EP1336742B1 - Verfahren zur Zwangsanregung bei einer Lambdaregelung - Google Patents

Verfahren zur Zwangsanregung bei einer Lambdaregelung Download PDF

Info

Publication number
EP1336742B1
EP1336742B1 EP20030002339 EP03002339A EP1336742B1 EP 1336742 B1 EP1336742 B1 EP 1336742B1 EP 20030002339 EP20030002339 EP 20030002339 EP 03002339 A EP03002339 A EP 03002339A EP 1336742 B1 EP1336742 B1 EP 1336742B1
Authority
EP
European Patent Office
Prior art keywords
amplitude
frequency
values
function
operating temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20030002339
Other languages
English (en)
French (fr)
Other versions
EP1336742A3 (de
EP1336742A2 (de
Inventor
Dietmar Ellmer
Thorsten Lauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1336742A2 publication Critical patent/EP1336742A2/de
Publication of EP1336742A3 publication Critical patent/EP1336742A3/de
Application granted granted Critical
Publication of EP1336742B1 publication Critical patent/EP1336742B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors

Definitions

  • the invention relates to a method for the forced excitation of a lambda control, with which an error in a lambda probe is detected.
  • a method for the diagnosis of a lambda probe is known.
  • a lambda probe arranged upstream of a catalytic converter is diagnosed.
  • the lambda probe to be diagnosed has a continuous characteristic in its output signal.
  • a periodic forced excitation with predetermined frequency and amplitude is superimposed to a lambda setpoint.
  • a model of the lambda control circuit depicts its track behavior, one of the model parameters representing the sensor delay time. From the amplitude gains that result for the model and system in the forced excitation, the model values, in particular the model value for the sensor delay time are adapted.
  • the lambda probe is detected as defective if the value for the change of the model parameter exceeds a predetermined threshold value. This means that a fault of the lambda probe is detected in the case of an excessive adaptation of the sensor delay time. In this way, the operation of the lambda probe in the lambda control circuit can be checked continuously.
  • the stoichiometric desired value for the air ratio is subjected to a forced excitation for the linear lambda control.
  • the deviation from the stoichiometric setpoint alternately have a lean and rich shift.
  • O 2 oxygen storage of the catalyst is filled, O 2 is stored, while in the fat shift the catalyst is emptied again.
  • This filling and emptying process depends on the setpoint shift (amplitude of the forced excitation) and the duration of the shift. It is known to perform the forcible excitation in a time-based approach with equal amplitude and duration for fat and lean excitation.
  • the invention has for its object to provide a method for the forced excitation of a lambda probe in an internal combustion engine, which does not adversely affect the exhaust emission and ensures good exhaust gas conversion over wide operating ranges.
  • the selection of the values for amplitude and frequency of the forced excitation takes place as a function of an operating temperature of the internal combustion engine.
  • This solution of the object of the invention is based on the finding that the known forced excitation leads for some operating states to a poor conversion of the exhaust gases.
  • the values depend on amplitude and / or frequency of the forced excitation from the operating temperature of the cooling water. So far, it is common that the amplitude and frequency of the forced excitation refer to a cooling water temperature of 85 ° C.
  • the frequency and the amplitude are adapted to the changed lambda control loop.
  • the values for amplitude and / or frequency may also be determined depending on the temperature of the cylinder head and / or the oil temperature for the forced excitation. In addition to the operating temperature, the air mass and the rotational speed of predetermined temperature values are preferably taken into account.
  • a schematically illustrated internal combustion engine 10 sucks air via an intake tract 12 in the direction of the arrow.
  • the leaked from the internal combustion engine 10 air is via an exhaust tract 14 in passed a three-way catalyst 16.
  • a first oxygen probe 18 is provided, whose output signal depends continuously on the air ratio lambda in the exhaust gas flow.
  • the oxygen sensors are also referred to as lambda probes.
