EP1324865A1 - Procede de fabrication en centrale continue d'une composition de beton roule compacte renforce de fibres metalliques, et centrale continue pour la mise en oeuvre de ce procede - Google Patents

Procede de fabrication en centrale continue d'une composition de beton roule compacte renforce de fibres metalliques, et centrale continue pour la mise en oeuvre de ce procede

Info

Publication number
EP1324865A1
EP1324865A1 EP01969887A EP01969887A EP1324865A1 EP 1324865 A1 EP1324865 A1 EP 1324865A1 EP 01969887 A EP01969887 A EP 01969887A EP 01969887 A EP01969887 A EP 01969887A EP 1324865 A1 EP1324865 A1 EP 1324865A1
Authority
EP
European Patent Office
Prior art keywords
fibers
tank
conveyor
concrete
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01969887A
Other languages
German (de)
English (en)
Other versions
EP1324865B1 (fr
Inventor
Benoít Ficheroulle
Marc Henin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chaussees Techniques Innovation
Original Assignee
Chaussees Techniques Innovation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chaussees Techniques Innovation filed Critical Chaussees Techniques Innovation
Publication of EP1324865A1 publication Critical patent/EP1324865A1/fr
Application granted granted Critical
Publication of EP1324865B1 publication Critical patent/EP1324865B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • E04C5/073Discrete reinforcing elements, e.g. fibres
    • E04C5/076Specially adapted packagings therefor, e.g. for dosing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/40Mixing specially adapted for preparing mixtures containing fibres
    • B28C5/402Methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/40Mixing specially adapted for preparing mixtures containing fibres
    • B28C5/404Pre-treatment of fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/04Supplying or proportioning the ingredients
    • B28C7/06Supplying the solid ingredients, e.g. by means of endless conveyors or jigging conveyors

