EP1330143B1 - Betriebsgerät für Leuchtdioden - Google Patents

Betriebsgerät für Leuchtdioden Download PDF

Info

Publication number
EP1330143B1
EP1330143B1 EP03000960A EP03000960A EP1330143B1 EP 1330143 B1 EP1330143 B1 EP 1330143B1 EP 03000960 A EP03000960 A EP 03000960A EP 03000960 A EP03000960 A EP 03000960A EP 1330143 B1 EP1330143 B1 EP 1330143B1
Authority
EP
European Patent Office
Prior art keywords
pull
electronic switch
leds
emitting diodes
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03000960A
Other languages
English (en)
French (fr)
Other versions
EP1330143A3 (de
EP1330143A2 (de
Inventor
Ugo Francescutti
Giovanni Scilla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1330143A2 publication Critical patent/EP1330143A2/de
Publication of EP1330143A3 publication Critical patent/EP1330143A3/de
Application granted granted Critical
Publication of EP1330143B1 publication Critical patent/EP1330143B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]

Definitions

  • the invention relates to a circuit arrangement according to the preamble of claim 1. It is in particular an electronic operating device for operating light-emitting diodes which contains a device for setting the effective value of the operating current of the light-emitting diodes, this device having a pulsed mode of operation.
  • An energy source for example a public supply network or a battery, supplies an electronic converter which provides a supply voltage.
  • the LEDs are usually connected to the supply voltage via two connection cables.
  • One or more LEDs can be operated on a supply voltage.
  • Several LEDs are usually connected in series and form a so-called strand.
  • Several strands can be connected in parallel, with cross-connections also possible between the strands.
  • LED modules which may also contain current limiting resistors. Together with a voltage regulation in the electronic converter, a desired operating current for connected LEDs is realized.
  • the circuit arrangements in question are not only for the operation of LED suitable. It is also possible to use so-called Organic Light Emitting Devices (OLED).
  • OLED Organic Light Emitting Devices
  • the document EP 1 049 360 A2 (Jusuf) describes a programmable LED driver. With the aid of a multiplying digital-to-analog converter, the brightness of one LED with respect to other LEDs can be set very precisely. This is important when the color impression of the entire arrangement is to remain constant when dimming LED arrays with differently colored LEDs.
  • the adjustment of the rms value of the operating current of the LEDs is realized by inserting an electronic switch into a connecting line. In which connection cable the electronic switch is inserted is in principle arbitrary. In the German patent application with the registration file 10136658.2 (Scilla) said adjustment of the RMS value of the operating current of the LEDs is described.
  • the electronic switch can be designed inexpensively as a MOSFET. By opening the switch, the operating current of the LEDs is interrupted.
  • a pulsed operation for the operation of the LEDs is realized.
  • the ratio of the duration of the closed state of the switch to the duration of the open state determines a duty cycle.
  • a desired duty cycle a desired RMS value for the operating current of the LEDs can be set.
  • the maximum value of the operating current of the LEDs, which occurs when the electronic switch is switched on, is specified by the supply voltage.
  • the electronic switch and an associated drive circuit can be combined together with the electronic converter to form a unit in a housing. But it is also possible to form the electronic switch and the drive circuit as a separate dimming unit in a separate housing. This dimming unit, when an adjustment for the rms value of the operating current of the LEDs is desired, can be switched between the electronic converter and the LEDs.
  • the pulse rate at which the electronic switch is opened and closed is usually above a frequency at which the human eye is single Light pulses can distinguish from each other. In practice, frequencies from 100 Hz up to several kilohertz are used.
  • the connecting cable, in which no electronic switch is inserted, forms one pole of an output voltage.
  • the other pole of the output voltage forms the pole of the electronic switch facing away from the supply voltage.
  • the output voltage is fed to the LEDs or LED modules. It has a rectangular shape whose fundamental frequency is equal to the above pulse frequency. Especially with long connection lines, this can lead to electromagnetic incompatibility or radio interference. In order to prevent this and to comply with relevant regulations (eg CISPR 15), it often takes a lot of effort in the form of filters and shields.
  • the output voltage is composed of a DC component and an AC component.
  • the amplitude of the alternating component of the output voltage is hereinafter referred to briefly as the amplitude of the output voltage.
  • the maximum value of the output voltage adjusts itself when the electronic switch is closed and is specified by the value of the supply voltage.
  • the amplitude of the output voltage is half the difference between the maximum value and the minimum value of the output voltage. Given Maximum value thus determines the minimum value, the amplitude of the output voltage and thus the strength of the electromagnetic interference. The smaller the minimum value of the output voltage, the stronger the electromagnetic interference.
  • the minimum value of the output voltage is determined essentially by two quantities: a load impedance with the electronic switch switched off and an off-impedance of the electronic switch.
  • the load impedance when the electronic switch is off is made up of the impedance of the leads and the impedance of the LEDs at very low operating current.
  • the off-impedance of the electronic switch is the impedance of the electronic switch in the open state to understand. Lead impedances to the electronic switch can be considered in the off-impedance, but generally do not matter. Both variables, the load impedance with the electronic switch off and the off-impedance are subject to strong variations due, e.g.
  • the amplitude of the output voltage is substantially equal to half the supply voltage.
  • a pull-down device is connected in parallel with the electronic switch.
  • the value of the resistance of the pull-down device should be chosen so that in the parallel circuit of pull-down device and off-impedance the off-impedance can be neglected, so that variations of the off-impedance have no influence on the output voltage.
  • the minimum value of the output voltage can be set. The minimum value will differ significantly from 0 according to the invention and thus be substantially larger than in the prior art. This will be compared to the Prior art reduces the amplitude of the output voltage, resulting in a reduction of the electromagnetic interference according to the invention.
