EP1336083B1 - Verfahren und vorrichtung zur feststellung und/oder überwachung des füllstandes eines mediums in einem behälter bzw. zur ermittlung der dichte eines mediums in einem behälter - Google Patents

Verfahren und vorrichtung zur feststellung und/oder überwachung des füllstandes eines mediums in einem behälter bzw. zur ermittlung der dichte eines mediums in einem behälter Download PDF

Info

Publication number
EP1336083B1
EP1336083B1 EP01997680A EP01997680A EP1336083B1 EP 1336083 B1 EP1336083 B1 EP 1336083B1 EP 01997680 A EP01997680 A EP 01997680A EP 01997680 A EP01997680 A EP 01997680A EP 1336083 B1 EP1336083 B1 EP 1336083B1
Authority
EP
European Patent Office
Prior art keywords
medium
unit
density
frequency
oscillatory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01997680A
Other languages
English (en)
French (fr)
Other versions
EP1336083A1 (de
Inventor
Sergej Lopatin
Alexander Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of EP1336083A1 publication Critical patent/EP1336083A1/de
Application granted granted Critical
Publication of EP1336083B1 publication Critical patent/EP1336083B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2966Acoustic waves making use of acoustical resonance or standing waves
    • G01F23/2967Acoustic waves making use of acoustical resonance or standing waves for discrete levels

