EP1320119B1 - Détecteur de rayonnements ionisants et procédé de fabrication d'un tel détecteur - Google Patents

Détecteur de rayonnements ionisants et procédé de fabrication d'un tel détecteur Download PDF

Info

Publication number
EP1320119B1
EP1320119B1 EP02354190A EP02354190A EP1320119B1 EP 1320119 B1 EP1320119 B1 EP 1320119B1 EP 02354190 A EP02354190 A EP 02354190A EP 02354190 A EP02354190 A EP 02354190A EP 1320119 B1 EP1320119 B1 EP 1320119B1
Authority
EP
European Patent Office
Prior art keywords
tube
tubes
detector
wire
ionizing radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02354190A
Other languages
German (de)
English (en)
Other versions
EP1320119A1 (fr
Inventor
Jean-Claude Buffet
Bruno Guerard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSTITUT MAX VON LAUE - PAUL LANGEVIN
Original Assignee
INSTITUT MAX VON LAUE - PAUL LANGEVIN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSTITUT MAX VON LAUE - PAUL LANGEVIN filed Critical INSTITUT MAX VON LAUE - PAUL LANGEVIN
Publication of EP1320119A1 publication Critical patent/EP1320119A1/fr
Application granted granted Critical
Publication of EP1320119B1 publication Critical patent/EP1320119B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/02Ionisation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/001Details
    • H01J47/002Vessels or containers