  • the value of the resistance of the pull-down device according to the invention may not be so small that it is in the order of magnitude of the resistance of the electronic switch in the closed state. In this case, the effect of the electronic switch and thus the effect of the pulsed operation would be limited.
  • By opening the electronic switch the operating current of the LEDs is lowered.
  • By the ratio of the operating current with the electronic switch closed to the operating current with the electronic switch open a lowering factor is described.
  • a limitation of the pulsed operation according to the invention is not given if the value of the Absenk compositions is at least 10. If the Absenkcid greater than 1000 so no effective inventive reduction of electromagnetic incompatibilities is given more.
  • the invention most cost-effective implementation of the pull-down device is a pull-down resistor.
  • an adjustable pull-down resistor This can take the form of one or more semiconductors, eg FETs, which are operated as voltage-controlled resistors.
  • a non-continuously variable resistor for. B. in the form of a switchable resistor cascade, is conceivable.
  • the adjustable pull-down resistor is controlled by a controller. This detects a current lowering factor and adjusts the adjustable pull-down resistance so that a preset lowering factor is maintained.
  • the regulator is supplied with the operating current of the LED or the current through the electronic switch and the adjustable pull-down resistor. Since the Absenkmine is defined by the operating current, the sole acquisition of the operating current is sufficient to determine the Absenkiety. Since the operating current is essentially the sum of the current through the electronic switch and the current through the adjustable pull-down resistor, it also satisfies these two currents to detect to determine the Absenk composition. As an approximation, with the electronic switch closed, the current through the electronic switch can be set equal to the operating current. In order to be able to make a statement about the lowering factor, the amplitude of the output voltage can also be evaluated. In the event that the supply voltage is constant, it is sufficient to evaluate the voltage across the electronic switch.
  • the pull-down device By means of the pull-down device according to the invention, the above-described variations of the amplitude of the output voltage, which are caused by the off-impedance of the electronic switch, are eliminated. What remains are variations caused by the load impedance. These can be eliminated according to the invention by a pull-up device which is connected to the output voltage and is thus connected in parallel to the LEDs.
  • the pulldown dimensioning rules outlined above also apply when the pullup facility is present.
  • the pull-up device is realized inexpensively by a pull-up resistor.
  • the value of the pull-up resistor must be between the values given for the amount of load impedance with the electronic switch open and closed. When the electronic switch is closed, the operating current through the LEDs is high and thus the load impedance is low.
  • the value of the pull-up resistor is chosen to be greater than this low load impedance, so that the electronic converter provides substantially energy to the LEDs and not to the pull-up resistor.
  • the electronic switch is open, the operating current through the LEDs is low and, due to the non-linear characteristics of the LEDs, the load impedance is high.
  • the value of the pull-up resistor must be lower than this high load impedance, so that according to the invention the variations of the high load impedance do not affect the amplitude of the output voltage.
  • Both pull-up and pull-down resistors do not necessarily have to be implemented by a single resistor. Of course, the realization by parallel or series connection of multiple resistors is possible. Parallel to the resistors z. B. be switched to reduce the slope of the output voltage and reactances.
  • resistors are denoted by the letter R, switches by the letter S, voltages by the letter V, and joints by the letter J each followed by a number.
  • FIG. 1 shows a block diagram of a circuit arrangement according to the invention for operating LEDs.
  • An electronic converter 1 supplies at the junctions J1, J2 a supply voltage V1 to a dimming module 2.
  • the dimming module 2 supplies at the junctions J3, J4 an output voltage V2 to the LEDs 3.
  • a piece of a first connecting line from the electronic converter 1 to the LEDs 3rd is formed by a connection from the junction J1 to the junction J2 in the dimming module 2.
  • a piece of a second connecting cable from the electronic converter 1 to the LEDs 3 leads from the junction J2 2 via an electronic switch S1 in the dimming module to the junction J4.
  • a drive circuit 4 controls the electronic switch S1 so that the LEDs 3 are operated in a pulsed manner.
  • a pull-down resistor R2 is connected in parallel to the electronic switch S1.
  • the function and the sizing rules for R2 can be found in the section for illustrating the invention. This applies equally to a pull-up resistor according to the invention, which is connected in the dimming module 2 between J3 and J4.
  • FIG. 2 shows the profile of the output voltage V2 over the time t of a circuit arrangement for operating LEDs according to the prior art (without R1 and R2).
  • the course is essentially rectangular.
  • the maximum value of V2 is always assumed when the electronic switch S1 is closed, the minimum value of V2 is always assumed when S1 is open.
  • the maximum value of V2 essentially corresponds to the supply voltage V1 that the electronic converter 1 supplies.
  • the minimum value of V2 is approximately 0. This results in the amplitude of V2 according to the prior art, essentially the value V 1 2
  • FIG. 3 shows the profile of the output voltage V2 over the time t of a circuit arrangement according to the invention for operating LEDs (with R1 and R2).
  • the course is substantially rectangular.
  • the maximum value of V2 is always assumed when the electronic switch S1 is closed, the minimum value of V2 is always assumed when S1 is open.
  • the maximum value of V2 essentially corresponds to the supply voltage V1 that the electronic converter 1 supplies.
  • FIG. 4 shows a block diagram of a circuit arrangement according to the invention for operating LEDs with adjustable regulated pull-down resistance.
  • the pull-down resistor R 2 is designed as an adjustable resistor, which is controlled by a control device 5.
  • the control device 5 adjusts the pull-down resistor R2 so that a predetermined preset value stored in the control device is maintained.
  • a measuring device 6 the control device 5 is supplied with a measured value for the operating current of the LEDs.
  • the amplitude of the alternating component of the operating current of the LEDs is a measure of the current Absenkwert.
  • the current Absenkwert can thus be determined in the control device 5.