Definitions

  • the present invention relates to a process for the continuous production of a reinforced compacted rolled concrete composition. of metallic fibers packaged in pre-glued plates, as well as a continuous power plant and a continuous fiber doser for the implementation of this manufacturing process.
  • the composition of compacted rolled concrete reinforced with fibers obtained by said process allows the realization of continuous pavements or industrial areas without joints.
  • BAC continuous reinforced concrete
  • steel bars generally 16 mm in diameter
  • the concrete is applied, usually using a sliding formwork machine.
  • Continuous reinforced concrete remains a heavy technique to implement and expensive.
  • traditional concrete, perverted or poured makes it possible to produce industrial pavements (often covered and therefore less subject to weathering and temperature variations than pavements) of large dimensions reaching up to 2000 m without joints. , the properties of the fibers making it possible to space the joints.
  • Rolled compacted concrete compositions differ from conventional poured or perverted concrete by the fact that, for similar or better mechanical properties, they require a reduced dosage of hydraulic binder as well as a reduced water content.
  • the reduction in the binder dosage and in the water content gives the advantage of compacted rolled concrete of a lower hydraulic shrinkage, with the consequence of less marked cracking: on the condition of using fibers provided with a sufficiently effective anchoring in the concrete matrix and knowing how to properly integrate these fibers at the time of concrete production, it is therefore possible to produce a continuous pavement in compacted rolled concrete reinforced with metallic fibers.
  • the lower water content of compacted rolled concrete also makes it possible to obtain sufficient bearing capacity to use the material with road vehicles (asphalt paver paver) and then compact it using a vibrating compactor and a tire compactor, and finally put it back into circulation without delay.
  • road vehicles asphalt paver paver
  • the consistency of poured concrete requires implementation with traditional techniques of sliding formwork machine or vibrating rule and allows recirculation only after a sufficient setting time which is generally at least 7 days.
  • the metallic fibers used in industrial paving are most often drawn fibers generally comprising wires of 1 mm in diameter. The different existing fibers differ from each other by the type of active anchoring in the concrete matrix.
  • 2,633,922 discloses a process for manufacturing a compacted rolled concrete reinforced with fibers, according to which 7 to 15% of a cement or road binder is introduced continuously into a mixer of a plant. , 4 to 7% by weight of water, 0.8 to 4% by weight of metallic fibers, these being introduced by a special metering device, the rest of the composition essentially consisting of gravel from 0 to 31.3 mm .
  • this patent is absolutely silent on this dispenser special and on the way the fibers are fed by the doser in the mixer.
  • French Patent No. 2,654,830 describes a continuous weight metering device for fibers in a construction material for engineering structures.
  • the problem with this device lies in the fact that the fibers form balls or hedgehogs in the means for distributing the fibers towards the means for transporting the material to be reinforced by the fibers.
  • vibrating chutes of the distribution means are associated with fiber separation means, such as toothed rotors, nozzles for injecting air under pressure or rakes with reciprocating movement, in order to dislocate these hedgehogs from fibers.
  • fiber separation means such as toothed rotors, nozzles for injecting air under pressure or rakes with reciprocating movement
  • the process according to the invention proposes a continuous production of a compacted rolled concrete reinforced with fibers which effectively makes it possible to avoid, or at least to limit to a very low probability, the formation of fiberballs at the manufacturing stage. compacted rolled concrete reinforced with fibers. Another object is to avoid or limit the formation of fiberballs at the other two stages of transport and implementation of the compacted rolled concrete reinforced with fibers. Finally, another goal is to completely avoid the formation of these balls.
  • the aim of the process according to the invention is also:
  • the subject of the invention is a process for the continuous production of a compacted rolled concrete composition reinforced with fibers, comprising the following steps: a) the continuous feeding of several types of aggregates delivered on a conveyor , b) the continuous feeding of metallic fibers from a vibrating metering means on said conveyor, c) the continuous feeding in a kneader of the aggregates and of the fibers delivered by the conveyor, of a hydraulic binder and mixing water which may contain one or more concrete admixtures, characterized in that: the aforementioned step b) consists in supplying the aforementioned vibrating metering means with platelets of pre-glued metal fibers for delivering said fiber platelets and / or said fibers peeled off on the conveyor during step a) above, said fibers being fed in a proportion of between 25 and 60 kg of fibers per m 3 of constitu dry concrete of the fiber-free concrete, and that step c) consists in supplying the hydraulic binder in a proportion of between 180 and 400 kg
  • the transport of the compacted rolled concrete reinforced with fibers is carried out by a dump truck, and not by a mixer truck, and the implementation of the concrete on the road is carried out by a paver, to maintain the desired characteristics for mixing the constituents of fiber-reinforced concrete.
  • the method consists in continuously feeding, during the aforementioned step a), onto the conveyor, a solvent product, for example water, to dissolve the adhesive which keeps the fibers in platelets, said solvent product being delivered to the conveyor at or near the drop point of the fibers delivered by the metering means.
  • the metering means successively comprises at least one vibrating metering tank and a vibrating passage or a weighing belt.
  • the method consists in supplying solvent product to said corridor so that the fibers bathe at least partially in the corridor, the bottom of which is filled with solvent product and are delivered together with said solvent product on the conveyor from said corridor.
  • the method consists in delivering said solvent product by at least one nozzle situated just downstream from the point of fall of the fibers on the conveyor.
  • the method consists in delivering the fibers onto the conveyor, after the feeding of a first type of aggregates and before the feeding of the last type of aggregates, so that the fibers are integrated into the mass of the different types of aggregates. .
  • the method consists in calculating the proportion of mixing water delivered in step c) above in the mixer, depending on the water content specific to each type of aggregate supplied in step a).
  • the method consists in feeding in step a) a total proportion of the aggregates between 83 and 93% by weight of dry constituents of the concrete without fiber, and in step c) a cement or a binder road in a proportion of between 7 and 17% by weight of dry constituents of the fiber-free concrete, of which 0.3 to 1.8% by weight of the hydraulic binder consists of a concrete setting retarder and / or plasticizer additive in mixing water to lubricate the intergranular contacts and delay setting of the concrete.
  • the subject of the invention is also a continuous power station for implementing the method defined above, comprising:
  • each hopper being capable of delivering to the conveyor a type of aggregate, each hopper being associated with a means of weight or volumetric measurement of the amount of aggregate delivered by said hopper,
  • a vibrating metering means capable of delivering metallic fibers onto the conveyor, said metering means being associated with a means of weight measurement of the quantity of fibers delivered,
  • silos capable of delivering each a hydraulic binder, each silo being associated with a means of weight or volumetric measurement of the quantity of binder delivered, another silo can be used to dose an additional pulverulent such as fly ash for example,
  • a mixing water supply means associated with a means for adjusting the mixing water flow rate
  • a mixer comprising a network of injection nozzles in the mixing chamber, said network being supplied with mixing water by said means for adjusting the flow rate
  • the hydraulic binder being delivered to the inlet of the mixer from said silo and all of the fibers and aggregates being delivered by the conveyor into the mixer, for the mixing of all the constituents of rolled compacted concrete reinforced with fibers, characterized in that it comprises a means for supplying solvent product for delivering on the conveyor, at or near the outlet of the vibrating metering means, a solvent product intended to dissolve the adhesive of the wafers and thus to release the pre-glued metal fibers delivered by said metering means.
  • said means for supplying solvent product is arranged so as to deliver the solvent product downstream from the first hopper for supplying aggregates and upstream from the last hopper for supplying aggregates.
  • the vibrating metering means comprises a first vibrating tank having on its internal cylindrical wall a helical ramp on which the fiber plates are able to move by vibration from the bottom of the tank towards its top, said ramp helical extending at its top by an intermediate chute opening above the center of a second vibrating tank, said second tank also having on its cylindrical internal wall a helical ramp on which the fiber plates are able to move from the bottom to the top of the second tank, the helical ramp of the second tank opening onto a vibrating corridor which delivers the fibers above the conveyor, said means for supplying solvent product comprising at least one nozzle located substantially above the end upstream of said vibrating corridor.
  • the advantage of providing two vibrating tanks in series is to eliminate irregularities in the supply and distribution of fibers from the only first vibrating tank, the latter being supplied discontinuously with fibers by a forklift truck regularly filled with fiber boards from large bags called "big bags".
  • the first vibrating tank comprises an articulated arm interposed between the top of the helical ramp and the intermediate chute, said arm being able, in a closed position, to prevent passage to the chute and to return the fibers to the center and the bottom of the first tank, and in a variable open position, to allow the passage of a controlled quantity of fibers to said intermediate chute.
  • said intermediate chute has parallel vibrating fingers situated substantially in vertical planes, fixed at their upstream end and free at their downstream end, so as to be able to separate the agglomerations of fiber boards and obtain a more regular distribution in the supply of fiber platelets to the second tank, the longitudinal extension of the fingers being parallel to the direction of movement of said fiber platelets.
  • the second vibrating tank is equipped with a level detector of fibers stored in said second tank, said detector being connected to a motor for controlling the articulated arm, in order to move said arm towards its closed position or inversely towards its open position, when the quantity of fibers stored in the second tank is greater or inversely less than a predetermined threshold value.
  • the second tank is equipped with a frequency modulator to vary its vibration and thus its fiber flow rate, said modulator being able to be controlled by weighing the quantity of fibers delivered at the outlet of the second tank.
  • the second tank can be mounted on load cells, the fiber flow rate being fixed by the centralized control of the metering device in the central control cabin.
  • the central operator can enter the desired fiber flow rate on a digital controller, then the central unit will operate automatically to control the frequency modulator.
  • the fiber flow can also be checked by a graphic recorder and a printer edition.
  • the central unit is equipped with a centralized control unit connected to the various means of weight or volumetric measurement of the hoppers, of the silo and of the metering means, as well as to the means of adjusting the flow rate of the water supply means of mixing, to calculate and control the flow of water to be fed into the mixer according to the water content, the flow of each aggregate and / or the flow of the solvent product.
  • a centralized control unit connected to the various means of weight or volumetric measurement of the hoppers, of the silo and of the metering means, as well as to the means of adjusting the flow rate of the water supply means of mixing, to calculate and control the flow of water to be fed into the mixer according to the water content, the flow of each aggregate and / or the flow of the solvent product.
  • each hopper and each silo open onto a weighing conveyor belt driven by its own drive motor, the speed of which can be controlled by the centralized control unit, according to the measured weight, to control the flow rate of each concrete component.
  • FIG. 1 is a schematic view of the assembly of the continuous power plant according to the invention.
  • FIG. 2 is an enlarged and partial schematic view of a hopper associated with a weighing belt
  • FIG. 3 is a perspective view of a wafer of fibers that can be used in the method of the invention
  • - Figure 4 is a schematic view in side elevation of the vibrating metering means used in the plant of the invention
  • Figure 5 is a schematic top view of Figure 4 along the line V-V, in the open position of the articulated arm;
  • Figure 6 is a partial view similar to Figure 5 showing the articulated arm in the closed position
  • FIG. 7 is an enlarged and partial schematic view of the mixer visible in Figure 1;
  • FIG. 8 is a sectional view of Figure 7 along the line VIII-VIII;
  • FIG. 9 represents a screen page visible on the terminal of the centralized control unit of FIG. 1.
  • FIG. 1 there is shown schematically the whole of an installation for a continuous plant for the production of compacted rolled concrete reinforced with fibers.
  • This power station comprises a first hopper 1 shown in FIG. 2, intended, for example, to contain and distribute gravel, a first load cell 2, the chassis of which is articulated substantially at point 3 on the lower end of the hopper 1.
  • the chassis of the load cell 2 carries an endless conveyor belt 4, driven by a drive motor 7 which rotates the rollers 5, by means of a chain 6, the drive shaft being fixed at one end Weighing frame 2 relative to the joint 3.