Definitions

  • the present invention relates to the field of detectors for particles or ionizing radiation, and in particular neutron, ⁇ or X-ray detectors.
  • the figure 1 schematically represents the conventional structure of a cell 2 sensitive to ionizing radiation, using the same detection principle as the invention.
  • This cell comprises a conductive tube 4 filled with a gaseous mixture, sealed at its ends by insulating plugs 6.
  • a conductive wire 8 whose ends pass tightly through the plugs 6 is held taut at the center of the tube 4 by a spring 10 located inside the tube.
  • a positive electrical potential applied to the wire 8 by means of a measuring circuit 12 makes it possible to define inside the tube an electric field which is conducive to the drift and the amplification of electrons generated during the passage of the ionizing radiation. which strikes the tube in a direction substantially orthogonal to the axis of this tube.
  • a resistive wire is used in a case where it is desired to measure the position along the tube by division of charge.
  • the measurement circuit then comprises a reading electronics allowing a measurement of load signal amplitude at each end of the wire.
  • Another way of The so-called “counting" operation uses electronics based on comparing, with respect to a reference voltage, the signal measured at one end of the wire.
  • the gaseous mixture contained in the tube is intended to be ionized by the particles that are to be detected, either directly or after conversion into ionizing particles.
  • a CF 4 and He 3 mixture is used in which He 3 acts as a converter, and CF 4 as a stop gas for the two ionizing particles (proton and triton) emitted. after capture of a neutron by an atom of He 3 .
  • the tube 4 and the pressure at which the gaseous mixture is trapped are very variable.
  • the tube 4 may have a length of about one meter, a diameter of about 8 mm and a thickness of about 0.2 mm and the gaseous mixture can be trapped in the tube at a pressure of about 15 bars.
  • the realization of such a cell, which involves a perfectly sealed weld plugs 6 under high pressure, after positioning the wire, is particularly expensive. It is possible to provide individual filling means for each cell, but this creates an undesirable additional mechanical bulk.
  • the distance ⁇ existing between the inner wall of the tube 4 and the spring 10 determines the maximum electrical voltage or breakdown voltage that can be applied between the electrodes and the tube.
  • the uniformity of response of the cell is affected by the inaccuracy of centering the wire inside the tube, and such a centering of the wire is difficult to achieve by means of the spring 10.
  • the presence of the spring 10 in the tube and the difficulty of centering the wire 8 by means of the spring 10 limit the maximum amplification gain with which the detector can operate, which has direct consequences on detector performance (energy and position resolution).
  • An ionizing radiation detector is conventionally formed of several cells 2 whose tubes are juxtaposed and form a sensitive surface.
  • the operation of a cell depends on the quality and pressure of the gas mixture it contains.
  • it is difficult to manufacture several sensitive cells comprising the same gas mixture stable long-term and identical for all cells. It follows that no sensitive cell really has a functioning identical to the others.
  • An object of the present invention is to provide a simple and inexpensive assembly to make cells sensitive to ionizing radiation.
  • Another object of the present invention is to provide such an assembly which is inexpensive to maintain.
  • Another object of the present invention is to provide such an assembly composed of sensitive cells having a homogeneous operation.
  • Another object of the present invention is to provide such an assembly comprising tubular sensitive cells of small diameter supporting a high amplification gain.
  • the present invention provides an ionizing radiation detector comprising a plurality of parallel conductor tubes containing a gaseous mixture under pressure, a conductive wire being tensioned in the center of each tube and adapted to be polarized relative thereto and comprising first and second sealed enclosures each having a wall with apertures in which are sealed the first and second ends of each tube, the ends of each tube being open.
  • a non-sealed centering means of the conductive wire is mounted at each end of each tube.
  • the wire is held taut at at least one end of each tube by means of a tensioning means disposed outside the tube.
  • the centering means comprises a cap of insulating material attached to the tube and provided with an axial bore for guiding the wire.
  • the cap of insulating material is traversed along the axis of revolution of the tube by a first cylindrical opening in which is slidably mounted a pod enclosing the end of the wire, the tensioning means resting on the cap of insulating material and biasing the lug towards the outside of the tube, a second opening through the cap of insulating material between the inside of the tube and the sealed chamber to which the tube is attached.
  • the ends of the tubes have a predetermined diameter smaller than the diameter of the body of the tubes, the openings of the walls in which are inserted the ends of two adjacent tubes being spaced apart by a space equal to the difference existing between the diameter of the end of the tubes and the diameter of the body of the tubes.
  • the present invention also provides a method of manufacturing an ionizing radiation detector comprising the steps of: inserting the first and second ends of a plurality of conductive tubes into apertures in a wall of a first and a second second sealed enclosures so that the tubes are arranged parallel; simultaneously or one after the other by welding each end of each tube into the opening in which said end is inserted, such that the inside of the tubes and the inside of the sealed enclosures are sealingly connected; and filling the sealed enclosures and tubes with a predetermined gas mixture at a predetermined pressure.
  • the figure 2 schematically represents a detector 14 according to the present invention, comprising a sensitive surface formed of a juxtaposition of tubular sensitive cells 16.
  • Each sensitive cell 16 comprises a conductive tube 18 whose one end passes through a metal wall 19 of a sealed enclosure 20 and whose second end passes through a wall 21 of a sealed enclosure 22.
  • the ends of the tubes 18 are welded to the walls 19 and 21 of the enclosures 20 and 22 in such a way that all the tubes 18 and the enclosures 20 and 22 can be filled with a gaseous mixture under pressure.
  • the ends of the tubes 18 have a diameter smaller than the diameter of the body of the tubes.
  • the openings of the walls 19 and 21 in which are inserted the ends of two adjacent tubes are spaced apart by a space equal to the difference between the diameter of the end of the tubes and the diameter of the body of the tubes. This space between two adjacent openings makes it easy to weld the ends of the tubes to the walls 19 and 21.