Definitions

  • the invention relates to a method and a device for detecting and / or monitoring the level of a medium in a container or for determining the density of a medium in a container according to the preamble of claims 1 and 10.
  • a method and apparatus are from the document US-A-6 044 694 known.
  • the vibrating element is usually at least one vibrating rod which is attached to a membrane.
  • the membrane is connected via an electro-mechanical transducer, z.
  • vibration detectors make use of the effect that the vibration frequency and the vibration amplitude are dependent on the respective degree of coverage of the vibrating element: While the vibrating element in air free and undamped can perform its oscillations, it experiences a damping and as a result of a frequency and amplitude change as it partially or completely dips into the medium. Based on a predetermined frequency change can thus draw a clear inference to the respective level in the container.
  • fill level measuring devices are primarily used as overfill fuses or for the purpose of pump idle protection.
  • the oscillation frequency of the vibrating element is also influenced by the respective density of the medium. Therefore, with a constant degree of coverage, there is a functional relationship to the density of the medium so that vibration detectors are best suited for both level and density determination.
  • vibration detectors in order to monitor and detect the level or the density of the medium in the container received the vibrations of the membrane and converted by means of at least one piezoelectric element into electrical received signals.
  • the electrical received signals are then evaluated by an evaluation electronics.
  • the evaluation electronics monitors the oscillation frequency and / or the oscillation amplitude of the oscillating element and signals the state 'sensor covered' or 'sensor uncovered' as soon as the measured values fall below or exceed a predetermined reference value.
  • An appropriate message to the operating personnel can be made visually and / or acoustically.
  • a switching operation is triggered; For example, an inlet or outlet valve on the container is opened or closed.
  • the aforementioned level or density measuring instruments are used in a variety of industries, such as the chemical, food and water treatment industries.
  • the range of monitored products ranges from water through yoghurt, paints and varnishes to high-viscosity fillers, such as honey, or even to highly foaming products, such as honey. Beer.
  • vibration detectors are dependent only to a first approximation solely on the two previously mentioned variables 'level' and 'density'.
  • other physical variables such as the process variables pressure and temperature or the viscosity of the medium influence the vibration behavior of the vibrating element. Therefore, once the requirement is made to use the sensor for highly accurate measurements or to use it as a universally applicable measuring device in the high and low temperature range or in the high and low pressure range, the influence of these variables on the vibration behavior must be considered. In principle, the greater the influence of temperature and pressure on the measurement results, the more strongly both variables deviate from the normal conditions. Similar considerations also apply with regard to the viscosity of the medium: In the future, a measuring device will have to be able to deliver reliable measurement results in conjunction with media of very different viscosities.
  • the invention has for its object to provide a method and an apparatus that allow a highly accurate determination or monitoring of the level or the density of a medium.
  • the object is achieved in that the influence of viscosity on the oscillation frequency of the oscillatory unit in the determination of the level of the medium in the container or in determining the density of the medium in the container is determined and compensated accordingly.
  • This ensures that, in the case of level measurement, the switching points of the measuring device which signal the states 'sensor covered' or 'sensor uncovered' are precisely defined.
  • a malfunction of the measuring device which is due to the fact that temperature and / or pressure deviations merely simulate the achievement of the predetermined switching points, is reliably excluded.
  • the error tolerance is significantly reduced by the compensation of the influence of the different disturbances on the vibration behavior of the vibrating element, so that the inventive method and the corresponding device for highly accurate density measurements are ideal.
  • a change in the oscillation frequency of the oscillatory unit which is caused by a change in the viscosity of the medium, is compensated by the fact that the excitation frequency relative to the oscillation frequency of the oscillatable unit has a phase shift of 90 ° is different.
  • the phase shift between the excitation frequency and the oscillation frequency of the oscillatory unit is such that an occurring change in the vibration behavior is substantially independent of the viscosity of the medium and thus essentially only depends on the immersion depth of the oscillatable unit in the medium or the density of the medium.
  • a phase shift of about 70 ° in liquid media is best suited to eliminate the influence of viscosity on the measurement results.
  • the medium is strongly foaming, the influence of the viscosity of the foam can be sufficiently well with a phase shift of approximately 120 ° between exciter frequency and oscillation frequency compensate. It goes without saying that the phase shift required to compensate for the influence of the viscosity also depends crucially on the respective design of the oscillatable unit.
  • At least the viscosity is measured directly or indirectly determined.
  • Characteristics are preferably created and stored on the basis of empirically determined data which reflect the frequency change of the oscillatable unit as a function of at least the viscosity.
  • An embodiment of the method according to the invention suggests that further parameters are taken into account when selecting the correct characteristic curves.
  • these parameters are the geometry and / or dimensioning of the oscillatable unit, the material from which the oscillatable unit is made and / or in the case of level determination, the mounting position of the oscillatable unit in the container.
  • the characteristic curves are thus also provided sensor-specific and / or system-specific.
  • the inventive method provides that the viscosity is measured or determined and provides that the corresponding frequency change in the case of level measurement in the determination of the switching point or in the case of density measurement in the determination of the density of the medium is taken into account.
  • the object is achieved in that the control / evaluation determines the influence of viscosity on the oscillation frequency of the oscillatory unit and that the control / evaluation unit, the frequency change, in which the achievement of the predetermined level is displayed corrected so that the influence of this disturbance is eliminated, or that the control / evaluation unit takes into account the measurement error occurring in the density determination by the disturbance.
  • the disturbance is the viscosity of the medium.
  • any other, empirically tangible disturbance such as the temperature or the pressure, the influence on the vibration behavior of the vibrating element takes, compensate by means of the invention.
  • a temperature sensor and / or a pressure sensor are provided which determine the temperature or the pressure in the vicinity of the oscillatable unit.
  • the device according to the invention are / is the temperature sensor, for. B. a PT 100, and / or the pressure sensor are integrated into the device for determining the level or the density.
  • the temperature and / or pressure sensor are also possible to provide the temperature and / or pressure sensor as separate units and to position them in the container.
  • the oscillatable unit For the purpose of measuring the rigidity, the oscillatable unit is subjected to a high-frequency oscillation mode. Subsequently, the reaction of the oscillatory unit is evaluated to the excitation frequency for the purpose of determining the temperature or the pressure.
  • a data transmission path or a data bus is provided.
  • the sensors and the individual units of the device according to the invention forward their data to the control / evaluation unit via these connections, or the sensors and / or the individual units of the device according to the invention communicate with the control / evaluation unit via the connections.
  • preference is given to common industry standards. Examples are PROFIBUS PA, FIELDBUS FOUNDATION or HART.
  • Fig. 1 shows a schematic representation of the device according to the invention for detecting and / or monitoring the level F of the medium 2 in the container 3. Briefly, it is a limit value detector.
  • the device 1 shown in FIG. 1 is of course also-as already explained above-suitable for determining the density of the medium 2 located in the container 3. While in the case of level determination, the oscillatable unit dives into the medium or not into the medium only when reaching the detected limit level, it must be in order to monitor or determine the density ⁇ continuously up to a predetermined immersion depth E with the medium 2 in contact.
  • the container 3 may of course also be a tube through which the medium 2 flows.
  • the device 1 has a substantially cylindrical housing 12. On the lateral surface of the housing 12, a thread 10 is provided.
  • the thread 10 is used to attach the device 1 at the height of the predetermined level F in the container 3 and is arranged in the case shown in a corresponding opening in the lid 11 of the container 3.
  • Other types of fastening for example by means of a flange, can easily replace the attachment of the device 1 according to the invention to the container 3 shown in FIG. 1.
