EP3518625B1 - Treiberschaltung zur stromversorgung einer oder mehrerer leds - Google Patents

Treiberschaltung zur stromversorgung einer oder mehrerer leds Download PDF

Info

Publication number
EP3518625B1
EP3518625B1 EP19153652.3A EP19153652A EP3518625B1 EP 3518625 B1 EP3518625 B1 EP 3518625B1 EP 19153652 A EP19153652 A EP 19153652A EP 3518625 B1 EP3518625 B1 EP 3518625B1
Authority
EP
European Patent Office
Prior art keywords
current
driver circuit
rcs2
leds
rcs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19153652.3A
Other languages
English (en)
French (fr)
Other versions
EP3518625A1 (de
Inventor
Christoph Hofinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siteco GmbH
Original Assignee
Siteco GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siteco GmbH filed Critical Siteco GmbH
Publication of EP3518625A1 publication Critical patent/EP3518625A1/de
Application granted granted Critical
Publication of EP3518625B1 publication Critical patent/EP3518625B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects

Definitions

  • the invention relates to a driver circuit for the power supply of one or more LEDs, in particular a driver circuit that includes regulation to a current value in order to achieve a desired dimming of the LEDs.
  • An LED is understood to mean any semiconductor light source, which also includes organic semiconductor light sources, so-called OLEDs.
  • the driver circuit of the type mentioned at the outset is typically implemented in two different variants.
  • On the one hand there is a pulse width modulation control in which the LED current is switched on and off with a pulse width modulated signal.
  • On the other hand there is an analog method in which the current can be regulated to a desired value without interruption.
  • the pulse width modulation method is not considered to be preferred for general lighting, as it can lead to stroboscopic effects, in particular interference from cameras or interference from barcode scanners. In addition, health effects due to the stroboscopic effect are also feared.
  • a typical prior art circuit is shown in figure 1 shown.
  • An LED load which may include one or more LEDs, is controlled by an integrated circuit.
  • the integrated circuit has an input CS to which a measuring resistor R CS is connected to ground.
  • the same current that flows through the LED load flows through the measuring resistor R CS when it is switched on.
  • the voltage drop across RCS is in the integrated circuit measured and used to regulate a desired current level for the LED load in the integrated circuit.
  • a disadvantage of this type of analog current control is that the voltage drop across the measuring resistor can be very small with small current values. Due to currents that inevitably arise in the circuit, e.g. from switching transistors, the evaluation of the voltage drop across the current measuring resistor for the regulation of the current becomes useless with small current values. With such an analog current regulation, there is thus a minimum lower value up to which the current regulation can take place reliably. One way to get even smaller current values would be to increase the value of the current sense resistor. However, this has the consequence that the power loss at the resistor at higher currents leads to large losses and even thermal problems can occur.
  • U.S. 2015/305103 A1 , WO 2013/028632 A1 , U.S. 2015/245441 A1 , EP 2 512 207 A1 and DE 100 13 215 A1 disclose further driver circuits for driving LEDs, which have a controllable resistor in the supply circuit of the LEDs.
  • the data sheet "HV9961 LED Driver with Average-Current Mode Constant-Current Control” discloses a driver circuit according to figure 1 .
  • the object of the present invention is therefore to provide a driver circuit for the power supply of LEDs, which covers the widest possible current range to achieve a large dimming range and thereby avoids the disadvantages of pulse width modulation.
  • the object is achieved by a driver circuit for powering one or more LEDs according to claim 1.
  • a special feature of the driver circuit of the present invention is that the current sense resistor is switched to at least two different values, the lower of the two values being used to measure the current through the LEDs in a lower current range and the higher of the two values being used to measure the current through the LEDs in a higher current range is applied.
  • the current measuring resistor is adapted to the current range to be measured in each case, so that the voltage drop across the current measuring resistor assumes an acceptable value, which can be easily processed by the driver circuit. This means that even small currents can be measured.
  • the power converted at the current measuring resistor is limited because a lower measuring resistor is selected in the higher current range. This will make the Power loss and the resulting thermal problems are limited.
  • the measuring resistor is formed by at least two resistors connected in parallel, of which at least one of the two resistors can be switched on or off electronically.
  • the two resistors, which together form the current measuring resistor are connected in parallel to ground in the circuit of the LEDs, with an electronic switch being provided in one of the two parallel branches, which can be opened or closed.
  • the current measuring resistor is formed either by just one of the two resistors (when the switch is open) or by both resistors connected in parallel (when the switch is closed).
  • resistors can also be provided in parallel.
  • electronic switch can also be provided.
  • Each of the resistors connected in parallel can also be connected in series with an electronic switch, in which case at least one of the switches is closed during operation of the LED.
  • the at least one resistor is switched on and off electronically by driving a gate of a field effect transistor, FET, whose source and drain are connected in series with the resistor.
  • FET field effect transistor
  • a FET has a very low resistance between the source and drain in the closed state, so the resistance of the field effect transistor itself is negligible.
  • the internal resistance of the FET is largely thermally stable, so that Measurement errors are minimized by a changing internal resistance of the FED.
  • the FET can be controlled with the microcontroller.
  • the microcontroller only has to generate a voltage which is to be applied to the gate in order to open or close the FET between source and drain.