  • a second lambda probe 20 is arranged, which can check the catalyst efficiency and be designed as a linear probe or a so-called jump probe.
  • the signals of the lambda probes 18 and 20 are forwarded to a lambda control device 22, which closes from the two signals supplied to the efficiency of the catalyst 16 and thus to the conversion of the exhaust gases.
  • the lambda control device determines a desired lambda value as a manipulated variable and forwards it to the motor controller 24. Furthermore, the lambda control device may have a model for the behavior of the control path.
  • the model includes, as a model parameter, the sensor delay time.
  • the transfer function of the lambda control path has a behavior such as the series connection of two delay elements of the first order and a dead time element.
  • the frequency and amplitude are determined as a function of the rotational speed and load and the operating temperature of the internal combustion engine.
  • FIG. 2 shows the lambda desired value over time.
  • the desired lambda value fluctuates around the mean value 26 at which stoichiometric combustion takes place.
  • the forcible excitation can be divided into a rich part 28 and a lean part 30.
  • the amplitudes 32 and 34 of the respective excitation are the same size.
  • the lean and the rich half wave 28 and 30 have the same duration 36 and 38, respectively.
  • the Lambda setpoint is set here to 0.998 in order to reduce the risk of NOx breakthroughs.
  • the positive excitation according to the invention has a lean half-wave 40, with a duration t lean 42 and an amplitude A lean 44.
  • the lean half-wave 40 is followed by a rich half-wave 46.
  • the fat half-wave 46 has a duration t fat 48 and an amplitude A fat 50.
  • the four parameters characterizing the forcible excitation: t lean , A lean , t bold , A fat can be selected independently of each other.
  • a first map 52 determines the values for a first frequency and a first amplitude depending on speed and load.
  • the frequency is defined as an inverse period, wherein the period is the period of a defined exhaust gas packet sequence of lean and rich exhaust gas packets, which regularly repeats at steady-state operating conditions (ie with the same amount of exhaust gas per time and same exhaust gas composition). Under lean / fat amplitude, the lambda values of individual exhaust packets of the exhaust packet sequence are understood.
  • the map 52 determines frequency and amplitude for a first temperature T 1 .
  • the map 54 determines the values for a second frequency and a second amplitude depending on speed and load.
  • the tuples of frequency and amplitude are forwarded to a calculation unit 56.
  • the calculation unit 56 determines the tuple of setpoint values for frequency and amplitude 60 as a function of the actual value 58 for the operating temperature by means of a linear or a non-linear interpolation.
  • the calculation manner shown in Fig. 4 can also be replaced by a three-dimensional map.
  • the limit value with which the change of the model parameter is selected in a preferred embodiment also depends on the operating temperature. In addition, the limit may depend on the speed and load of the engine.
  • a square wave or a sinusoidal oscillation can be used. It is also possible to provide a forced excitation with a sawtooth-shaped oscillation or another excitation pattern.
  • the saw-toothed oscillation is characterized by amplitude, frequency and rise time. Also, the rise time can be selected in the inventive method depending on the operating temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Zwangsanregung einer Lambdaregelung, mit dem ein Fehler bei einer Lambdasonde erkannt wird.
  • Aus DE 198 44 994 A1 ist ein Verfahren zur Diagnose einer Lambdasonde bekannt. Bei dem bekannten Verfahren wird eine stromaufwärts eines Katalysators angeordnete Lambdasonde diagnostiziert. Die zu diagnostizierende Lambdasonde besitzt eine in ihrem Ausgangssignal stetige Charakteristik. Zur Diagnose der Lambdasonde wird zu einem Lambda-Sollwert eine periodische Zwangsanregung mit vorgegebener Frequenz und Amplitude überlagert. Ein Modell des Lambdaregelungskreises bildet dessen Streckenverhalten ab, wobei einer der Modellparameter die Sensorverzögerungszeit darstellt. Aus den Amplitudenverstärkungen, die sich für Modell und System bei der Zwangsanregung ergeben, werden die Modellwerte, insbesondere der Modellwert für die Sensorverzögerungszeit adaptiert. Die Lambdasonde wird hierbei als defekt erkannt, wenn der Wert für die Änderung des Modellparameters einen vorgegebenen Schwellenwert überschreitet. Dies bedeutet, dass bei einer zu starken Adaption der Sensorverzögerungszeit eine Störung der Lambdasonde erkannt wird. Auf diese Weise kann kontinuierlich die Funktionsweise der Lambdasonde in dem Lambdareglungskreis überprüft werden.