  • the enclosures 20 and 22, made of a conductive material, are secured by reinforcing bars 24 which ensure the rigidity of the assembly. without shielding the incident radiation on the tubes.
  • Each sensitive cell 16 comprises a conductive wire 26, resistive in the case of a version with longitudinal location, held taut at the center of the tube 18 by caps 28 and 29 respectively located at the ends of the tube 18 in the enclosures 20 and 22.
  • the caps 28 and 29 are further provided to provide communication between the speakers 20 and 22 and the tubes 18. At least one of the speakers 20 and 22 is connected means not shown for evacuating and bringing the gas mixture to the desired pressure.
  • the ends of the conductive wires 26 are connected to sealed electrical vias 30 disposed in the walls of the enclosures 20 and 22. These vias are connected to a measurement circuit 12 via appropriate connectors.
  • the manufacture of the detector is particularly simple.
  • the tubes 18 can be assembled without welding to the walls 19 and 21, for example by simple insertion into openings made for this purpose in these walls.
  • the tubes may all be welded to the walls 19 and 21 one after the other or all at once in an oven.
  • a variant of the present invention also provides for welding together the adjacent tubes, so as to stiffen the assembly of the tubes.
  • the simultaneous welding of all the tubes of a detector according to the present invention represents a saving of time and a particularly advantageous economy.
  • the walls 19 and 21 are connected to other elements to define the enclosures 20 and 22. The inside of the assembly is degassed and the desired gas mixture is introduced into the enclosures 20 and 22 and in the tubes 18.
  • the gaseous mixture contained in a detector according to the present invention can easily be changed.
  • the same detector filled with different gas mixtures can thus be used for the detection of several types of ionizing radiation.
  • a wall of each enclosure is removable so as to allow easy access to the son of sensitive cells, and thereby an easy and inexpensive replacement of a faulty or damaged wire.
  • a set of tubes according to the present invention constitutes a single mechanical block, which eliminates the assembly problems that arose with the individual tubes according to the prior art.
  • the figure 3 is an end of a tube 18 attached to an opening of the wall 19.
  • the wire 26 is held taut at the center of the tube 18 by a cap of insulating material 28 fixed to the end of the tube 18.
  • the cap 28 is crossed by the along the axis of revolution of the tube by a cylindrical opening 34 in which is slidably mounted a crimping lug 36.
  • the end of the wire 26 is crimped in the lug 36.
  • a spring 38 bears on the cap 28 and urges the lug 36 towards the outside of the tube so as to keep the wire 26 taut at the center of the tube.
  • An opening 40 passes through the cap 28 so as to communicate the gaseous mixture contained in the tube and in the enclosure 20 or 22.
  • the cap 29 attached to the end of the tube 18 fixed to the wall 21 has a structure identical to that of the figure 3 but does not include any spring 38.
  • the lug 36 bears directly on the cap 29.
  • the figure 4 very schematically shows a top view in section of the tubes 18 of the detector 14 of the figure 2 .
  • the tubes 18, contiguous, are arranged in a plane so that the sensitive surface of the detector is flat.
  • a detector according to the present invention may comprise a large number of tubes.
  • the present invention is susceptible of various variations and modifications that will occur to those skilled in the art.
  • the invention is described in relation to a detector whose sensitive surface is composed of sensitive cells arranged in a plane, but the skilled person will easily adapt the present invention to a detector whose sensitive cells are arranged otherwise .
  • the figure 5 represents by way of example a sectional top view of the tubes 18 of a detector according to an alternative embodiment of the present invention.
  • the tubes 18 are arranged parallel, in a non-contiguous manner, staggered in two parallel planes. Such an arrangement of the tubes makes it possible in particular to improve the detection efficiency. Since the tubes 18 are not contiguous, the diameter of the tubes 18 can be constant over their entire length.
  • the figure 6 is a sectional view of tubes 18 of a detector according to another embodiment of the present invention.
  • the tubes 18 are contiguous and arranged to form a substantially curved surface, for example in a circular arc.
  • the present invention has been described in relation to a detector comprising a group of tubes whose first and second ends are connected to first and second sealed enclosures, the sealed enclosures each comprising at least one sealed electrical bushing 30.
  • the figure 7 is a sectional view of a sealed enclosure 50 of a detector according to an alternative embodiment of the present invention.
  • the detector comprises a group of tubes 18 whose first ends are connected to a wall 48 of the enclosure 50.
  • the second ends of the tubes 18, not shown, are fixed to the wall of a sealed enclosure such that the enclosure 20 or 22 of the figure 2 .
  • the ends of the wires 26 located in adjacent tubes 18 are connected in pairs, from which it follows that the enclosure 50 does not have any sealed connector 30.
  • Such an embodiment makes it possible to divide by two the number of read channels of the measuring circuit 12, and to reduce the dead zone generated by one of the two speakers.
  • the figure 8 is a schematic sectional view of a tube of a sensitive sensor cell according to a variant of the present invention.
  • Several cathode wires 42 are stretched in each tube 18 parallel to the central anode wire 26, much closer to this wire than to the wall of the tube. For example, for a tube with a diameter of 2 to 3 cm, 2 to 3 mm from the anode wire.
  • the figure 8 is not carried out on a scale for the sake of clarity.
  • Six cathode wires have been represented in figure 8 but any appropriate number of cathode wires may be used.
  • the caps attached to the ends of the tubes will then comprise around their axial opening a ring of openings each intended to receive a conductive wire and the son can be held by crimping lugs as described above, which will achieve and simply maintain such a structure.
  • the cathode wires will be placed at an intermediate potential between that of the anode and that of the tube. There will thus exist a first electric field called drift between the wall and the cathode wires and a second so-called amplification field between the cathode wires and the anode wire.
  • the drift and amplification fields can be optimized independently, which reduces the electron collection time generated in the tube by radiation.
  • the cathode wires may be connected independently or in subgroups so as to provide a angular information on the location of generation of electrons.