  • a circuit is simpler to construct and can also be implemented entirely as an integrated circuit.
  • the maximum of the lower current range corresponds to the minimum of the higher of the two current ranges.
  • the driver circuit switches over the current measuring resistor in order to correspondingly reduce or increase the voltage drop across the current measuring resistor.
  • the two current ranges overlap. This prevents frequent switching operations between the current measuring resistors if the current to be measured through the LEDs happens to fluctuate exactly in the range between the two current ranges.
  • the measuring resistor is switched over to the lower value when the maximum of the lower current range is reached and, conversely, only switched back to the higher value when the minimum of the higher current range is reached. This type of hysteresis prevents frequent switching operations from occurring with small current fluctuations around the boundary between the current ranges, which could result in flickering of the LED.
  • the current measuring resistor can assume at least two values, the lower value being between 0.1 ohms and 0.5 ohms and the higher of the two values being between 0.9 ohms and 1.7 ohms.
  • the power dissipation can be limited to a maximum of 0.5 W.
  • the lower current range can be 20 mA to 200 mA and the higher current range can be 200 mA to 1 A.
  • the current ranges overlap, as described above, so that, for example, the lower current range has a maximum value of 250 mA, while the higher current range has a minimum value of 150 mA.
  • the current measuring resistor can also assume more than just two values, for example three or four values, for three or four current ranges.
  • FIG. 2 An embodiment of a driver circuit for LEDs according to the present invention is in figure 2 shown. Similar to a prior art driver circuit disclosed in figure 1 is shown, an LED load 3, which can be formed by one or more LEDs (only one LED is shown in the figures) is driven via a supply voltage that is provided by an integrated circuit 2.
  • the integrated circuit 2 provides a constant current supply through the LED load 3. A constant current can be set (not shown in the figure) in order to produce a desired dimming of the LED load.
  • the LED load can be switched on and off by the integrated circuit.
  • a field effect transistor 4 is connected to an output GATE of the integrated circuit 2, which connects the LED load 3 to ground when it is closed.
  • a resistor R CS is included in this circuit.
  • the voltage drop across the resistor R CS is measured at an input CS of the integrated circuit 2 and is used to control the constant current through the LED. So far, the circuit according to the present invention is also the same as that in FIG figure 1 shown circuit according to the prior art.
  • a second resistor R CS 2 is additionally provided, which is connected in parallel to the first resistor R CS and is also connected to ground via a semiconductor switch, for example a field effect transistor 22 . If the field effect transistor 22 is switched on, ie there is a conductive connection between drain and source, the resistor R CS 2 is in parallel with the resistor R CS , so that the current measuring resistor for the integrated circuit 2 is given overall by the parallel connection of R CS and R CS 2 is.
  • the gate of the field effect transistor 22 is connected to an output of a microcontroller 24 and is controlled by it. Furthermore, the microcontroller 24 provides a control voltage which acts on an input LD of the integrated circuit 2 in order to set the supply current through the LED.
  • the microcontroller 24 is also used to set the current for the desired dimming of the LED load.
  • the microcontroller 24 generates a control voltage corresponding to the desired dimming, which is present at the input LD of the integrated circuit 2, the current measuring resistor selected by the microcontroller 24 via the range switchover being taken into account.
  • the integrated circuit 2 sets the current through the LED load. Any current can be set between 20 mA and 1 A, for example, to dim the LED.
  • the microcontroller applies a voltage to the gate of the semiconductor switch, which is given by the FET 22, so that a connection from drain to source is switched through.
  • the resistors R CS and R CS 2 are connected in parallel to ground.
  • the parallel connection of R CS and R CS 2 acts as a measuring resistor for the current regulation of the LED load.
  • the integrated circuit 2 measures the voltage drop across the parallel combination of resistors RCS and RCS 2 to regulate the current through the LEDs to a constant value.
  • the field effect transistor 22 is controlled via the microcontroller 24 in order to open the connection between drain and source.
  • the supply current flows through the LED load 3 only through the resistor R CS , so that in this circuit state the measuring resistor for determining the current is given only through the resistor R CS .
  • the current measuring resistor is thus switched over between two values via the microcontroller 24 in accordance with a predetermined current range.
  • the measuring resistance is given only by RCS
  • the measuring resistance is given by the parallel connection of RCS and RCS 2 is correspondingly lower.
  • the resistance R CS and R CS 2 can each be 1.2 ohms, so that in the higher current range from 200 mA to 1 ⁇ A there is effectively only a current measuring resistor of 0.6 ohms.
  • the power converted at the measuring resistor is reduced for larger currents.
  • the measuring resistor is correspondingly increased, for example to 1.2 ohms, so that even with the lower supply currents to be measured, there is still a sufficiently high voltage drop for the measuring resistor.
  • a control voltage is output via the microcontroller 24, which acts on the integrated circuit 12 in order to compensate the current measurement corresponding to the selected measuring resistor by the appropriate factor.
  • the present invention is not limited to the illustrated circuit of two resistors R CS and R CS 2 . More than two resistors can also be connected in parallel and more than just two current ranges can also be provided for measuring the current.
  • the rest of the LED power supply circuitry is the same as the prior art embodiment.
  • the range switching according to the invention for the measuring resistor can also be easily implemented using existing integrated circuits known from the prior art for an LED power supply.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Description

