EP0619597B1 - Chambre d'ionisation à haute efficacité de détection de rayonnement gamma - Google Patents

Chambre d'ionisation à haute efficacité de détection de rayonnement gamma Download PDF

Info

Publication number
EP0619597B1
EP0619597B1 EP19940400716 EP94400716A EP0619597B1 EP 0619597 B1 EP0619597 B1 EP 0619597B1 EP 19940400716 EP19940400716 EP 19940400716 EP 94400716 A EP94400716 A EP 94400716A EP 0619597 B1 EP0619597 B1 EP 0619597B1
Authority
EP
European Patent Office
Prior art keywords
ionization chamber
enclosure
curve
electrodes
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19940400716
Other languages
German (de)
English (en)
Other versions
EP0619597A1 (fr
Inventor
Gilles Bignan
Jean Cloue
Alain Le Peron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orano Cycle SA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Compagnie Generale des Matieres Nucleaires SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Compagnie Generale des Matieres Nucleaires SA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0619597A1 publication Critical patent/EP0619597A1/fr
Application granted granted Critical
Publication of EP0619597B1 publication Critical patent/EP0619597B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/02Ionisation chambers

Definitions

  • the present invention relates to a high-efficiency ionization chamber for detecting ⁇ (gamma) radiation. It finds applications in the fields of nuclear reactors and nuclear fuel reprocessing plants.
  • the sources of ⁇ radiation generally used are sources of Cesium or sources of Cobalt. From this in fact, the ⁇ radiation to be detected has an energy of approximately 661 kev for a source of Cesium and approximately 1,170 to 1,300 kev for a source of Cobalt. The energy range of the ⁇ radiation to be detected is therefore between 500 and 1,500 kev.
  • background noise is very often present during these ⁇ radiation measurements.
  • This background noise is, in the case of reprocessing plants, the consequence of the ⁇ rays diffused from the dissolution solution. In the case of a nuclear reactor installation, this background noise is due to the various activation products of the medium considered.
  • the energy of such background noise is of the order of 80 to 100 kev.
  • One of these types is an ionization chamber comprising cylindrical housings filled with air at atmospheric pressure in which the application of a high voltage to a central electrode makes it possible to obtain an electric field, thanks to which electrons created by the ionization of air are collected on the electrode.
  • Such an ionization chamber (which is also more generally called a ⁇ detector) has only a low detection efficiency; its detection efficiency being of the order of 10 -9 A / Gy / h (amperes per absorbed dose of ⁇ radiation per hour) when a cobalt source is used as a source of ⁇ radiation.
  • Another type of ionization chamber consists of a cylindrical enclosure made of stainless steel and filled with Xenon brought to a pressure of 7 bars. This chamber has two cylindrical and coaxial electrodes arranged in the enclosure. These electrodes are electrically isolated and create an electric field between them. The passage of ionizing particles in this electric field produces ions which are collected by the electrodes.
  • Such a chamber has a detection efficiency of ⁇ radiation of approximately 5.10 -8 A / Gy / h for a Cobalt source.
  • the energy response curve C1 represented on a logarithmic scale in the appended FIG. 1, exhibits a maximum efficiency around 100 kev, which is explained, essentially, by the large effective cross-section of ionization of Xenon in the photoelectric domain from 50 to 400 kev of gamma / matter interaction.
  • an efficiency ratio Re is the ratio of the useful signal corresponding to an energy of the ⁇ rays of between 500 and 1,500 kev on the background noise which corresponds to an energy of the ⁇ rays of l '' from 80 to 100 kev
  • the object of the present invention is precisely to remedy the drawbacks mentioned above and to enable the efficiency ratio to be increased considerably.
  • the gas filling the enclosure is Argon brought to a pressure of between substantially 5 and 10 bars.
  • the enclosure has an outer wall made of Aluminum and covered, on its inner face, with a layer of Lead capable of absorbing photons of energy less than 100 kev.