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)
  • Electron Tubes For Measurement (AREA)

Description

  • La présente invention concerne le domaine des détecteurs de particules ou de rayonnements ionisants, et en particulier des détecteurs de neutrons, de rayons γ ou X.
  • La figure 1 représente schématiquement la structure classique d'une cellule 2 sensible à un rayonnement ionisant, utilisant le même principe de détection que l'invention. Cette cellule comporte un tube conducteur 4 rempli d'un mélange gazeux, scellé à ses extrémités par des bouchons isolants 6. Un fil conducteur 8 dont les extrémités traversent de manière étanche les bouchons 6 est maintenu tendu au centre du tube 4 par un ressort 10 situé à l'intérieur du tube. Un potentiel électrique positif appliqué au fil 8 par le moyen d'un circuit de mesure 12 permet de définir à l'intérieur du tube un champ électrique qui est propice à la dérive et à l'amplification d'électrons générés au passage du rayonnement ionisant qui frappe le tube dans une direction sensiblement orthogonale à l'axe de ce tube. On utilise un fil résistif dans un cas où l'on souhaite réaliser une mesure de position le long du tube par division de charge. Le circuit de mesure comprend alors une électronique de lecture permettant une mesure d'amplitude de signal de charge à chaque extrémité du fil. Un autre mode de fonctionnement, dit "de comptage", utilise une électronique basée sur la comparaison, par rapport à une tension de référence, du signal mesuré à une seule extrémité du fil. Le mélange gazeux contenu dans le tube est prévu pour être ionisé par les particules que l'on veut détecter, soit directement, soit après conversion en particules ionisantes. Par exemple, on utilise dans le cas de la détection de neutrons un mélange CF4 et He3 dans lequel l'He3 joue le rôle de convertisseur, et le CF4 celui de gaz d'arrêt des deux particules ionisantes (proton et triton) émises après capture d'un neutron par un atome d'He3.
  • Les dimensions du tube 4 et la pression à laquelle est emprisonné le mélange gazeux sont très variables. A titre d'exemple, le tube 4 peut avoir une longueur d'environ un mètre, un diamètre d'environ 8 mm et une épaisseur d'environ 0.2 mm et le mélange gazeux peut être emprisonné dans le tube à une pression d'environ 15 bars. La réalisation d'une telle cellule, qui implique une soudure parfaitement étanche des bouchons 6 sous une haute pression, après positionnement du fil, est particulièrement coûteuse. Il est possible de prévoir des moyens de remplissage individuels pour chaque cellule, mais cela crée un encombrement mécanique supplémentaire peu souhaitable.
  • La distance δ existant entre la paroi interne du tube 4 et le ressort 10 conditionne la tension électrique maximale ou tension de claquage pouvant être appliquée entre les électrodes et le tube. Plus le diamètre du ressort 10 est important par rapport au diamètre du tube 4, plus la tension de claquage, à laquelle des arcs électriques se forment entre le ressort et la paroi du tube, est faible. En outre, l'uniformité de réponse de la cellule est affectée par l'imprécision de centrage du fil à l'intérieur du tube, et un tel centrage du fil est difficile à réaliser au moyen du ressort 10. En pratique, la présence du ressort 10 dans le tube et la difficulté de centrage du fil 8 au moyen du ressort 10 limitent le gain d'amplification maximum avec lequel peut fonctionner le détecteur, ce qui a des conséquences directes sur les performances du détecteur (résolution en énergie et en position).
  • Un détecteur de rayonnements ionisants est classiquement formé de plusieurs cellules 2 dont les tubes sont juxtaposés et forment une surface sensible. Le fonctionnement d'une cellule dépend de la qualité et de la pression du mélange gazeux qu'elle contient. Or, il est délicat de fabriquer plusieurs cellules sensibles comprenant un même mélange gazeux stable à long terme et identique pour toutes les cellules. Il en découle qu'aucune cellule sensible n'a réellement un fonctionnement identique aux autres.
  • L'assemblage de plusieurs cellules requiert une mécanique précise. En outre, lorsque plusieurs cellules sensibles doivent être utilisées ensemble avec un minimum d'espace entre les tubes, il est difficile d'assurer la continuité du blindage électromagnétique entre l'enveloppe du tube et le circuit de mesure 12 sans dépasser le diamètre extérieur du tube, ce qui a pour effet de créer des espaces morts entre les cellules, d'où une perte de sensibilité de l'ensemble. Cette contrainte, et celles imposées par le ressort intérieur 10, limitent le diamètre minimum des tubes à environ 7-8 mm. En outre également, une cellule sensible peut s'user et devoir être changée, par exemple si le mélange gazeux qu'elle contient a été dégradé sous l'influence de rayonnements reçus. Notamment, il est connu qu'un mélange gazeux de butane et d'argon contenu dans les cellules sensibles utilisées pour la détection de rayons X peut former des polymères autour des fils sous l'effet des radiations et dégrader le fonctionnement de la cellule sensible. Le remplacement d'une cellule est coûteux.
  • Le document US 3 930 162 A décrit un détecteur de rayonnement ionisant selon le préambule de la revendication 1.
  • Un objet de la présente invention est de prévoir un assemblage simple et peu coûteux à réaliser de cellules sensibles à des rayonnements ionisants.
  • Un autre objet de la présente invention est de prévoir un tel assemblage qui soit peu coûteux à entretenir.
  • Un autre objet de la présente invention est de prévoir un tel assemblage composé de cellules sensibles ayant un fonctionnement homogène.
  • Un autre objet de la présente invention est de prévoir un tel assemblage comportant des cellules sensibles tubulaires de faible diamètre supportant un gain d'amplification élevé.
  • Pour atteindre cet objet, la présente invention prévoit un détecteur de rayonnements ionisants comprenant une pluralité de tubes conducteurs disposés parallèlement contenant un mélange gazeux sous pression, un fil conducteur étant tendu au centre de chaque tube et propre à être polarisé par rapport à celui-ci, et comprenant des première et seconde enceintes étanches ayant chacune une paroi munie d'ouvertures dans lesquelles sont insérées de manière étanche les première et seconde extrémités de chaque tube, les extrémités de chaque tube étant ouvertes.