  • Die Erfindung betrifft eine Treiberschaltung zur Stromversorgung einer oder mehrerer LEDs, insbesondere eine Treiberschaltung, die eine Regelung auf einen Stromwert zur Erzielung einer gewünschten Dimmung der LEDs umfasst. Unter einer LED ist jede Halbleiterlichtquelle zu verstehen, worunter auch organische Halbleiterlichtquellen, sogenannte OLEDs, zu zählen sind.
  • Die Treiberschaltung der eingangs genannten Art werden typischerweise in zwei verschiedenen Varianten realisiert. Zum einen gibt es eine Pulsweitenmodulationsansteuerung bei der LED-Strom mit pulsweitenmoduliertem Signal an- und abgeschaltet wird. Zum anderen gibt es ein analoges Verfahren, bei dem der Strom ohne Unterbrechung auf einen gewünschten Wert geregelt werden kann. Das Pulsweitenmodulationsverfahren wird jedoch für Allgemeinbeleuchtung als nicht bevorzugt angesehen, da es zu Stroboskopeffekten, insbesondere Störungen von Kameras oder Störungen von Barcode-Scannern kommen kann. Außerdem werden auch gesundheitliche Auswirkungen durch den Stroboskopeffekt befürchtet.
  • Somit ist die analoge Stromregelung bevorzugt. Eine typische Schaltung nach dem Stand der Technik ist in Figur 1 dargestellt. Eine LED-Last, welche eine oder mehrere LEDs umfassen kann, wird durch eine integrierte Schaltung gesteuert. Die integrierte Schaltung weist einen Eingang CS auf, an welcher ein Messwiderstand RCS zur Erde angeschlossen ist. Durch den Messwiderstand RCS fließt im eingeschalteten Zustand der gleiche Strom, welcher durch die LED-Last fließt. Der Spannungsabfall über RCS wird im integrierten Schaltkreis gemessen und zur Regelung einer gewünschten Stromstärke für die LED-Last im integrierten Schaltkreis verwendet.
  • Ein Nachteil dieser Art der analogen Stromregelung ist jedoch, dass bei kleinen Stromwerten der Spannungsabfall am Messwiderstand sehr klein werden kann. Durch Ströme die sich unweigerlich in der Schaltung, z.B. aus Schalttransistoren ergeben, wird demnach bei kleinen Stromwerten die Auswertung des Spannungsabfalls über dem Strommesswiderstand für die Regelung des Stromes unbrauchbar. Somit ergibt sich bei einer derartigen analogen Stromregelung ein minimaler unterer Wert, bis zu dem die Stromregelung zuverlässig erfolgen kann. Eine Möglichkeit, um zu noch kleineren Stromwerten zu gelangen, wäre es, den Wert des Strommesswiderstandes zu erhöhen. Das hat aber zur Folge, dass die Verlustleistung an dem Widerstand bei höheren Strömen zu großen Verlusten führt und sogar thermische Probleme auftreten können.
  • Eine Regelung auf niedrige Stromwerte war im Stand der Technik demnach nur durch die Regelung nach dem Pulsweitenmodulationsverfahren möglich. Es wurden auch kombinierte Verfahren angewandt, indem in einem unteren Strombereich das Pulsweitenmodulationsverfahren und einem höheren Strombereich die analoge Stromregelung wie vorhergehend beschrieben angewandt wurde, um einen größeren Dimmbereich für LEDs bereitzustellen. Dies hat jedoch wieder den vorhergehend beschriebenen Nachteil des Stroboskopeffekts bei niedrigen Stromwerten.
  • C. Wesley Tipton ET AL: "Multi-Channel, Constant-Current Power Source for Aircraft Applications", 16. Januar 2018 offenbart eine Treiberschaltung für eine Festkörperlichtquelle gemäß dem Oberbegriff des Anspruchs 1.
  • US 2015/305103 A1 , WO 2013/028632 A1 , US 2015/245441 A1 , EP 2 512 207 A1 und DE 100 13 215 A1 offenbaren weitere Treiberschaltungen zum Ansteuern von LEDs, welche einen regelbaren Widerstand im Versorgungsstromkreis der LEDs aufweisen.
  • Das Datenblatt "HV9961 LED Driver with Average-Current Mode Constant-Current Control" offenbart eine Treiberschaltung gemäß Figur 1.
  • Aufgabe der vorliegenden Erfindung ist es daher, eine Treiberschaltung zur Stromversorgung von LEDs bereitzustellen, welche einen möglichst weiten Strombereich zur Erzielung eines großen Dimmbereichs abdeckt und die Nachteile einer Pulsweitenmodulation dabei vermeidet.