Landscapes

  • Led Devices (AREA)
  • Electronic Switches (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Device Packages (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Description

    Technisches Gebiet
  • Die Erfindung geht aus von einer Schaltungsanordnung gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um ein elektronisches Betriebsgerät zum Betrieb von Leuchtdioden das eine Einrichtung zum Einstellen des Effektivwerts des Betriebsstroms der Leuchtdioden enthält, wobei diese Einrichtung eine gepulste Arbeitsweise aufweist.
  • Stand der Technik
  • Zum Betrieb von Leuchtdioden, weiterhin mit LED abgekürzt, ist folgende Schaltungsanordnung verbreitet: Eine Energiequelle, z.B. ein öffentliches Versorgungsnetz oder eine Batterie, speist einen elektronischen Konverter, der eine Versorgungsspannung bereitstellt. Die LEDs sind in der Regel über zwei Anschlussleitungen mit der Versorgungsspannung verbunden. Es können eine oder mehrere LEDs an einer Versorgungsspannung betrieben werden. Mehrere LEDs werden in der Regel in Serie geschaltet und bilden einen sog. Strang. Mehrere Stränge können parallel geschaltet werden, wobei zwischen den Strängen auch Querverbindungen möglich sind. Werden mehrere LEDs an einer Versorgungsspannung angeschlossen, so sind sie meist zu sog. LED-Modulen zusammengefasst, die auch Strombegrenzungswiderstände enthalten können. Zusammen mit einer Spannungsregelung im elektronischen Konverter wird damit ein gewünschter Betriebsstrom für angeschlossene LEDs realisiert. Die in Rede stehenden Schaltungsanordnungen sind nicht nur zum Betrieb von LED geeignet. Es ist auch möglich, damit sog. Organic Light Emitting Devices (OLED) zu betreiben.
  • Die Schrift EP 1 049 360 A2 (Jusuf) beschreibt einen programmierbaren LED Treiber. Mit Hilfe eines multiplizierenden Digital-Analog-Wandlers kann damit die Helligkeit einer LED in Bezug auf andere LEDs sehr genau eingestellt werden. Dies ist wichtig wenn beim Dimmen von LED Anordnungen mit verschieden farbigen LEDs der Farbeindruck der gesamten Anordnung konstant bleiben soll.
  • Oft besteht der Wunsch den Effektivwert des Betriebsstroms der LEDs einstellen zu können und zwar ohne in den elektronischen Konverter einzugreifen. Dies ermöglicht das Dimmen der angeschlossen LEDs oder die Anschlussmöglichkeit verschiedener Typen oder einer unterschiedlichen Anzahl von LEDs an ein und derselben Versorgungsspannung. Die Einstellmöglichkeit des Effektivwerts des Betriebsstroms der LEDs wird durch Einfügen eines elektronischen Schalters in eine Anschlussleitung realisiert. In welche Anschlussleitung der elektronische Schalter eingefügt wird, ist prinzipiell beliebig. In der deutschen Patentanmeldung mit dem Anmeldeaktenzeichen 10136658.2 (Scilla) ist die besagte Einstellmöglichkeit des Effektivwerts des Betriebsstroms der LEDs beschrieben. Der elektronische Schalter kann kostengünstig als MOSFET ausgeführt sein. Durch Öffnen des Schalters wird der Betriebsstrom der LEDs unterbrochen. Durch periodisches Öffnen und Schließen des elektronischen Schalters wird eine gepulste Arbeitsweise für den Betrieb der LEDs realisiert. Das Verhältnis der Dauer des geschlossnen Zustands des Schalters zur Dauer des geöffneten Zustands legt ein Tastverhältnis fest. Durch ein geeignetes Tastverhältnis kann ein gewünschter Effektivwert für den Betriebsstrom der Leuchtdioden eingestellt werden. Der Maximalwert des Betriebsstroms der LEDs, der sich bei eingeschaltetem elektronischen Schalter einstellt, wird von der Versorgungsspannung vorgegeben.
  • Der elektronische Schalter und eine dazugehörige Ansteuerschaltung kann zusammen mit dem elektronischen Konverter zu einer Einheit in einem Gehäuse zusammengefasst sein. Es ist aber auch möglich, den elektronischen Schalter und die Ansteuerschaltung als separate Dimmeinheit in einem separaten Gehäuse auszubilden. Diese Dimmeinheit kann dann, wenn eine Einstellmöglichkeit für den Effektivwert des Betriebsstroms der LEDs gewünscht wird, zwischen den elektronischen Konverter und die LEDs geschaltet werden.