  • the housing 12 is closed at its protruding into the container 3 end portion of the membrane 5, wherein the membrane 5 is clamped in its edge region in the housing 12.
  • the oscillatable unit 4 has the configuration of a tuning fork, thus comprising two spaced-apart, mounted on the membrane 5 and projecting into the container 3 projecting oscillating rods.
  • the membrane 5 is set in vibration by a drive / receiving element 6, wherein the drive element 6a excites the membrane 5 with a predetermined excitation frequency to vibrations.
  • the drive element 6a is z. B. a stack drive or a bimorph drive. Both types of piezoelectric actuators are well known in the art, so that their description can be omitted here. Due to the vibrations of the diaphragm 5 and the oscillatory unit 4 executes vibrations, wherein the oscillation frequency is different when the oscillatable unit 4 is in contact with the medium 2 and so must move with the mass of the medium 2 when swinging or if the oscillatable unit can vibrate freely and without contact with the medium 2.
  • the receiving unit 6b may be a single piezoelectric element just as in the case of the drive unit 6a.
  • the driving / receiving unit 6 excites the diaphragm 5 to vibrate in response to a transmission signal applied to the piezoelectric element, and serves to receive and convert the vibrations of the diaphragm 5 into an electrical reception signal.
  • Piezoelectric elements change their sizes (thickness, diameter %) as a function of a voltage difference applied in the polarization direction. If an alternating voltage is applied, the thickness oscillates: If the thickness increases, the diameter of the piezoelectric element decreases; On the other hand, if the thickness decreases, the diameter of the piezoelectric element increases accordingly.
  • the voltage difference causes a deflection of the clamped into the housing 12 Membrane 5.
  • the arranged on the diaphragm 5 vibrating rods of the oscillatory unit 4 lead due to the vibrations of the diaphragm 5 opposing vibrations about its longitudinal axis.
  • the opposing vibrations have the advantage that the forces exerted by each oscillating rod on the diaphragm 5 alternating forces cancel each other. As a result, the mechanical stress of the clamping is minimized, so that approximately no vibration energy is transmitted to the housing 12.
  • a temperature sensor 13 and a pressure sensor 14 are provided in the container. Both sensors 13, 14 and the vibration sensor deliver their measured values for the purpose of evaluation to the control / evaluation unit 7.
  • Fig. 2 is a flowchart for controlling the control / evaluation unit 7 is shown for the case of filling level determination.
  • the associated frequency change determined under standard conditions is specified as the setpoint for characterizing the switching point.
  • the current temperature value T and the current pressure value p are provided at the program points 21, 22.
  • the corresponding frequency change ⁇ f (p, T) is calculated under program point 23.
  • a, b, c, d, e are real numbers reflecting sensor- and system-dependent quantities. The determination of these variables takes place, for example, using empirically determined characteristic curves. For different sensors or types of installation of a level or density meter in the container different sets of characteristics are provided according to a preferred variant of the device according to the invention. In the simplest case, these characteristic sets are called by the operating staff at the push of a button for the correct determination of the switching point or the density, so that they are subsequently made available to the control / evaluation unit.
  • the frequency change .DELTA.f (p, T) occurring under the influence of the disturbance variables (pressure p, temperature T) is subsequently taken into account under program point 25 in the frequency change ⁇ f (IST) reflecting the fill level F or the density ⁇ . Only when the corrected actual value .DELTA.f (ACT) Korr coincides with the predetermined nominal value .DELTA.f (SOLL) of the frequency change, a message 'sensor covered' is output at point 26. As long as the aforementioned condition is not met, the program points 21 to 25 are looped through. If the message provided under 26 has occurred, the program is ended at 27.
  • Fig. 3 is a flow chart for controlling the control / evaluation unit 7 is shown in the case of the density determination.
  • the setpoint values for the density ⁇ ( ⁇ f) are the characteristic curve determined under corresponding standard conditions, which reproduces the density ⁇ as a function of the frequency change ⁇ f.
  • T and pressure p which are measured under the program points 29, 30, the associated frequency change ⁇ f (p, T) is calculated or otherwise determined at 31.
  • This frequency change .DELTA.f (p, T) is considered in the determination of the actual, unaffected by these disturbances p, T frequency change .DELTA.f '(point 32), so that the corrected frequency change .DELTA.f' reliably the actual density ⁇ (.DELTA.f ') of the medium second reflects (point 33).
  • FIG. 4 shows in a graphical representation the immersion depth E as a function of the frequency change ⁇ f at different viscosities V.
  • the two extreme cases of a viscosity of 1 mPasec and 60,000 mPasec are marked accordingly in FIG. 4.
  • the frequency change ⁇ f is not only dependent on the immersion depth E of the oscillatable unit 4 in the medium 2, but it is also seriously affected by the viscosity V of the measuring medium 2.
  • the invention is based on a universal for the level or density measurement Different media 2 is to use suitable device. If the different viscosities V of the media 2 were not considered according to the invention, z. B. triggered a switching operation, although the predetermined level has not been reached at all. Likewise, the measurement errors would be unacceptably large in terms of density measurement.
  • FIG. 5 shows a schematic representation of a circuit for compensation of a frequency change .DELTA.f which, as can be clearly seen in FIG. 4, occurs as a result of the influence of the viscosity V of the medium 2 to be measured or monitored.
  • the disturbance 'viscosity V' is automatically compensated by the circuit shown.
  • the phase shift ⁇ between the excitation frequency f E and the oscillation frequency f s of the oscillatable unit 4 is so dimensioned that an occurring frequency change ⁇ f is essentially independent of the viscosity V of the medium 2 and thus substantially only depends on the immersion depth E of the oscillatable unit 4 in the medium 2 or of the density ⁇ of the medium second
  • the received signal reflecting the oscillation of the oscillatable unit is filtered by the receiving unit via the filter 17; Subsequently, the filtered signal is subjected to a phase shift ⁇ , which is dimensioned such that caused by the viscosity V frequency change .DELTA.f (V) has no influence on the frequency change .DELTA.f the oscillation frequency of the oscillatable unit 4. If the temperature and / or pressure values are within a range in which they have no measurable effects on the frequency change ⁇ f of the oscillatable unit 4, then the influence of the viscosity V can easily be compensated.
  • the temperature and / or pressure values are in a range in which they influence the frequency change .DELTA.f to such an extent that measurement errors and malfunctions of the sensor occur, then the above-described compensation of the temperature and / or pressure influence will additionally be required.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Feststellung und/oder Überwachung des Füllstandes eines Mediums in einem Behälter bzw. zur Ermittlung der Dichte eines Mediums in einem Behälter gemäß dem Oberbegriff der Ansprüche 1 und 10. Ein solches Verfahren und eine solche Vorrichtung sind aus dem Dokument US-A-6 044 694 bekannt.
  • Es sind bereits Vorrichtungen mit zumindest einem Schwingelement, sog. Vibrationsdetektoren, zur Detektion bzw. zur Überwachung des Füllstandes eines Mediums in einem Behälter bekannt geworden. Bei dem Schwing-element handelt es sich üblicherweise um zumindest einen Schwingstab, der an einer Membran befestigt ist. Die Membran wird über einen elektro-mechanischen Wandler, z. B. ein piezo-elektrisches Element, zu Schwingungen angeregt. Aufgrund der Schwingungen der Membran führt auch das an der Membran befestigte Schwingelement selbst Schwing-bewegungen aus.
  • Als Füllstandsmeßgeräte ausgebildete Vibrationsdetektoren nutzen den Effekt aus, daß die Schwingungsfrequenz und die Schwingungsamplitude abhängig sind von dem jeweiligen Bedeckungsgrad des Schwingelements: Während das Schwingelement in Luft frei und ungedämpft seine Schwingungen aus-führen kann, erfährt es eine Dämpfung und als Folge davon eine Frequenz- und Amplitudenänderung, sobald es teilweise oder vollständig in das Medium eintaucht. Anhand einer vorbestimmten Frequenzänderung läßt sich folglich ein eindeutiger Rückschluß auf den jeweiligen Füllstand in dem Behälter ziehen. Füllstandsmeßgeräte werden übrigens vornehmlich als Überfüll-sicherungen oder zum Zwecke des Pumpenleerlaufschutzes verwendet.
  • Darüber hinaus wird die Schwingfrequenz des Schwingelements auch von der jeweiligen Dichte des Mediums beeinflußt. Daher besteht bei konstantem Bedeckungsgrad eine funktionale Beziehung zur Dichte des Mediums, so daß Vibrationsdetektoren sowohl für die Füllstands- als auch für die Dichtebestimmung bestens geeignet sind. In der Praxis werden zwecks Überwachung und Erkennung des Füllstandes bzw. der Dichte des Mediums in dem Behälter die Schwingungen der Membran aufgenommen und mittels zumindest eines Piezoelements in elektrische Empfangssignale umgewandelt.
  • Die elektrischen Empfangssignale werden anschließend von einer Auswerte-Elektronik ausgewertet. Im Falle der Füllstandsbestimmung überwacht die Auswerte-Elektronik die Schwingfrequenz und/oder die Schwingungs-amplitude des Schwingelements und signalisiert den Zustand 'Sensor bedeckt' bzw. 'Sensor unbedeckt', sobald die Meßwerte einen vorgegebenen Referenzwert unter- oder überschreiten. Eine entsprechende Meldung an das Bedienpersonal kann auf optischem und/oder auf akustischem Weg erfolgen. Alternativ oder zusätzlich wird ein Schaltvorgang ausgelöst; so wird etwa ein Zu- oder Ablaufventil an dem Behälter geöffnet oder geschlossen.