  • Gelöst wird die Aufgabe durch eine Treiberschaltung zur Stromversorgung von einer oder mehreren LEDs gemäß Anspruch 1.
  • Eine Besonderheit der Treiberschaltung der vorliegenden Erfindung besteht darin, dass der Strommesswiderstand auf wenigstens zwei verschiedene Werte geschaltet wird, wobei der niedrigere der beiden Werte zur Messung des Stroms durch die LEDs in einem niedrigeren Strombereich und der höhere der beiden Werte zur Messung des Stroms durch die LEDs in einem höheren Strombereich angewandt wird. Dadurch wird der Strommesswiderstand an den jeweils zu messenden Strombereich angepasst, so dass der Spannungsabfall über den Strommesswiderstand einen akzeptablen Wert annimmt, welcher von der Treiberschaltung leicht verarbeitet werden kann. Dadurch ist ein Messen auch von kleinen Strömen möglich. Ferner ist die am Strommesswiderstand umgesetzte Leistung begrenzt, weil im höheren Strombereich ein niedrigerer Messwiderstand ausgewählt wird. Dadurch werden die Verlustleistung und die daraus resultierenden thermischen Probleme begrenzt.
  • Gemäß einer bevorzugten Ausführungsform ist der Messwiderstand durch wenigstens zwei parallel geschaltete Widerstände gebildet, von denen wenigstens einer der beiden Widerstände elektronisch zu- oder abschaltbar ist. Beispielsweise sind die beiden Widerstände, welche zusammen den Strommesswiderstand bilden, parallel zueinander im Stromkreis der LEDs zur Erde geschaltet, wobei in einem der beiden parallelen Zweige ein elektronischer Schalter vorgesehen ist, der geöffnet oder geschlossen werden kann. Dadurch wird der Strommesswiderstand entweder nur durch einen der beiden Widerstände (wenn der Schalter geöffnet ist) oder durch beide parallel geschaltete Widerstände (wenn der Schalter geschlossen ist) gebildet.
  • Dadurch lassen sich zwei verschiedene Werte für den Strommesswiderstand realisieren. Es können auch mehr als nur zwei Widerstände parallel vorgesehen sein. Ferner können auch mehr als nur ein elektronischer Schalter vorgesehen sein. Es kann auch jeder der parallel geschalteten Widerstände mit einem elektronischen Schalter in Reihe geschaltet sein, wobei in diesem Fall wenigstens einer der Schalter beim Betrieb der LED geschlossen ist.
  • Gemäß einer bevorzugten Ausführungsform erfolgt die elektronische Zu- und Abschaltung des wenigstens einen Widerstandes durch Ansteuern eines Gates von einem Feldeffekttransistor, FET, dessen Source und Drain in Reihe zu dem Widerstand geschaltet ist. Ein FET hat im geschlossenen Zustand zwischen Source und Drain einen sehr geringen Widerstand, so dass der Widerstand des Feldeffekttransistors selbst vernachlässigbar ist. Insbesondere ist der Innenwiderstand des FET weitgehend thermisch stabil, so dass Messfehler durch einen sich verändernden Innenwiderstand des FED minimiert werden.
  • Gemäß einer bevorzugen Ausführungsform kann der FET mit dem Microcontroller angesteuert werden. Der Microcontroller muss bei dieser Ausführungsform lediglich eine Spannung erzeugen, welche an das Gate anzulegen ist, um den FET zwischen Source und Drain zu öffnen bzw. zu schließen. Im Vergleich zu einem elektronischen Schalter, der durch ein Relais gebildet ist, ist eine solche Schaltung einfacher aufzubauen und lässt sich auch vollständig als integrierte Schaltung realisieren.
  • In einem nichterfindungsgemäßen Beispiel entspricht das Maximum des niedrigeren Strombereichs dem Minimum des höheren der beiden Strombereiche. Wenn in dieser Schaltung der zu messende Strom die Grenze der beiden Strombereiche erreicht, schaltet die Treiberschaltung den Strommesswiderstand um, um den Spannungsabfall an dem Strommesswiderstand entsprechend zu verringern bzw. zu erhöhen.