  • Die Pulsfrequenz, mit der der elektronische Schalter geöffnet und geschlossen wird, liegt üblicherweise oberhalb einer Frequenz, bei der das menschliche Auge einzelne Lichtpulse voneinander zu unterscheiden vermag. In der Praxis kommen Frequenzen von 100Hz bis zu mehreren Kilohertz zur Anwendung. Die Anschlussleitung, in die kein elektronischer Schalter eingefügt ist, bildet einen Pol einer Ausgangsspannung. Den anderen Pol der Ausgangsspannung bildet der der Versorgungsspannung abgewandte Pol des elektronischen Schalters. Die Ausgangsspannung wird den LEDs bzw. LED-Modulen zugeführt. Sie hat einen rechteckförmigen Verlauf dessen Grundfrequenz gleich der o. g. Pulsfrequenz ist. Insbesondere bei langen Anschlussleitungen kann dies zu elektromagnetischen Unverträglichkeiten oder Funkstörungen führen. Um dies zu unterbinden und um einschlägige Vorschriften (z.B. CISPR 15) einzuhalten, ist oft ein hoher Aufwand in Form von Filtern und Abschirmungen nötig.
  • Darstellung der Erfindung
  • Es ist Aufgabe der vorliegenden Erfindung, eine Schaltungsanordnung gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, die eine gepulste Arbeitsweise der LEDs bewerkstelligt, jedoch gegenüber dem Stand der Technik geringere elektromagnetische Unverträglichkeiten oder Funkstörungen erzeugt.
  • Diese Aufgabe wird durch eine Schaltungsanordnung mit den Merkmalen des Oberbegriffs des Anspruchs 1 durch die Merkmale des kennzeichnenden Teils des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
  • Wie stark die von einer in Rede stehenden Schaltungsanordnung erzeugten elektromagnetischen Störungen sind, hängt in erster Linie von der Amplitude des Wechselanteils der o.g. Ausgangsspannung ab. Die Ausgangsspannung setzt sich aus einem Gleichanteil und einem Wechselanteil zusammen. Die Amplitude des Wechselanteils der Ausgangsspannung wird im folgenden kurz mit Amplitude der Ausgangsspannung bezeichnet. Der Maximalwert der Ausgangsspannung stellt sich bei geschlossenem elektronischen Schalter ein und ist durch den Wert der Versorgungsspannung vorgegeben. Die Amplitude der Ausgangsspannung ist definitionsgemäß die Hälfte der Differenz aus Maximalwert und Minimalwert der Ausgangsspannung. Bei gegebenem Maximalwert bestimmt also der Minimalwert die Amplitude der Ausgangsspannung und somit die Stärke der elektromagnetischen Störungen. Je kleiner der Minimalwert der Ausgangsspannung ist, um so stärker sind die elektromagnetischen Störungen.
  • Im Stand der Technik wird der Minimalwert der Ausgangsspannung im wesentlichen durch zwei Größen bestimmt: Eine Lastimpedanz bei ausgeschaltetem elektronischen Schalter und eine Off-Impedanz des elektronischen Schalters. Die Lastimpedanz bei ausgeschaltetem elektronischen Schalter setzt sich zusammen aus der Impedanz der Anschlussleitungen und der Impedanz der LEDs bei sehr kleinem Betriebsstrom. Unter der Off-Impedanz des elektronischen Schalters ist die Impedanz des elektronischen Schalters im geöffneten Zustand zu verstehen. Zuleitungsimpedanzen zum elektronischen Schalter können in der Off-Impedanz berücksichtigt werden, spielen aber im allgemeinen keine Rolle. Beide Größen, die Lastimpedanz bei ausgeschaltetem elektronischen Schalter und die Off-Impedanz unterliegen starken Variationen bedingt z.B. durch Exemplarstreuung, Temperatur, Alterung und Auswahl der LEDs so dass der Wert des Minimalwerts nicht genau bestimmt ist. Generell gilt jedoch, dass der Betrag der Off-Impedanz um Größenordnungen den Betrag der Lastimpedanz übertrifft. Auch kann angenommen werden, dass der Realteil der betreffenden Impedanzen im wesentlichen die Eigenschaften dieser Impedanzen bestimmt. Näherungsweise fällt somit die Ausgangsspannung bei geöffnetem elektronischen Schalter auf den Wert 0 ab. Es ergibt sich also, dass im Stand der Technik die Amplitude der Ausgangsspannung im wesentlichen gleich der Hälfte der Versorgungsspannung ist.
  • Erfindungsgemäß wird parallel zum elektronischen Schalter eine Pulldown-Einrichtung geschaltet. Der Wert des Widerstands der Pulldown-Einrichtung sollte so gewählt sein, dass in der Parallelschaltung aus Pulldown-Einrichtung und Off-Impedanz die Off-Impedanz vernachlässigt werden kann, damit Variationen der Offimpedanz keinen Einfluss auf die Ausgangsspannung haben. Durch die erfindungsgemäße Pulldown-Einrichtung kann der Minimalwert der Ausgangsspannung eingestellt werden. Der Minimalwert wird erfindungsgemäß deutlich von 0 abweichen und somit wesentlich größer sein als im Stand der Technik. Damit wird gegenüber dem Stand der Technik die Amplitude der Ausgangsspannung reduziert, was zu einer erfindungsgemäßen Reduzierung der elektromagnetischen Störungen führt.