  • This chamber is substantially identical to that described in the prior art. However, the materials used for its production and the gas filling said ionization chamber differ from those usually used.
  • This ionization chamber therefore comprises, as in the prior art, an enclosure 1.
  • this enclosure 1 is made of Aluminum.
  • the inner wall 2 of this enclosure 1 is covered with a layer of Lead, the thickness of which can vary from substantially 0.5 mm to 1 mm.
  • This enclosure 1 is filled with Argon under a pressure which can be approximately 5 to 10 bars.
  • This ionization chamber further comprises two electrodes: the high voltage electrode referenced 3 and the central electrode referenced 4. These electrodes 3 and 4 are cylindrical and coaxial.
  • the central electrode 4 is supported by an electrode support 5.
  • the high-voltage electrode 3 (or HT electrode) is supported by three electrode supports arranged 120 degrees from one another relative to the support 5 central.
  • the ionization chamber being represented in a sectional view, only two of these high-voltage electrode supports 3 are shown in FIG. 2.
  • These HT electrode supports 3 are referenced 6a and 6b. As their name suggests, these electrode supports 5, 6a and 6b make it possible to maintain the respective electrodes 4 and 3 in a fixed position inside the enclosure 1.
  • Electrode supports 5, 6a and 6b are made of conductive materials covered with an insulating material.
  • the support 5 and one of the supports 6 of the HT electrode 3 can be connected to an electrical source via a connection means introduced into the threaded base 15 of the enclosure 1.
  • This connection means thus that the electrical source is not shown in this figure for the sake of simplification of FIG. 2.
  • it is the support 6b which is connected to the electrical source.
  • This support 6b of the high voltage electrode 3 is therefore connected to the electrical source via the connection wire 7 and the connection pin 8 as well as the connection means introduced into the threaded base 15.
  • the support 5 of the central electrode 4 is connected, via the connection wire 9, to a pin of central connection 10 itself connected to the electrical source by the connection wire 11 and by the connection pin 12.
  • This ionization chamber further comprises a socket 13 allowing the enclosure 1 to be filled with gas, that is to say with Argon.
  • This queusot 13 is connected to the central pin 10 by a ground wire, said queusot 13 itself being grounded.
  • This set of connection pins, connection wires, sockets and electrode supports are included in the base, referenced 14, of the ionization chamber.
  • This base 14 is mounted on the enclosure 1 and has on its surface the screw pitch constituting the threaded base 15 and making it possible to fix the whole of the ionization chamber on the medium whose ⁇ radiation is sought to be detected, that is to say, for example, on the hot branch of a pressurized water reactor.
  • the electrodes 4 and 3 thus connected to an electrical source, can be brought to a voltage such that a direct potential difference is established between the central electrode 4 and the high voltage electrode 3.
  • An electric field E s' then establishes between these electrodes in the volume of gas which is located between said electrodes, this volume of gas being called the useful volume.
  • the incident radiation ⁇ which passes through this detector ionizes the Argon located in the enclosure 1, and therefore releases electrical charges which are collected by the electrodes 3 and 4. More precisely, the ions released by the particles ionizers crossing the Argon go either to the high voltage electrode 3 or to the central electrode 4 depending on the sign of their charge.
  • FIG. 3 there is shown the curve C2 of the energy response of an ionization chamber made of a material identical to that described in the prior art, that is to say an ionization chamber comprising a stainless steel enclosure; but this enclosure is filled with Argon.
  • the curve C2 which is represented on a logarithmic scale, like all the curves of Figures 1, 3, 4 and 5, aims to show the advantage of an enclosure filled with Argon compared to the enclosure of the prior art filled with Xenon.