  • Neben dem vorstehenden spezifischen Einsatz der Zwangsanregung kann diese vorrangig zur Steigerung des Wirkungsgrades eines Dreiwegekatalysators eingesetzt werden, wie beispielsweise in DE 43 44 892 C2 beschrieben. Hierbei wird für die lineare Lambdaregelung der stöchiometrische Sollwert für die Luftzahl mit einer Zwangsanregung beaufschlagt. Die Abweichung von dem stöchiometrischen Sollwert besitzen abwechselnd eine Mager- und Fettverschiebung. Bei der Magerverschiebung wird der Sauerstoffspeicher des Katalysators gefüllt, es wird O2 eingelagert, während bei der Fettverschiebung der Katalysator wieder geleert wird. Dieser Füll- und Leervorgang ist abhängig von der Sollwertverschiebung (Amplitude der Zwangsanregung) und der Dauer der Verschiebung. Es ist bekannt, die Zwangsanregung in einem zeitbasierten Ansatz mit gleicher Amplitude und gleicher Dauer für Fett- und Mageranregung durchzuführen.
  • Als nachteilig an der bisherigen rein last- und drehzahlabhängigen Zwangsanregung, auch als forced stimulation bezeichnet, hat sich herausgestellt, dass durch die Änderung der Lambda-Sollwerte es zu einer erhöhten Abgasemission kommt, dies insbesondere bei Katalysatoren, die über längere Zeit benutzt worden sind, oder bei Katalysatoren mit geringer Edelmetallbeladung.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Zwangsanregung einer Lambdasonde in einer Brennkraftmaschine bereitzustellen, das sich nicht nachteilig auf die Abgasemission auswirkt und über weite Betriebsbereiche eine gute Abgaskonvertierung sicherstellt.
  • Erfindungsgemäß wird die Aufgabe durch ein Verfahren mit den Merkmalen aus Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen bilden den Gegenstand der Unteransprüche.
  • Gemäß Anspruch 1 erfolgt die Auswahl der Werte für Amplitude und Frequenz der Zwangsanregung abhängig von einer Betriebstemperatur der Brennkraftmaschine. Dieser Lösung der erfindungsgemäßen Aufgabe liegt die Erkenntnis zugrunde, dass die bekannte Zwangsanregung für einige Betriebszustände zu einer schlechten Konvertierung der Abgase führt. Indem Amplitude und Frequenz der Zwangsanregung an die Betriebstemperatur angepasst sind, werden erfindungsgemäß auch im Niedriglast- und Leerlaufbereich sowie nach einem Kaltstart erhöhte Abgasemissionswerte vermieden. Bevorzugt hängen die Werte für Amplitude und/oder Frequenz der Zwangsanregung von der Betriebstemperatur des Kühlwassers ab. Bisher ist es üblich, dass die Amplitude und Frequenz der Zwangsanregung sich auf eine Kühlwassertemperatur von 85°C beziehen. Weicht die Temperatur des Kühlwassers hiervon ab, ergeben sich deutlich andere Konvertierungsraten für den Katalysator und mithin ein anderes Verhalten des geschlossenen Lambdaregelkreises. Um eine wirkungsvolle Zwangsanregung in dem Lambdaregelkreis durchzuführen, ohne eine zusätzliche Erhöhung der Abgasemission zu erzielen, werden Frequenz und Amplitude an den geänderten Lambdaregelkreis angepasst.
  • Die Werte für Amplitude und/oder Frequenz können auch abhängig von der Temperatur des Zylinderkopfs und/oder der Öltemperatur für die Zwangsanregung bestimmt werden. Bevorzugt werden neben der Betriebstemperatur auch die Luftmasse und die Drehzahl vorbestimmter Temperaturwerte berücksichtigt.
  • Ein bevorzugtes Ausführungsbeispiel der erfindungsgemäßen Zwangsanregung wird anhand der nachfolgenden Figuren näher erläutert. Es zeigt:
  • Fig. 1
    schematische Ansicht einer Brennkraftmaschine mit Abgassystem,
    Fig. 2
    Verlauf einer Zwangsanregung nach dem Stand der Technik,
    Fig. 3
    eine erfindungsgemäße Zwangsanregung und
    Fig. 4
    Berechnung von Frequenz und Amplitudensollwerten.
  • Das erfindungsgemäße Verfahren zur Zwangsanregung wird nachfolgend anhand von Figur 1 näher erläutert. Eine schematisch dargestellte Brennkraftmaschine 10 saugt über einen Ansaugtrakt 12 in Pfeilrichtung Luft an. Die aus der Brennkraftmaschine 10 ausgetretene Luft wird über einen Abgastrakt 14 in einen Dreiwegekatalysator 16 geleitet. Stromaufwärts von dem Katalysator 16 ist eine erste Sauerstoffsonde 18 vorgesehen, deren Ausgangssignal stetig von der Luftzahl Lambda in dem Abgasstrom abhängt. Die Sauerstoffsensoren werden auch als Lambdasonden bezeichnet. Stromabwärts von dem Katalysator 16 ist eine zweite Lambdasonde 20 angeordnet, die den Katalysatorwirkungsgrad überprüft und als eine lineare Sonde oder eine sogenannte Sprungsonde ausgebildet sein kann.