  • Der Wert des Widerstands der Pulldown-Einrichtung darf erfindungsgemäß nicht so klein sein, dass er in der Größenordnung des Widerstandes des elektronischen Schalters im geschlossenen Zustand liegt. In diesem Fall wäre die Wirkung des elektronischen Schalters und somit die Wirkung des gepulsten Betriebs eingeschränkt. Durch Öffnen des elektronischen Schalters wird der Betriebsstrom der LEDs abgesenkt. Durch das Verhältnis des Betriebsstroms bei geschlossenem elektronischen Schalter zum Betriebsstroms bei geöffnetem elektronischen Schalter wird ein Absenkfaktor beschrieben. Eine Einschränkung des gepulsten Betriebs ist erfindungsgemäß dann nicht gegeben, wenn der Wert des Absenkfaktors mindestens 10 ist. Wird der Absenkfaktor größer als 1000 so ist keine wirksame erfindungsgemäße Reduzierung der elektromagnetischen Unverträglichkeiten mehr gegeben.
  • Die erfindungsgemäß kostengünstigste Realisierung der Pulldown-Einrichtung ist ein Pulldown-Widerstand. Soll jedoch der Wert des Absenkfaktors konstant bleiben, auch wenn sich Betriebsparameter wie Lastimpedanz oder Versorgungsspannung ändern, so muss die Pulldown-Einrichtung erfindungsgemäß durch einen einstellbaren Pulldown-Widerstand realisiert werden. Dies kann in Form eines oder mehrerer Halbleiter, z.B. FETs geschehen, die als spannungsgesteuerte Widerstände betrieben werden. Auch ein nicht kontinuierlich veränderbarer Widerstand, z. B. in Form einer schaltbaren Widerstandskaskade, ist denkbar. Der einstellbare Pulldown-Widerstand wird von einer Regeleinrichtung gesteuert. Diese erfasst einen aktuellen Absenkfaktor und stellt den einstellbaren Pulldown-Widerstand so ein, dass ein vorgegebener Absenkfaktor eingehalten wird. Zur Erfassung des aktuellen Absenkfaktors wird der Regeleinrichtung der Betriebsstrom der LED oder der Strom durch den elektronischen Schalter und den einstellbaren Pulldown-Widerstand zugeführt. Da der Absenkfaktor durch den Betriebsstrom definiert ist, genügt die alleinige Erfassung des Betriebsstroms, um den Absenkfaktor zu ermitteln. Da der Betriebsstrom im wesentlichen die Summe des Stroms durch den elektronischen Schalter und des Stromes durch den einstellbaren Pulldown-Widerstand ist, genügt es auch diese beiden Ströme zu erfassen, um den Absenkfaktor zu ermitteln. Näherungsweise kann bei geschlossenem elektronischen Schalter der Strom durch den elektronischen Schalter gleich dem Betriebsstrom gesetzt werden. Um eine Aussage über den Absenkfaktor treffen zu können kann auch die Amplitude der Ausgangsspannung ausgewertet werden. Für den Fall, dass die Versorgungsspannung konstant ist, genügt es, die Spannung über dem elektronischen Schalter auszuwerten.
  • Durch die erfindungsgemäße Pulldown-Einrichtung sind die oben beschriebenen Variationen der Amplitude der Ausgangsspannung, die durch die Off-Impedanz des elektronischen Schalters bedingt sind, eliminiert. Was bleibt, sind Variationen, die durch die Lastimpedanz verursacht werden. Diese können erfindungsgemäß durch eine Pullup-Einrichtung eliminiert werden, der an die Ausgangsspannung angeschlossen wird und damit parallel zu den LEDs geschaltet ist. Die oben ausgeführten Dimensionierungsregeln für die Pulldown-Einrichtung gelten auch bei Vorhandensein der Pullup-Einrichtung.
  • Erfindungsgemäß wird die Pullup-Einrichtung kostengünstig durch einen Pullup-Widerstand realisiert. Der Wert des Pullup-Widerstands muss zwischen den Werten liegen, die sich für den Betrag der Lastimpedanz bei geöffnetem und bei geschlossenem elektronischen Schalter ergeben. Bei geschlossenem elektronischen Schalter ist der Betriebsstrom durch die LEDs hoch und somit die Lastimpedanz niedrig. Vorteilhaft wird der Wert des Pullup-Widerstands größer gewählt als diese niedrige Lastimpedanz, damit der elektronische Konverter im wesentlichen Energie an die LEDs liefert und nicht an den Pullup-Widerstand. Bei geöffnetem elektronischen Schalter ist der Betriebsstrom durch die LEDs niedrig und somit, bedingt durch die nichtlinearen Eigenschaften der LEDs, die Lastimpedanz hoch. Der Wert des Pullup-Widerstands muss niedriger sein als diese hohe Lastimpedanz, damit sich erfindungsgemäß die Variationen der hohen Lastimpedanz nicht auf die Amplitude der Ausgangsspannung auswirken.
  • Sowohl Pullup- als auch Pulldown-Widerstand müssen nicht zwingend durch einen einzelnen Widerstand realisiert sein. Selbstverständlich ist auch die Realisierung durch Parallel- oder Serienschaltung von mehreren Widerständen möglich. Parallel zu den Widerständen können z. B. zur Reduzierung der Flankensteilheit der Ausgangsspannung auch Reaktanzen geschaltet sein.
  • Kurze Beschreibung der Zeichnungen