  • the energy response curve of the ionization chamber of the prior art is referenced C1 and corresponds to the curve C1 shown in FIG. 1.
  • the curve C2 is therefore the energy response curve of an ionization chamber made of stainless steel and filled with Argon.
  • the gases used are respectively under a pressure of 7 bars (for the curve C1) and 9 bars (for the curve C2).
  • the gas used in the invention to fill the enclosure 1, namely Argon is a gas which does not have a particularly strong intrinsic efficiency; "intrinsic efficiency” means the efficiency from the point of view of creating the number of electrons.
  • Argon is a gas which optimizes the RE efficiency ratio between the energy range from 500 to 1,500 kev representing the useful signal, and the average energy from 80 to 100 kev representing the parasitic signal, c is the background noise.
  • the Argon is brought to a pressure ranging from 5 to 10 bars.
  • the Argon is brought to a pressure of 9 bars.
  • using Argon in a room ionization provides a contribution of radiation at 80-100 kev much lower than the contribution of radiation at 80-100 kev produced by the ionization chamber of the prior art.
  • the detection efficiency of the chamber d ionization relative to the curve C2 is of the order of 3.10 -8 A / Gy / h.
  • the detection efficiency represented on the curve C2 is equivalent to approximately 1.5 ⁇ 10 -8 A / Gy / h.
  • FIG. 4 the energy response curves of an ionization chamber are shown, the enclosure of which, filled with Xenon, is covered on its inner wall with a layer of Lead of, respectively, 0.5 and 1 mm thick.
  • the curve C1 represents the energy response curve of the ionization chamber of the prior art, that is to say the ionization chamber filled with Xenon and whose enclosure is made in Stainless steel.
  • Curve C3 represents the energy response curve of an ionization chamber filled with Xenon and whose enclosure is made of Aluminum covered on its inner face with a layer of 0.5 mm of Lead.
  • Curve C4 represents an energy response curve of an ionization chamber, the enclosure of which is filled with Xenon and made of coated Aluminum, on its face, inside of a layer of Lead 1 mm thick.
  • this embodiment of the enclosure 1 does not substantially modify the contribution of the ⁇ radiation of energy included in the range 500 to 1,500 kev, that is to say that it hardly modifies the number of electrons created, lead having the characteristic of absorbing photons whose energy is less than 100 kev.
  • the useful signal is substantially equivalent to the value of the useful signal of the curve C1, that is to say 5.10 -8 A / Gy / h, and that the background noise signal is substantially 3.10 -7 A / Gy / h.
  • the useful signal is substantially equivalent to the value of the useful signal of the curve C1, namely 5.10 -8 A / Gy / h, and that the noise signal background equals approximately 1.5.10 -7 A / Gy / h.
  • FIG. 5 shows the energy response curves of the ionization chamber of the prior art, and of ionization chambers according to the invention, in which the lead layer of the enclosure 1 is, 0.5 mm and 1 mm thick, respectively.
  • the curve C1 represents, as in FIGS. 1, 3 and 4, the energy response curve of the ionization chamber of the prior art.
  • Curve C5 represents the energy response of an ionization chamber according to the invention in which the enclosure 1 is covered, on its inner face, with a lead layer 0.5 mm thick.
  • curve C6 represents the energy response of an ionization chamber according to the invention, the enclosure of which is covered with a layer of Lead 1 mm thick.
  • the values of the useful signals and of the background noise signals of the curves C5 and C6 can be read. More precisely, the useful signal is substantially the same for the curve C5 and for the curve C6; it has a value of approximately 1.5.10 -8 A / Gy / h.
  • the background noise signal from curve C5 is approximately 6.10 -9 A / Gy / h and the background noise signal from curve C6 is approximately 2.10 -9 A / Gy / h.
  • Such an ionization chamber with such a gain in useful signal / background noise signal ratio, makes it possible, with equivalent measurement accuracy, to use sources of ⁇ radiation of lower intensity than that usually used; which consequently results in a lower cost of measurement stations by gammadensitometry.