  • Selon un mode de réalisation de la présente invention, un moyen de centrage non étanche du fil conducteur est monté à chaque extrémité de chaque tube.
  • Selon un mode de réalisation de la présente invention, le fil est maintenu tendu à au moins une extrémité de chaque tube à l'aide d'un moyen de tension disposé à l'extérieur du tube.
  • Selon un mode de réalisation de la présente invention, à ladite au moins une extrémité de chaque tube, le moyen de centrage comprend un capuchon en matière isolante fixé au tube et muni d'un alésage axial propre à guider le fil.
  • Selon un mode de réalisation de la présente invention, le capuchon en matière isolante est traversé le long de l'axe de révolution du tube par une première ouverture cylindrique dans laquelle est montée coulissante une cosse emprisonnant l'extrémité du fil, le moyen de tension prenant appui sur le capuchon en matière isolante et sollicitant la cosse vers l'extérieur du tube, une deuxième ouverture traversant le capuchon en matière isolante entre l'intérieur du tube et de l'enceinte étanche à laquelle le tube est fixé.
  • Selon un mode de réalisation de la présente invention, les extrémités des tubes ont un diamètre prédéterminé inférieur au diamètre du corps des tubes, les ouvertures des parois dans lesquelles sont insérées les extrémités de deux tubes adjacents étant distantes d'un espace égal à la différence existant entre le diamètre de l'extrémité des tubes et le diamètre du corps des tubes.
  • La présente invention vise également un procédé de fabrication d'un détecteur de rayonnements ionisants comprenant les étapes consistant à : insérer les première et seconde extrémités d'une pluralité de tubes conducteurs dans des ouvertures pratiquées dans une paroi d'une première et d'une seconde enceintes étanches de manière que les tubes soient disposés parallèlement ; fixer simultanément ou l'une après l'autre par soudure chaque extrémité de chaque tube dans l'ouverture dans laquelle ladite extrémité est insérée, de telle manière que l'intérieur des tubes et l'intérieur des enceintes étanches soient reliés de manière étanche ; et remplir les enceintes étanches et les tubes d'un mélange gazeux prédéterminé à une pression prédéterminée.
  • Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :
    • la figure 1, précédemment décrite, est une vue en coupe schématique d'une cellule sensible aux rayonnements ionisants classique ;
    • la figure 2 est une vue en coupe schématique d'un détecteur de rayonnements ionisants selon la présente invention ;
    • la figure 3 est une vue en coupe plus détaillée d'une extrémité d'une cellule sensible selon la présente invention ;
    • la figure 4 représente schématiquement une vue en coupe transversale du détecteur selon la présente invention prise selon le plan A-A de la figure 2 ;
    • les figures 5 et 6 représentent schématiquement des vues en coupe transversale de deux variantes de réalisation de la présente invention ;
    • la figure 7 est une vue en coupe schématique d'un détecteur de rayonnements ionisants selon une variante de réalisation de la présente invention ; et
    • la figure 8 est une vue en coupe schématique d'une cellule sensible selon une variante de la présente invention.
  • La figure 2 représente schématiquement un détecteur 14 selon la présente invention, comportant une surface sensible formée d'une juxtaposition de cellules sensibles tubulaires 16. Chaque cellule sensible 16 comprend un tube conducteur 18 dont une première extrémité traverse une paroi métallique 19 d'une enceinte étanche 20 et dont la seconde extrémité traverse une paroi 21 d'une enceinte étanche 22. Les extrémités des tubes 18 sont soudées aux parois 19 et 21 des enceintes 20 et 22 de telle manière que l'ensemble des tubes 18 et des enceintes 20 et 22 peut être rempli d'un mélange gazeux sous pression. Les extrémités des tubes 18 ont un diamètre inférieur au diamètre du corps des tubes. Les ouvertures des parois 19 et 21 dans lesquelles sont insérées les extrémités de deux tubes adjacents sont distantes d'un espace égal à la différence existant entre le diamètre de l'extrémité des tubes et le diamètre du corps des tubes. Cet espace entre deux ouvertures adjacentes permet de réaliser facilement le soudage des extrémités des tubes aux parois 19 et 21. Les enceintes 20 et 22, réalisées en un matériau conducteur, sont solidarisées par des barres de renforcement 24 qui assurent la rigidité de l'ensemble sans faire écran au rayonnement incident sur les tubes. Chaque cellule sensible 16 comprend un fil conducteur 26, résistif dans le cas d'une version à localisation longitudinale, maintenu tendu au centre du tube 18 par des capuchons 28 et 29 respectivement disposés aux extrémités du tube 18 dans les enceintes 20 et 22. Les capuchons 28 et 29 sont en outre prévus pour assurer la communication entre les enceintes 20 et 22 et les tubes 18. L'une au moins des enceintes 20 et 22 est reliée à des moyens non représentés permettant de faire le vide et d'amener le mélange gazeux à la pression voulue. Les extrémités des fils conducteurs 26 sont reliées à des traversées électriques étanches 30 disposées dans les parois des enceintes 20 et 22. Ces traversées sont reliées à un circuit de mesure 12 par l'intermédiaire de connecteurs appropriés.
  • Selon la présente invention, la fabrication du détecteur est particulièrement simple. Lors d'une première étape, les tubes 18 peuvent être assemblés sans soudage aux parois 19 et 21, par exemple par simple insertion dans des ouvertures pratiquées à cet effet dans ces parois. Lors d'une deuxième étape, les tubes peuvent être tous soudés aux parois 19 et 21 l'un après l'autre ou bien en une seule fois dans un four. Une variante de la présente invention prévoit également de souder entre eux les tubes adjacents, de manière à rigidifier l'assemblage des tubes. Le soudage simultané de tous les tubes d'un détecteur selon la présente invention représente un gain de temps et une économie particulièrement avantageux. Lors d'une troisième étape, les parois 19 et 21 sont assemblées à d'autres éléments pour définir les enceintes 20 et 22. L'intérieur de l'ensemble est dégazé puis le mélange gazeux souhaité est introduit dans les enceintes 20 et 22 et dans les tubes 18.
  • De manière avantageuse, le mélange gazeux contenu dans un détecteur selon la présente invention peut facilement être changé. Un même détecteur rempli de différents mélanges gazeux peut ainsi être utilisé pour la détection de plusieurs types de rayonnements ionisants.