  • Im folgenden soll die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf Zeichnungen näher erläutert werden. Es zeigen:
  • Figur 1
    ein Blockschaltbild einer erfindungsgemäßen Schaltungsanordnung zum Betrieb von LEDs,
    Figur 2
    den zeitlichen Verlauf der Ausgangsspannung einer Schaltungsanordnung zum Betrieb von LEDs nach dem Stand der Technik,
    Figur 3
    den zeitlichen Verlauf der Ausgangsspannung einer erfindungsgemäßen Schaltungsanordnung zum Betrieb von LEDs,
    Figur 4
    ein Blockschaltbild einer erfindungsgemäßen Schaltungsanordnung zum Betrieb von LEDs mit einstellbarem geregeltem Pulldown-Widerstand.
  • Im folgenden werden Widerstände durch den Buchstaben R, Schalter durch den Buchstaben S, Spannungen durch den Buchstaben V, und Verbindungsstellen durch den Buchstaben J jeweils gefolgt von einer Zahl bezeichnet.
  • Bevorzugte Ausführung der Erfindung
  • In Figur 1 ist ein Blockschaltbild einer erfindungsgemäßen Schaltungsanordnung zum Betrieb von LEDs dargestellt. Ein elektronischer Konverter 1 liefert an den Verbindungsstellen J1, J2 eine Versorgungsspannung V1 an ein Dimmmodul 2. Das Dimmmodul 2 liefert an den Verbindungsstellen J3, J4 eine Ausgangsspannung V2 an die LEDs 3. Ein Stück einer ersten Anschlussleitung vom elektronischen Konverter 1 zu den LEDs 3 wird durch eine Verbindung von der Verbindungsstelle J1 zur Verbindungsstelle J2 im Dimmmodul 2 gebildet. Ein Stück einer zweiten Anschlussleitung vom elektronischen Konverter 1 zu den LEDs 3 führt von der Verbindungsstelle J2 2 über einen elektronischen Schalter S1 im Dimmmodul zur Verbindungsstelle J4. Eine Ansteuerschaltung 4 steuert den elektronischen Schalter S1 derart, dass die LEDs 3 in einer gepulsten Arbeitsweise betrieben werden. Erfindungsgemäß ist parallel zum elektronischen Schalter S1 ein Pulldown-Widerstand R2 geschaltet. Die Funktion und die Dimensionierungsregeln für R2 sind dem Abschnitt zur Darstellung der Erfindung zu entnehmen. Dies gilt gleichermaßen für einen erfindungsgemäßen Pullup-widerstand, der im Dimmmodul 2 zwischen J3 und J4 geschaltet ist.
  • Figur 2 zeigt den Verlauf der Ausgangsspannung V2 über der Zeit t einer Schaltungsanordnung zum Betrieb von LEDs nach dem Stand der Technik (ohne R1 und R2). Der Verlauf ist im wesentlichen rechteckförmig. Der Maximalwert von V2 wird immer angenommen, wenn der elektronische Schalter S1 geschlossen ist, der Minimalwert von V2 wird immer angenommen wenn S1 geöffnet ist. Der Maximalwert von V2 entspricht im wesentlichen der Versorgungsspannung V1, die der elektronische Konverter 1 liefert. Der Minimalwert von V2 ist näherungsweise 0. Damit ergibt sich für die Amplitude von V2 nach dem Stand der Technik im wesentlichen der Wert V 1 2
    Figure imgb0001
  • Figur 3 zeigt den Verlauf der Ausgangsspannung V2 über der Zeit t einer erfindungsgemäßen Schaltungsanordnung zum Betrieb von LEDs (mit R1 und R2). Wie in Figur 2 ist der Verlauf im wesentlichen rechteckförmig. Der Maximalwert von V2 wird immer angenommen, wenn der elektronische Schalter S1 geschlossen ist, der Minimalwert von V2 wird immer angenommen wenn S1 geöffnet ist. Der Maximalwert von V2 entspricht im wesentlichen der Versorgungsspannung V1, die der elektronische Konverter 1 liefert. Der Minimalwert ist V3, wobei bei Beachtung der o. g. Anmerkungen zur Dimensionierung von R1 und R2 im wesentlichen gilt: V 3 = V 1 R 1 R 1 + R 2
    Figure imgb0002
  • Damit ergibt sich für die Amplitude von V2 im wesentlichen ein erfindungsgemäßer Wert von V 1 2 R 2 R 1 + R 2
    Figure imgb0003
  • Insbesondere für den Fall, dass R1 wesentlich größer ist als R2, ergibt sich erfindungsgemäß eine starke Reduzierung der Amplitude von V2 gegenüber dem Stand der Technik.
  • In Figur 4 ist ein Blockschaltbild einer erfindungsgemäßen Schaltungsanordnung zum Betrieb von LEDs mit einstellbarem geregeltem Pulldown-Widerstand dargestellt. Gegenüber Figur 1 ist in Figur 4 der Pulldown-Widerstand R2 als einstellbarer Widerstand ausgeführt, der von einer Regeleinrichtung 5 gesteuert wird. Die Regeleinrichtung 5 stellt den Pulldown-Widerstand R2 so ein, dass ein in der Regeleinrichtung abgelegter vorgegebener Absenkwert eingehalten wird. Durch eine Messeinrichtung 6 wird der Regeleinrichtung 5 ein Messwert für den Betriebsstrom der LEDs zugeführt. Die Amplitude des Wechselanteils des Betriebsstroms der LEDs ist ein Maß für den aktuellen Absenkwert. Der aktuelle Absenkwert kann damit in der Regeleinrichtung 5 ermittelt werden.