  • the other end of the load cell 2 is connected to a strain gauge 8, suspended from the frame B of the power station, which frame also supports the first hopper 1.
  • the gravel contained in the first hopper 1 falls , as indicated by the arrow FI, on the weighing belt 4, which is rotated anti-clockwise, according to arrow F2, so that the gravel falls at the left end of the weighing belt, as indicated by the arrow F3, on the underlying conveyor belt 9.
  • the strain gauge is connected by an electric cable 10 to a centralized control unit U, as visible in FIG. 1.
  • the first conveyor belt 9 is also motorized and its motor, as well as the aforementioned motor 7, can be controlled by the unit U.
  • a second hopper 11 is located near the first hopper 1 and also has a load cell 12 at its lower end, the chassis of which is inverted with respect to that of the first load cell 2.
  • its motor 17 is located at the end left of the chassis, while the strain gauge 18 is fixed at its right end, the weighing belt of the second load cell 12 being driven clockwise in FIG. 1 so that the aggregate contained in the second hopper 11 falls to the right on the conveyor belt 9 and covers the first aggregate previously deposited.
  • the conveyor belt 9 is driven counterclockwise in FIG. 1.
  • the strain gauge 18 is also suspended from the frame B and is connected by a line 20 to the unit U.
  • the first conveyor belt 9 pours all of the first two aggregates onto a second motorized conveyor belt 19, as visible in FIG. 1.
  • each hopper 21 and 31 is associated with a load cell 22, 32, each load cell being associated with its own electric motor 27, 37 and its own strain gauge 28, 38.
  • Each strain gauge as well as each engine can be connected by lines 30 and 40 to the U unit.
  • the central unit also includes a metering means D provided with a vibrating passage 41, the outlet end of which opens onto a chute 42 situated above the second conveyor belt 19, upstream of the third hopper 21.
  • the metering means D has an elevator 43, which comprises at its lower end rollers 43 a guided in vertical grooves 44 and at its upper end rollers 43b guided in vertical grooves 45, the upper portion of these grooves 45 being bent horizontally to allow the tilting of the lifting tank 43 in the high position, as visible in FIGS. 1 and 4.
  • the lifting tank 43 is intended to be filled by loads in large bags (whose weight is for example 1,100 kg) platelets of pre-glued fibers P, for example of the type of platelets visible in FIG. 3. These platelets are, for example, poured into the elevator tank 43 in the low position from large bags filled with platelets, as indicated by arrow F4 in FIG. 4.
  • first cylindrical tank 46 which is provided at its upper end with a deflector 47 to prevent the fiber plates P from falling outside the tank.
  • the first tank 46 is mounted on a base 48, which rests on an intermediate frame 50a with a set of springs 49 interposed and shock absorbers not shown, said intermediate frame 50a resting on a base frame 50b equipped at each corner with a load cell 51.
  • the base 48 is equipped with two vibrating motors 52 arranged on either side of the base 48, to vibrate the first tank 46 by adding the combined effect of the springs and dampers.
  • the two motors rotate at the same speed so as to generate sufficient vibrations in the cylindrical tank 46 to cause the fiber platelets to rise by vibration along a helical ramp 53 arranged on the cylindrical internal wall of the first tank 46.
  • the fiber platelets rise from the bottom to the top of the tank by turning counterclockwise, as indicated by arrow F6, and an articulated arm 54 is provided at the top of the tank 46 to allow the passage of the fiber plates either towards an intermediate chute 55, as indicated by the arrow F7 (see FIG. 5), or towards a plate 56 inclined towards the center of the tank 46 to allow the return of the plates towards the bottom of it, as indicated by arrow F8 (see Figure 6).
  • the articulation of the arm 56 is motorized and its motor can be controlled by the unit U, via the sensor 70.
  • the chute 55 is provided with a plurality of fingers 58, parallel to each other, oriented substantially in the direction of movement F7 of the fiber plates, so as to better distribute the plates.
  • the chute 55 opens above the center of a second cylindrical tank 59, smaller, which also includes a base 60 on which are mounted on either side two vibrating electric motors 61 and a set of springs and dampers 49 on the aforementioned intermediate chassis 50a.
  • the second small tank 59 also has a helical ramp 63 on its internal wall, to bring the fibers and / or the fiber platelets up from the bottom to the top by turning counterclockwise, as visible by the arrows F9 on the Figure 5.
  • the helical ramp 63 opens at its top on a second chute 64, which extends radially outward from the tank 59 and opens above the corridor 41 which is provided with vibrating motors (not shown). Vibrating fingers can also be provided at the outlet of the trough 64.
  • This vibrating passage 41 is mounted via springs 65 on an upright 66, at its upstream end, and suspended at its downstream end via springs 67 from the frame B.
  • At the end upstream of the vibrating corridor 41 it is possible to provide at least one nozzle 68 for injecting water from the network, a valve 69 making it possible to adjust this flow rate, for example via the unit U.
  • the vibrating corridor 41 can be filled with about half a centimeter of water to start peeling off the fiber boards.
  • the direction of travel of the fibers in the corridor 41 is indicated by the arrows F 10.
  • the fibers as well as the water or the solvent product fall from the corridor 41 onto the aforementioned second conveyor belt 19.
  • the nozzle 68 is disposed above the last chute 64, to increase the duration of humidification of the fibers before they fall on the conveyor.
  • the entire metering means D rests on the ground S or on a mobile trailer, like the frame B.
  • a support for a level detector for example an ultrasonic sensor 70, for detecting the level of the fibers in the second tank 59 and automatically controlling the movement of the articulated arm 54, depending on whether the level in the second tank is greater than a predetermined threshold value.
  • the position of the articulated arm 54 relative to the intermediate chute 55 is electronically controlled according to the information given by the sensor 70, so as to vary the flow of fibers which passes from the first tank 46 to the second tank 59.
  • the sensor 70 can be provided for metering fiber platelets to the conveyor belts of the plant.
  • plates P the metallic fibers of which consist of substantially cylindrical wires comprising a substantially straight longitudinal central portion extending on each side by means of an intermediate portion of a curved end portion. whose shape is of the type which prohibits the attachment of two neighboring fibers, said threads having
  • each intermediate portion and the central part at least equal to 20 °, and - an obtuse angle less than or equal to 160 ° between each intermediate portion and the central part, - an obtuse angle between each intermediate portion and end portion, and,
  • the threads constituting the fibers have a diameter between 0.65 and 0.85 mm and a total length / diameter ratio between 65 and 85.
  • the fibers have a total length / diameter ratio of the order of 80.
  • each curved end part is formed of a rectilinear part connected to the central part by said inclined part comprising at least two elbows.
  • the fibers used in the present invention are fibers of 0.75 mm in diameter, with a total length of 60 mm and with a tensile strength of at least 1100 N / mm 2 , sold for example under the brand "Dramix 80/60".
  • This fiber also has the advantage, with an equal dosage by weight in concrete, of a number of fibers double that of the number of fibers of diameter of 1 mm traditionally used. Due to a hardening pushed further to the wire drawing, the thinner wire moreover has a higher elastic limit which makes it more efficient than a wire of 1 mm in diameter.
  • the plate P comprises a plurality of fibers fl, f2 ... fh, where n is any integer, for example equal to 20.
  • the metal fibers are therefore poured onto the first two layers of aggregates and before the deposition of the third layer of aggregates.
  • the second conveyor belt 19 pours all of the fiber aggregates onto a third conveyor belt 79, which opens into a mixer 80.
  • the plant comprises one, or two, or more silos 81, each of which contains a hydraulic binder, for example a standardized CPJ cement (Portland cement) or CLK (slag cement), or even a road binder, for example the product sold under the brand "LIGEX" by the company CALCIA.
  • a hydraulic binder for example a standardized CPJ cement (Portland cement) or CLK (slag cement), or even a road binder, for example the product sold under the brand "LIGEX" by the company CALCIA.
  • the lower outlet of each silo 81 leads to a pipe containing an endless screw 82 for transporting the binder to a hopper 83.
  • This hopper 83 can receive hydraulic binders from several silos.
  • the lower outlet of the hopper 83 leads to another transport worm 84, which delivers the hydraulic binder on a weighing belt 85 inside a casing 78, one end of which is linked to a strain gauge 86 to weigh the quantity of hydraulic binder.
  • the level sensor 70, the load cells 51 and the other motors of the metering means D are connected by different lines 71 to 73 to the centralized control unit U.
  • the strain gauge 86 is also connected by a line 74 to unit U.
  • the weighing belt 85 delivers the hydraulic binder to the inlet of a double conveyor containing two endless conveyor screws 87 to introduce said hydraulic binder into the aforementioned mixer 80, substantially in the vicinity of the inlet of the fiber and aggregate mixture delivered by the third conveyor belt 79.
  • the mixer is also supplied with mixing water via the water network, as indicated by the valve 88, and with plasticizing additives contained in a tank 89.
  • a mixing valve 90 makes it possible to mix the adjuvant coming from the tank 89 with the water from the network 88.
  • This mixture of water and adjuvant is distributed inside the mixer 80 via a network of pipes 91 pierced with orifices to inject the mixture into the mixer above two kneading shafts 92.
  • the network of pipes 91 preferably comprises a simultaneous arrival of the mixture on either side of the mixer, the network comprising a U-shaped branch in parallel above the trees 92.
  • Each shaft 92 comprises diametral blades 93 provided at their ends with pallets 94 inclined so as to constitute a discontinuous helical ramp.
  • the blades of each shaft are offset so as to allow the mixing of all the constituents of the compacted rolled concrete reinforced with fibers, when the two shafts are rotated in opposite directions, as visible by the arrows Fi l in the figure 8.
  • the admixture makes it possible to delay setting of the concrete for several days, with a proportion of 0.8% of the weight of the hydraulic binder.
  • a plasticizer can be a plasticizer sold under the brand "CIMAXTARD" by the company Axim.
  • the concrete and fiber mixture reaches a fourth conveyor belt 99, which transports the composition to a hopper 100 whose bottom is closed by a helmet consisting of two oscillating arms 101 which are able to move apart in order to unload the contents of the hopper 100 in a truck 102.
  • the opening of the swinging arms 101 is controlled by the manager of the plant for filling the trucks.
  • the unit U is connected to a terminal comprising a screen 110 and a keyboard 111 for entering set values for the different component flow rates and speeds of the different conveyor belts.
  • D1 designates gravel with a diameter of between 5 and 12 mm, with a flow rate of 75.4 T / H (ton per hour), having a natural water content of approximately 1.70%, the gravel being intended to constitute 44% of the dry constituents of fiber-free concrete
  • D2 designates crushed sand, the diameter of which is between 0 and 4 mm, with a flow rate of 48.3 T / H and a water content of 4, 30%, to constitute 27.30% of the weight of the dry constituents of fiber-free concrete
  • D3 of wet rolled sand having a diameter between 0 and 4 mm, with a flow rate of 28.9 T / H and a water content of 8.40%, to constitute 15.80% of the weight of the dry constituents of fiber-free concrete
  • D4 to D6 can denote other types of aggregates or aggregates, but are not used in this example
  • PI denotes the hydraulic binder which is fed with a flow rate of 21.7 TH to constitute 12.9% by weight of the dry constituents
  • the water flow rate to be supplied will not be equal to 5.5% of the total machine flow rate.
  • the power plant is used with a flow rate of 177.6 T / H which corresponds to only 60% of its nominal capacity of the order of 400 T / H here limited to 300 T / H by the capacity of the hydraulic binder dispenser used.
  • the aggregates used may contain from 70 to 100% of crushed material, having sharp angles and a shape close to the square, and a particle size between 0 and 14 mm so as to avoid the phenomena of segregation, that is to say separation of large elements.
  • the concrete composition also preferably comprises a plasticizing aid which facilitates compaction by intergranular lubrication and makes it possible to obtain a density close to 2400 kg / m 3 of wet concrete without fibers with favorable consequences, such as higher strength and the possibility of reducing the dosage by hydraulic binder
  • a plasticizing aid which facilitates compaction by intergranular lubrication and makes it possible to obtain a density close to 2400 kg / m 3 of wet concrete without fibers with favorable consequences, such as higher strength and the possibility of reducing the dosage by hydraulic binder
  • the optimal water content is determined by the Proctor test
  • the composition comprises a content of hydraulic binder close to 250 to 300 kg per cubic meter of dry concrete without fiber, a water content of 4 to 6% of the weight of the dry constituents of concrete without fiber, that is to say about 100 to 150 liters of per cubic meter of concrete, a dosage of metal fibers between 30 and 40 kg per cubic meter of dry concrete without fiber.
  • the composition includes 280 kg of hydraulic binder and 110 liters of water per cubic meter of dry concrete without fiber.
  • the composition also comprises a content of retarder plasticizer varying between 0.3 and 1.8% of the weight of the hydraulic binder.
  • the instantaneous fiber metering precision obtained with the plant according to the invention is between - 5% and + 10%, which cannot be obtained with a truck mixer.
  • the production rates in the continuous plant of the type of the invention are between 200 and 1,000 tonnes / hour of concrete, while batch plants can generally only reach half of these rates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Inorganic Fibers (AREA)