  • Erfindungsgemäß überlappen die beiden Strombereiche jedoch. Dadurch werden häufige Schaltvorgänge zwischen den Strommesswiderständen verhindert, falls der zu messende Strom durch die LEDs zufällig genau im Bereich zwischen den beiden Strombereichen pendelt. Erfindungsgemäß wird der Messwiderstand beim Erreichen des Maximum des unteren Strombereichs auf den niedrigeren Wert umgeschaltet und umgekehrt erst beim Erreichen des Minimum des höheren Strombereichs wieder auf den höheren Wert geschaltet. Durch diese Art Hysterese wird verhindert, dass häufige Schaltvorgänge bei geringen Stromschwankungen um die Grenze zwischen den Strombereichen auftreten, die sich als Flackern der LED bemerkbar machen könnten.
  • Gemäß einer bevorzugten Ausführungsform kann der Strommesswiderstand wenigstens zwei Werte annehmen, wobei der niedrigere Wert zwischen 0,1 Ohm und 0,5 Ohm und der höhere der beiden Werte zwischen 0,9 Ohm und 1,7 Ohm liegt. Bei einem Versorgungsstrom, der typischerweise zwischen 20 mA und 1 A beträgt, und bei einem Strommesswiderstand, der bei etwa 200 mA umgeschaltet wird, kann die Verlustleistung auf maximal 0,5 W begrenzt werden.
  • Gemäß einer nichterfindungsgemäßen Ausführungsform kann der niedrigere Strombereich 20 mA bis 200 mA umfassen und der höhere Strombereich 200 mA bis 1 A umfassen. Es ist jedoch erfindungsgemäß vorgesehen, dass die Strombereiche überlappen, wie vorhergehend beschrieben, so dass z.B. der niedrigere Strombereich einen Maximalwert von 250 mA umfasst, während der höhere Strombereich einen Minimalwert von 150 mA umfasst.
  • Gemäß einer bevorzugten Ausführungsform kann der Strommesswiderstand auch mehr als nur zwei Werte, z.B. drei oder vier Werte, für drei oder vier Strombereiche annehmen.
  • Weitere Vorteile und Merkmale der vorliegenden Erfindung werden aus der nachfolgenden Beschreibung einer bevorzugten Ausführungsform, die in Verbindung mit den Figuren gegeben wird, deutlich. In den Figuren ist Folgendes dargestellt:
  • Figur 1
    zeigt eine LED-Treiberschaltung gemäß dem Stand der Technik.
    Figur 2
    zeigt eine LED-Treiberschaltung gemäß einer Ausführungsform der vorliegenden Erfindung.
  • Eine Ausführungsform einer Treiberschaltung für LEDs gemäß der vorliegenden Erfindung ist in Figur 2 dargestellt. Ähnlich wie eine Treiberschaltung aus dem Stand der Technik, die in Figur 1 dargestellt ist, wird eine LED-Last 3, welche durch eine oder mehrere LEDs gebildet sein kann (in den Figuren nur eine LED dargestellt) über eine Versorgungsspannung, die von einem integrierten Schaltkreis 2 bereitgestellt wird, angesteuert. Der integrierte Schaltkreis 2 sorgt für eine Konstantstromversorgung durch die LED-Last 3. Ein Konstantstrom lässt sich einstellen (in der Figur nicht dargestellt), um eine gewünschte Dimmung der LED-Last zu erzeugen. Ferner kann die LED-Last durch die integrierte Schaltung ein- und ausgeschaltet werden. Dazu ist an einem Ausgang GATE des integrierten Schaltkreises 2 ein Feldeffektransistor 4 angeschlossen, der die LED-Last 3 mit Erde verbindet, wenn er geschlossen. In diesem Stromkreis ist ein Widerstand RCS vorgesehen. Durch diesen Widerstand RCS fließt daher der gleiche Strom, welcher auch durch die LED-Last 3 fließt. Der Spannungsabfall über den Widerstand RCS wird an einem Eingang CS der integrierten Schaltung 2 gemessen und dient zur Steuerung des Konstantstroms durch die LED. Soweit ist die Schaltung gemäß der vorliegenden Erfindung auch gleich zu der in Figur 1 dargestellten Schaltung nach dem Stand der Technik.
  • In der erfindungsgemäßen Schaltung nach Figur 2 ist zusätzlich ein zweiter Widerstand RCS2 vorgesehen, welcher parallel zu dem ersten Widerstand RCS geschaltet ist und über einen Halbleiterschalter, z.B. einen Feldeffekttransistor 22 ebenfalls mit Masse verbunden ist. Wenn der Feldeffekttransistor 22 durchgeschaltet ist, d.h. eine leitende Verbindung zwischen Drain und Source besteht, liegt der Widerstand RCS2 parallel zum Widerstand RCS, so dass der Strommesswiderstand für die integrierte Schaltung 2 insgesamt durch die Parallelschaltung von RCS und RCS2 gegeben ist. Das Gate des Feldeffekttransistors 22 liegt an einem Ausgang eines Microcontrollers 24 an und wird durch diesen gesteuert. Ferner stellt der Microcontroller 24 eine Steuerspannung bereit, die auf einen Eingang LD der integrierten Schaltung 2 wirkt, um den Versorgungsstrom durch die LED einzustellen. Der Microcontroller 24 dient in dieser Ausführungsform auch dazu, den Strom für die gewünschte Dimmung der LED-Last einzustellen. Der Microcontroller 24 erzeugt eine der gewünschten Dimmung entsprechenden Steuerspannung, die an den Eingang LD der integrierten Schaltung 2 anliegt, wobei der über die Bereichsumschaltung vom Microcontroller 24 ausgewählte Strommesswiderstand berücksichtigt wird.