Landscapes

  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Description

    Domaine technique
  • La présente invention a pour objet une chambre d'ionisation à haute efficacité de détection de rayonnement γ (gamma). Elle trouve des applications dans les domaines des réacteurs nucléaires et des usines de retraitement de combustible nucléaire.
  • Etat de la technique
  • Dans les installations comportant des réacteurs nucléaires ainsi que dans les usines de retraitement, il est généralement nécessaire de connaître la quantité de rayonnement γ pouvant traverser un milieu particulier de ces installations. Pour cela, il est connu d'utiliser des postes de mesure mettant en oeuvre la méthode de gammadensitométrie. Cette méthode consiste à placer, d'un côté du milieu que l'on cherche à caractériser, une source de rayonnement γ et, de l'autre côté de ce milieu, un détecteur apte à déterminer la quantité de rayons γ ayant traversé le milieu. Cette méthode de gammadensitométrie permet d'évaluer des paramètres physiques tels que, par exemple, le taux de vide dans la branche chaude d'un réacteur à eau pressurisé ou encore la masse de noyaux lourds contenue dans les godets de dissolution d'une usine de retraitement.
  • Pour mettre en oeuvre une telle méthode, les sources de rayonnement γ généralement employées sont des sources de Césium ou des sources de Cobalt. De ce fait, le rayonnement γ à détecter a une énergie d'environ 661 kev pour une source de Césium et d'environ 1 170 à 1 300 kev pour une source de Cobalt. La plage d'énergie du rayonnement γ à détecter est donc comprise entre 500 et 1 500 kev.
  • Par ailleurs, un bruit de fond est très souvent présent lors de ces mesures de rayonnement γ. Ce bruit de fond est, dans le cas des usines de retraitement, la conséquence des rayons γ diffusés de la solution de dissolution. Dans le cas d'une installation à réacteur nucléaire, ce bruit de fond est dû aux différents produits d'activation du milieu considéré. L'énergie d'un tel bruit de fond est de l'ordre de 80 à 100 kev.
  • Pour mettre en oeuvre cette méthode de gammadensitométrie, il est connu d'utiliser, comme poste de mesure , des chambres d'ionisation telles que décrites dans l'ouvrage intitulé "Capteurs en instrumentation industrielle", pages 693 à 699, édité aux éditions DUNOD. De telles chambres d'ionisation ont pour avantage de pouvoir être implantées dans des milieux hostiles où règnent de très hautes températures, un fort débit de dose, un taux important de contamination, la corrosion, etc.
  • De nombreux types de chambres d'ionisation sont connus de l'homme de l'art.
  • L'un de ces types est une chambre d'ionisation comportant des boîtiers cylindriques remplis d'air à la pression atmosphérique dans lesquels l'application d'une haute tension sur une électrode centrale permet l'obtention d'un champ électrique, grâce auquel des électrons créés par l'ionisation de l'air sont collectés sur l'électrode.
  • Une telle chambre d'ionisation (que l'on appelle aussi, plus généralement, détecteur γ) ne possède qu'une faible efficacité de détection ; son efficacité de détection étant de l'ordre de 10-9A/Gy/h (Ampères par dose absorbée de rayonnement γ par heure) lorsqu'une source de cobalt est utilisée comme source de rayonnement γ.
  • Un autre type de chambre d'ionisation consiste en une enceinte cylindrique réalisée en Inox et remplie de Xénon porté à une pression de 7 bars. Cette chambre comporte deux électrodes cylindriques et coaxiales disposées dans l'enceinte. Ces électrodes sont électriquement isolées et permettent de créer entre elles un champ électrique. Le passage des particules ionisantes dans ce champ électrique produit des ions qui sont collectés par les électrodes.
  • Une chambre d'ionisation de ce type est décrite dans le catalogue des détecteurs de PHILIPPS PHOTONIQUE.
  • Une telle chambre a une efficacité de détection du rayonnement γ d'environ 5.10-8A/Gy/h pour une source de Cobalt. En outre, la courbe C1 de réponse en énergie, représentée selon une échelle logarithmique sur la figure 1 annexée, présente un maximum d'efficacité aux environs de 100 kev, ce qui s'explique, essentiellement, par la forte section efficace d'ionisation du Xénon dans le domaine photo-électrique de 50 à 400 kev d'interaction gamma/matière.
  • En outre, si l'on définit un rapport d'efficacité Re comme étant le rapport du signal utile correspondant à une énergie des rayons γ compris entre 500 et 1 500 kev sur le bruit de fond qui correspond à une énergie des rayons γ de l'ordre de 80 à 100 kev, ce rapport d'efficacité RE est : RE = E signal utile E bruit de fond 5.10 -8 2,5.10 -6 ≅ 2 10 -2 ,