Abstract

Procédé de fabrication en centrale continue d'une composition de béton roulé compacté renforcé de fibres métalliques, consistant à alimenter un moyen de dosage vibrant en plaquettes de fibres métalliques pré-encollées pour les délivrer sur un convoyeur dans une proportion comprise entre 25 et 60 kg de fibres par m<3> de constituants secs du béton sans fibre, et à alimenter un liant hydraulique dans une proportion comprise entre 180 et 400 kg/m<3> de constituants secs du béton sans fibre, la proportion d'eau de gâchage étant déterminée de façon que le malaxeur délivre en continu une composition présentant une teneur en eau comprise entre 90 et 150 litres d'eau par m<3> de constituants secs de béton sans fibre.

Description

PROCEDE DE FABRICATION EN CENTRALE CONTINUE D'UNE COMPOSITION DE BÉTON ROULÉ COMPACTÉ RENFORCÉ DE FIBRES MÉTALLIQUES, ET CENTRALE CONTINUE POUR LA MISE EN ŒUVRE DE CE PROCÉDÉ La présente invention concerne un procédé de fabrication en centrale continue d'une composition de béton roulé compacté renforcé de fibres métalliques conditionnées en plaquettes préencollées, ainsi qu'une centrale continue et un doseur de fibres en continu pour la mise en œuvre de ce procédé de fabrication. La composition de béton roulé compacté renforcé de fibres obtenue par ledit procédé permet la réalisation de chaussées continues ou d'aires industrielles sans joints.
Pour réaliser une chaussée durable en béton coulé sans joints, il est connu un procédé, dit procédé de béton armé continu (BAC), dans lequel des barres d'acier, généralement de 16 mm de diamètre, sont raccordées les unes aux autres en continu sur toute la longueur de la chaussée. Une fois les barres d'acier posées, le béton est appliqué, généralement en utilisant une machine à coffrage glissant. Le béton armé continu reste cependant une technique lourde à mettre en œuvre et coûteuse. Après renforcement par des fibres d'acier, les bétons traditionnels pervibrés ou coulés permettent de réaliser des dallages industriels (souvent couverts et donc moins soumis aux intempéries et aux variations de température que les chaussées) de grande dimension atteignant jusqu'à 2000 m sans joints, les propriétés des fibres permettant d'espacer les joints. Par contre ces bétons n'ont pu jusqu'ici être utilisés efficacement pour la fabrication de chaussées continues sans joints malgré l'intérêt présenté par une telle application. En effet, les dosages relativement élevés en ciment et en eau génèrent dans ces bétons un retrait hydraulique auquel vient s'ajouter le retrait thermique. Les contraintes mécaniques sont telles que les fibres ne parviennent pas à les contrôler. Il en résulte que les phénomènes de retrait du béton entraînent une fissuration nettement plus importante qu'en dallage, présentant un degré d'ouverture inacceptable atteignant le plus souvent plusieurs millimètres. Ainsi il est nécessaire de pratiquer des joints dans ces chaussées afin de localiser les effets du retrait et de réduire les ouvertures de fissures, ce qui fait perdre les avantages économiques d'une chaussée continue et freine considérablement le développement en chaussées des bétons de fibres pervibrés ou coulés.
Les compositions de béton compacté roulé se différencient des bétons classiques coulés ou pervibrés par le fait que, pour des propriétés mécaniques similaires ou supérieures, elles nécessitent un dosage réduit en liant hydraulique ainsi qu'une teneur en eau réduite. Dans les deux types de béton classique précités, il est connu d'insérer des fibres métalliques. La réduction du dosage en liant et de la teneur en eau confère toutefois pour avantage au béton roulé compacté un retrait hydraulique plus faible, avec pour conséquence une fissuration moins marquée : à la condition d'utiliser des fibres munies d'un ancrage suffisamment performant dans la matrice du béton et de savoir intégrer correctement ces fibres au moment de la fabrication du béton, il est donc possible de réaliser une chaussée continue en béton roulé compacté renforcé de fibres métalliques. La teneur en eau plus faible du béton roulé compacté permet également d'obtenir une portance suffisante pour mettre en œuvre le matériau avec des engins routiers (finisseur pour enrobés bitumineux) puis de le compacter à l'aide d'un compacteur vibrant et d'un compacteur à pneus, et enfin de le remettre sans délai sous circulation. Par contre, la consistance du béton coulé nécessite une mise en œuvre avec les techniques traditionnelles de machine à coffrage glissant ou de règle vibrante et ne permet une remise sous circulation qu'après un temps de prise suffisant qui est généralement d'au moins 7 jours. Les fibres métalliques utilisées en dallage industriel sont le plus souvent des fibres tréfilées comportant généralement des fils de 1 mm de diamètre. Les différentes fibres existantes se différencient les unes des autres par le type d'ancrage actif dans la matrice du béton.
Pour résoudre le problème d'agglomération des fibres en boules, certains fabricants de fibres se sont orientés vers des formes géométriques et des aspects de surface de fibres qui permettent une utilisation directe en sortie d'usine de fabrication, sans traitement complémentaire. Par contre, les essais de laboratoire et l'expérience sur chantiers montrent que ces fibres ne sont pas les plus performantes du marché, tout au moins pour ce qui concerne les propriétés mécaniques et le contrôle de la fissuration du matériau composite béton + fibres métalliques.
Il est connu par le brevet français n° 2 225 392 un procédé d'incorporation, dans un béton, de charges métalliques de renforcement constituées par des groupes maintenus assemblés par une matière de liaison apte à être attaquée par un constituant désintégrateur, ce procédé consistant à introduire lesdits groupes dans le mélange propre à donner naissance au béton, à malaxer ensuite le tout pour une bonne répartition macroscopique, à provoquer ensuite la désintégration desdites matières de liaison et à prolonger le malaxage du mélange pour une bonne répartition microscopique. Il s'agit effectivement d'une intégration, dans le béton, de fibres qui ont été préalablement préencollées en plaquettes. Le malaxage en deux phases bien distinctes, s'effectue soit dans un malaxeur monté sur un véhicule appelé camion malaxeur pendant son trajet de 15 minutes ou plus, soit dans une passe de malaxage en environ 1 minute dans le malaxeur de la centrale.
Il est donc à noter que, antérieurement à la présente invention, la fabrication de béton coulé ou extrudé renforcé de fibres préencollées en plaquettes a toujours été effectuée en centrale discontinue ou dans un camion dit malaxeur. Les fibres sont introduites manuellement ou par une machine spécifique, soit directement dans le malaxeur de la centrale, soit dans un camion dit malaxeur. L'utilisation d'un camion dit malaxeur a pour inconvénient une qualité de malaxage peu satisfaisante et le risque d'hétérogénéité dans la répartition des fibres. L'introduction manuelle de fibres conditionnées en sac, sur un tapis alimentateur ou directement dans le malaxeur, a pour inconvénients le risque d'erreur de dosage et des rendements qui restent faibles. L'utilisation de machines spécifiques permet d'augmenter les cadences : il s'agit là de systèmes simples qui, au mieux, pèsent les quantités de fibres nécessaires à la fabrication de chaque gâchée dans le malaxeur de la centrale discontinue. A noter que les bétons coulés ou extrudés renforcés de fibres font généralement l'objet d'applications dans les domaines tels que les dallages industriels, mis en œuvre le plus souvent manuellement, ou dans des ouvrages de génie civil comme des pieux en fondations. Les cadences de production nécessaires à l'alimentation du chantier restent alors relativement faibles et conviennent à une fabrication en centrale discontinue.
Par contre, les travaux routiers sont très mécanisés et font appel à des engins à rendements élevés. L'alimentation de ces chantiers en matériaux traités aux liants hydrauliques et en bétons routiers (par exemple pour des chantiers de béton armé continu ou de béton roulé compacté) a nécessité la mise au point de centrales autorisant des productions horaires nettement supérieures à celles des centrales discontinues traditionnelles. Une centrale discontinue a pour inconvénient un cycle de production dans lequel les différents constituants sont d'abord acheminés dans le malaxeur dans le cadre d'une première opération, puis le malaxeur entre en action afin de mélanger ces constituants, enfin le malaxeur est vidé dans le camion servant au transport. C'est pourquoi un autre type de centrale a été mis au point de façon à pouvoir fonctionner sans nécessiter un arrêt du malaxeur à chaque cycle de chargement des matériaux. Ces centrales sont appelées « continues » parce que le malaxeur est alimenté en permanence par un convoyeur sur lequel sont déposés les quantités requises d'agrégats et de liant hydraulique ; le malaxeur n'est jamais arrêté au cours de la production du béton qu'il délivre dans une trémie tampon servant au remplissage des camions de transport. Pour cette raison, les cadences de production des centrales continues sont nettement plus élevées que celles de la plupart des centrales discontinues. Les centrales continues sont donc bien adaptées aux travaux routiers, d'autant que les fabricants ont fait en sorte de pouvoir les déplacer, d'un chantier à l'autre, beaucoup plus facilement que les centrales discontinues. On parle donc de centrales « mobiles » ou même « hypermobiles » (c'est-à-dire pouvant dans ce cas être transportées avec seulement deux camions tracteurs). On connaît par le brevet français n° 2 633 922 un procédé de fabrication d'un béton roulé compacté renforcé de fibres, selon lequel on introduit en continu dans un malaxeur d'une centrale, 7 à 15 % d'un ciment ou liant routier, 4 à 7 % en poids d'eau, 0,8 à 4 % en poids de fibres métalliques, celles-ci étant introduites par un doseur spécial, le reste de la composition étant essentiellement constitué de graves de 0 à 31,3 mm. Toutefois, ce brevet est absolument silencieux sur ce doseur spécial et sur la manière dont les fibres sont alimentées par le doseur dans le malaxeur.
Le brevet français n° 2 654 830 décrit un dispositif de dosage pondéral en continu de fibres dans un matériau de construction d'ouvrages d'art. Toutefois, le problème de ce dispositif réside dans le fait que les fibres forment des boules ou des hérissons dans les moyens de distribution des fibres vers les moyens de transport du matériau à renforcer par les fibres. Selon ce brevet, des goulottes vibrantes des moyens de distribution sont associées à des moyens de séparation de fibres, tels que des rotors dentés, des buses d'injection d'air sous pression ou des râteaux à mouvement alternatif, afin de disloquer ces hérissons de fibres. Toutefois, tous ces moyens de séparation ne sont pas suffisamment décrits ou illustrés dans ce brevet pour permettre leur mise en œuvre effective par un praticien. L'introduction correcte des fibres métalliques en centrale continue fait en effet l'objet de difficultés beaucoup plus grandes qu'en centrale discontinue : il faut à la fois éviter le problème d'agglomération des fibres en boules, tout en intégrant la quantité de fibres requise dans le béton avec une précision acceptable. Le procédé suivant l'invention a pour but d'apporter une réponse satisfaisante à ces difficultés qui restaient jusqu'à présent sans solution, notamment pour le dosage de plaquettes de fibres métalliques préencollées. Le procédé suivant l'invention propose une fabrication en centrale continue d'un béton compacté roulé renforcé de fibres qui permet effectivement d'éviter, ou du moins de limiter à une probabilité très faible, la formation de boules de fibres au stade de fabrication du béton roulé compacté renforcé de fibres. Un autre but est d'éviter ou de limiter la formation de boules de fibres aux deux autres stades de transport et de mise en oeuvre du béton roulé compacté renforcé de fibres. Enfin, encore un but est d'éviter totalement la formation de ces boules. Le procédé suivant l'invention a également pour but :
- partant de fibres métalliques préencollées en plaquettes, de doser ces fibres dans du béton roulé compacté fabriqué avec des cadences élevées compatibles avec une production en centrale continue pour des chantiers routiers très mécanisés, - de faire en sorte que la colle liant les fibres en plaquettes soit dissoute de façon à libérer le maximum de fibres pour leur action individuelle de renforcement en flexion et de contrôle de la fissuration du béton roulé compacté mis en œuvre sur chantier ; un autre but est de libérer dans le béton toutes les fibres préalablement conditionnées en plaquettes préencollées ; et d'obtenir avec ces fibres une précision de dosage comprise entre -5 % et +10 % de la valeur de dosage nominal requis, sur un prélèvement instantané effectué à n'importe quel moment de la production du béton de fibres, sachant que cet objectif est important pour garantir des performance correctes et homogènes du matériau composite béton + fibres mis en œuvre sur chantier. A cet effet, l'invention a pour objet un procédé de fabrication en centrale continue d'une composition de béton roulé compacté renforcé de fibres, comportant les étapes suivantes : a) l'alimentation en continu de plusieurs types de granulats délivrés sur un convoyeur, b) l'alimentation en continu de fibres métalliques à partir d'un moyen de dosage vibrant sur ledit convoyeur, c) l'alimentation en continu dans un malaxeur des granulats et des fibres délivrés par le convoyeur, d'un liant hydraulique et d'eau de gâchage pouvant contenir un ou plusieurs adjuvants du béton, caractérisé par le fait que : l'étape b) précitée consiste à alimenter le moyen de dosage vibrant précité en plaquettes de fibres métalliques préencollées pour délivrer lesdites plaquettes de fibres et/ou lesdites fibres décollées sur le convoyeur au cours de l'étape a) précitée, lesdites fibres étant alimentées dans une proportion comprise entre 25 et 60 kg de fibres par m3 de constituants secs du béton sans fibre, et que l'étape c) consiste à alimenter le liant hydraulique dans une proportion comprise entre 180 et 400 kg/m de constituants secs du béton sans fibre, la proportion d'eau de gâchage étant déterminée de façon que le malaxeur délivre en continu une composition de béton roulé compacté de fibres qui présente une teneur en eau comprise entre 90 et 150 litres d'eau par m de constituants secs de béton sans fibre. Le fait de délivrer des fibres sous forme de plaquettes préencollées permet d'éliminer ou de réduire le nombre et la taille des boules de fibres dans la composition de béton. Ainsi, les plaquettes de fibres imbibées préalablement de produit solvant se décollent par l'action combinée de cisaillement énergique engendré par le malaxeur et d'ajout d'eau au niveau des bras du malaxeur.