  • In Betrieb wird von der integrierten Schaltung 2 der Strom durch die LED-Last eingestellt. Zum Dimmen der LED kann ein beliebiger Strom beispielsweise zwischen 20 mA und 1 A eingestellt werden.
  • In einem Strombereich von 200 mA bis 1 A legt der Microcontroller eine Spannung an das Gate des Halbleiterschalters, der durch den FET 22 gegeben ist, an, so dass eine Verbindung von Drain zu Source durchgeschaltet ist. In diesem Schaltungszustand sind die Widerstände RCS und RCS2 parallel zueinander mit Erde verbunden. Die Parallelschaltung aus RCS und RCS2 wirkt in diesem Schaltungszustand als Messwiderstand für die Stromregelung der LED-Last. Der integrierte Schaltkreis 2 misst den Spannungsabfall über die Parallelschaltung der Widerstände RCS und RCS2, um den Strom durch die LEDs auf einen konstanten Wert zu regeln.
  • Wenn der Strom zur Dimmung der LEDs auf einen geringeren Wert geregelt werden soll, z.B. auf einen Strom in einem Bereich zwischen 20 mA und 200 mA, wird über den Microcontroller 24 der Feldeffekttransistor 22 angesteuert, um die Verbindung zwischen Drain und Source zu öffnen. In diesem Fall fließt der Versorgungsstrom durch die LED-Last 3 nur noch durch den Widerstand RCS, so dass in diesem Schaltungszustand der Messwiderstand zur Bestimmung des Stroms nur durch den Widerstand RCS gegeben ist.
  • Somit wird über den Microcontroller 24 der Strommesswiderstand entsprechend einem vorgegebenen Strombereich zwischen zwei Werte umgeschaltet. Im niedrigeren Strombereich ist der Messwiderstand nur durch RCS gegeben, während für den höheren Strombereich der Messwiderstand durch die Parallelschaltung von RCS und RCS2 gegeben ist entsprechend geringer ist. Beispielsweise kann der Widerstand RCS und RCS2 jeweils 1,2 Ohm betragen, so dass im höheren Strombereich von 200 mA bis 1 µA effektiv nur ein Strommesswiderstand von 0,6 Ohm gegeben ist. Dadurch wird die am Messwiderstand umgesetzte Leistung bei größeren Strömen verringert. Da der Strom aber im höheren Messbereich liegt, ist der Spannungsabfall immer noch ausreichend hoch, um eine präzise Strommessung zu ermöglichen. In dem niedrigeren Strommessbereich wird der Messwiderstand entsprechend erhöht, z.B. auf 1,2 Ohm, so dass auch bei den niedrigeren zu messenden Versorgungsströmen noch ein ausreichend hoher Spannungsabfall für den Messwiderstand gegeben ist.
  • Über den Microcontroller 24 wird ferner eine Steuerspannung ausgegeben, die auf die integrierte Schaltung 12 einwirkt, um die Strommessung entsprechen den ausgewählten Messwiderstand um den entsprechenden Faktor auszugleichen.
  • Die vorliegende Erfindung ist nicht auf die dargestellte Schaltung von zwei Widerständen RCS und RCS2 beschränkt. Es können auch mehr als zwei Widerstände parallel geschaltet werden und es können auch mehr als lediglich zwei Strombereiche zur Messung des Stroms vorgesehen sein.
  • Die übrige Schaltung zur LED-Stromversorgung entspricht der Ausführungsform im Stand der Technik. Dadurch lässt sich die erfindungsgemäße Bereichsumschaltung für den Messwiderstand auch einfach mit vorhandenen aus dem Stand der Technik bekannten integrierten Schaltkreisen für eine LED-Stromversorgung realisieren.
  • BEZUGSZEICHENLISTE
  • 2
    integrierter Schaltkreis
    3
    LED-Last
    4
    Halbleiterschalter, z.B. Feldeffekttransistor
    22
    Halbleiterschalter, z.B. Feldeffekttransistor
    24
    Microcontroller
    RCS, RCS2
    Strommesswiderstand