  • De manière avantageuse également, une paroi de chaque enceinte est amovible de façon à permettre un accès facile aux fils des cellules sensibles, et par là un remplacement facile et peu coûteux d'un fil défectueux ou endommagé.
  • De manière avantageuse, un ensemble de tubes selon la présente invention constitue un bloc mécanique unique, ce qui supprime les problèmes d'assemblage qui se posaient avec les tubes individuels selon l'art antérieur.
  • La figure 3 représente une extrémité d'un tube 18 fixée à une ouverture de la paroi 19. Le fil 26 est maintenu tendu au centre du tube 18 par un capuchon en matière isolante 28 fixé à l'extrémité du tube 18. Le capuchon 28 est traversé le long de l'axe de révolution du tube par une ouverture cylindrique 34 dans laquelle est montée coulissante une cosse de sertissage 36. L'extrémité du fil 26 est sertie dans la cosse 36. Un ressort 38 prend appui sur le capuchon 28 et sollicite la cosse 36 vers l'extérieur du tube de manière à maintenir le fil 26 tendu au centre du tube. Une ouverture 40 traverse le capuchon 28 de manière à faire communiquer le mélange gazeux contenu dans le tube et dans l'enceinte 20 ou 22. Le capuchon 29 fixé à l'extrémité du tube 18 fixée à la paroi 21 présente une structure identique à celle de la figure 3, mais ne comporte aucun ressort 38. La cosse 36 prend appui directement sur le capuchon 29.
  • La structure de centrage et de maintien en tension du fil 26, comprenant les capuchons 28 et 29, les cosses 36 et le ressort 38, ne vise à assurer aucune étanchéité du tube 18. Il en découle que la réalisation d'une telle structure est particulièrement simple et permet de maintenir chaque fil 26 tendu précisément au centre des extrémités du tube 18 de chaque cellule sensible. Il est ainsi possible de réaliser des cellules sensibles formées de tubes 18 de faible diamètre et ayant un gain d'amplification élevé. La structure comprenant les capuchons 28 et 29, les cosses 36 et le ressort 38 permettant de réaliser des cellules sensibles ayant toutes la même géométrie, et les cellules sensibles contenant tous un même mélange gazeux à une même pression, les cellules sensibles présentent un gain d'amplification élevé et parfaitement uniforme.
  • La figure 4 représente de manière très schématique une vue de dessus en coupe des tubes 18 du détecteur 14 de la figure 2. Les tubes 18, jointifs, sont disposés dans un plan de manière que la surface sensible du détecteur soit plane. En pratique, un détecteur selon la présente invention pourra comporter un grand nombre de tubes.
  • Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme du métier. En particulier, on a décrit l'invention en relation avec un détecteur dont la surface sensible est composée de cellules sensibles disposées selon un plan, mais l'homme du métier adaptera sans difficulté la présente invention à un détecteur dont les cellules sensibles sont disposées autrement.
  • La figure 5 représente à titre d'exemple une vue de dessus en coupe des tubes 18 d'un détecteur selon une variante de réalisation de la présente invention. Les tubes 18 sont disposés parallèlement, de manière non jointive, en quinconce selon deux plans parallèles. Un tel arrangement des tubes permet notamment d'améliorer l'efficacité de détection. Les tubes 18 n'étant pas jointifs, le diamètre des tubes 18 peut être constant sur toute leur longueur.
  • La figure 6 représente une vue en coupe de tubes 18 d'un détecteur selon une autre variante de réalisation de la présente invention. Les tubes 18 sont jointifs et disposés de manière à former une surface sensiblement courbe, par exemple suivant un arc de cercle.
  • La présente invention a été décrite en relation avec un détecteur comportant un groupe de tubes dont les première et seconde extrémités sont reliées à des première et seconde enceintes étanches, les enceintes étanches comportant chacune au moins une traversée électrique étanche 30.
  • La figure 7 est une vue en coupe d'une enceinte étanche 50 d'un détecteur selon une variante de réalisation de la présente invention. Le détecteur comporte un groupe de tubes 18 dont des premières extrémités sont reliées à une paroi 48 de l'enceinte 50. Les secondes extrémités des tubes 18, non représentées, sont fixées à la paroi d'une enceinte étanche telle que l'enceinte 20 ou 22 de la figure 2. Dans l'enceinte 50, les extrémités des fils 26 situés dans des tubes 18 adjacents sont reliées deux à deux, d'où il découle que l'enceinte 50 ne comporte aucun connecteur étanche 30. Une telle variante de réalisation permet de diviser par deux le nombre de voies de lecture du circuit de mesure 12, et de diminuer la zone morte générée par l'une des deux enceintes.
  • La figure 8 est une vue en coupe schématique d'un tube d'une cellule sensible d'un détecteur selon une variante de la présente invention. Plusieurs fils de cathode 42 sont tendus dans chaque tube 18 parallèlement autour du fil central d'anode 26, nettement plus près de ce fil que de la paroi du tube. Par exemple, pour un tube d'un diamètre de 2 à 3 cm, à 2 à 3 mm du fil d'anode. La figure 8 n'est pas réalisée à l'échelle pour des raisons de clarté. Six fils de cathode ont été représentés en figure 8 mais tout nombre approprié de fils de cathode pourra être utilisé. Les capuchons fixés aux extrémités des tubes comporteront alors autour de leur ouverture axiale une couronne d'ouvertures destinées chacune à recevoir un fil conducteur et les fils pourront être maintenus par des cosses de sertissage telles que décrites précédemment, ce qui permettra de réaliser et d'entretenir simplement une telle structure.
  • Dans une application, les fils de cathode seront mis à un potentiel intermédiaire entre celui de l'anode et celui du tube. Il existera ainsi un premier champ électrique dit de dérive entre la paroi et les fils de cathode et un deuxième champ dit d'amplification entre les fils de cathode et le fil d'anode. Les champs de dérive et d'amplification peuvent être optimisés indépendamment, ce qui permet de diminuer le temps de collecte d'électrons générés dans le tube par un rayonnement.
  • De plus, les fils de cathode peuvent être connectés indépendamment ou en sous-groupes de façon à fournir une information angulaire sur l'emplacement de génération des électrons.