    Figure imgb0001
    où l'énergie du signal utile (E signal utile) est évaluée à environ 2,5 .10-6A/Gy/h par lecture sur la figure 1 et l'énergie du bruit de fond (E bruit de fond) est évaluée à environ 5.10-8A/Gy/h.
  • Exposé de l'invention
  • La présente invention a justement pour but de remédier aux inconvénients cités précédemment et de permettre d'augmenter le rapport d'efficacité de façon considérable.
  • De façon plus précise, l'invention a pour objet une chambre d 'ionisation pour la détection de rayonnement γ et comportant :
    • une enceinte remplie d'un gaz, et
    • deux électrodes situées à l'intérieur de l'enceinte, ces électrodes étant électriquement isolées et séparées l'une de l'autre afin de créer un champ électrique entre elles et de permettre le passage, dans ce champ électrique, de particules ionisantes produisant des ions pouvant être collectées par lesdites électrodes.
  • Elle se caractérise par le fait que le gaz remplissant l'enceinte est de l'Argon porté à une pression comprise entre sensiblement 5 et 10 bars.
  • Avantageusement, l'enceinte comporte une paroi extérieure réalisée en Aluminium et recouverte, sur sa face intérieure, d'une couche de Plomb apte à absorber des photons d'énergie inférieure à 100 kev.
  • Brève description des dessins.
    • La figure 1, déjà décrite, représente la courbe de réponse en énergie d'une chambre d'ionisation de l'art antérieur ;
    • la figure 2 représente, schématiquement, une vue en coupe d'une chambre d'ionisation selon l'invention ;
    • la figure 3 représente la courbe de réponse en énergie d'une chambre d'ionisation comportant une enceinte en Inox, remplie d'Argon ;
    • la figure 4 représente les courbes de réponse en énergie d'une chambre d'ionisation dont l'enceinte, remplie de Xénon, est recouverte, sur sa paroi intérieure, de Plomb ; chaque courbe correspondant à une épaisseur de Plomb différente ;
    • la figure 5 représente les courbes de réponse en énergie de la chambre d'ionisation de l'art antérieur et de la chambre d'ionisation de l'invention.
    Exposé détaillé de modes de réalisation
  • Sur la figure 2, on a représenté une vue en coupe de la chambre d'ionisation selon l'invention.
  • La structure globale de cette chambre est sensiblement identique à celle décrite dans l'art antérieur. Cependant, les matériaux utilisés pour sa réalisation et le gaz remplissant ladite chambre d'ionisation diffèrent de ceux habituellement employés.
  • Cette chambre d'ionisation comporte donc comme dans l'art antérieur, une enceinte 1. Cependant, cette enceinte 1 est réalisée en Aluminium. La paroi intérieure 2 de cette enceinte 1 est recouverte d'une couche de Plomb dont l'épaisseur peut varier de sensiblement 0,5 mm à 1 mm. Cette enceinte 1 est remplie d'Argon sous une pression pouvant être de environ 5 à 10 bars.
  • Cette chambre d'ionisation comporte, en outre, deux électrodes : l'électrode haute tension référencée 3 et l'électrode centrale référencée 4. Ces électrodes 3 et 4 sont cylindriques et coaxiales. L'électrode centrale 4 est supportée par un support d'électrode 5. L'électrode haute tension 3 (ou électrode HT) est supportée par trois supports d'électrode disposés à 120 degrés l'un de l'autre par rapport au support 5 central. La chambre d'ionisation étant représentée selon une vue en coupe, seuls deux de ces supports d'électrode haute tension 3 sont représentés sur la figure 2. Ces supports d'électrode HT 3 sont référencés 6a et 6b. Comme leur nom l'indique, ces supports d'électrode 5, 6a et 6b, permettent de maintenir les électrodes respectives 4 et 3 dans une position fixe à l'intérieur de l'enceinte 1.
  • Ces supports d'électrodes 5, 6a et 6b sont réalisés dans des matériaux conducteurs recouverts d'un matériau isolant. De cette façon, le support 5 et l'un des supports 6 de l'électrode HT 3 peuvent être connectés à une source électrique via un moyen de connexion introduit dans l'embase filetée 15 de l'enceinte 1. Ce moyen de connexion ainsi que la source électrique ne sont pas représentés sur cette figure par mesure de simplification de la figure 2. Sur la figure 2, c'est le support 6b qui est connecté à la source électrique. Ce support 6b de l'électrode haute tension 3 est donc connecté à la source électrique par l'intermédiaire du fil de connexion 7 et de la broche de connexion 8 ainsi que du moyen de connexion introduit dans l'embase filetée 15. En outre, le support 5 de l'électrode centrale 4 est connecté, par l'intermédiaire du fil de connexion 9, à une broche de connexion centrale 10 elle-même connectée à la source électrique par le fil de connexion 11 et par la broche de connexion 12.