Claims (6)

  1. Treiberschaltung zur Stromversorgung von einer oder mehreren LEDs (3), umfassend eine regelbare Konstantstromquelle zum Anschluss einer oder mehrerer in Reihe geschalteter LEDs (3), und
    einen umschaltbaren Strommesswiderstand (RCS, RCS2), der in Reihe mit der einen oder den mehreren LEDs schaltbar ist, wobei die
    Treiberschaltung dazu eingerichtet ist, über einen Spannungsabfall des Strommesswiderstands (RCS, RCS2) den Strom durch die eine oder die mehreren LEDs (3) zu messen um den Strom auf einen vorgegebenen Wert zu regeln, wobei die Umschaltung des Strommesswiderstands (RCS, RCS2) durch einen Microcontroller (24) der Treiberschaltung gesteuert ist und der Microcontroller ferner eine Steuerspannung bereitstellt, welche die Stromerzeugung an der Konstantstromquelle entsprechend dem ausgewählten Messwiderstand (RCS, RCS2) einstellt,
    wobei die Treiberschaltung ferner dazu eingerichtet ist, den Strommesswiderstand (RCS, RCS2) auf wenigstens zwei verschiedene Werte zu schalten, wobei auf den niedrigeren der beiden Werte zur Messung des Stroms durch die eine oder die mehreren LEDs (3) in einem höheren Strombereich und auf den höheren der beiden Werte für eine Messung des Stroms durch die einen oder die mehreren LEDs (3) in einem niedrigeren Strombereich geschaltet wird,
    dadurch gekennzeichnet, dass die beiden Strombereiche teilweise überlappen, und dass die Treiberschaltung so eingerichtet ist, um den Strommesswiderstand (RCS, RCS2) beim Erreichen des Maximums des unteren Strombereichs auf den niedrigen Wert umzuschalten und umgekehrt erst beim Erreichen des Minimums des höheren Strombereichs wieder auf den höheren Wert zu schalten.
  2. Treiberschaltung nach Anspruch 1, wobei der Messwiderstand (RCS, RCS2) durch wenigstens zwei parallel geschaltete Widerstände (RCS, RCS2) gebildet ist, von denen wenigstens einer (RCS2) elektronisch zu- oder abschaltbar ist.
  3. Treiberschaltung nach Anspruch 2, wobei die elektronische Zu- bzw. Abschaltung des wenigstens einen Widerstands (RCS2) durch ein Ansteuern eines Gates (G) von einem Feldeffekttransistor, FET, (22) erfolgt, dessen Source (S) und Drain (D) in Reihe mit dem Widerstand geschaltet ist.
  4. Treiberschaltung nach Anspruch 3, wobei das Gate (G) des FET (22) durch den Microcontroller (24) angesteuert wird.
  5. Treiberschaltung nach einem der vorhergehenden Ansprüche, wobei der Strommesswiderstand wenigstens zwei Werte annehmen kann, wobei der niedrigere Wert zwischen 0,1 Ohm und 0,7 Ohm und der höhere Werte zwischen 0,9 Ohm und 1,7 Ohm liegt.
  6. Treiberschaltung nach einem der vorhergehenden Ansprüche, wobei der Strommesswiderstand mehr als zwei Werte, insbesondere drei oder vier Werte annimmt, um zwischen mehr als zwei Strombereichen, insbesondere drei oder vier Strombereichen, umzuschalten.
EP19153652.3A 2018-01-26 2019-01-25 Treiberschaltung zur stromversorgung einer oder mehrerer leds Active EP3518625B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018101796.0A DE102018101796A1 (de) 2018-01-26 2018-01-26 Treiberschaltung zur Stromversorgung einer oder mehrerer LEDs