Claims (8)

  1. Détecteur de rayonnement ionisant comprenant une pluralité de tubes conducteurs (18) disposés parallèlement contenant un mélange gazeux sous pression, les extrémités de chaque tube étant ouvertes, un fil conducteur (26) étant tendu au centre de chaque tube est propre à être polarisé par rapport à celui-ci, le rayonnement ionisant étant dirigé sensiblement orthogonalement à la direction des tubes, caractérisé en ce qu'il comprend :
    des première et seconde enceintes étanches (20, 22), ayant chacune une paroi munie d'ouvertures dans lesquelles sont insérées de manière étanche les première et seconde extrémités de chaque tube (18).
  2. Détecteur selon la revendication 1, dans lequel un moyen de centrage non étanche (28) du fil conducteur est monté à chaque extrémité de chaque tube (18).
  3. Détecteur selon la revendication 2, dans lequel, à au moins une extrémité de chaque tube (18), le fil (26) est maintenu tendu à l'aide d'un moyen de tension (38) disposé à l'extérieur du tube (18).
  4. Détecteur selon la revendication 3, dans lequel, à ladite au moins une extrémité de chaque tube (18), le moyen de centrage comprend un capuchon (28) en matière isolante fixé au tube et muni d'un alésage axial propre à guider à coulissement le fil (26).
  5. Détecteur selon la revendication 4, dans lequel le capuchon (28) en matière isolante est traversé le long de l'axe de révolution du tube (18) par une première ouverture cylindrique (34) dans laquelle est montée coulissante une cosse (36) emprisonnant l'extrémité du fil (26), le moyen de tension (38) prenant appui sur le capuchon en matière isolante (28) et sollicitant la cosse (36) vers l'extérieur du tube, une deuxième ouverture (40) traversant le capuchon (28) en matière isolante entre l'intérieur du tube (18) et de l'enceinte (20, 22) étanche à laquelle le tube est fixé.
  6. Détecteur selon l'une quelconque des revendications précédentes, dans lequel les extrémités des tubes (18) ont un diamètre prédéterminé inférieur au diamètre du corps des tubes, les ouvertures des parois (20, 22) dans lesquelles sont insérées les extrémités de deux tubes adjacents (18) étant distantes d'un espace égal à la différence existant entre le diamètre de l'extrémité des tubes et le diamètre du corps des tubes, la jonction entre les tubes et les parois étant soudée.
  7. Détecteur selon la revendication 1, comprenant en outre dans chaque tube (18) une pluralité de fils de cathode (42) s'étendant parallèlement au fil central (26).
  8. Procédé de fabrication d'un détecteur de rayonnements ionisants comprenant les étapes consistant à :
    insérer les première et seconde extrémités d'une pluralité de tubes conducteurs (18) dans des ouvertures pratiquées dans une paroi métallique d'une première (20) et d'une seconde (22) enceintes étanches de manière que les tubes soient disposés parallèlement ;
    fixer simultanément ou l'une après l'autre par soudure chaque extrémité de chaque tube (18) dans l'ouverture dans laquelle ladite extrémité est insérée, de telle manière que l'intérieur des tubes (18) et l'intérieur des enceintes étanches (20, 22) soient reliés de manière étanche ; et
    remplir les enceintes étanches (20, 22) et les tubes (18) d'un mélange gazeux prédéterminé à une pression prédéterminée.
EP02354190A 2001-12-07 2002-12-06 Détecteur de rayonnements ionisants et procédé de fabrication d'un tel détecteur Expired - Lifetime EP1320119B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0115898 2001-12-07
FR0115898A FR2833407B1 (fr) 2001-12-07 2001-12-07 Detecteur de rayonnements ionisants et procede de fabrication d'un tel detecteur

Publications (2)

Publication Number Publication Date
EP1320119A1 EP1320119A1 (fr) 2003-06-18
EP1320119B1 true EP1320119B1 (fr) 2010-02-17

Family

ID=8870267

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02354190A Expired - Lifetime EP1320119B1 (fr) 2001-12-07 2002-12-06 Détecteur de rayonnements ionisants et procédé de fabrication d'un tel détecteur

Country Status (6)