Avantageusement, le transport du béton roulé compacté renforcé de fibres s'effectue par un camion-benne, et non par camion- malaxeur, et la mise en oeuvre du béton sur la route s'effectue par un finisseur, pour maintenir les caractéristiques recherchées pour le mélange des constituants du béton renforcé de fibres.
De préférence, le procédé consiste à alimenter en continu, au cours de l'étape a) précitée, sur le convoyeur, un produit solvant, par exemple de l'eau, pour dissoudre la colle qui maintient les fibres en plaquettes, ledit produit solvant étant délivré sur le convoyeur au niveau ou au voisinage du point de chute des fibres délivrées par le moyen de dosage. Selon une première variante, le moyen de dosage comporte successivement au moins une cuve de dosage vibrante et un couloir vibrant ou un tapis peseur. Par exemple, le procédé consiste à alimenter en produit solvant ledit couloir de façon que les fibres baignent au moins partiellement dans le couloir dont le fond est rempli de produit solvant et soient délivrées conjointement avec ledit produit solvant sur le convoyeur à partir dudit couloir.
Selon une autre variante, le procédé consiste à délivrer ledit produit solvant par au moins une buse située juste en aval du point de chute des fibres sur le convoyeur. Avantageusement, le procédé consiste à délivrer les fibres sur le convoyeur, après l'alimentation d'un premier type de granulats et avant l'alimentation du dernier type de granulats, de façon que les fibres soient intégrées dans la masse des différents types de granulats.
Selon une autre caractéristique de l'invention, le procédé consiste à calculer la proportion d'eau de gâchage délivrée à l'étape c) précitée dans le malaxeur, en fonction de la teneur en eau propre à chaque type de granulat alimenté à l'étape a).
Dans un mode de réalisation particulier, le procédé consiste à alimenter à l'étape a) une proportion totale des granulats entre 83 et 93 % en poids de constituants secs du béton sans fibre, et à l'étape c) un ciment ou un liant routier dans une proportion comprise entre 7 et 17 % en poids de constituants secs du béton sans fibre, dont 0,3 à 1,8 % en poids du liant hydraulique est constitué d'un adjuvant retardateur de prise du béton et/ou plastifiant introduit dans l'eau de gâchage pour lubrifier les contacts intergranulaires et retarder la prise du béton.
L'invention a également pour objet une centrale continue pour la mise en oeuvre du procédé défini précédemment, comprenant :
- une série de trémies disposées par intervalles au-dessus d'un convoyeur entraîné par moteur, chaque trémie étant apte à délivrer sur le convoyeur un type de granulat, chaque trémie étant associée à un moyen de mesure pondérale ou volumétrique de la quantité de granulat délivré par ladite trémie,
- un moyen de dosage vibrant apte à délivrer sur le convoyeur des fibres métalliques, ledit moyen de dosage étant associé à un moyen de mesure pondérale de la quantité de fibres délivrées,
- un ou plusieurs silos aptes à délivrer chacun un liant hydraulique, chaque silo étant associé à un moyen de mesure pondérale ou volumétrique de la quantité de liant délivré, un autre silo pouvant être utilisé pour doser un pulvérulent complémentaire comme des cendres volantes par exemple,
- un moyen d'alimentation en eau de gâchage associé à un moyen de réglage du débit d'eau de gâchage, - un malaxeur comportant un réseau de buses d'injection dans la chambre de malaxage, ledit réseau étant alimenté en eau de gâchage par ledit moyen de réglage du débit, le liant hydraulique étant délivré à l'entrée du malaxeur à partir dudit silo et l'ensemble des fibres et des granulats étant délivré par le convoyeur dans le malaxeur, pour le malaxage de l'ensemble des constituants du béton compacté roulé renforcé de fibres, caractérisé par le fait qu'il comporte un moyen d'alimentation de produit solvant pour délivrer sur le convoyeur, au niveau ou au voisinage de la sortie du moyen de dosage vibrant, un produit solvant destiné à dissoudre la colle des plaquette et à libérer ainsi les fibres métalliques pré-encollées délivrées par ledit moyen doseur. Avantageusement, ledit moyen d'alimentation en produit solvant est agencé de façon à délivrer le produit solvant en aval de la première trémie d'alimentation en granulats et en amont de la dernière trémie d'alimentation en granulats.
Dans un mode de réalisation particulier, le moyen de dosage vibrant comporte une première cuve vibrante présentant sur sa paroi cylindrique interne une rampe hélicoïdale sur laquelle les plaquettes de fibres sont aptes à se déplacer par vibration du fond de la cuve vers son sommet, ladite rampe hélicoïdale se prolongeant à son sommet par une goulotte intermédiaire débouchant au-dessus du centre d'une deuxième cuve vibrante, ladite deuxième cuve présentant également sur sa paroi interne cylindrique une rampe hélicoïdale sur laquelle les plaquettes de fibres sont aptes à se déplacer du fond vers le sommet de la deuxième cuve, la rampe hélicoïdale de la deuxième cuve débouchant sur un couloir vibrant qui vient délivrer les fibres au-dessus du convoyeur, ledit moyen d'alimentation de produit solvant comportant au moins une buse située sensiblement au-dessus de rextrémité amont dudit couloir vibrant. L'intérêt de prévoir deux cuves vibrantes en série est d'éliminer les irrégularités d'alimentation et de distribution de fibres à partir de la seule première cuve vibrante, celle-ci étant alimentée de manière discontinue en fibres par un chariot élévateur régulièrement rempli en plaquettes de fibres à partir de grands sacs dits "big bags". Avantageusement, la première cuve vibrante comporte un bras articulé intercalé entre le sommet de la rampe hélicoïdale et la goulotte intermédiaire, ledit bras étant apte, dans une position fermée, à empêcher le passage vers la goulotte et à renvoyer les fibres vers le centre et le fond de la première cuve, et dans une position d'ouverture variable, à laisser le passage d'une quantité contrôlée de fibres vers ladite goulotte intermédiaire. Selon une autre caractéristique, ladite goulotte intermédiaire comporte des doigts vibrants parallèles situés sensiblement dans des plans verticaux, fixes à leur extrémité amont et libres à leur extrémité aval, de façon à pouvoir séparer les agglomérations de plaquettes de fibres et obtenir une répartition plus régulière dans l'alimentation en plaquettes de fibres de la deuxième cuve, l'extension longitudinale des doigts étant parallèle à la direction de déplacement desdites plaquettes de fibres.
Dans une forme de réalisation particulière, la deuxième cuve vibrante est équipée d'un détecteur de niveau de fibres emmagasinées dans ladite deuxième cuve, ledit détecteur étant relié à un moteur de commande du bras articulé, afin de déplacer ledit bras vers sa position fermée ou inversement vers sa position ouverte, lorsque la quantité de fibres emmagasinées dans la deuxième cuve est supérieure ou inversement inférieure à une valeur de seuil prédéterminée.
Selon une autre caractéristique, la deuxième cuve est équipée d'un modulateur de fréquence pour faire varier sa vibration et ainsi son débit en fibres, ledit modulateur pouvant être contrôlé par le pesage de la quantité de fibres délivrées à la sortie de la deuxième cuve. En effet, la deuxième cuve pourra être montée sur des pesons, le débit de fibres étant fixé par le contrôle centralisé du doseur dans la cabine de commande de la centrale. L'opérateur de la centrale pourra entrer le débit de fibres souhaité sur un contrôleur numérique, puis l'unité centrale fonctionnera en automatique pour commander le modulateur de fréquence. Le débit de fibres pourra aussi être vérifié par un enregistreur graphique et une édition sur imprimante.
Avantageusement, la centrale est équipée d'une unité de commande centralisée reliée aux différents moyens de mesure pondérale ou volumétrique des trémies, du silo et du moyen de dosage, ainsi qu'aux moyens de réglage de débit du moyen d'alimentation en eau de gâchage, pour calculer et commander le débit d'eau à alimenter dans le malaxeur en fonction de la teneur en eau, du débit de chaque granulat et/ou du débit du produit solvant.
Selon encore une autre caractéristique, chaque trémie et chaque silo débouchent sur un tapis roulant peseur entraîné par son propre moteur d'entraînement, dont la vitesse peut être commandée par l'unité de commande centralisée, en fonction du poids mesuré, pour commander le débit de chaque composant du béton.
L'invention sera mieux comprise et d'autres buts, caractéristiques, détails et avantages apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre d'un mode de réalisation particulier actuellement préféré de l'invention, en référence au dessin schématique annexé.
Sur ce dessin :
- la figure 1 est une vue schématique de l'ensemble de la centrale continue conforme à l'invention ;
- la figure 2 est une vue schématique agrandie et partielle d'une trémie associée à un tapis peseur ;
- la figure 3 est une vue en perspective d'une plaquette de fibres pouvant être utilisée dans le procédé de l'invention ; - la figure 4 est une vue schématique et en élévation latérale du moyen de dosage vibrant utilisé dans la centrale de l'invention ;
- la figure 5 est une vue schématique de dessus de la figure 4 suivant la ligne V-V, en position ouverte du bras articulé ;
- la figure 6 est une vue partielle et analogue à la figure 5 montrant le bras articulé en position fermée ;
- la figure 7 est une vue schématique agrandie et partielle du malaxeur visible sur la figure 1 ;
- la figure 8 est une vue en coupe de la figure 7 suivant la ligne VIII-VIII ; - la figure 9 représente une page écran visible sur le terminal de l'unité de commande centralisée de la figure 1.
Sur la figure 1, on a représenté de manière schématique l'ensemble d'une installation pour une centrale continue de fabrication de béton roulé compacté renforcé de fibres. Cette centrale comporte une première trémie 1 représentée sur la figure 2, destinée, par exemple, à contenir et à distribuer des gravillons, un premier peson 2, dont le châssis est articulé sensiblement au point 3 sur l'extrémité inférieure de la trémie 1. Le châssis du peson 2 porte un tapis roulant sans fin 4, animé par un moteur d'entraînement 7 qui entraîne en rotation les rouleaux 5, par l'intermédiaire d'une chaîne 6, l'arbre d'entraînement étant fixé à une extrémité du châssis du peson 2 par rapport à l'articulation 3. L'autre extrémité du peson 2 est reliée à une jauge de contrainte 8, suspendue au bâti B de la centrale, lequel bâti supporte également la première trémie 1. Les gravillons contenus dans la première trémie 1 tombent, comme indiqué par la flèche FI, sur le tapis peseur 4, qui est entraîné en rotation dans le sens anti-horaire, selon la flèche F2, de façon que les gravillons tombent à l'extrémité gauche du tapis peseur, comme indiqué par la flèche F3, sur le tapis de convoyage sous-jacent 9. La jauge de contrainte est reliée par un câble électrique 10 à une unité de commande centralisée U, comme visible sur la figure 1. Bien entendu, le premier tapis de convoyage 9 est également motorisé et son moteur, ainsi que le moteur 7 précité, peuvent être commandés par l'unité U.
Une deuxième trémie 11 est située à proximité de la première trémie 1 et présente également à son extrémité inférieure un peson 12, dont le châssis est inversé par rapport à celui du premier peson 2. En effet, son moteur 17 est situé à l'extrémité gauche du châssis, alors que la jauge de contrainte 18 est fixée à son extrémité droite, le tapis peseur du second peson 12 étant entraîné en sens horaire sur la figure 1 de façon que le granulat contenu dans la deuxième trémie 1 1 tombe vers la droite sur le tapis de convoyage 9 et recouvre le premier granulat précédemment déposé. Bien entendu, le tapis de convoyage 9 est entraîné dans le sens anti-horaire sur la figure 1. La jauge de contrainte 18 est également suspendue au bâti B et est reliée par une ligne 20 à l'unité U. Le premier tapis de convoyage 9 vient déverser l'ensemble des deux premiers agrégats sur un deuxième tapis de convoyage 19 motorisé, comme visible sur la figure 1. Au-dessus de ce deuxième tapis de convoyage 19 sont situées deux autres trémies 21 et 31, la troisième trémie 21 étant destinée à délivrer un troisième granulat constituant du béton, alors que la quatrième trémie 31 peut ne pas être opérationnelle dans l'exemple décrit plus loin de réalisation de l'invention. Bien entendu, le nombre de trémies peut varier et on pourrait prévoir, par exemple, six trémies contenant différents types de granulats pour différents types de bétons. Comme les autres trémies, chaque trémie 21 et 31 est associée à un peson 22, 32, chaque peson étant associé à son propre moteur électrique 27, 37 et sa propre jauge de contrainte 28, 38. Chaque jauge de contrainte ainsi que chaque moteur peut être relié par les lignes 30 et 40 à l'unité U.
Comme visibles sur les figures 1 et 4, la centrale comporte également un moyen de dosage D muni d'un couloir vibrant 41, dont son extrémité de sortie débouche sur une goulotte 42 située au-dessus du deuxième tapis de convoyage 19, en amont de la troisième trémie 21.
Le moyen de dosage D dispose d'un élévateur 43, qui comporte à son extrémité inférieure des roulettes 43 a guidées dans des ramures verticales 44 et à son extrémité supérieure des roulettes 43b guidées dans des rainures verticales 45, la portion supérieure de ces rainures 45 étant recourbée horizontalement pour permettre le basculement du bac élévateur 43 en position haute, comme visible sur les figures 1 et 4. Le bac élévateur 43 est destiné à être rempli par des chargements en grands sacs (dont le poids est par exemple de 1.100 kg) de plaquettes de fibres pré-encollées P, par exemple du type des plaquettes visibles sur la figure 3. Ces plaquettes sont, par exemple, déversées dans le bac de l'élévateur 43 en position basse à partir de grands sacs remplis de plaquettes, comme indiqué par la flèche F4 sur la figure 4. En position haute du bac élévateur 43, celui-ci déverse son contenu comme indiqué par la flèche F5 dans une première cuve cylindrique 46, qui est munie à son extrémité supérieure d'un déflecteur 47 pour empêcher que les plaquettes de fibres P tombent à l'extérieur de la cuve. La première cuve 46 est montée sur un piètement 48, qui repose sur un châssis intermédiaire 50a avec un ensemble de ressorts 49 intercalés et d'amortisseurs non illustrés, ledit châssis intermédiaire 50a reposant sur un châssis de base 50b équipé à chaque coin d'un peson 51. Le piètement 48 est équipé de deux moteurs vibrants 52 disposés de part et d'autre du piètement 48, pour faire vibrer la première cuve 46 en ajoutant l'effet conjugué des ressorts et des amortisseurs. Les deux moteurs tournent à la même vitesse de façon à engendrer des vibrations suffisantes dans la cuve cylindrique 46 pour faire remonter les plaquettes de fibres par vibration le long d'une rampe hélicoïdale 53 disposée sur la paroi interne cylindrique de la première cuve 46. Comme mieux visible sur les figures 5 et 6, les plaquettes de fibres remontent du fond vers le sommet de la cuve en tournant dans le sens anti-horaire, comme indiqué par la flèche F6, et un bras articulé 54 est prévu au sommet de la cuve 46 pour permettre le passage des plaquettes de fibres soit vers une goulotte intermédiaire 55, comme indiqué par la flèche F7 (voir figure 5), soit vers un plateau 56 incliné vers le centre de la cuve 46 pour permettre le retour des plaquettes vers le fond de celle-ci, comme indiqué par la flèche F8 (voir figure 6). Comme indiqué par la ligne 57, l'articulation du bras 56 est motorisée et son moteur peut être commandé par l'unité U, par l'intermédiaire du capteur 70.