  • Die zuvorgenannten Geräte zum Messen des Füllstandes oder der Dichte werden in einer Vielzahl von Industriezweigen eingesetzt, beispielsweise in der Chemie, in der Lebensmittelindustrie oder bei der Wasseraufbereitung. Die Bandbreite der überwachten Füllgüter reicht von Wasser über Yoghurt, Farben und Lacke bis hin zu hochviskosen Füllgütern, wie Honig, oder bis hin zu stark schäumenden Füllgütern, wie z.B. Bier.
  • Vibrationsdetektoren sind allerdings nur in erster Näherung ausschließlich von den beiden zuvor genannten Größen 'Füllstand' und 'Dichte' abhängig. Darüber hinaus beeinflussen auch weitere physikalische Größen, etwa die Prozeßgrößen Druck und Temperatur oder die Viskosität des Mediums das Schwingverhalten des Schwingelements. Sobald daher die Anforderung gestellt wird, den Sensor für hochgenaue Messungen einzusetzen oder ihn als universell einsetzbare Meßvorrichtung im Hoch- und Tieftemperaturbereich bzw. im Hoch- und Tiefdruckbereich zu verwenden, muß der Einfluß dieser Größen auf das Schwingverhalten berücksichtigt werden. Prinzipiell gilt, daß der Einfluß von Temperatur und Druck auf die Meßergebnisse um so gravierender ist, je stärker beide Größen von den Normalbedingungen abweichen. Ähnliche Überlegungen gelten auch im Hinblick auf die Viskosität des Mediums: Eine Meßvorrichtung wird in Zukunft in der Lage sein müssen, in Verbindung mit Medien unterschiedlichster Viskosität verläßliche Meßer-gebnisse zu liefern.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung vorzuschlagen, die eine hochgenaue Bestimmung oder Überwachung des Füllstandes oder der Dichte eines Mediums erlauben.
  • Bezüglich des Verfahrens wird die Aufgabe dadurch gelöst, daß der Einfluß der Viskosität auf die Schwingfrequenz der schwingfähigen Einheit bei der Bestimmung des Füllstandes des Mediums in dem Behälter bzw. bei der Bestimmung der Dichte des in dem Behälter befindlichen Mediums ermittelt und entsprechend kompensiert wird. Hierdurch wird sichergestellt, daß im Falle der Füllstandsmessung die Schaltpunkte der Meßvorrichtung, die die Zustände 'Sensor bedeckt' bzw. 'Sensor unbedeckt' signalisieren, genau definiert sind. Eine Fehlfunktion der Meßvorrichtung, die dadurch zustande kommt, daß Temperatur- und/oder Druckabweichungen das Erreichen der vorgegebenen Schaltpunkte lediglich vortäuschen, wird verläßlich ausgeschlossen. Im Falle der Dichtemessung wird durch die Kompensation des Einflusses der unterschiedlichen Störgrößen auf das Schwingverhalten des Schwingelements die Fehlertoleranz erheblich verringert, so daß sich das erfindungsgemäße Verfahren und die entsprechende Vorrichtung für hochgenaue Dichtemessungen hervorragend eignen.
  • Gemäß einer bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens ist vorgesehen, daß eine Änderung der Schwingfrequenz der schwingfähigen Einheit, die durch eine Änderung der Viskosität des Mediums hervorgerufen wird, dadurch kompensiert wird, daß die Erregerfrequenz gegenüber der Schwingfrequenz der schwingfähigen Einheit eine Phasenverschiebung aufweist, die von 90° verschieden ist.
  • Insbesondere ist die Phasenverschiebung zwischen der Erregerfrequenz und der Schwingfrequenz der schwingfähigen Einheit so bemessen, daß eine auftretende Änderung im Schwingverhalten im wesentlichen unabhängig ist von der Viskosität des Mediums und somit im wesentlichen nur abhängig ist von der Eintauchtiefe der schwingfähigen Einheit in das Medium bzw. von der Dichte des Mediums. In der Praxis hat sich herausgestellt, daß eine Phasen-verschiebung von ca. 70° in flüssigen Medien bestens geeignet ist, den Einfluß der Viskosität auf die Meßergebnisse auszuschalten. Ist das Medium hingegen stark schäumend, so läßt sich mit Phasenverschiebung von ca. 120° zwischen Erreger- und Schwingfrequenz der Einfluß der Viskosität des Schaums hinreichend gut kompensieren. Es ist selbstverständlich, daß die zur Kompensation des Einflusses der Viskosität erforderliche Phasenverschiebung auch entscheidend von der jeweiligen Ausgestaltung der schwingfähigen Einheit abhängt.
  • Gemäß einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens ist vorgesehen, daß zumindest die Viskosität direkt gemessen oder indirekt ermittelt wird. Bevorzugt werden anhand empirisch ermittelter Daten Kennlinien erstellt und gespeichert, die die Frequenzänderung der schwingfähigen Einheit in Abhängigkeit von zumindest der Viskosität wiedergeben. Selbstverständlich ist es auch möglich, die Kennlinien anhand eines mathematischen Modells zu berechnen und abzuspeichern, wobei das mathematische Modell eventuell wieder auf empirisch ermittelte Daten zurückzuführen ist.
  • Eine Ausgestaltung des erfindungsgemäßen Verfahrens schlägt vor, daß weitere Parameter bei der Auswahl der korrekten Kennlinien berücksichtigt werden. Insbesondere handelt es sich bei diesen Parametern um die Geometrie und/oder die Dimensionierung der schwingfähigen Einheit, das Material, aus dem die schwingfähige Einheit gefertigt ist und/oder im Falle der Füllstandsbestimmung die Einbauposition der schwingfähigen Einheit im Behälter. Die Kennlinien werden also auch sensorspezifisch und/oder systemspezifisch zur Verfügung gestellt.
  • Das erfindungsgemäße Verfahren sieht vor, daß die Viskosität gemessen oder ermittelt wird und sieht vor, daß die entsprechende Frequenzänderung im Falle der Füllstandsmessung bei der Festlegung des Schaltpunktes bzw. im Falle der Dichtemessung bei der Bestimmung der Dichte des Mediums berücksichtigt wird. Durch diese Ausgestaltung ist es möglich, unverzüglich auf Schwankungen in der Viskosität zu reagieren und die Meßvorrichtung somit universell - also unabhängig von den am Meßort herrschenden Bedingungen - einzusetzen.
  • Bezüglich der Vorrichtung wird die Aufgabe dadurch gelöst, daß die Regel-/Auswerteeinheit den Einfluß der Viskosität auf die Schwing-frequenz der schwingfähigen Einheit ermittelt und daß die Regel-/Auswerte-einheit die Frequenzänderung, bei der das Erreichen des vorbestimmten Füllstandes angezeigt wird, derart korrigiert, daß der Einfluß dieser Störgröße eliminiert wird, bzw. daß die Regel-/Auswerteeinheit den durch die Störgröße auftretenden Meßfehler bei der Dichtebestimmung berücksichtigt.
  • Wie bereits an vorhergehender Stelle angedeutet, handelt es sich bei der Störgröße um die Viskosität des Mediums. Selbstverständlich läßt sich zusätzlich jede andere, empirisch greifbare Störgröße wie die temperatur oder der Druck, die Einfluß auf das Schwingverhalten des Schwingelements nimmt, mittels der Erfindung kompensieren.
  • Um stets die aktuellen Werte der Temperatur und/oder des Druckes zur Verfügung zu haben, sind/ist ein Temperatursensor und/oder ein Drucksensor vorgesehen, die/der die Temperatur bzw. den Druck in der Umgebung der schwingfähigen Einheit bestimmen/bestimmt. Gemäß einer Ausgestaltung der erfindungsgemäßen Vorrichtung sind/ist der Temperatursensor, z. B. ein PT 100, und/oder der Drucksensor in die Vorrichtung zur Bestimmung des Füllstandes bzw. der Dichte integriert sind. Selbstverständlich ist es auch möglich, den Temperatur- und/oder Drucksensor als separate Einheiten vorzusehen und im Behälter zu positionieren. Weiterhin ist es möglich, beispielsweise den Druck oder die Temperatur über die schwingfähige Einheit selbst zu ermitteln. Insbesondere wird hier die Steifigkeit zwischen der Antriebs-/Empfangseinheit und der Membran gemessen, an der z. B. Schwingstäbe in Form einer Stimmgabel befestigt sind. Zwecks Messung der Steifigkeit wird die schwingfähige Einheit mit einem hochfrequenten Schwingungsmode beaufschlagt. Anschließend wird die Reaktion der schwingfähigen Einheit auf die Erregerfrequenz zwecks Bestimmung der Temperatur oder des Druckes ausgewertet.
  • Gemäß einer bevorzugten Weiterbildung der erfindungsgemäßen Vorrichtung wird vorgeschlagen, daß eine Datenübertragungsstrecke bzw. ein Datenbus, vorgesehen ist. Über diese Verbindungen leiten die Sensoren und die einzelnen Einheiten der erfindungsgemäßen Vorrichtung ihre Daten an die Regel-/Auswerteeinheit weiter, bzw. über die Verbindungen kommunizieren die Sensoren und/oder die einzelnen Einheiten der erfindungsgemäßen Vorrichtung mit der Regel-/Auswerteeinheit. Bei der Kommunikation wird bevorzugt auf die gängigen Industriestandards zurückgegriffen. Als Beispiele sind hier PROFIBUS PA, FIELDBUS FOUNDATION oder HART zu nennen.
  • Die Erfindung wird anhand der nachfolgenden Zeichnungen näher erläutert. Es zeigt:
    • Fig. 1: eine schematische Darstellung einer bevorzugten Ausgestaltung der erfindungsgemäßen Vorrichtung,
    • Fig. 2: ein Flußdiagramm zur Ansteuerung der Regel-/Auswerteeinheit im Falle der Füllstandsbestimmung,
    • Fig. 3: ein Flußdiagramm zur Ansteuerung der Regel-/Auswerteeinheit im Falle der Dichtebestimmung,
    • Fig. 4: eine graphische Darstellung der Kennlinien E(Δf) bei unterschiedlichen Viskositäten und
    • Fig. 5: eine schematische Darstellung einer Schaltung zur Kompensation von Frequenzänderungen, die infolge der Viskosität des Mediums auftreten.
  • Fig. 1 zeigt eine schematische Darstellung der erfindungsgemäßen Vorrichtung zur Feststellung und/oder Überwachung des Füllstandes F des Mediums 2 in dem Behälter 3. Kurz gesprochen, handelt es sich um einen Grenzwertdetektor. Die in der Fig. 1 gezeigte Vorrichtung 1 ist selbst-verständlich auch-wie bereits an vorhergehender Stelle erläutert - zur Bestimmung der Dichte des in dem Behälter 3 befindlichen Mediums 2 geeignet. Während im Fall der Füllstandsbestimmung die schwingfähige Einheit nur bei Erreichen des detektierten Grenzfüllstandes in das Medium bzw. nicht in das Medium eintaucht, muß sie zwecks Überwachung bzw. Bestimmung der Dichte ρ kontinuierlich bis zu einer vorbestimmten Eintauchtiefe E mit dem Medium 2 in Kontakt sein. Bei dem Behälter 3 kann es sich natürlich auch um ein Rohr handeln, das von dem Medium 2 durchflossen wird.