Claims (8)

  1. Schaltungsanordnung zum Betrieb von Leuchtdioden (3), die einen Betriebsstrom aufweisen, der im wesentlichen durch einen elektronischen Schalter (S1) fließt, dadurch gekennzeichnet, dass parallel zum elektronischen Schalter (S1) eine Pulldown-Einrichtung (R2) geschaltet ist, deren Widerstand einen Wert aufweist, der so dimensioniert ist, dass das Verhältnis des Betriebsstroms bei geschlossenem elektronischen Schalter (S1) zum Betriebsstroms bei geöffnetem elektronischen Schalter (S1) durch einen Absenkfaktor beschrieben wird, der mindestens den Wert 10 annimmt.
  2. Schaltungsanordnung zum Betrieb von Leuchtdioden (3) gemäß Anspruch 1 dadurch gekennzeichnet, dass parallel zu den Leuchtdioden (3) eine Pullup-Einrichtung (R1) geschaltet ist.
  3. Schaltungsanordnung zum Betrieb von Leuchtdioden (3) gemäß Anspruch 1 dadurch gekennzeichnet, dass die Pulldown-Einrichtung (R2) durch einen Pulldown-Widerstand (R2) realisiert ist.
  4. Schaltungsanordnung zum Betrieb von Leuchtdioden (3) gemäß Anspruch 1 dadurch gekennzeichnet, dass die Pulldown-Einrichtung (R2) durch einen einstellbaren Pulldown-Widerstand (R2) realisiert ist, wobei eine Regeleinrichtung (5) den Wert des Pulldown-Widerstands so einstellt, dass ein vorgegebener Absenkfaktor eingehalten wird.
  5. Schaltungsanordnung zum Betrieb von Leuchtdioden (3) gemäß Anspruch 4 dadurch gekennzeichnet, dass der einstellbare Pulldown-Widerstand (R2) durch mindestens ein Halbleiterbauelement realisiert ist.
  6. Schaltungsanordnung zum Betrieb von Leuchtdioden (3) gemäß Anspruch 4 dadurch gekennzeichnet, dass der einstellbare Pulldown-Widerstand (R2) durch mehrere schaltbare Widerstände realisiert ist.
  7. Schaltungsanordnung zum Betrieb von Leuchtdioden (3) gemäß Anspruch 2 dadurch gekennzeichnet, dass die dass die Pullup-Einrichtung (R1) durch einen Pullup-Widerstand (R1) realisiert ist.
  8. Schaltungsanordnung zum Betrieb von Leuchtdioden (3) gemäß Anspruch 1 dadurch gekennzeichnet, dass der elektronischer Schalter (S1) durch einen MOSFET realisiert ist.
EP03000960A 2002-01-17 2003-01-16 Betriebsgerät für Leuchtdioden Expired - Lifetime EP1330143B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10201779 2002-01-17
DE10201779A DE10201779A1 (de) 2002-01-17 2002-01-17 Betriebsgerät für Leuchtdioden