La goulotte 55 est munie d'une pluralité de doigts 58, parallèles entre eux, orientés sensiblement dans la direction de déplacement F7 des plaquettes de fibres, de façon à mieux répartir les plaquettes. La goulotte 55 débouche au-dessus du centre d'une deuxième cuve cylindrique 59, plus petite, qui comporte également un piètement 60 sur lequel sont montés de part et d'autre deux moteurs électriques vibrants 61 et un ensemble ressorts et amortisseurs 49 sur le châssis intermédiaire 50a précité. La deuxième petite cuve 59 comporte également une rampe hélicoïdale 63 sur sa paroi interne, pour faire remonter les fibres et/ou les plaquettes de fibres du fond vers le sommet en tournant dans le sens anti-horaire, comme visible par les flèches F9 sur la figure 5. La rampe hélicoïdale 63 débouche à son sommet sur une deuxième goulotte 64, qui s'étend radialement vers l'extérieur de la cuve 59 et débouche au-dessus du couloir 41 qui est muni de moteurs vibrants (non représentés). Des doigts vibrants peuvent aussi être prévus en sortie de la goulotte 64. Ce couloir vibrant 41 est monté via des ressorts 65 sur un montant 66, à son extrémité amont, et suspendu à son extrémité aval via des ressorts 67 au bâti B. A rextrémité amont du couloir vibrant 41 on peut prévoir au moins une buse 68 d'injection d'eau à partir du réseau, une vanne 69 permettant de régler ce débit, par exemple via l'unité U. A titre d'exemple, le couloir vibrant 41 peut être rempli d'environ un demi centimètre d'eau pour commencer à décoller les plaquettes de fibres. Le sens de parcours des fibres dans le couloir 41 est indiqué par les flèches F 10. Les fibres ainsi que l'eau ou le produit solvant tombent du couloir 41 sur le second tapis de convoyage 19 précité. Dans une variante préférée représentée sur les figures 3 et 4, la buse 68 est disposée au- dessus de la dernière goulotte 64, pour augmenter la durée d'humidification des fibres avant leur chute sur le convoyeur.
Comme visible sur la figure 4, l'ensemble du moyen de dosage D repose sur le sol S ou sur une remorque mobile, comme le bâti B.
Sous la goulotte intermédiaire 55 est prévu un support pour un détecteur de niveau, par exemple un capteur à ultrasons 70, pour détecter le niveau des fibres dans la deuxième cuve 59 et commander automatiquement le déplacement du bras articulé 54, selon que le niveau dans la deuxième cuve est supérieur à une valeur de seuil prédéterminée. Le fait de disposer de deux cuves en série permet d'éviter les irrégularités d'alimentation et de distribution des fibres en sortie du moyen de dosage, ces irrégularités étant inévitables dans le cas de l'utilisation d'une seule cuve.
La position du bras articulé 54 par rapport à la goulotte intermédiaire 55 est asservie électroniquement suivant les informations données par le capteur 70, de façon à faire varier le débit de fibres qui passe de la première cuve 46 vers la deuxième cuve 59. Bien entendu, on pourrait prévoir d'autres systèmes de dosage de plaquettes de fibres vers les tapis convoyeurs de la centrale.
A titre d'exemple, on peut choisir des plaquettes P dont les fibres métalliques sont constituées par des fils sensiblement cylindriques comportant une partie centrale longitudinale sensiblement rectiligne se prolongeant de chaque côté par rintermédiaire d'une portion intercalaire d'une partie d'extrémité recourbée dont la forme est du type qui interdit l'accrochage de deux fibres voisines, lesdits fils ayant
- un diamètre compris entre 0,38 et 1,05 mm,
- une longueur totale comprise entre 19 et 80 mm, - une longueur des parties d'extrémité comprise entre 1,5 et 4 mm,
- un décalage transverse entre la partie centrale et chaque partie d'extrémité d'au moins 0,75 mm,
- un angle de recourbement, défini entre chaque portion intercalaire et la partie centrale, au minimum égal à 20°, et - un angle obtus inférieur ou égal à 160° entre chaque portion intercalaire et la partie centrale, - un angle obtus entre chaque portion intercalaire et partie d'extrémité, et,
- une résistance à la traction minimale de 900 N/mm2.
Avantageusement, les fils constituant les fibres ont un diamètre compris entre 0,65 et 0,85 mm et un rapport longueur totale/diamètre compris entre 65 et 85. En particulier, les fibres ont un rapport longueur totale/diamètre de l'ordre de 80. Selon une particularité, chaque partie d'extrémité recourbée est formée d'une partie rectiligne reliée à la partie centrale par ladite partie inclinée comprenant au moins deux coudes. Avantageusement, les fibres utilisées dans la présente invention sont des fibres de 0,75 mm de diamètre, d'une longueur totale de 60 mm et avec une résistance à la traction d'au moins 1100 N/mm2, commercialisées par exemple sous la marque "Dramix 80/60". Cette fibre a également pour intérêt, à dosage égal en poids dans le béton, un nombre de fibres double de celui du nombre des fibres de diamètre de 1 mm traditionnellement utilisées. En raison d'un écrouissage poussé plus loin au tréfilage, le fil plus fin a par ailleurs une limite élastique plus élevée qui le rend plus performant qu'un fil de 1 mm de diamètre.
La plaquette P comporte une pluralité de fibres fl, f2...fh, où n est un nombre entier quelconque, par exemple égal à 20.
Dans l'exemple décrit ici, les fibres métalliques sont donc déversées sur les deux premières couches de granulats et avant le dépôt de la troisième couche de granulats.
Le deuxième tapis convoyeur 19 vient déverser l'ensemble des granulats des fibres sur un troisième tapis convoyeur 79, qui débouche dans un malaxeur 80.
La centrale comporte un, ou deux, ou plusieurs silos 81, qui contiennent chacun un liant hydraulique, par exemple un ciment normalisé CPJ (ciment Portland) ou CLK (ciment de laitier), ou encore un liant routier, par exemple le produit vendu sous la marque "LIGEX" par la société CALCIA. La sortie inférieure de chaque silo 81 débouche sur un tuyau contenant une vis sans fin 82 pour transporter le liant jusqu'à une trémie 83. Cette trémie 83 peut recevoir des liants hydrauliques provenant de plusieurs silos. La sortie inférieure de la trémie 83 débouche sur une autre vis sans fin de transport 84, qui délivre le liant hydraulique sur un tapis peseur 85 à l'intérieur d'un carter 78, dont une extrémité est liée à une jauge de contrainte 86 pour peser la quantité de liant hydraulique.
Bien entendu, le capteur de niveau 70, les pesons 51 et les autres moteurs du moyen de dosage D sont reliés par différentes lignes 71 à 73 à l'unité de commande centralisée U. La jauge de contrainte 86 est également reliée par une ligne 74 à l'unité U.
Le tapis peseur 85 délivre le liant hydraulique à l'entrée d'un convoyeur double contenant deux vis transporteuses sans fin 87 pour introduire ledit liant hydraulique dans le malaxeur 80 précité, sensiblement au voisinage de l'entrée du mélange fibres et granulats délivré par le troisième tapis convoyeur 79.
Le malaxeur est également alimenté en eau de gâchage via le réseau d'eau, comme indiqué par la vanne 88, et en adjuvants plastifiants contenus dans une cuve 89. Une vanne mélangeuse 90 permet de mélanger l'adjuvant provenant de la cuve 89 avec l'eau provenant du réseau 88. Ce mélange d'eau et d'adjuvant est distribuée à l'intérieur du malaxeur 80 via un réseau de canalisations 91 percées d'orifices pour injecter le mélange dans le malaxeur au-dessus de deux arbres de malaxage 92. Comme visible sur la figure 8, le réseau de canalisations 91 comprend, de préférence, une arrivée simultanée du mélange de part et d'autre du malaxeur, le réseau comprenant une dérivation en U en parallèle au-dessus des arbres 92. Chaque arbre 92 comporte des pales diamétrales 93 munies à leurs extrémités de palettes 94 inclinées de façon à constituer une rampe hélicoïdale discontinue. Les pales de chaque arbre sont décalées de façon à permettre le malaxage de l'ensemble des constituants du béton compacté roulé renforcé de fibres, lorsqu'on entraîne en rotation les deux arbres en sens inverse, comme visible par les flèches Fi l sur la figure 8.
A titre d'exemple, l'adjuvant permet de retarder la prise du béton pendant plusieurs jours, avec une proportion de 0,8 % du poids du liant hydraulique. Un tel plastifiant peut être un plastifiant commercialisé sous la marque "CIMAXTARD" par la société Axim.
A la sortie du malaxeur 80, le mélange béton et fibres parvient sur un quatrième tapis convoyeur 99, qui transporte la composition jusqu'à une trémie 100 dont le fond est fermé par un casque constitué de deux bras oscillants 101 qui sont aptes à s'écarter pour décharger le contenu de la trémie 100 dans un camion 102.
L'ouverture des bras oscillants 101 est commandée par le responsable de la centrale pour le remplissage des camions. L'unité U est reliée à un terminal comportant un écran 110 et un clavier 111 pour entrer des valeurs de consigne des différents débits de composants et vitesses des différents tapis roulants.
Sur la figure 9, on a représenté une page de l'écran 110, en cours de fonctionnement d'un exemple de réalisation du procédé de l'invention.
Sur la figure 9, Dl désigne des gravillons ayant un diamètre compris entre 5 et 12 mm, avec un débit de 75,4 T/H (tonne par heure), ayant une teneur en eau naturelle d'environ 1,70 %, les gravillons étant destinés à constituer 44 % des constituants secs du béton sans fibre, D2 désigne du sable concassé, dont le diamètre est compris entre 0 et 4 mm, avec un débit de 48,3 T/H et une teneur en eau de 4,30 %, pour constituer 27,30 % du poids des constituants secs du béton sans fibre, D3 du sable roulé humide ayant un diamètre compris entre 0 et 4 mm, avec un débit de 28,9 T/H et une teneur en eau de 8,40 %, pour constituer 15,80 % du poids des constituants secs du béton sans fibre, D4 à D6 peuvent désigner d'autres types de granulats ou agrégats, mais ne sont pas utilisés dans cet exemple, PI désigne le liant hydraulique qui est alimenté avec un débit de 21,7 T H pour constituer 12,9 % en poids des constituants secs du béton sans fibre, P2 pouvant être un autre pulvérulent (par exemple des cendres volantes) ajouté à PI, XI étant un premier adjuvant qui constitue 0,35 % du poids sec du liant hydraulique PI, ce qui correspond à un débit d'environ 80 kg ou 80 litres par heure, X2 ou X3 pouvant désigner d'autres adjuvants et E désignant l'eau de gâchage qui présente une proportion de 5,20 % du poids des constituants secs du béton avec un débit de 3,3 T/H.
Bien entendu, comme les granulats Dl à D3 ne sont pas secs mais contiennent de l'eau, le débit d'eau à fournir ne sera pas égal à 5,5 % du débit total machine.
On va calculer ci-après le débit d'eau réel à fournir. A cet effet, on part du débit total machine, à savoir le débit humide de béton sans fibre fourni par la machine, qui correspond à 177,6 T/H, à savoir la somme des débits des composants Dl à D3, PI et E.
Pour obtenir le débit sec délivré par la centrale, hors fibre, il convient de diviser le débit humide par 1 + 5,2 % = 1,052, ce qui donne un débit sec total égal à 168,8 T/H.
Le débit théorique d'eau est alors égal à ce débit sec total 168,8 T/H x 5,2 % = 8,78 T/H.
La quantité d'eau provenant du granulat Dl est égale à 0,44 x 168,8 x 0,017 = 1,26 T/H d'eau. De manière analogue, la quantité d'eau apportée par le granulat D2 est égal à 0,273 x 168,8 x 0,043 = 1,98 T/H d'eau. Pour D3, la quantité d'eau apportée est égale à 0,158 x 168,8 x 0,084 = 2,24 T/H, soit au total, pour l'ensemble des granulats Dl à D3 un débit d'eau égal à 5,48 T/H qui doit être déduit du débit d'eau théorique de 8,78 T/H, soit 3,3 T/H d'eau effectivement à fournir dans le malaxeur.
La centrale est utilisée avec un débit de 177,6 T/H qui correspond à seulement 60 % de sa capacité nominale de l'ordre de 400 T/H ici limitée à 300 T/H par la capacité du doseur de liant hydraulique utilisé. Les agrégats utilisés peuvent comporter de 70 à 100 % de matériaux concassés, présentant des angles vifs et une forme proche du carré, et une granulométrie comprise entre 0 et 14 mm de façon à éviter les phénomènes de ségrégation, c'est-à-dire de séparation des gros éléments. La composition de béton comprend en outre de préférence un adjuvant plastifiant qui facilite le compactage par lubrification intergranulaire et permet d'obtenir une masse volumique voisine de 2400 kg/m3 de béton humide sans fibres avec des conséquences favorables, comme une résistance plus élevée et la possibilité de réduire le dosage en liant hydraulique La teneur en eau optimale est déterminée par l'essai Proctor
Modifié et varie entre 4 et 6 % des constituants secs du béton.
Avantageusement la composition comprend une teneur en liant hydraulique voisine de 250 à 300 kg par mètre cube de béton sec sans fibre, une teneur en eau de 4 à 6% du poids des constituants secs du béton sans fibre, soit environ 100 à 150 litres d'eau par mètre cube de béton, un dosage de fibres métalliques compris entre 30 et 40 kg par mètre cube de béton sec sans fibre. A titre d'exemple, la composition comprend 280 kg de liant hydraulique et 110 litres d'eau par mètre cube de béton sec sans fibre.
Avantageusement, la composition comprend en outre une teneur en plastifiant retardateur variant entre 0,3 et 1,8 % du poids du liant hydraulique.
Par ailleurs, la précision instantanée de dosage des fibres obtenue avec la centrale selon l'invention est comprise entre - 5 % et + 10 %, ce qui ne peut être obtenu avec un camion-malaxeur. Les cadences de production dans la centrale continue du type de l'invention sont comprises entre 200 et 1.000 tonnes/heure de béton, alors que les centrales discontinues ne peuvent généralement atteindre que la moitié de ces cadences.
Bien que l'invention ait été décrite en liaison avec un exemple particulier de réalisation, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.