Publications (2)

Publication Number Publication Date
EP3518625A1 EP3518625A1 (de) 2019-07-31
EP3518625B1 true EP3518625B1 (de) 2022-09-07

Family

ID=65234466

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19153652.3A Active EP3518625B1 (de) 2018-01-26 2019-01-25 Treiberschaltung zur stromversorgung einer oder mehrerer leds

Country Status (2)

Country Link
EP (1) EP3518625B1 (de)
DE (1) DE102018101796A1 (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20023993U1 (de) * 2000-03-17 2008-09-25 Tridonicatco Gmbh & Co. Kg Ansteuerschaltung für Leuchtdioden
ES2424938T3 (es) * 2011-04-15 2013-10-10 Atlas Elektronik Gmbh Circuito de excitación y procedimiento para la alimentación de un LED así como medio de iluminación
US9185755B2 (en) * 2011-08-19 2015-11-10 Marvell World Trade Ltd. Regulator for LED lighting color mixing
CN104755613A (zh) * 2012-11-05 2015-07-01 奥斯兰姆施尔凡尼亚公司 用于固态光源的驱动器
US20140241387A1 (en) * 2013-02-22 2014-08-28 Raytheon Company Multiple-current-source laser diode driver system
US9456481B2 (en) * 2014-02-25 2016-09-27 Earl W. McCune, Jr. High-efficiency, wide dynamic range dimming for solid-state lighting

Also Published As

Publication number Publication date
DE102018101796A1 (de) 2019-08-01
EP3518625A1 (de) 2019-07-31

Similar Documents

Publication Publication Date Title
DE60214890T2 (de) Differenztreiber mit niedriger versorgungsspannung
DE102006037342B4 (de) Schaltung für ein Kraftfahrzeug, insbesondere zur Ansteuerung einer Beleuchtungseinrichtung
DE20023993U1 (de) Ansteuerschaltung für Leuchtdioden
DE3627681A1 (de) Ausgangsschaltung
DE102013113053B4 (de) Treiberschaltung mit einer Halbleiterlichtquelle sowie Verfahren zum Betrieb einer Treiberschaltung
DE102014108576B4 (de) Treiberschaltung mit Miller-Clamping-Funktionalität für Leistungshalbleiterschalter, Leistungshalbleiterschalter und Wechselrichterbrücke
DE102018128907A1 (de) Hochgeschwindigkeits-Hochspannungs-Verstärkerendstufe mit linearer oder Klasse-D-Topologie
DE102010015908B4 (de) Vorrichtung zur Ansteuerung einer elektrischen Last
WO2020233751A1 (de) Verfahren und vorrichtungen zur regelung der ausgangsspannung eines spannungsreglers
AT517324B1 (de) Beleuchtungseinrichtung für Fahrzeuge
DE3227296A1 (de) Pulsbreitenmodulatorschaltung
DE102012224275A1 (de) Treiberschaltung mit niedrigen EMI
EP3518625B1 (de) Treiberschaltung zur stromversorgung einer oder mehrerer leds
DE3218479A1 (de) Schaltung fuer einen stromverbraucher in einem kraftfahrzeug
DE10324609B4 (de) Ansteuerschaltung und LED-Array sowie Verfahren zum Betreiben eines LED-Arrays
EP2842388B1 (de) Led-anordnung
DE3128013C1 (de) Ansteuerschaltung fuer wenigstens eine lichtemittierende Diode
DE19812299A1 (de) Gleichspannungswandler
EP2897444A1 (de) Schaltung zur LED-Stromversorgung
DE102014104548A1 (de) Schaltung zur Ansteuerung von einer oder mehreren LEDs mit gesteuertem Kompensationsglied
DE10049994A1 (de) Schaltungsanordnung zum Überwachen und/oder zum Einstellen von Versorgungsspannungen
DE102007001716A1 (de) Leuchtdioden-Schaltungsanordnung
WO2015132332A1 (de) Schaltungsanordnung zur regelung eines elektrischen stroms
DE102013111510A1 (de) Schaltung und Verfahren zur Ansteuerung von LEDs
DE102005014992A1 (de) Schaltungsanordnung mit einem Schaltregler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200129

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SITECO GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200408

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502019005527

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045100000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 45/395 20200101ALI20220311BHEP

Ipc: H05B 45/375 20200101ALI20220311BHEP

Ipc: H05B 45/3725 20200101ALI20220311BHEP

Ipc: H05B 45/14 20200101ALI20220311BHEP

Ipc: H05B 45/10 20200101AFI20220311BHEP

INTG Intention to grant announced

Effective date: 20220328

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1518117

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019005527

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019005527

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

26N No opposition filed

Effective date: 20230608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240118

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 6

Ref country code: CH

Payment date: 20240202

Year of fee payment: 6

Ref country code: GB

Payment date: 20240124

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240118

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907