Publications (3)

Publication Number Publication Date
EP1330143A2 EP1330143A2 (de) 2003-07-23
EP1330143A3 EP1330143A3 (de) 2004-02-11
EP1330143B1 true EP1330143B1 (de) 2006-11-22

Family

ID=7712466

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03000960A Expired - Lifetime EP1330143B1 (de) 2002-01-17 2003-01-16 Betriebsgerät für Leuchtdioden

Country Status (4)

Country Link
EP (1) EP1330143B1 (de)
CN (1) CN100474995C (de)
AT (1) ATE346480T1 (de)
DE (2) DE10201779A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545650B (zh) * 2010-12-31 2016-12-28 澳大利亚克林普斯有限公司 电源转换电路
CN115541971B (zh) * 2022-11-23 2023-04-14 南京宏泰半导体科技股份有限公司 一种半导体测试机发送的通讯ttl电平检测系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633477A (ja) * 1986-06-23 1988-01-08 Sharp Corp 発光ダイオ−ドの調光回路
GB9726254D0 (en) * 1997-12-11 1998-02-11 Moscickiego Led Lamp
US6266000B1 (en) * 1999-04-30 2001-07-24 Agilent Technologies, Inc. Programmable LED driver pad
WO2001095673A1 (en) * 2000-06-06 2001-12-13 911 Emergency Products, Inc. Led compensation circuit

Also Published As

Publication number Publication date
CN1441631A (zh) 2003-09-10
ATE346480T1 (de) 2006-12-15
EP1330143A3 (de) 2004-02-11
EP1330143A2 (de) 2003-07-23
CN100474995C (zh) 2009-04-01
DE50305720D1 (de) 2007-01-04
DE10201779A1 (de) 2003-07-31

Similar Documents

Publication Publication Date Title
DE60005186T2 (de) Last-steuerungssystem mit einer überlast-schutzschaltung
DE102014105719B4 (de) Schaltungsvorrichtung mit einer Thyristorschaltung sowie ein Verfahren zum Prüfen der Thyristorschaltung
EP2818027B1 (de) Verfahren zum betreiben einer schaltungsanordnung für ein konstantstromgespeistes leuchtdiodenfeld, mit fehlererkennung
DE102010060857B4 (de) Schaltungsanordnung mit einem Leuchtdiodenfeld, Steuer- und/oder Regelungsmittel für das Leuchtdiodenfeld sowie Verfahren zum Betreiben einer solchen Schaltungsanordnung
DE2051527A1 (de) Verfahren und Vorrichtung zum Schnell laden von elektrischen Batterien
DE102010008275A1 (de) Vorrichtung zur Energieversorgung von mehreren LED-Einheiten
WO2009043412A1 (de) Vorrichtung und verfahren zur spannungsversorgung eines spannungs- oder stromauslösenden schaltgeräts
EP0131146B1 (de) Elektronisches, vorzugsweise berührungslos arbeitendes Schaltgerät
EP1330143B1 (de) Betriebsgerät für Leuchtdioden
DE202013004095U1 (de) LED-Beleuchtungssystem
DE102007002914A1 (de) Schaltung zur Anpassung des Lampenstroms einer Anzahl von kaltkathodischen Fluoreszenzlampen
DE102019118341B3 (de) Linearlichteinheit, Lichtquellenmodul für eine solche Linearlichteinheit sowie Verfahren zum Betreiben einer solchen Linearlichteinheit
DE102014104548A1 (de) Schaltung zur Ansteuerung von einer oder mehreren LEDs mit gesteuertem Kompensationsglied
DE102008004791A1 (de) Lasterkennungsschaltung für dimmbare LED
DE102006043900B4 (de) Vorrichtung und Verfahren zum Betrieb einer Plasmaanlage
WO2008098617A1 (de) Schaltungsanordnung und verfahren zum betreiben mindestens einer led
DE102011055432B3 (de) Verfahren und Einrichtung zum Betreiben eines Lüfters über ein pulsweitenmoduliertes Signal eines Vorschaltgeräts
WO2015132332A1 (de) Schaltungsanordnung zur regelung eines elektrischen stroms
DE102013112815A1 (de) Sicherheitssteuerung
EP3518625B1 (de) Treiberschaltung zur stromversorgung einer oder mehrerer leds
DE3709004C2 (de)
EP3963349B1 (de) Batteriesimulator mit kompensationsimpedanz
DE102009002464A1 (de) Verfahren um Betrieb einer Steuerschaltung, insbesondere zur Anwendung in einem Kraftfahrzeug
EP0837382B1 (de) Vorrichtung zur Regelung einer Spannung
WO2023104520A1 (de) Schaltungsanordnung zur vermeidung von überstromimpulsen im pwm-betrieb von led-ketten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCILLA, GIOVANNI

Inventor name: FRANCESCUTTI, UGO

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 05B 37/02 A

Ipc: 7H 05B 33/08 B

17P Request for examination filed

Effective date: 20040308

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

17Q First examination report despatched

Effective date: 20050310

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50305720

Country of ref document: DE

Date of ref document: 20070104

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070305

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070423

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070823

BERE Be: lapsed

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUR ELEKTRISCHE GLUH

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101209

Year of fee payment: 9

Ref country code: NL

Payment date: 20110125

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50305720

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111128

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120801

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 346480

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120116

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50305720

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50305720

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140122

Year of fee payment: 12

Ref country code: SE

Payment date: 20140121

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140123

Year of fee payment: 12

Ref country code: IT

Payment date: 20140127

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140121

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305720

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150116

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150117

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150116