  • Cette chambre d 'ionisation comporte en outre un queusot 13 permettant le remplissage de l'enceinte 1 en gaz, c'est-à-dire en Argon. Ce queusot 13 est connecté à la broche centrale 10 par un fil de masse, ledit queusot 13 étant lui-même à la masse. Cet ensemble de broches de connexion, de fils de connexion, de queusot et de supports d'électrodes sont inclus dans l'embase, référencée 14, de la chambre d'ionisation. Cette embase 14 est montée sur l'enceinte 1 et comporte à sa surface le pas de vis constituant l'embase filetée 15 et permettant de fixer l'ensemble de la chambre d'ionisation sur le milieu dont on cherche à détecter le rayonnement γ, c'est-à-dire, par exemple, sur la branche chaude d'un réacteur à eau pressurisée.
  • Les électrodes 4 et 3, ainsi connectées à une source électrique, peuvent être portées à une tension telle qu'une différence de potentiel continu s'établisse entre l'électrode centrale 4 et l'électrode haute tension 3. Un champ électrique E s'établit alors entre ces électrodes dans le volume de gaz qui se trouve entre lesdites électrodes, ce volume de gaz étant appelé le volume utile. Le rayonnement incident γ qui traverse ce détecteur ionise l'Argon situé dans l'enceinte 1, et libère, de ce fait, des charges électriques qui sont collectées par les électrodes 3 et 4. De façon plus précise, les ions libérés par les particules ionisantes traversant l'Argon se dirigent soit vers l'électrode haute tension 3 soit vers l'électrode centrale 4 selon le signe de leur charge.
  • Sur la figure 3, on a représenté la courbe C2 de réponse en énergie d'une chambre d'ionisation réalisée dans un matériau identique à celle décrite dans l'art antérieur, c'est-à-dire une chambre d'ionisation comportant une enceinte en Inox ; mais cette enceinte est remplie d'Argon. La courbe C2 QUI est représentée selon une échelle logarithmique, comme toutes les courbes des figures 1, 3, 4 et 5, a pour but de montrer l'avantage d'une enceinte remplis d'Argon par rapport à l'enceinte de l'art antérieur remplie de Xénon. La courbe de réponse en énergie de la chambre d'ionisation de l'art antérieur est référencée C1 et correspond à la courbe C1 montrée sur la figure 1. La courbe C2 est donc la courbe de réponse en énergie d'une chambre d'ionisation réalisée en Inox et remplie d'Argon. Sur ces courbes C1 et C2, les gaz utilisés sont respectivement sous une pression de 7 bars (pour la courbe C1) et de 9 bars (pour la courbe C2).
  • Contrairement au Xénon, le gaz utilisé dans l'invention pour remplir l'enceinte 1, à savoir l'Argon, est un gaz qui ne présente pas une efficacité intrinsèque particulièrement forte ; on entend par "efficacité intrinsèque" l'efficacité du point de vue création du nombre d'électrons. Au contraire, l'Argon est un gaz qui optimise le rapport RE d'efficacité entre la gamme d'énergie de 500 à 1 500 kev représentant le signal utile, et l'énergie moyenne de 80 à 100 kev représentant le signal parasite, c'est-à-dire le bruit de fond. Afin d'optimiser ce rapport d'efficacité RE, l'Argon est porté à une pression allant de 5 à 10 bars. Selon le mode de réalisation représenté sur cette figure 3, l'Argon est porté à une pression de 9 bars. Comme cela est montré sur la figure 3, le fait d'utiliser de l'Argon dans une chambre d'ionisation permet d'obtenir une contribution du rayonnement à 80-100 kev largement inférieur à la contribution du rayonnement à 80-100 kev produit par la chambre d'ionisation de l'art antérieur.
  • On voit, en effet, sur cette figure 3, que pour une gamme d'énergie d'environ 80 à 100 kev, c'est-à-dire une énergie correspondant au bruit de fond, l'efficacité de détection de la chambre d'ionisation relative à la courbe C2 est de l'ordre de 3.10-8A/Gy/h. En outre, pour une gamme d'énergie variant de 500 à 1500 kev, l'efficacité de détection représentée sur la courbe C2 équivaut à environ 1,5.10-8A/Gy/h. Le rapport d'efficacité RE équivaut alors à environ : RE = 1,5.10 -8 3.10 -8 = 0,5
    Figure imgb0002
  • Sur la figure 4, on a représenté les courbes de réponse en énergie d'une chambre d'ionisation dont l'enceinte, remplie de Xénon, est recouverte sur sa paroi intérieure d'une couche de Plomb de, respectivement, 0,5 et 1 mm d'épaisseur.