Claims

REVENDICATIONS
1. Procédé de fabrication en centrale continue d'une composition de béton roulé compacté renforcé de fibres métalliques, comportant les étapes suivantes : a) l'alimentation en continu de plusieurs types de granulats
(Dl, D2, D3, D4) délivrés sur un convoyeur (9, 19, 79), b) l'alimentation en continu de fibres métalliques (fl, f2...fh) à partir d'un moyen de dosage vibrant (D) sur ledit convoyeur, c) l'alimentation en continu dans un malaxeur (80) des granulats et des fibres délivrés par le convoyeur, d'un liant hydraulique (PI) et d'eau de gâchage (E) pouvant contenir un ou plusieurs adjuvants du béton caractérisé par le fait que : l'étape b) précitée consiste à alimenter le moyen de dosage vibrant précité en plaquettes de fibres métalliques pré-encollées (P) pour délivrer lesdites plaquettes de fibres et/ou lesdites fibres décollées sur le convoyeur au cours de l'étape a) précitée, lesdites fibres étant alimentées dans une proportion comprise entre 25 et 60 kg de fibres par m3 de constituants secs du béton sans fibre, et que l'étape c) consiste à alimenter le liant hydraulique dans une proportion comprise entre 180 et 400 kg/m3 de constituants secs du béton sans fibre, la proportion d'eau de gâchage étant déterminée de façon que le malaxeur délivre en continu une composition de béton roulé compacté de fibres qui présente une teneur en eau comprise entre 90 et 150 litres d'eau par m3 de constituants secs de béton sans fibre.
2. Procédé selon la revendication 1, caractérisé par le fait qu'il consiste à alimenter en continu, au cours de l'étape a) précitée, sur le convoyeur (9, 19, 79), un produit solvant, par exemple de l'eau, pour dissoudre la colle qui maintient les fibres en plaquettes, ledit produit solvant étant délivré sur le convoyeur au niveau ou au voisinage du point de chute des fibres (P, fl, f2 .. fh) délivrées par le moyen de dosage (D).
3. Procédé selon la revendication 1 ou 2, caractérisé par le fait que le moyen de dosage (D) comporte successivement au moins une cuve (46, 59) de dosage vibrante et un couloir vibrant (41) ou un tapis peseur.
4. Procédé selon les revendications 2 et 3 prises en combinaison, caractérisé par le fait qu'il consiste à alimenter en produit solvant ledit couloir de façon que les fibres (P, fl, £2 .. fia) baignent au moins partiellement dans le couloir dont le fond est rempli de produit solvant et soient délivrées conjointement avec ledit produit solvant sur le convoyeur (9, 19, 79) à partir dudit couloir.
5. Procédé selon la revendication 2, caractérisé par le fait qu'il consiste à délivrer ledit produit solvant par au moins une buse située juste en aval du point de chute des fibres (P, fl, £2 .. fh) sur le convoyeur (9, 19, 79).
6. Procédé selon l'une des revendications 1 à 5, caractérisé par le fait qu'il consiste à délivrer les fibres (P, fl, £2 .. fh) sur le convoyeur (9, 19, 79), après l'alimentation d'un premier type de granulats (Dl) et avant l'alimentation du dernier type de granulats (D2, D3 ou D4), de façon que les fibres soient intégrées dans la masse des différents types de granulats.
7. Procédé selon l'une des revendications 1 à 6, caractérisé par le fait qu'il consiste à calculer la proportion d'eau de gâchage (E) délivrée à l'étape c) précitée dans le malaxeur (80), en fonction de la teneur en eau propre à chaque type de granulat (D1-D3) alimenté à l'étape a).
8. Procédé selon l'une des revendications 1 à 7, caractérisé par le fait qu'il consiste à alimenter à l'étape a) une proportion totale des granulats entre 83 et 93 % en poids de constituants secs du béton sans fibre, et à l'étape c) un ciment (PI) ou un liant routier dans une proportion comprise entre 7 et 17 % en poids de constituants secs du béton sans fibre, dont 0,3 à 1,8 % en poids du liant hydraulique est constitué d'un adjuvant (XI) retardateur de prise du béton et/ou plastifiant introduit dans l'eau de gâchage pour lubrifier les contacts intergranulaires et retarder la prise du béton.
9. Centrale continue pour la mise en œuvre du procédé selon l'une des revendications 1 à 8, comprenant :
- une série de trémies (1, 11, 21, 31) disposées par intervalles au- dessus d'un convoyeur (9, 19, 79) entraîné par moteur, chaque trémie étant apte à délivrer sur le convoyeur un type de granulat (Dl, D2, D3, D4), chaque trémie étant associée à un moyen de mesure volumétrique ou pondérale (2, 12, 22, 32) de la quantité de granulat délivré par ladite trémie,
- un moyen de dosage vibrant (D) apte à délivrer sur le convoyeur des fibres métalliques (fl, f2..fh), ledit moyen de dosage étant associé à un moyen de mesure pondérale (51) de la quantité de fibres délivrées,
- un ou plusieurs silos (81) aptes à délivrer chacun un liant hydraulique (PI), chaque silo étant associé à un moyen de mesure pondérale ou volumétrique (86) de la quantité de liant délivré, un autre silo pouvant être utilisé pour doser un pulvérulent complémentaire comme des cendres volantes par exemple,
- un moyen d'alimentation (88) en eau de gâchage associé à un moyen de réglage (90) du débit d'eau de gâchage, - un malaxeur (80) comportant un réseau (91) de buses d'injection dans la chambre de malaxage, ledit réseau étant alimenté en eau de gâchage par ledit moyen de réglage du débit
(90), le liant hydraulique étant délivré à l'entrée du malaxeur à partir dudit silo et l'ensemble des fibres et des granulats étant délivré par le convoyeur dans le malaxeur, pour le malaxage de l'ensemble des constituants du béton roulé compacté renforcé de fibres, caractérisée par le fait qu'elle comporte un moyen (69) d'alimentation de produit solvant pour délivrer sur le convoyeur (9, 19, 79), au niveau ou au voisinage de la sortie du moyen de dosage vibrant (D), un produit solvant destiné à dissoudre la colle des plaquettes (P) et à libérer ainsi les fibres métalliques pré-encollées des plaquettes (P) délivrées par ledit moyen de dosage.
10. Centrale selon la revendication 9, caractérisée par le fait que ledit moyen d'alimentation (69) en produit solvant est agencé de façon à délivrer le produit solvant en aval de la première trémie (1) d'alimentation en granulats et en amont de la dernière trémie d'alimentation (21) en granulats.
11. Centrale selon la revendication 9, caractérisée par le fait que le moyen de dosage vibrant (D) comporte une première cuve vibrante (46) présentant sur sa paroi cylindrique interne une rampe hélicoïdale (53) sur laquelle les plaquettes de fibres (P) sont aptes à se déplacer par vibration du fond de la cuve vers son sommet, ladite rampe hélicoïdale se prolongeant à son sommet par une goulotte intermédiaire (55) débouchant au-dessus du centre d'une deuxième cuve vibrante (59), ladite deuxième cuve présentant également sur sa paroi interne cylindrique une rampe hélicoïdale (63) sur laquelle les plaquettes de fibres sont aptes à se déplacer du fond vers le sommet de la deuxième cuve, la rampe hélicoïdale de la deuxième cuve débouchant sur un couloir vibrant (41) qui vient délivrer les fibres au-dessus du convoyeur (9, 19, 79), ledit moyen d'alimentation de produit solvant comportant au moins une buse (68) située sensiblement au-dessus de l'extrémité amont dudit couloir vibrant.
12. Centrale selon la revendication 11, caractérisée par le fait que ladite goulotte intermédiaire (55) comporte des doigts vibrants parallèles (58) situés sensiblement dans des plans verticaux, fixes à leur extrémité amont et libres à leur extrémité aval, de façon à pouvoir séparer les agglomérations de plaquettes de fibres et obtenir une répartition plus régulière dans l'alimentation en plaquettes de fibres (P) de la deuxième cuve, l'extension longitudinale des doigts étant parallèle à la direction de déplacement (F7) desdites plaquettes de fibres.
13. Centrale selon la revendication 11 ou 12, caractérisée par le fait que la première cuve vibrante (46) comporte un bras articulé (54) intercalé entre le sommet de la rampe hélicoïdale (53) et la goulotte intermédiaire (55), ledit bras étant apte, dans une position fermée, à empêcher le passage vers la goulotte et à renvoyer les fibres vers le centre et le fond de la première cuve, et dans une position d'ouverture variable, à laisser le passage d'une quantité contrôlée de fibres vers ladite goulotte intermédiaire.
14. Centrale selon la revendication 13, caractérisée par le " fait que la deuxième cuve vibrante (59) est équipée d'un détecteur "(70) de niveau de fibres emmagasinées dans ladite deuxième cuve, ledit détecteur étant relié à un moteur de commande du bras articulé (54), afin de déplacer ledit bras vers sa position fermée, ou inversement vers sa position ouverte, lorsque la quantité de fibres emmagasinées dans la deuxième cuve est supérieure, ou inversement inférieure, à une valeur de seuil prédéterminée.
15. Centrale selon la revendication 14, caractérisée par le fait que la dernière cuve (59) est équipée d'un modulateur de fréquence pour faire varier sa vibration et ainsi son débit en fibres, ledit modulateur pouvant être contrôlé par le pesage de la quantité de fibres délivrées à la sortie de la deuxième cuve.
16. Centrale selon l'une des revendications 9 à 15, caractérisée par le fait que la centrale est équipée d'une unité de commande centralisée (U) reliée aux différents moyens de mesure volumétrique ou pondérale des trémies (1, 11, 21, 31), du silo (81) et du moyen de dosage (D), ainsi qu'aux moyens de réglage de débit (90) du moyen d'alimentation en eau de gâchage, pour calculer et commander le débit d'eau (E) à alimenter dans le malaxeur (80) en fonction de la teneur en eau, du débit de chaque granulat (Dl à D3) et/ou du débit du produit solvant.
EP01969887A 2000-10-10 2001-09-14 Procede de fabrication en centrale continue d'une composition de beton roule compacte renforce de fibres metalliques, et centrale continue pour la mise en oeuvre de ce procede Expired - Lifetime EP1324865B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0012913A FR2814979B1 (fr) 2000-10-10 2000-10-10 Procede de fabrication en centrale continue d'une composition de beton roule compacte renforce de fibres metalliques, et centrale continue pour la mise en oeuvre de ce procede
FR0012913 2000-10-10
PCT/FR2001/002857 WO2002030644A1 (fr) 2000-10-10 2001-09-14 Procede de fabrication en centrale continue d'une composition de beton roule compacte renforce de fibres metalliques, et centrale continue pour la mise en oeuvre de ce procede