Country Link
US (1) US6891165B2 (fr)
EP (1) EP1320119B1 (fr)
JP (1) JP4110957B2 (fr)
AT (1) ATE458262T1 (fr)
DE (1) DE60235342D1 (fr)
FR (1) FR2833407B1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078704B2 (en) * 2003-05-23 2006-07-18 Proportional Technologies, Inc. Cylindrical ionization detector with a resistive cathode and external readout
US7335890B2 (en) * 2006-06-22 2008-02-26 General Electric Company Method and apparatus for detecting atomic particles
US7858949B2 (en) * 2008-07-18 2010-12-28 Brookhaven Science Associates, Llc Multi-anode ionization chamber
US7964852B2 (en) * 2009-09-18 2011-06-21 General Electric Company Neutron sensitivity using detector arrays
CN102565846B (zh) * 2011-12-30 2014-05-14 清华大学 蜂窝型热中子探测器
WO2017027679A1 (fr) * 2015-08-11 2017-02-16 Douglas Scott Mcgregor Système de détection de rayonnement de chambre de fission à micro-cavité
JP6228340B1 (ja) * 2017-05-15 2017-11-08 東芝電子管デバイス株式会社 中性子位置検出器
RU184552U1 (ru) * 2018-06-27 2018-10-30 Федеральное государственное унитарное предприятие "Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Технической Физики имени академика Е.И. Забабахина" (ФГУП "РФЯЦ-ВНИИТФ им. академ. Е.И. Забабахина") Счетчик нейтронов

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2230329A1 (de) * 1972-06-21 1974-01-10 Siemens Ag Bildwandler
US4289967A (en) * 1980-05-23 1981-09-15 The United States Of America As Represented By The United States Department Of Energy Multianode cylindrical proportional counter for high count rates
US4684806A (en) * 1985-05-01 1987-08-04 Mitrofanov Nicholas M Rhenium lined Geiger-Mueller tube
DE19907042A1 (de) * 1999-02-19 2000-08-31 Gsf Forschungszentrum Umwelt Modularer Ionisationsdetektor
US6483114B1 (en) * 2000-03-20 2002-11-19 Proportional Technologies, Inc. Positron camera
SE519092C2 (sv) * 2001-06-13 2003-01-14 Xcounter Ab Detektion av joniserande strålning

Also Published As

Publication number Publication date
FR2833407B1 (fr) 2004-03-12
US20030150999A1 (en) 2003-08-14
JP2003207573A (ja) 2003-07-25
EP1320119A1 (fr) 2003-06-18
DE60235342D1 (de) 2010-04-01
ATE458262T1 (de) 2010-03-15
JP4110957B2 (ja) 2008-07-02
FR2833407A1 (fr) 2003-06-13
US6891165B2 (en) 2005-05-10

Similar Documents

Publication Publication Date Title
EP0742954B1 (fr) Detecteur de rayonnements ionisants a microcompteurs proportionnels
EP0678896B1 (fr) Dispositif d'imagerie médicale en Rayonnement ionisant X ou gamma à faible dose
EP1320119B1 (fr) Détecteur de rayonnements ionisants et procédé de fabrication d'un tel détecteur
EP1474820B1 (fr) Piege a ions a aimant permanent et spectrometre de masse utilisant un tel aimant
EP0228933B1 (fr) Dispositif de détection et de localisation de particules neutres, et application
CA2576774C (fr) Piege a ions a aimant permanent longitudinal et spectrometre de masse utilisant un tel aimant
EP0099300B1 (fr) Chambre d'ionisation pour la mesure de rayonnements gamma de haute énergie
EP0064913B1 (fr) Multidétecteur de rayons X
FR2680010A1 (fr) Detecteur a gaz de rayonnement ionisant.
FR2951580A1 (fr) Dispositif d'imagerie radiographique et detecteur pour un dispositif d'imagerie radiographique
EP0490783A2 (fr) Dispositif de détection neutronique à dynamique étendue pour le contrôle et la commande des réacteurs nucléaires
FR2504277A1 (fr) Detecteur de rayons x
EP0461015A1 (fr) Dispositif de mesure de débit de fluence neutronique
FR2942543A1 (fr) Dispositif capacitif et systeme de mesure de la tension d'un element haute tension, et poste electrique isole au gaz mettant en oeuvre ce dispositif
KR101746411B1 (ko) 고순도 cvd 다이아몬드를 이용한 조사 시험용 중성자 검출기 및 이의 제조방법
EP0596814A1 (fr) Dispositif de détection neutronique pour mesurer la puissance d'un réacteur nucléaire
FR2467496A1 (fr) Dispositif laser a decharge dans le gaz
EP0715186A1 (fr) Chambre à fission subminiature avec passage étanche
FR2957188A1 (fr) Detecteur de rayonnement ionisant
EP0619597B1 (fr) Chambre d'ionisation à haute efficacité de détection de rayonnement gamma
BE502293A (fr)
FR2943142A1 (fr) Detecteur de rayonnement gamma, procede de fabrication et utilisation associes
FR2493994A1 (fr) Dispositif de mesure du flux neutronique dans un reacteur nucleaire
FR2713348A1 (fr) Dispositif de détection de rayons X de faible énergie.
BE544739A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20031218

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60235342

Country of ref document: DE

Date of ref document: 20100401

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100617

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100518

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100517

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

BERE Be: lapsed

Owner name: INSTITUT MAX VON LAUE - PAUL LANGEVIN

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20211221

Year of fee payment: 20

Ref country code: DE

Payment date: 20211210

Year of fee payment: 20

Ref country code: FR

Payment date: 20211221

Year of fee payment: 20

Ref country code: GB

Payment date: 20211220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60235342

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20221205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20221205

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG