slight (insignificant) increase in beta-glucosidase activity. This effect can be clearly observed in the variant with moistened singlet oxygen. Here there is an increase in beta-glucosidase activity by 40% compared to the original floor or 17% compared to the variant treated with atmospheric oxygen (the actual zero).
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2000164064 DE10064064A1 (en) | 2000-12-21 | 2000-12-21 | Process for accelerating biocatalytic and / or hormonal processes and its use |
DE10064064 | 2000-12-21 | ||
PCT/EP2001/014872 WO2002049969A2 (en) | 2000-12-21 | 2001-12-17 | Method for accelerating biocatalytic and/or hormonal processes and use of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1351892A2 true EP1351892A2 (en) | 2003-10-15 |
Family
ID=7668307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01989600A Ceased EP1351892A2 (en) | 2000-12-21 | 2001-12-17 | Method for accelerating biocatalytic and/or hormonal processes and use of the same |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1351892A2 (en) |
AU (1) | AU2002228009A1 (en) |
DE (1) | DE10064064A1 (en) |
WO (1) | WO2002049969A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202009001015U1 (en) * | 2009-01-28 | 2009-04-02 | Melitta Haushaltsprodukte Gmbh & Co. Kg | tank |
WO2024020197A1 (en) * | 2022-07-22 | 2024-01-25 | The Children's Medical Center Corporation | Gut microbiome bacteria and enzymes that metabolize dietary and medicinal plant small molecules to affect gut microbiome |
DE102023107863A1 (en) | 2023-03-28 | 2024-10-02 | Mercaform Holding GmbH | Energy-saving disinfection and oxidation system for water treatment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000032520A1 (en) * | 1998-12-03 | 2000-06-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for activating water and use of activated water of this type |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4137761A1 (en) * | 1991-05-17 | 1992-11-19 | Call Hans Peter | METHOD FOR DELIGNIFYING LIGNOCELLULOSE-CONTAINING MATERIAL, BLEACHING AND TREATING WASTEWATER BY LACCASE WITH EXTENDED EFFECTIVENESS |
IT1251640B (en) * | 1991-10-28 | 1995-05-17 | Ausimont Spa | PROCESS FOR OXIDIZING AROMATIC AND ALIPHATIC COMPOUNDS |
JP3639875B2 (en) * | 1993-04-27 | 2005-04-20 | 株式会社ビスタ | Plant growth regulator treated with active oxygen group, its production method and its use |
JP3642434B2 (en) * | 1994-04-15 | 2005-04-27 | 株式会社ビスタ | How to use special active water for plants |
EP0717143A1 (en) * | 1994-12-16 | 1996-06-19 | Lignozym GmbH | Multicomponents system for modifying decomposing or bleaching of lignin or materials containing it or similar components and the way to use it |
DE19606081A1 (en) * | 1996-02-19 | 1997-08-21 | Schaffer Moshe Dr Med | Composition for combating bacteria, algae, yeast and fungi in water |
DE19701961A1 (en) * | 1997-02-22 | 1998-12-24 | Adolf Dipl Chem Metz | Bio-catalyst additive for liquid hydrocarbon fuels |
DE19835457A1 (en) * | 1998-08-05 | 2000-02-17 | Fraunhofer Ges Forschung | Device for the photoactivated production of singlet oxygen and method for producing the device |
AT408440B (en) * | 1999-04-26 | 2001-11-26 | Dsm Fine Chem Austria Gmbh | SINGLET OXYGEN OXIDATION OF ORGANIC SUBSTANCES |
FR2798137A1 (en) * | 1999-09-07 | 2001-03-09 | Bonneau Marguerite Gabr Calone | GENERATING APPARATUS FOR OXYGENIC CHEMICAL RADICALS AND INDUSTRIAL APPLICATIONS |
-
2000
- 2000-12-21 DE DE2000164064 patent/DE10064064A1/en not_active Withdrawn
-
2001
- 2001-12-17 EP EP01989600A patent/EP1351892A2/en not_active Ceased
- 2001-12-17 AU AU2002228009A patent/AU2002228009A1/en not_active Abandoned
- 2001-12-17 WO PCT/EP2001/014872 patent/WO2002049969A2/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000032520A1 (en) * | 1998-12-03 | 2000-06-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for activating water and use of activated water of this type |
Non-Patent Citations (1)
Title |
---|
See also references of WO0249969A3 * |
Also Published As
Publication number | Publication date |
---|---|
AU2002228009A1 (en) | 2002-07-01 |
WO2002049969A3 (en) | 2003-01-30 |
WO2002049969A2 (en) | 2002-06-27 |
DE10064064A1 (en) | 2002-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69309845T2 (en) | Composition and method for dehalogenation and degradation of organic halogen contaminants | |
DE69602085T2 (en) | METHOD FOR DEGRADING IMPURITIES FROM NITROAROMATIC COMPOUNDS | |
DE3441085C2 (en) | Method for increasing the biological activity or metabolic activity of microorganisms in a liquid culture by means of alternating current | |
EP0554255B1 (en) | Device for feeding gaseous substances into liquids | |
DE69320473T2 (en) | Process for the treatment of a liquid nitrogen-rich waste product, fertilizer solution produced by this process and its production | |
EP2619157B1 (en) | Method for the production of a fertilizer precursor and also of a fertilizer | |
DE2757826A1 (en) | METHOD FOR CARRYING OUT BIOCHEMICAL REACTIONS WITH THE AID OF MICRO-ORGANISMS | |
Luu et al. | Effects of carbon input quality and timing on soil microbe mediated processes | |
DE3125944C2 (en) | ||
DE69421254T2 (en) | Process for the degradation of an organochlorine compound and environmental remediation using microorganisms | |
DE2606660A1 (en) | PROCEDURE FOR ATTENUATING BACTERIA IN THEIR VIRULANCE AND PRODUCTS OF INACTIVATED BACTERIA | |
CH638470A5 (en) | METHOD FOR DEGRADING CYANURIC ACID. | |
WO2002049969A2 (en) | Method for accelerating biocatalytic and/or hormonal processes and use of the same | |
Gunnison et al. | THE RHIZOSPHERE ECOLOGY OF SUBMERSED MACROPHYTES 1 | |
DE3724027C2 (en) | ||
JPH06505634A (en) | Solid phase culture of white rot bacteria | |
DE3781701T2 (en) | PRODUCTION OF CYANIDE HYDRATASE. | |
JPH09308494A (en) | Production of lactic acid | |
DE19880157B4 (en) | A method of preparing a microorganism mixture for binding atmospheric nitrogen, increasing the solubility of phosphorus compounds and decomposing food oil sediment and said mixture | |
EP1129206B1 (en) | Fermentation residue decomposition | |
DE3711598C2 (en) | ||
EP1091917A1 (en) | Method for nitrogen-saturated immobilization of waste materials and fibrous materials based on raw materials containing lignocellulose from after-growing raw materials for utilization as peat substitutes | |
DE4239796A1 (en) | Stimulation of biological, esp. microbiological processes - by irradiation with light, esp. laser light applied briefly at intervals, useful in the prodn. of fermented milk prods. | |
CN106833673A (en) | A kind of straw biomass charcoal soil conditioner containing sludge | |
KR20000024367A (en) | Fertilizer manufacturing method of soils made from microorganism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030526 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UFZ-UMWELTFORSCHUNGSZENTRUM LEIPZIG-HALLE GMBH Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND |
|
17Q | First examination report despatched |
Effective date: 20040212 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20050421 |