  • Die Vorrichtung 1 weist ein im wesentlichen zylindrisches Gehäuse 12 auf. An der Mantelfläche des Gehäuses 12 ist ein Gewinde 10 vorgesehen. Das Gewinde 10 dient zur Befestigung der Vorrichtung 1 auf der Höhe des vorbestimmten Füllstandes F in dem Behälter 3 und ist im gezeigten Fall in einer entsprechenden Öffnung im Deckel 11 des Behälters 3 angeordnet. Andere Arten der Befestigung, z.B. mittels eines Flansches, können die in Fig. 1 dargestellte Anbringung der erfindungsgemäßen Vorrichtung 1 an dem Behälter 3 ohne weiteres ersetzen.
  • Das Gehäuse 12 ist an seinem in den Behälter 3 hineinragenden Endbereich von der Membran 5 abgeschlossen, wobei die Membran 5 in ihrem Randbereich in das Gehäuse 12 eingespannt ist. An der Membran 5 ist die in den Behälter 3 ragende schwingungsfähige Einheit 4 befestigt. Im dargestellten Fall hat die schwingfähige Einheit 4 die Ausgestaltung einer Stimmgabel, umfaßt also zwei voneinander beabstandete, auf der Membran 5 befestigte und in den Behälter 3 hineinragende ragende Schwingstäbe.
  • Die Membran 5 wird von einem Antriebs-/Empfangselement 6 in Schwingungen versetzt, wobei das Antriebselement 6a die Membran 5 mit einer vorgegebenen Erregerfrequenz zu Schwingungen anregt. Bei dem Antriebselement 6a handelt es sich z. B. um einen Stapelantrieb oder um einen Bimorphantrieb. Beide Arten von piezo-elektrischen Antrieben sind aus dem Stand der Technik hinreichend bekannt, so daß an dieser Stelle auf ihre Beschreibung verzichtet werden kann. Aufgrund der Schwingungen der Membran 5 führt auch die schwingfähige Einheit 4 Schwingungen aus, wobei die Schwingfrequenz unterschiedlich ist, wenn die schwingfähige Einheit 4 mit dem Medium 2 in Kontakt ist und so beim Schwingen die Masse des Mediums 2 mitbewegen muß oder wenn die schwingfähige Einheit 4 frei und ohne Kontakt mit dem Medium 2 schwingen kann.
  • Bei der Empfangseinheit 6b kann es sich beispielsweise ebenso wie bei der Antriebseinheit 6a um ein einziges piezo-elektrisches Element handeln. Die Antriebs-/Empfangseinheit 6 regt die Membran 5 zu Schwingungen in Abhängigkeit von einem an dem piezo-elektrischen Element anliegenden Sendesignal an, und sie dient zum Empfangen und Umwandeln der Schwingungen der Membran 5 in ein elektrisches Empfangssignal.
  • Piezo-elektrischen Elemente ändern ihre Grössen (Dicke, Durchmesser ...) in Abhängigkeit von einer in Polarisationsrichtung anliegenden Spannungsdifferenz. Liegt eine Wechselspannung an, so oszilliert die Dicke: Nimmt die Dicke zu, so nimmt der Durchmesser des piezo-elektrischen Elementes ab; nimmt andererseits die Dicke ab, so vergrößert sich der Durchmesser des piezo-elektrischen Elements entsprechend.
  • Aufgrund dieses Schwingungsverhaltens des piezo-elektrischen Elements bewirkt die Spannungsdifferenz ein Durchbiegen der in das Gehäuse 12 eingespannten Membran 5. Die auf der Membran 5 angeordneten Schwing-stäbe des schwingfähigen Einheit 4 führen aufgrund der Schwingungen der Membran 5 gegensinnige Schwingungen um ihre Längsachse aus. Die gegensinnigen Schwingungen haben den Vorteil, daß sich die von jedem Schwingstab auf die Membran 5 ausgeübten Wechselkräfte gegenseitig aufheben. Hierdurch wird die mechanische Beanspruchung der Einspannung minimiert, so daß näherungsweise keine Schwingungsenergie auf das Gehäuse 12 übertragen wird.
  • In dem Behälter ist desweiteren ein Temperatursensor 13 und ein Druck-sensor 14 vorgesehen. Beide Sensoren 13, 14 und der Vibrationssensor liefern ihre Meßwerte zwecks Auswertung an die Regel-/Auswerteeinheit 7.
  • In Fig. 2 ist ein Flußdiagramm zur Ansteuerung der Regel-/Auswerteeinheit 7 für den Fall der Füllstandsbestimmung dargestellt. Als Sollwert zur Charakterisierung des Schaltpunktes wird die zugehörige unter Standard-bedingungen ermittelte Frequenzänderung vorgegeben. Nach dem Programmstart bei Punkt 20 werden bei den Programmpunkten 21, 22 der aktuelle Temperaturwert T und der aktuelle Druckwert p bereitgestellt. Anhand der gemessenen Werte T, p wird unter Programmpunkt 23 die entsprechende Frequenzänderung Δf (p, T) berechnet. Die Berechnung kann beispielsweise unter Verwendung einer empirisch ermittelten Kennlinie erfolgen. Diese Kennlinie kann durch folgende Formel beschrieben werden: Δf p T = p a + T + b T 2 + c + d T + e .
    Figure imgb0001
  • Hierbei sind a, b, c, d, e reelle Zahlen, in denen sich sensor- und systemabhängige Größen widerspiegeln. Die Ermittlung dieser Größen erfolgt beispielsweise unter Verwendung empirisch ermittelter Kennlinien. Für unterschiedliche Sensoren oder Einbauarten eines Füllstands- oder Dichte-Meßgerätes in den Behälter sind gemäß einer bevorzugten Variante der erfindungsgemäßen Vorrichtung unterschiedliche Sätze von Kennlinien vorgesehen. Im einfachsten Fall werden diese Kennliniensätze von dem Bedienpersonal über Knopfdruck für die korrekte Ermittlung des Schalt-punktes oder der Dichte aufgerufen, so daß sie nachfolgend der Regel-/ Auswerteeinheit zur Verfügung gestellt werden.
  • Es versteht sich von selbst, daß ein interessanter Aspekt der Erfindung auch derjenige ist, daß diese unterschiedlichen Kennliniensätze, die empirisch ermittelt oder nach einem mathematischen Modell berechnet wurden und die sensor- und/oder systemspezifisch sind, auch völlig unabhängig von der zuvor beschriebenen Temperatur-, Druck- und/oder Viskositätskompensation angewendet werden können.
  • Die unter dem Einfluß der Störgrößen (Druck p, Temperatur T) auftretende Frequenzänderung Δf (p, T) wird nachfolgend unter Programmpunkt 25 bei der den Füllstand F bzw. die Dichte ρ widerspiegelnden Frequenzänderung Δf (IST) berücksichtigt. Erst wenn der korrigierte Istwert Δf (IST)Korr mit dem vorgegebenen Sollwert Δf (SOLL) der Frequenzänderung übereinstimmt, wird bei Punkt 26 eine Meldung 'Sensor bedeckt' ausgegeben. Solange die zuvor genannte Bedingung nicht erfüllt ist, werden die Programmpunkte 21 bis 25 in einer Schleife durchlaufen. Ist die unter 26 vorgesehene Meldung erfolgt, wird das Programm bei 27 beendet.
  • In Fig. 3 ist ein Flußdiagramm zur Ansteuerung der Regel-/Auswerteeinheit 7 für den Fall der Dichtebestimmung dargestellt. Als Sollwerte für die Dichte ρ(Δf) wird die unter entsprechenden Standardbedingungen ermittelte Kennlinie vorgegeben, die die Dichte ρ in Abhängigkeit von der Frequenz-änderung Δf wiedergibt. In Kenntnis der Werte von Temperatur T und Druck p, die unter den Programmpunkten 29, 30 gemessen werden, wird bei 31 die zugehörige Frequenzänderung Δf(p, T) berechnet oder in sonstiger Weise ermittelt. Diese Frequenzänderung Δf(p, T) wird bei der Bestimmung der tatsächlichen, von diesen Störgrößen p, T unbeeinflußten Frequenzänderung Δf' berücksichtigt (Punkt 32), so daß die korrigierte Frequenzänderung Δf' verläßlich die tatsächliche Dichte ρ(Δf') des Mediums 2 widerspiegelt (Programmpunkt 33).
  • Fig. 4 zeigt in einer graphischen Darstellung die Eintauchtiefe E in Abhängigkeit von der Frequenzänderung Δf bei unterschiedlichen Viskositäten V. Die beiden Extremfälle einer Viskosität von 1 mPasec und 60.000 mPasec sind in Fig. 4 entsprechend markiert. Wie deutlich zu sehen ist, ist die Frequenzänderung Δf nicht nur von der Eintauchtiefe E der schwingfähigen Einheit 4 in das Medium 2 abhängig, sondern sie wird auch gravierend von der Viskosität V des Meßmediums 2 beeinflußt. Erinnert sei an dieser Stelle daran, daß sich die Erfindung auf eine universell für die Füllstands- oder Dichtemessung bei unterschiedlichsten Medien 2 verwendbaren Vorrichtung beziehen soll. Würde die unterschiedliche Viskositäten V der Medien 2 nicht erfindungsgemäß berücksichtigt, würde z. B. ein Schaltvorgang ausgelöst, obwohl der vorgegebene Füllstand noch überhaupt nicht erreicht worden ist. Ebenso wären die Meßfehler, was die Dichtemessung betrifft, inakzeptabel groß.
  • Fig. 5 zeigt eine schematische Darstellung einer Schaltung zur Kompensation einer Frequenzänderung Δf , die - wie in Fig. 4 klar zu sehen ist - infolge des Einflusses der Viskosität V des zu messenden oder überwachenden Mediums 2 auftritt. Kurz gesagt, wird durch die gezeigte Schaltung die Störgröße 'Viskosität V' automatisch kompensiert. Wie bereits an vorhergehender Stelle beschrieben, wird hierzu die Phasenverschiebung Δϕ zwischen der Erregerfrequenz fE und der Schwingfrequenz fs der schwingfähigen Einheit 4 so bemessen, daß eine auftretende Frequenzänderung Δf im wesentlichen unabhängig ist von der Viskosität V des Mediums 2 und somit im wesentlichen nur abhängig ist von der Eintauchtiefe E der schwingfähigen Einheit 4 in das Medium 2 bzw. von der Dichte ρ des Mediums 2.
  • Insbesondere wird das die Schwingung der schwingfähigen Einheit widerspiegelnde Empfangssignal der Empfangseinheit über das Filter 17 gefiltert; anschließend wird das gefilterte Signal einer Phasenverschiebung Δϕ unterzogen, die derart bemessen ist, daß die durch die Viskosität V verursachte Frequenzänderung Δf (V) keinen Einfluß mehr auf die Frequenzänderung Δf der Schwingfrequenz der schwingfähigen Einheit 4 hat. Liegen die Temperatur- und/oder Druckwerte innerhalb eines Bereichs, in dem sie keine meßbaren Auswirkungen auf die Frequenzänderung Δf der schwingfähigen Einheit 4 haben, so läßt sich der Einfluß der Viskosität V problemlos kompensieren. Liegen die Temperatur- und/oder Druckwerte hingegen in einem Bereich, in dem sie die Frequenzänderung Δf so stark beeinflussen, daß Meßfehler und Fehlfunktionen des Sensors auftreten, so wird zusätzlich die zuvor beschriebenen Kompensation des Temperatur- und/oder Druckeinflusses erforderlich sein.
  • Es hat sich gezeigt, daß bei einer großen Zahl von Flüssigkeiten unterschiedlicher Viskosität V mit einer Phasenverschiebung von 70° der Einfluß der Viskosität hinreichend gut kompensiert werden kann. Bei dichten Schäumen (Dichte > 0,6 g/cm3) ist eine Phasenverschiebung von 120° - 140° bestens zur Kompensation geeignet.
  • Hat man alle durch Temperatur T, Druck p und/oder Dichte ρ bedingte Frequenzänderungen Δf (p, T, ρ) im Griff, so ist umgekehrt eine Bestimmung der Viskosität V möglich.
  • Bezugszeichenliste
  • 1
    erfindungsgemäße Vorrichtung
    2
    Medium
    3
    Behälter
    4
    Schwingfähige Einheit, insbesondere Stimmgabel
    5
    Membran
    6
    Antriebs-/Empfangseinheit
    7
    Regel-/Auswerteeinheit
    8
    Datenleitung
    9
    Datenleitung
    10
    Gewinde
    11
    Deckel
    12
    Gehäuse
    13
    Temperatursensor
    14
    Drucksensor
    15
    Datenleitung
    16
    Datenleitung
    17
    Filter
    18
    Phasenschieber
    19
    Verstärker