  • Sur cette figure 4, la courbe C1 représente la courbe de réponse en énergie de la chambre d'ionisation de l'art antérieur, c'est-à-dire la chambre d'ionisation remplie de Xénon et dont l'enceinte est réalisée en Inox. La courbe C3 représente la courbe de réponse en énergie d'une chambre d'ionisation remplie de Xénon et dont l'enceinte est réalisée en Aluminium recouverte sur sa face intérieure d'une couche de 0,5 mm de Plomb. La courbe C4 représente une courbe de réponse en énergie d'une chambre d'ionisation dont l'enceinte est remplie de Xénon et réalisée en Aluminium recouverte, sur sa face, intérieure d'une couche de Plomb de 1 mm d'épaisseur.
  • L'enceinte 1, ainsi réalisée en Aluminium recouvert de Plomb, permet de réduire de façon significative la contribution du rayonnement d'énergie moyenne de l'ordre de 80 à 100 kev par rapport à l'enceinte de la chambre d'ionisation de l'art antérieur, représentée par la courbe C1. En outre, cette réalisation de l'enceinte 1 ne modifie sensiblement pas la contribution du rayonnement γ d'énergie comprise dans la gamme 500 à 1 500 kev, c'est-à-dire qu'elle ne modifie guère le nombre d'électrons créés, le Plomb ayant pour caractéristique d'absorber des photons dont l'énergie est inférieure à 100 kev.
  • On peut donc lire sur cette figure 4 que, pour la courbe C3 représentant une chambre d'ionisation comportant une couche de Plomb d'épaisseur 0,5 mm, le signal utile est sensiblement équivalent à la valeur du signal utile de la courbe C1, c'est-à-dire 5,10-8 A/Gy/h, et que le signal du bruit de fond vaut sensiblement 3.10-7A/Gy/h. Selon cette courbe C3, le rapport d'efficacité vaut : RE = 5.10 -8 3.10 -7 = 0,167
    Figure imgb0003
  • Pour la courbe C4 qui représente la courbe de réponse en énergie d'une chambre d'ionisation comportant une couche de Plomb de 1 mm d'épaisseur, on peut lire sur la figure 4 que le signal utile équivaut sensiblement à la valeur du signal utile de la courbe C1 à savoir 5.10-8A/Gy/h, et que le signal du bruit de fond équivaut à environ 1,5.10-7A/Gy/h. Le rapport d'efficacité RE équivaut alors à : RE = 5.10-8 1,5.10-7 = 0,333
    Figure imgb0004
  • Sur la figure 5, on a représenté les courbes de réponse en énergie de la chambre d'ionisation de l'art antérieur, et de chambres d'ionisation selon l'invention, dans lesquelles la couche de Plomb de l'enceinte 1 est, respectivement, de 0,5 mm et de 1 mm d'épaisseur. La courbe C1 représente, comme sur les figures 1, 3 et 4, la courbe de réponse en énergie de la chambre d'ionisation de l'art antérieur. La courbe C5 représente la réponse en énergie d'une chambre d'ionisation selon l'invention dans laquelle l'enceinte 1 est recouverte, sur sa face intérieure, d'une couche de Plomb de 0,5 mm d'épaisseur. Et la courbe C6 représente la réponse en énergie d'une chambre d'ionisation selon l'invention dont l'enceinte est recouverte d'une couche de Plomb d'épaisseur 1 mm.
  • Sur cette figure 5, on peut lire les valeurs des signaux utiles et des signaux de bruit de fond des courbes C5 et C6. De façon plus précise, le signal utile est sensiblement le même pour la courbe C5 et pour la courbe C6 ; il a une valeur d'environ 1,5.10-8A/Gy/h. Le signal de bruit de fond de la courbe C5 est sensiblement de 6.10-9A/Gy/h et le signal de bruit de fond de la courbe C6 est d'environ 2.10-9 A/Gy/h. Ainsi, le rapport d'efficacité RE de la courbe C5 équivaut à : RE = 1,5.10 -8 6.10 -9 = 2,5
    Figure imgb0005
    Et le rapport d'efficacité RE de la courbe C6 équivaut à : RE = 1,5.10 -8 2.10 -9 = 7,5
    Figure imgb0006
  • La lecture de ces figures 1, 3, 4, et surtout de la figure 5, permet de comprendre que l'efficacité absolue de la chambre d'ionisation selon l'invention est sensiblement diminuée par rapport à l'efficacité absolue de la chambre d'ionisation de l'art antérieur, mais que le rapport d'efficacité du signal utile sur le signal du bruit de fond est considérablement augmenté. De façon plus précise, ce rapport d'efficacité qui était de l'ordre de 2.10-2 pour la chambre d'ionisation de l'art antérieur est, pour la chambre d'ionisation selon l'invention, de l'ordre de 7,5, ce qui permet un gain d'un facteur d'environ 375, dans le cas de la réalisation particulière où l'Argon est porté à une pression de 9 bars et ou l'épaisseur de Plomb de l'enceinte est de 1 mm.
  • Une telle chambre d'ionisation, avec un tel gain en rapport signal utile/signal de bruit de fond, permet, à précision de mesure équivalente, d'utiliser des sources de rayonnement γ d'intensité moins élevée que celle habituellement utilisée ; ce qui entraîne, par conséquent, à un coût moindre des postes de mesure par gammadensitométrie.