  • Die Signale der Lambdasonden 18 und 20 werden an eine Lambdaregelungseinrichtung 22 weitergeleitet, die aus den beiden gelieferten Signalen auf den Wirkungsgrad des Katalysators 16 und damit auf die Konvertierung der Abgase schließt.
  • Die Lambdaregelungseinrichtung bestimmt einen Lambda-Sollwert als Stellgröße und gibt diesen an die Motorsteuerung 24 weiter. Ferner kann die Lambdaregelungseinrichtung ein Modell für das Verhalten der Regelungsstrecke besitzen. Das Modell beinhaltet, als einen Modellparameter die Sensorverzögerungszeit. Wie aus DE 195 16 239 C2 bekannt, hat die Übertragungsfunktion der Lambdaregelstrecke ein Verhalten wie das Hintereinanderschalten zweier Verzögerungsglieder erster Ordnung und einem Totzeitglied. Um eine möglichst geringe Änderung der Abgasemission bei der Zwangsanregung zu erhalten, werden Frequenz und Amplitude abhängig von Drehzahl und Last sowie der Betriebstemperatur der Brennkraftmaschine festgelegt.
  • In Fig. 2 ist der Lambda-Sollwert über die Zeit dargestellt. Der Lambda-Sollwert schwankt bei der bekannten Zwangsanregung um den Mittelwert 26, bei dem stöchiometrische Verbrennung erfolgt. Die Zwangsanregung kann in einen fetten Teil 28 und einen mageren Teil 30 unterteilt werden. Die Amplituden 32 und 34 der jeweiligen Anregung sind gleich groß. Ebenso besitzen die magere und die fette Halbwelle 28 bzw. 30 die gleiche Dauer 36 bzw. 38.
  • Fig. 3 zeigt beispielhaft die Lambda-Sollwerte bei der erfindungsgemäßen Zwangsanregung. Der Lambda-Sollwert ist hierbei zu 0,998 vorgegeben, um die Gefahr von NOx-Durchbrüchen zu verringern. Die erfindungsgemäße Zwangsanregung besitzt eine magere Halbwelle 40, mit einer Dauer tmager 42 und eine Amplitude Amager 44.
  • An die magere Halbwelle 40 schließt sich eine fette Halbwelle 46 an. Die fette Halbwelle 46 besitzt eine Dauer tfett 48 und eine Amplitude Afett 50. Bei der erfindungsgemäßen Zwangsanregung können die vier die Zwangsanregung charakterisierenden Parameter: tmager, Amager, tfett, Afett unabhängig voneinander gewählt werden.
  • Die Bestimmung der Parameter wird an einem Blockschaltbild zu Fig. 4 verdeutlicht. Ein erstes Kennfeld 52 bestimmt abhängig von Drehzahl und Last die Werte für eine erste Frequenz und eine erste Amplitude. Die Frequenz ist als inverse Periodendauer definiert, wobei die Periodendauer der Zeitabschnitt einer definierten Abgaspaketfolge von mageren und fetten Abgaspaketen ist, die sich bei stationären Betriebsbedingungen (d.h. bei gleicher Abgasmenge pro Zeit und gleiche Abgaszusammensetzung) regelmäßig wiederholt. Unter Mager-/Fett-Amplitude werden die Lambdawerte von einzelnen Abgaspaketen der Abgaspaketfolge verstanden. Das Kennfeld 52 bestimmt Frequenz und Amplitude für eine erste Temperatur T1. Das Kennfeld 54 bestimmt abhängig von Drehzahl und Last die Werte für eine zweite Frequenz und eine zweite Amplitude. Die Tupel aus Frequenz und Amplitude werden an eine Berechnungseinheit 56 weitergeleitet. Die Berechnungseinheit 56 bestimmt abhängig von dem Istwert 58 für die Betriebstemperatur durch eine lineare oder eine nicht lineare Interpolation das Tupel von Sollwerten für Frequenz und Amplitude 60.
  • Die in Fig. 4 gezeigte Berechnungsweise kann ebenfalls durch ein dreidimensionales Kennfeld ersetzt werden.
  • Besondere Vorzüge zeigt das erfindungsgemäße Verfahren der betriebstemperaturabhängigen Zwangsanregung auch im Zusammenhang bei einem sogenannten elektronischen Thermomanagement, bei dem die Betriebstemperatur des Motors mit dem Ziel eines geringen Kraftstoffverbrauchs und guter Abgaswerte gezielt variiert wird. Die Wirkungsweise des Thermomanagements wird durch eine gezielte Anpassung der Zwangsregelung an die Betriebstemperatur unterstützt.
  • Der Grenzwert, mit dem die Änderung des Modellparameters gewählt wird, hängt in einer bevorzugten Ausgestaltung ebenfalls von der Betriebstemperatur ab. Zusätzlich kann der Grenzwert von der Drehzahl und der Last der Brennkraftmaschine abhängen.
  • Für die Zwangsanregung können eine Rechteckschwingung oder eine sinusförmige Schwingung eingesetzt werden. Ebenfalls ist es möglich eine Zwangsanregung mit einer sägezahnförmigen Schwingung oder einem anderem Anregungsmuster vorzusehen. Die sägezahförmige Schwingung ist durch Amplitude, Frequenz und Anstiegszeit gekennzeichnet. Auch die Anstiegszeit kann bei dem erfindungsgemäßen Verfahren abhängig von der Betriebstemperatur gewählt werden.

Claims (6)

  1. Verfahren zur Zwangsanregung einer Lambdaregelung bei einer Brennkraftmaschine, das die folgenden Verfahrensschritte aufweist:
    - zu einem Lambda-Sollwert wird eine Zwangsanregung mit mindestens einer Frequenz und einer Amplitude überlagert, die einen mageren und einen fetten Abschnitt besitzt,
    - die Werte für Amplitude und/oder Frequenz der Zwangsanregung werden abhängig von einer Betriebstemperatur der Brennkraftmaschine bestimmt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Werte für Amplitude und/oder Frequenz der Zwangsanregung abhängig von der Betriebstemperatur des Kühlwassers bestimmt werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Werte für Amplitude und/oder Frequenz der Zwangsanregung zusätzlich abhängig von der Betriebstemperatur des Zylinderkopfes bestimmt werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Werte für Amplitude und/oder Frequenz der Zwangsanregung zusätzlich anhängig von der Betriebstemperatur des Öls bestimmt werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Werte für Amplitude und/oder Frequenz der Zwangsanregung abhängig von der Luftmasse und der Drehzahl bei vorbestimmten Temperaturen bestimmt werden.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass ein erstes Kennfeld (52) für eine erste Temperatur abhängig von Last und Drehzahl erste Sollwerte für Frequenz und Amplitude bestimmt und ein zweites Kennfeld (54) für eine zweite Temperatur abhängig von Last und Drehzahl zweite Sollwerte für Frequenz und Amplitude bestimmt und eine Vergleichseinrichtung (56) abhängig von der Betriebstemperatur (58) den Sollwerte für die vorliegende Betriebstemperatur interpoliert oder extrapoliert.
EP20030002339 2002-02-18 2003-02-03 Verfahren zur Zwangsanregung bei einer Lambdaregelung Expired - Lifetime EP1336742B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002106675 DE10206675C1 (de) 2002-02-18 2002-02-18 Verfahren zur Zwangsanregung bei einer Lambdaregelug
DE10206675 2002-02-18

Publications (3)

Publication Number Publication Date
EP1336742A2 EP1336742A2 (de) 2003-08-20
EP1336742A3 EP1336742A3 (de) 2006-03-15
EP1336742B1 true EP1336742B1 (de) 2006-12-20

Family

ID=7713850

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030002339 Expired - Lifetime EP1336742B1 (de) 2002-02-18 2003-02-03 Verfahren zur Zwangsanregung bei einer Lambdaregelung

Country Status (2)