Claims (15)

  1. Verfahren zur Feststellung und/oder Überwachung des Füllstandes eines Mediums in einem Behälter bzw. Verfahren zur Ermittlung der Dichte eines Mediums In dem Behälter,
    wobei eine schwingfähige Einheit auf der Höhe des vorbestimmten Füllstandes angebracht wird bzw. wobei eine schwingfähige Einheit so angebracht wird, daß sie bis zu einer definierten Eintauchtiefe in das Medium eintaucht,
    wobei die schwingfähige Einheit mittels einer Erregerschwingung zu Schwingungen angeregt wird und
    wobei das Erreichen des vorbestimmten Füllstandes erkannt wird, sobald die schwingfähige Einheit mit einer Schwingfrequenz schwingt, die eine vorbestimmte Frequenzänderung gegenüber der Erregerfrequenz aufweist, bzw. wobei die Dichte des Mediums anhand der Schwingfrequenz der schwingfähigen Einheit ermittelt wird,
    dadurch gekennzeichnet,
    daß der Einfluß der Viskosität auf die Schwingfrequenz (fs ) der schwingfähigen Einheit (4) bei der Bestimmung des Füllstandes (F) des Mediums (2) in dem Behälter (3) bzw. bei der Bestimmung der Dichte (p) des in dem Behälter (3) befindlichen Mediums (2) ermittelt und entsprechend kompensiert wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß eine Frequenzänderung (Δf) der schwingfähigen Einheit (4), die durch eine Änderung der Viskosität (ΔV) des Mediums (2) hervorgerufen wird, dadurch kompensiert wird, daß die Erregerfrequenz (fE ) gegenüber der Schwingfrequenz (fs ) der schwingfähigen Einheit (4) eine Phasenverschiebung (Δϕ) aufweist, die von 90° verschieden ist.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet,
    daß die Phasenverschiebung (Δϕ) zwischen der Erregerfrequenz (fE ) und der Schwingfrequenz (fs ) der schwingfähigen Einheit (4) so bemessen ist, daß eine auftretende Frequenzänderung (Δf) im wesentlichen unabhängig ist von der Viskosität (V) des Mediums (2) und somit im wesentlichen nur abhängig ist von der Eintauchtiefe (E) der schwingfähigen Einheit (4) in das Medium (2) bzw. von der Dichte (p) des Mediums (2).
  4. Verfahren nach Anspruch 1, 2 oder 3,
    dadurch gekennzeichnet,
    daß der Einfluß von zumindest einer weiteren Störgröße auf die Schwingfrequenz (fs ) ermittelt und entsprechend kompensiert wird, wenn die Störgröße in einem Bereich liegt, daß sie Frequenzänderungen verursacht, die zu Meßfehlern und Fehlfunktionen des Sensors führen.
  5. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    daß die zumindest eine Störgröße direkt gemessen oder indirekt ermittelt wird.
  6. Verfahren nach Anspruch 1 oder 5.
    dadurch gekennzeichnet,
    daß Kennlinien (Δf(p, T), (Δf( V)) erstellt und gespeichert werden, die die Frequenzänderung (Δf) des schwingungsfähigen Gebildes (4) in Abhängigkeit von zumindest einer Störgröße wiedergeben.
  7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet,
    daß die Kennlinien (Δf(p, T), (Δf( V)) anhand eines mathematischen Modells oder anhand empirisch ermittelter Daten erstellt werden.
  8. Verfahren nach Anspruch 1, 4, 6 oder 7,
    dadurch gekennzeichnet,
    daß weitere Parameter bei der Auswahl der Kennlinien berücksichtigt werden, insbesondere die Geometrie und/oder die Dimensionierung der schwingfähigen Einheit (4), das Material, aus dem die schwingfähige Einheit (4) gefertigt ist und/oder im Falle der Füllstandsbestimmung die Einbauposition der schwingfähigen Einheit (4) im Behälter (3).
  9. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß die zumindest eine Störgröße gemessen oder ermittelt wird und
    daß die entsprechende Frequenzänderung (Δf) im Falle der Füllstandsmessung bei der Festlegung des Schaltpunktes bzw. im Falle der Dichtemessung bei der Bestimmung der Dichte (p) des Mediums (2) berücksichtigt wird.
  10. Vorrichtung zur Feststellung und/oder Überwachung des Füllstandes eines Mediums in einem Behälter bzw. Vorrichtung zur Ermittlung der Dichte eines Mediums in dem Behälter,
    wobei eine schwingfähige Einheit vorgesehen ist, die auf der Höhe des vorbestimmten Füllstandes angebracht ist bzw. wobei eine schwingfähige Einheit so angebracht ist, daß es bis zu einer definierten Eintauchtiefe in das Medium eintaucht,
    wobei eine Antriebs-/Empfangseinheit vorgesehen ist, die die schwingfähige Einheit mit einer vorgegebenen Erregerfrequenz zu Schwingungen anregt und die die Schwingungen der schwingfähigen Einheit empfängt, und wobei eine Regel-/Auswerteeinheit vorgesehen ist, die das Erreichen des vorbestimmten Füllstandes erkennt, sobald eine vorgegebene Frequenzänderung auftritt bzw. die anhand der Schwingfrequenz der schwingfähigen Einheit die Dichte des Mediums ermittelt,
    dadurch gekennzeichnet,
    daß die Regel-/Auswerteeinheit (7) den Einfluß der Viskosität auf die Schwingfrequenz (fs ) der schwingfähigen Einheit (4) ermittelt und
    daß die Regel-/Auswerteeinheit (7) die Frequenzänderung, bei der das Erreichen des vorbestimmten Füllstandes (F) angezeigt wird, derart korrigiert,
    daß der Einfluß dieser Störgröße eliminiert wird, bzw.
    daß die Regel-/Auswerteeinheit (7) den durch die Störgröße auftretenden Meßfehler bei der Bestimmung der Dichte (p) berücksichtigt.
  11. Vorrichtung nach Anspruch 10,
    dadurch gekennzeichnet,
    daß die Regel-/Auswerteeinheit (7) den Einfluß mindestens einer weiteren Störgröße auf die Schwingfrequenz (f s) der schwingfähigen Einheit (4) ermittelt und entsprechend kompensiert, wenn die Störgröße in einem Bereich liegt, daß sie Frequenzänderungen verursacht, die zu Meßfehlern und Fehlfunktionen des Sensors führen.
  12. Vorrichtung nach Anspruch 11,
    dadurch gekennzeichnet,
    daß es sich bei der zumindest einen Störgröße um die Temperatur (T) oder den Druck (p) des Mediums (2) handelt.
  13. Vorrichtung nach Anspruch 11 oder 12,
    dadurch gekennzeichnet,
    daß ein Temperatursensor (12) und/oder ein Drucksensor (13) vorgesehen sind/ist, die/der die Temperatur (T) bzw. den Druck (p) in der Umgebung der schwingfähigen Einheit (4) bestimmen/bestimmt.
  14. Vorrichtung nach Anspruch 11 oder 12,
    dadurch gekennzeichnet,
    daß der Temperatursensor (12) und/oder der Drucksensor (13) in die Vorrichtung (1) zur Bestimmung des Füllstandes (F) bzw. der Dichte (p) integriert sind.
  15. Vorrichtung nach Anspruch 13 oder 14,
    dadurch gekennzeichnet,
    daß die eine Datenübertragungsstrecke bzw. ein Datenbus ((8, 9), vorgesehen ist, über die der Sensor und/oder die einzelnen Einheiten (12,13) der erfindungsgemäßen Vorrichtung (1) ihre Daten an die Regel-/Auswerteeinheit (7) weiterleiten bzw. über den der Sensor und/oder die einzelnen Einheiten (12, 13) der erfindungsgemäßen Vorrichtung (1) mit der Regel-/Auswerte-einheit-kommunizieren.
EP01997680A 2000-11-22 2001-11-13 Verfahren und vorrichtung zur feststellung und/oder überwachung des füllstandes eines mediums in einem behälter bzw. zur ermittlung der dichte eines mediums in einem behälter Expired - Lifetime EP1336083B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10057974A DE10057974A1 (de) 2000-11-22 2000-11-22 Verfahren und Vorrichtung zur Feststellung und/oder Überwachung des Füllstands eines Mediums in einem Behälter bzw. zur Ermittlung der Dichte eines Mediums in einem Behälter
DE10057974 2000-11-22
PCT/EP2001/013114 WO2002042724A1 (de) 2000-11-22 2001-11-13 Verfahren und vorrichtung zur feststellung und/oder überwachung des füllstandes eines mediums in einem behälter bzw. zur ermittlung der dichte eines mediums in einem behälter

Publications (2)

Publication Number Publication Date
EP1336083A1 EP1336083A1 (de) 2003-08-20
EP1336083B1 true EP1336083B1 (de) 2007-08-15

Family

ID=7664263

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01997680A Expired - Lifetime EP1336083B1 (de) 2000-11-22 2001-11-13 Verfahren und vorrichtung zur feststellung und/oder überwachung des füllstandes eines mediums in einem behälter bzw. zur ermittlung der dichte eines mediums in einem behälter

Country Status (6)

Country Link
US (1) US6845663B2 (de)
EP (1) EP1336083B1 (de)
AT (1) ATE370392T1 (de)
AU (1) AU2002219098A1 (de)
DE (2) DE10057974A1 (de)
WO (1) WO2002042724A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018115368A1 (de) 2018-06-26 2020-01-02 Endress+Hauser SE+Co. KG Parametrierung eines Feldgeräts
DE102019116151A1 (de) * 2019-06-13 2020-12-17 Endress+Hauser SE+Co. KG Vibronischer Multisensor

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237931A1 (de) * 2002-08-14 2004-02-26 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Überwachung eines vorbestimmten Füllstands eines Messmediums in einem Behälter
DE10302437B4 (de) * 2003-01-21 2006-10-05 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Überwachung eines vorbestimmten Füllstandes eines Mediums in einem Behälter
DE10308087A1 (de) * 2003-02-24 2004-09-09 Endress + Hauser Gmbh + Co. Kg Schutz vor den Effekten von Kondensatbrücken
DE10328296A1 (de) 2003-06-23 2005-01-20 Endress + Hauser Gmbh + Co. Kg Ansatzalarm bei Feldgeräten
DE10331428B4 (de) * 2003-07-10 2005-07-28 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung und/oder Überwachung einer Prozessgröße
US7272525B2 (en) * 2004-04-21 2007-09-18 Visyx Technologies, Inc. Portable fluid sensing device and method
DE102004036018A1 (de) * 2004-07-23 2006-02-16 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung mindestens einer Prozessgröße
GB0420181D0 (en) * 2004-09-10 2004-10-13 Dt Assembly & Test Europ Ltd Metering apparatus
DE102004055552B4 (de) * 2004-11-17 2014-02-13 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung eines Füllstandes
DE102005015547A1 (de) * 2005-04-04 2006-10-05 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE102005015546A1 (de) * 2005-04-04 2006-10-05 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung mindestens einer Prozessgröße
DE102005062001A1 (de) * 2005-12-22 2007-06-28 Endress + Hauser Gmbh + Co. Kg Verfahren und Vorrichtung zur Bestimmung mindestens einer Messgröße eines Mediums
EP1804048B1 (de) * 2005-12-30 2010-05-12 Services Pétroliers Schlumberger Dichte- und Viskositätssensor
DE102006007199A1 (de) * 2006-02-15 2007-08-16 Vega Grieshaber Kg Vibrationsgrenzschalteranordnung bzw. Verfahren zum Korrigieren eines Vibrationsgrenzschalter-Schaltpunktes
US20070186646A1 (en) * 2006-02-15 2007-08-16 Vega Grieshaber Kg Vibratory limit switch configuration and a process for correcting the switching point of a vibratory limit switch
DE102006033819A1 (de) 2006-07-19 2008-01-24 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE102006034105A1 (de) 2006-07-20 2008-01-24 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
CN101611294B (zh) * 2007-01-16 2012-10-03 恩德莱斯和豪瑟尔两合公司 用于确定和/或者监测介质过程变量的装置
DE102007008669A1 (de) 2007-02-20 2008-08-21 Endress + Hauser Gmbh + Co. Kg Verfahren zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums und entsprechende Vorrichtung
DE102008043764A1 (de) * 2008-11-14 2010-05-20 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße
ES2367226T3 (es) * 2009-04-29 2011-10-31 Nest International N.V. Dispositivo de medición de la densidad de un fluido.
DE102009029490B4 (de) * 2009-09-16 2023-09-28 Endress+Hauser SE+Co. KG Füllstandsmessgerät
DE102010002608A1 (de) * 2009-12-29 2011-06-30 Endress + Hauser GmbH + Co. KG, 79689 Vorrichtung zur Bestimmung mindestens einer Prozessgröße
DE102010030791A1 (de) 2010-07-01 2012-01-05 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
WO2012009550A2 (en) * 2010-07-16 2012-01-19 Cornell University Ultrasonic horn actuated microprobes based self-calibrating viscosity sensor
DE102010063146B4 (de) * 2010-12-15 2024-04-25 Endress+Hauser SE+Co. KG Vorrichtung zur Bestimmung mindestens einer Prozessgröße
US9907908B2 (en) 2011-03-08 2018-03-06 Baxter International Inc. Non-invasive radio frequency medical fluid level and volume detection system and method
SE536170C2 (sv) * 2011-09-27 2013-06-11 Scania Cv Ab Mätsystem för mätning av en vätskas densitet och nivå i en behållare
DE102011089808A1 (de) 2011-12-23 2013-06-27 Endress + Hauser Flowtec Ag Verfahren bzw. Meßsystem zum Ermitteln einer Dichte eines Fluids
DE102012100728A1 (de) * 2012-01-30 2013-08-01 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung mindestens einer Prozessgröße
DE102012109729A1 (de) 2012-10-12 2014-05-15 Endress + Hauser Flowtec Ag Meßsystem zum Ermitteln eines Volumendruchflusses und/oder einer Volumendurchflußrate eines in einer Rohrleitung strömenden Mediums
US9372107B2 (en) 2012-10-11 2016-06-21 Endress + Hauser Flowtec Ag Measuring system for ascertaining a volume flow and/or a volume flow rate of a medium flowing in a pipeline
JP6478975B2 (ja) * 2013-04-26 2019-03-06 マイクロ モーション インコーポレイテッド 振動式センサ及び振動式センサにて振動を変える方法
EP2811269A1 (de) * 2013-06-06 2014-12-10 VEGA Grieshaber KG Multigrenzstandmessgerät
CN103323367A (zh) * 2013-06-18 2013-09-25 广州天禾自动化实业有限公司 一种检测流体物性的传感器
DE102013109277A1 (de) * 2013-08-27 2015-03-05 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung oder Überwachung einer Prozessgröße
DE102014111905B3 (de) * 2014-08-20 2016-01-21 Endress + Hauser Gmbh + Co. Kg Rekonditionierung von beschichteten Sensoren
KR102302655B1 (ko) * 2014-12-19 2021-09-15 마이크로 모우션, 인코포레이티드 위상 에러에 기초한 진동 센서의 진동의 제어
US10126266B2 (en) 2014-12-29 2018-11-13 Concentric Meter Corporation Fluid parameter sensor and meter
WO2016109451A1 (en) 2014-12-29 2016-07-07 Concentric Meter Corporation Electromagnetic transducer
EP3215812B1 (de) 2014-12-29 2020-10-07 Concentric Meter Corporation Fluidparametersensor und -messgerät
DE102015101891A1 (de) 2015-02-10 2016-08-11 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße eines Mediums
KR20160101419A (ko) * 2015-02-17 2016-08-25 한국전자통신연구원 수위 계측 장치 및 수위 계측 방법
DE102015102834A1 (de) 2015-02-27 2016-09-01 Endress + Hauser Gmbh + Co. Kg Vibronischer Sensor
DE102015103071B3 (de) * 2015-03-03 2015-11-12 Endress + Hauser Gmbh + Co. Kg Vibronischer Sensor mit einem Stellelement
DE102015104533A1 (de) 2015-03-25 2016-09-29 Endress + Hauser Gmbh + Co. Kg Elektromagnetische Antriebs-/Empfangseinheit für ein Feldgerät der Automatisierungstechnik
DE102015104536A1 (de) 2015-03-25 2016-09-29 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße
GB2538233A (en) * 2015-05-08 2016-11-16 Rosemount Measurement Ltd Improvements in or relating to level switches
DE102015108845A1 (de) 2015-06-03 2016-12-08 Endress + Hauser Gmbh + Co. Kg Beschichtung für ein Messgerät der Prozesstechnik
DE102015112421A1 (de) 2015-07-29 2017-02-02 Endress + Hauser Gmbh + Co. Kg Phasenregeleinheit für vibronischen Sensor
DE102015112544A1 (de) * 2015-07-30 2017-02-02 Endress+Hauser Gmbh+Co. Kg Vorrichtung zur Bestimmung oder Überwachung einer Prozessgröße
DE102015112543A1 (de) 2015-07-30 2017-02-02 Endress+Hauser Gmbh+Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße
DE102015121621B4 (de) * 2015-12-11 2018-03-01 Endress+Hauser Gmbh+Co. Kg Vorrichtung zur sicheren Bestimmung und/oder Überwachung einer Prozessgröße
DE102015122124A1 (de) 2015-12-17 2017-06-22 Endress+Hauser Gmbh+Co. Kg Vibronischer Sensor und Messanordnung zum Überwachen eines fließfähigen Mediums
DE102016112308A1 (de) 2016-07-05 2018-01-11 Endress + Hauser Gmbh + Co. Kg Elektromagnetische Antriebs-/Empfangseinheit für ein Feldgerät der Automatisierungstechnik
DE102016112309A1 (de) 2016-07-05 2018-01-11 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße
DE102016112743A1 (de) 2016-07-12 2018-01-18 Endress+Hauser Gmbh+Co. Kg Vibronischer Sensor
GB2552685A (en) 2016-08-03 2018-02-07 Rosemount Measurement Ltd Improvements in or relating to vibrating fork level switches
DE102016117194A1 (de) 2016-09-13 2018-03-15 Endress + Hauser Gmbh + Co. Kg Kompensation einer Phasenverschiebung zumindest einer Komponente einer Elektronik eines vibronischen Sensors
DE102016120326A1 (de) 2016-10-25 2018-04-26 Endress+Hauser SE+Co. KG Verfahren zur Zustandsüberwachung eines elektromechanischen Resonators
DE102016124365A1 (de) 2016-12-14 2018-06-14 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Temperaturkompensation
DE102016124740A1 (de) 2016-12-19 2018-06-21 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Störsignal Kompensation
DE102016125243A1 (de) 2016-12-21 2018-06-21 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Temperaturkompensation
DE102017102550A1 (de) 2017-02-09 2018-08-09 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102017103001A1 (de) 2017-02-15 2018-08-16 Endress+Hauser SE+Co. KG Verbesserte Klebeverbindung durch Mikrostrukturierung einer Oberfläche
DE102017111392A1 (de) 2017-05-24 2018-11-29 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Störsignal Kompensation
DE102017114315A1 (de) 2017-06-28 2019-01-03 Endress+Hauser SE+Co. KG Temperaturbestimmung mit einem vibronischen Sensor
DE102017115147A1 (de) 2017-07-06 2019-01-10 Endress+Hauser SE+Co. KG Zustandsüberwachung einer Spule in einem Sensor
DE102017130530A1 (de) 2017-12-19 2019-06-19 Endress+Hauser SE+Co. KG Verfahren zur Zustandsüberwachung eines vibronischen Sensors
DE102017130527A1 (de) 2017-12-19 2019-06-19 Endress+Hauser SE+Co. KG Vibronischer Sensor
DE102018127526A1 (de) 2018-11-05 2020-05-07 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102018128734A1 (de) 2018-11-15 2020-05-20 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Temperaturkompensation
DE102019109487A1 (de) 2019-04-10 2020-10-15 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102019110821A1 (de) 2019-04-26 2020-10-29 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102019112866A1 (de) 2019-05-16 2020-11-19 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102019114174A1 (de) 2019-05-27 2020-12-03 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102019116152A1 (de) 2019-06-13 2020-12-17 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102019116150A1 (de) 2019-06-13 2020-12-17 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102019131485A1 (de) 2019-11-21 2021-05-27 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102019132021A1 (de) * 2019-11-26 2021-05-27 Vega Grieshaber Kg Vibrationssensor mit integrierter Temperaturerfassung mit einer in Schwingung versetzbaren Membran
DE102020104066A1 (de) 2020-02-17 2021-08-19 Endress+Hauser SE+Co. KG Vibronischer Sensor
DE102020104065A1 (de) 2020-02-17 2021-08-19 Endress+Hauser SE+Co. KG Vibronischer Sensor mit reduzierter Anfälligkeit für Gasblasenbildung
DE102020105214A1 (de) 2020-02-27 2021-09-02 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102020116278A1 (de) 2020-06-19 2021-12-23 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102020116299A1 (de) 2020-06-19 2021-12-23 Endress+Hauser SE+Co. KG Symmetrierung eines vibronischen Sensors
DE102020127077A1 (de) 2020-10-14 2022-04-14 Endress+Hauser SE+Co. KG Verfahren zum Betreiben eines vibronischen Sensors
DE202021103688U1 (de) 2021-07-08 2021-09-06 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102021122533A1 (de) 2021-08-31 2023-03-02 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102021122534A1 (de) 2021-08-31 2023-03-02 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102021126092A1 (de) 2021-10-07 2023-04-13 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102021126093A1 (de) 2021-10-07 2023-04-13 Endress+Hauser SE+Co. KG Entkopplungseinheit für einen vibronischen Sensor
DE102021129416A1 (de) 2021-11-11 2023-05-11 Endress+Hauser SE+Co. KG Zustandsüberwachung für einen vibronischen Sensor
CN114199313B (zh) * 2021-12-20 2023-06-02 上海铭控传感技术有限公司 一种投入式液体测量系统及测量方法
DE102022115591A1 (de) 2022-06-22 2023-12-28 Endress+Hauser SE+Co. KG Modularer vibronischer Multisensor
DE102022115594A1 (de) 2022-06-22 2023-12-28 Endress+Hauser SE+Co. KG Modularer vibronischer Multisensor
DE102022115592A1 (de) 2022-06-22 2023-12-28 Endress+Hauser SE+Co. KG Modularer vibronischer Multisensor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170094A (en) * 1961-05-29 1965-02-16 Roth Wilfred Liquid level indicator
GB2067756B (en) * 1980-01-15 1983-11-16 Marconi Co Ltd Liquid level measurement
LU84185A1 (fr) * 1982-06-07 1983-09-02 Egemin Nv Appareil de mesure
DE3348119C2 (en) * 1983-10-11 1989-12-28 Endress U. Hauser Gmbh U. Co, 7864 Maulburg, De Device for ascertaining and/or monitoring a predetermined filling level in a container
DE3336991A1 (de) * 1983-10-11 1985-05-02 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Vorrichtung zur feststellung und/oder ueberwachung eines vorbestimmten fuellstands in einem behaelter
NL8801836A (nl) * 1988-07-20 1990-02-16 Enraf Nonius Delft Inrichting voor het bepalen van het niveau van het grensvlak tussen een eerste en een tweede medium in een reservoir.
DE3833896A1 (de) * 1988-10-05 1990-04-12 Vega Grieshaber Gmbh & Co Frequenzdifferenzauswertung
DE4210705C2 (de) * 1992-04-01 1995-10-19 Grieshaber Vega Kg Frequenz-Spannungswandler für Vibrations-Füllstand-Detektoren sowie Verfahren zur Umwandlung eines Eingangssignals in ein die Eingangssignalfrequenz repräsentierendes Ausgangssignal
US6044694A (en) * 1996-08-28 2000-04-04 Videojet Systems International, Inc. Resonator sensors employing piezoelectric benders for fluid property sensing
DE59712962D1 (de) * 1997-04-30 2008-10-02 Endress & Hauser Gmbh & Co Kg Anordnung zur Feststellung und/oder Überwachung eines vorbestimmten Füllstands in einem Behälter
US6236322B1 (en) * 1998-09-09 2001-05-22 Endress + Hauser Gmbh + Co. Apparatus for establishing and/or monitoring a predetermined filling level in a container
DE10014724A1 (de) * 2000-03-24 2001-09-27 Endress Hauser Gmbh Co Verfahren und Vorrichtung zur Feststellung und/oder Überwachung des Füllstandes eines Mediums in einem Behälter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018115368A1 (de) 2018-06-26 2020-01-02 Endress+Hauser SE+Co. KG Parametrierung eines Feldgeräts
WO2020001874A1 (de) 2018-06-26 2020-01-02 Endress+Hauser SE+Co. KG Parametrierung eines feldgeräts
DE102019116151A1 (de) * 2019-06-13 2020-12-17 Endress+Hauser SE+Co. KG Vibronischer Multisensor