Claims (3)

  1. Chambre d'ionisation pour la détection de rayonnement γ et comportant :
    - une enceinte (1) remplie d'un gaz, et
    - deux électrodes (3, 4) situées à l'intérieur de l'enceinte, ces électrodes étant électriquement isolées et séparées l'une de l'autre afin de créer un champ électrique (E) entre elles et de permettre le passage, dans ce champ électrique, de particules ionisantes produisant des ions pouvant être collectés par lesdites électrodes,
    caractérisée en ce que le gaz remplissant l'enceinte est de l'Argon porté à une pression comprise entre sensiblement 5 et 10 bars.
  2. Chambre d'ionisation selon la revendication 1, caractérisée en ce que l'enceinte comporte une paroi réalisée en Aluminium.
  3. Chambre d'ionisation selon la revendication 2, caractérisée en ce que la paroi est recouverte, sur une face intérieure (2), d'une couche de Plomb.
EP19940400716 1993-04-07 1994-04-01 Chambre d'ionisation à haute efficacité de détection de rayonnement gamma Expired - Lifetime EP0619597B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9304118 1993-04-07
FR9304118A FR2703790B1 (fr) 1993-04-07 1993-04-07 Chambre d'ionisation à haute efficacité de détection de rayonnement.

Publications (2)

Publication Number Publication Date
EP0619597A1 EP0619597A1 (fr) 1994-10-12
EP0619597B1 true EP0619597B1 (fr) 1997-01-08

Family

ID=9445836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940400716 Expired - Lifetime EP0619597B1 (fr) 1993-04-07 1994-04-01 Chambre d'ionisation à haute efficacité de détection de rayonnement gamma

Country Status (4)

Country Link
EP (1) EP0619597B1 (fr)
JP (1) JPH075267A (fr)
DE (1) DE69401374T2 (fr)
FR (1) FR2703790B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866888B1 (ko) * 2006-10-04 2008-11-04 한국원자력연구원 와이어 수집 전극 및 이온 챔버 내 혼합 가압 기체를이용한, 감도가 향상된 철판 두께 측정용 방사선 센서 및측정 방법
US9312109B2 (en) * 2013-01-25 2016-04-12 General Electric Company High pressure ion chamber enclosure support mount

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2530381A1 (fr) * 1982-07-13 1984-01-20 Commissariat Energie Atomique Chambre d'ionisation pour la mesure de rayonnements gamma de haute energie
FR2631121B1 (fr) * 1988-05-03 1991-02-15 Commissariat Energie Atomique Dispositif de controle du taux de dissolution d'un residu nucleaire dans une solution de dissolveur

Also Published As

Publication number Publication date
FR2703790B1 (fr) 1995-05-24
EP0619597A1 (fr) 1994-10-12
JPH075267A (ja) 1995-01-10
DE69401374D1 (de) 1997-02-20
DE69401374T2 (de) 1997-06-26
FR2703790A1 (fr) 1994-10-14

Similar Documents

Publication Publication Date Title
EP0678896B1 (fr) Dispositif d'imagerie médicale en Rayonnement ionisant X ou gamma à faible dose
FR2627257A1 (fr) Appareil a lampe fluorescente
EP0099300B1 (fr) Chambre d'ionisation pour la mesure de rayonnements gamma de haute énergie
EP0619597B1 (fr) Chambre d'ionisation à haute efficacité de détection de rayonnement gamma
FR2591036A1 (fr) Dispositif de detection et de localisation de particules neutres, et applications
EP0010474B1 (fr) Détecteur de rayonnement
EP0461015B1 (fr) Dispositif de mesure de débit de fluence neutronique
EP0730291A1 (fr) Dispositifs d'imagerie médicale en rayonnement ionisant X ou gamma à faible dose
FR2504277A1 (fr) Detecteur de rayons x
EP0063083A1 (fr) Détecteur de rayons X
EP0715186B1 (fr) Chambre à fission subminiature avec passage étanche
EP1320119B1 (fr) Détecteur de rayonnements ionisants et procédé de fabrication d'un tel détecteur
EP0116806B1 (fr) Détecteur gazeux à avalanche électronique, courbe et à lame
EP0929908A1 (fr) Detecteur a gaz de rayonnements ionisants a tres grand taux de comptage
EP3086140B1 (fr) Dispositif de detection spherique de particules ou de rayonnement
EP0747729A1 (fr) Procédé de contrÔle en temps réel du débit de dose de rayonnements ionisants et dispositif pour sa mise en oeuvre
EP0326479B1 (fr) Détecteur pour tomographie à rayons X
EP0596814A1 (fr) Dispositif de détection neutronique pour mesurer la puissance d'un réacteur nucléaire
WO2008129159A1 (fr) Dispositif de multiplication des electrons et systeme de detection de rayonnements ionisants
FR2472752A1 (fr) Appareil de detection de vapeurs polaires
WO2015001527A1 (fr) Perfectionnement a un dispositif de mesure de champs de neutrons et/ou de gammas formant collectron
FR2602058A1 (fr) Detecteur a gaz utilisant une anode a microbandes
FR2633054A1 (fr) Dispositif de mesure des charges electriques et de la polarisation portees par un isolant et procede de mesure de telles grandeurs
WO2001028058A1 (fr) Perfectionnement a un paratonnerre a dispositif d'amorçage
FR2630285A1 (fr) Eliminateur radioactif de charges electriques statiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19950316

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960402

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69401374

Country of ref document: DE

Date of ref document: 19970220

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970319

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030326

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030419

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

GBPC Gb: european patent ceased through non-payment of renewal fee