Country Link
EP (1) EP1336742B1 (de)
DE (2) DE10206675C1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275364B2 (en) 2003-03-26 2007-10-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device of internal combustion engine
DE10358900A1 (de) * 2003-12-16 2005-07-21 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine mit kontinuierlicher Lambda-Regelung
DE102004038481B3 (de) * 2004-08-07 2005-07-07 Audi Ag Verfahren zur Regelung des einer Brennkraftmaschine zugeführten Luft/Kraftstoffverhältnisses
US7793489B2 (en) * 2005-06-03 2010-09-14 Gm Global Technology Operations, Inc. Fuel control for robust detection of catalytic converter oxygen storage capacity
DE102021120527A1 (de) 2021-08-06 2023-02-09 Ford Global Technologies, Llc Verfahren zum Steuern einer gasbetriebenen Brennkraftmaschine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325664A (en) * 1991-10-18 1994-07-05 Honda Giken Kogyo Kabushiki Kaisha System for determining deterioration of catalysts of internal combustion engines
JP3162524B2 (ja) * 1992-12-29 2001-05-08 本田技研工業株式会社 内燃機関の空燃比制御装置
DE19744410C2 (de) * 1997-10-08 2001-06-21 Ford Global Tech Inc Verfahren zur Überwachung der Laufruheregelung eines Verbrennungsmotors
DE19844994C2 (de) * 1998-09-30 2002-01-17 Siemens Ag Verfahren zur Diagnose einer stetigen Lambdasonde

Also Published As

Publication number Publication date
DE50306001D1 (de) 2007-02-01
EP1336742A3 (de) 2006-03-15
DE10206675C1 (de) 2003-05-22
EP1336742A2 (de) 2003-08-20

Similar Documents

Publication Publication Date Title
EP1024254B1 (de) Verfahren und Vorrichtung zur Steuerung eines Abgasnachbehandlungssystems
DE10051150C2 (de) Regelung des Luft/Kraftstoff-Verhältnisses in einem Motor
DE112007000322B4 (de) Abgassystem für eine Brennkraftmaschine
DE60029893T2 (de) Luft-Kraftstoffverhältnissteuerapparat für multizylindrigen Verbrennungsmotor
DE3700401A1 (de) Gemischregelvorrichtung fuer einen magermotor
DE19839791B4 (de) Luft-Brennstoffverhältnisregelung für eine Brennkraftmaschine
DE60025893T2 (de) Steuerungsvorrichtung für das Kraftstoff-Luftverhältnis in einer mehrzylindrigen Brennkraftmaschine
DE19851843B4 (de) Verfahren zur Sulfatregeneration eines NOx-Speicherkatalysators für eine Mager-Brennkraftmaschine
DE69819632T2 (de) Steuersystem für eine Anlage
EP1193376B1 (de) Regelung eines NOx-Speicherkatalysators
DE112010005772B4 (de) Kraftstoffeinspritzmengen-Regelungsvorrichtung für einen Verbrennungsmotor
DE4215787C2 (de) Luft/Brennstoff-Verhältnis-Steuerungsgerät für eine Brennkraftmaschine
EP1336742B1 (de) Verfahren zur Zwangsanregung bei einer Lambdaregelung
DE19935968B4 (de) Steuereinheit für das Luft-/Kraftstoffverhältnis eines Motors
DE3540420C2 (de)
EP1254307B1 (de) VERFAHREN UND VORRICHTUNG ZUR ERMITTLUNG EINER NOx-SPEICHERKAPAZITÄT EINES NOx-SPEICHERKATALYSATORS
EP1255922B1 (de) Vorrichtung und verfahren zur steuerung eines betriebes eines mehrzylindermotors für kraftfahrzeuge mit einer mehrflutigen abgasreinigungsanlage
DE19912832A1 (de) Luft-Kraftstoffverhältnissteuerung für einen Verbrennungsmotor
DE69606533T2 (de) Modulation des luft-brennstoff verhältnisses
EP1143131A2 (de) Mehrflutige Abgasanlage und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses und Steuerung einer NOx-Regeneration eines NOx-Speicherkatalysators
DE10148128A1 (de) Verfahren und Vorrichtung zur Reduzierung einer Schadstoffendemission einer Verbrennungskraftmaschine
EP1183454B1 (de) VERFAHREN ZUR STEUERUNG EINER REGENERATION EINES NOx-SPEICHERKATALYSATORS
DE19912833A1 (de) Luft-Kraftstoff-Verhältnissteuerung für einen Verbrennungsmotor
DE602004013026T2 (de) Verfahren zur Regelung der Regeneration eines Partikelfilters
DE10066373B4 (de) Luft-Brennstoffverhältnis-Regelungssystem für Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20060206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AKX Designation fees paid

Designated state(s): DE FR GB IT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070110

REF Corresponds to:

Ref document number: 50306001

Country of ref document: DE

Date of ref document: 20070201

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090219

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090213

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100203

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200229

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50306001

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50306001

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50306001

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901