Publications (2)

Publication Number Publication Date
EP1324865A1 true EP1324865A1 (fr) 2003-07-09
EP1324865B1 EP1324865B1 (fr) 2005-06-01

Family

ID=8855156

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01969887A Expired - Lifetime EP1324865B1 (fr) 2000-10-10 2001-09-14 Procede de fabrication en centrale continue d'une composition de beton roule compacte renforce de fibres metalliques, et centrale continue pour la mise en oeuvre de ce procede

Country Status (10)

Country Link
EP (1) EP1324865B1 (fr)
CN (1) CN1190302C (fr)
AT (1) ATE296720T1 (fr)
AU (1) AU2001290020A1 (fr)
DE (1) DE60111250D1 (fr)
FR (1) FR2814979B1 (fr)
HU (1) HUP0303660A2 (fr)
PL (1) PL365564A1 (fr)
SK (1) SK4412003A3 (fr)
WO (1) WO2002030644A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563017B1 (en) * 2002-09-06 2009-07-21 Bracegirdle Paul E Process for mixing congealable materials such as cement, asphalt, and glue with fibers from waste carpet
US6971784B1 (en) * 2002-09-06 2005-12-06 Bracegirdle Paul E Process for producing fiber reinforced hot-mix asphaltic and cementitous structural materials with fiber pellets produced from carpet waste
WO2007046738A1 (fr) * 2005-10-21 2007-04-26 Incite Ab Dispositif et procede de distribution de fibres
DE102006057147B4 (de) * 2006-12-01 2010-07-01 Ift-Fasertechnik Gmbh & Co. Kg Vorrichtung und Verfahren zum Dosieren von faserigem Material
CN102179877B (zh) * 2011-03-02 2012-10-31 江苏华东机房集团有限公司 用于板材压制装置的送料装置
CN112140351A (zh) * 2020-09-23 2020-12-29 苏州港松建材有限公司 干混砂浆生产系统
CN113355977B (zh) * 2021-06-15 2022-08-02 重庆广播电视大学重庆工商职业学院 一种纤维改性沥青混凝土的混合装置和混合方法
CN115478539B (zh) * 2022-08-09 2023-10-20 华北水利水电大学 一种用于喷射纤维混凝土的装置及施工方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT262126B (de) * 1965-06-28 1968-05-27 Ammann U Maschf Ag Verfahren zur chargenweisen Herstellung von Frischbeton und Einrichtung zur Durchführung des Verfahrens
NL173433C (fr) * 1973-04-16 Bekaert Sa Nv
US4022439A (en) * 1975-07-11 1977-05-10 Caterpillar Tractor Co. Fibrous concrete batch forming system
DK164265C (da) * 1990-03-28 1992-11-02 Skako As Fremgangsmaade til dosering af fibre
JP4017047B2 (ja) * 1997-02-17 2007-12-05 小野田ケミコ株式会社 補強繊維供給方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0230644A1 *

Also Published As

Publication number Publication date
EP1324865B1 (fr) 2005-06-01
AU2001290020A1 (en) 2002-04-22
HUP0303660A2 (hu) 2004-01-28
PL365564A1 (en) 2005-01-10
FR2814979B1 (fr) 2003-02-28
DE60111250D1 (de) 2005-07-07
SK4412003A3 (en) 2003-09-11
CN1474741A (zh) 2004-02-11
CN1190302C (zh) 2005-02-23
FR2814979A1 (fr) 2002-04-12
WO2002030644A1 (fr) 2002-04-18
ATE296720T1 (de) 2005-06-15

Similar Documents

Publication Publication Date Title
EP0409700B1 (fr) Procédé et dispositif de réalisation d&#39;un enduit superficiel sur une surface telle qu&#39;une chaussée
US20020001255A1 (en) Portable concrete plant
US6991361B2 (en) Portable concrete plant
RU2351469C2 (ru) Способ приготовления бетонной смеси и технологическая линия для его реализации
CH593391A5 (fr)
US3905586A (en) Mini-plant for batching and mixing materials
EP1324865B1 (fr) Procede de fabrication en centrale continue d&#39;une composition de beton roule compacte renforce de fibres metalliques, et centrale continue pour la mise en oeuvre de ce procede
FR2550248A1 (fr) Dispositif mobile pour l&#39;elaboration a froid et l&#39;epandage sur le chantier de produits enrobes bitumineux pour revetements routiers
CN108486979B (zh) 水泥稳定碎石路面施工工艺
FR2599771A1 (fr) Machine de projection humide de beton
EP1910620A1 (fr) Installation et procede de traitement de deblais limoneux
FR2500785A1 (fr) Procede et appareil d&#39;application de mortier ou de beton
FR2951986A1 (fr) Dispositif de projection de beton de faible densite.
JP2001270378A (ja) ミキサ車の洗浄および荷積方法
FR2484664A1 (fr) Procede, installations et engins mobiles pour melanger en continu des adjuvants a des materiau de remblai dans des proportions constantes
EP0499573A1 (fr) Installation pour doser de fibres coupées dans un mélange bèton
FR2833627A1 (fr) Procede et dispositif pour le comblement d&#39;une cavite au moyen d&#39;un mortier
CN113338177A (zh) 一种小体积混凝土浇筑工艺及装置
FR2659594A1 (fr) Procede de realisation d&#39;un element a partir d&#39;un melange de pouzzolane et de ciment, l&#39;installation de mise en óoeuvre et les produits obtenus.
FR3032980A1 (fr) Unite de production discontinue d&#39;enrobe a froid
BE1030054B1 (fr) Procédé et installation de fabrication de béton
FR2813619A1 (fr) Procede d&#39;obtention a froid d&#39;enrobes bitumineux et dispositif pour la mise en oeuvre de ce procede
FR2607746A1 (fr) Dispositif de moulage d&#39;articles en fibrobeton
EP0716186A1 (fr) Procédé d&#39;élaboration de sols renforcés par des additifs fibreux
KR200284141Y1 (ko) 차수용 원료의 혼합장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030404

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HENIN, MARC

Inventor name: FICHEROULLE, BENOIT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FICHEROULLE, BENOIT

Inventor name: HENIN, MARC

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL MK RO SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050601

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050601

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050601

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050601

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050601

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050601

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050601

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60111250

Country of ref document: DE

Date of ref document: 20050707

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050901

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050901

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050928

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051103

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050601

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20060302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

BERE Be: lapsed

Owner name: *CHAUSSEES TECHNIQUES INNOVATION

Effective date: 20060930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140930

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930