Also Published As

Publication number Publication date
AU2002219098A1 (en) 2002-06-03
DE10057974A1 (de) 2002-05-23
WO2002042724A1 (de) 2002-05-30
DE50112873D1 (de) 2007-09-27
EP1336083A1 (de) 2003-08-20
US6845663B2 (en) 2005-01-25
ATE370392T1 (de) 2007-09-15
US20040078164A1 (en) 2004-04-22

Similar Documents

Publication Publication Date Title
EP1336083B1 (de) Verfahren und vorrichtung zur feststellung und/oder überwachung des füllstandes eines mediums in einem behälter bzw. zur ermittlung der dichte eines mediums in einem behälter
EP1529202B1 (de) Vorrichtung zur überwachung eines vorbestimmten füllstands eines messmediums in einem behälter
EP1266194B1 (de) Verfahren und vorrichtung zur feststellung und/oder überwachung des füllstandes eines mediums in einem behälter
EP3983761B1 (de) Vibronischer multisensor
WO2007093197A1 (de) Vibrationsgrenzschalteranordenung bzw. verfahren zum korrigieren eines vibrationsgrenzschalter-schaltpunktes
DE102011089808A1 (de) Verfahren bzw. Meßsystem zum Ermitteln einer Dichte eines Fluids
EP3580532A1 (de) Zustandsüberwachung eines vibronischen sensors
EP3008432A1 (de) Verfahren zur kalibration oder zum abgleich einer schwingfähigen einheit
WO2017108280A1 (de) Feldgerät der prozessmesstechnik
EP2677284A2 (de) Verfahren zum Betreiben eines Resonanzmesssystems und diesbezügliches Resonanzmesssystem
DE102005044725B4 (de) Membranschwinger zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums in einem Behälter
WO2004013585A1 (de) Vorrichtung zur bestimmung und/oder überwachung einer physikalischen oder chemischen prozessgrösse
EP1751507B1 (de) Vorrichtung zur bestimmung und/oder überwachung einer prozessgrösse eines mediums
EP3314210B1 (de) Feldgerät mit kompensationsschaltung zur eliminierung von umgebungseinflüssen
WO2003002952A1 (de) Vorrichtung zur bestimmung und/oder überwachung des füllstandes eines mediums in einem behälter
DE102013109277A1 (de) Vorrichtung zur Bestimmung oder Überwachung einer Prozessgröße
DE102015114286A1 (de) Vibronische Vorrichtung zur Bestimmung oder Überwachung einer Prozessgröße
WO2020249163A1 (de) Viskositätsbedingte messfehler kompensierende vorrichtung zur coriolis-durchflussmessung
EP4022262A1 (de) Verfahren und messgerät zum bestimmen der viskosität eines mediums
DE102015112544A1 (de) Vorrichtung zur Bestimmung oder Überwachung einer Prozessgröße
DE102007023437B4 (de) Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße
EP2016377A2 (de) Vorrichtung zur bestimmung und/oder überwachung einer prozessgrösse
EP1695046B1 (de) Messvorrichtung mit mechanisch schwingfähiger einheit sowie verfahren und vorrichtung zu deren herstellung
DE102017102036A1 (de) Vorrichtung und Verfahren zur Überwachung der Abfüllung
WO2012079949A1 (de) Vorrichtung zur bestimmung mindestens einer prozessgrösse und verfahren zur druckmessung mit einer derartigen vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030506

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LOPATIN, SERGEJ

Inventor name: MUELLER, ALEXANDER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50112873

Country of ref document: DE

Date of ref document: 20070927

Kind code of ref document: P

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071126

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080115

BERE Be: lapsed

Owner name: ENDRESS + HAUSER G.M.B.H. + CO. KG

Effective date: 20071130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071115

26N No opposition filed

Effective date: 20080516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081113

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50112873

Country of ref document: DE

Owner name: ENDRESS+HAUSER SE+CO. KG, DE

Free format text: FORMER OWNER: ENDRESS + HAUSER GMBH + CO. KG, 79689 MAULBURG, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181120

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191121

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50112873

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601