EP1317618A1 - Soupape pour reguler le debit de liquides - Google Patents

Soupape pour reguler le debit de liquides

Info

Publication number
EP1317618A1
EP1317618A1 EP01951348A EP01951348A EP1317618A1 EP 1317618 A1 EP1317618 A1 EP 1317618A1 EP 01951348 A EP01951348 A EP 01951348A EP 01951348 A EP01951348 A EP 01951348A EP 1317618 A1 EP1317618 A1 EP 1317618A1
Authority
EP
European Patent Office
Prior art keywords
valve
rocker arm
controlling liquids
valve element
seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01951348A
Other languages
German (de)
English (en)
Inventor
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1317618A1 publication Critical patent/EP1317618A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0033Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat
    • F02M63/0036Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat with spherical or partly spherical shaped valve member ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • F16K31/007Piezoelectric stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/701Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger mechanical

Definitions

  • injectors which use hydraulic translators to translate the stroke of a piezo actuator.
  • such solutions generally have one relatively complicated structure and consist of a large number of parts. Since the piezo actuators only have a very small lifting capacity, the effort involved in the known mechanical or hydraulic translators is relatively great.
  • the rocker arm and the valve element are formed in one piece.
  • the valve element is integrated directly in the rocker arm.
  • the geometric shape of the area of the rocker arm, which serves as a valve element can be arbitrary. It is only important to note that there is sufficient sealing properties on the valve seat. they are.
  • the area of the rocker arm serving as a valve element can be hemispherical or conical.
  • valve element is designed as a separate ball which can be actuated via the rocker arm.
  • a recess is preferably formed in the rocker arm to accommodate the valve element.
  • the recess can either be designed in such a way that the valve element is fixed in the recess (e.g. by means of an interference fit) or in such a way that the valve element is arranged loosely in the recess.
  • the restoring element preferably engages directly on
  • a spring such as e.g. used a coil spring.
  • a spring seat is particularly preferably formed in the rocker arm. This can be formed, for example, by a recess arranged in the rocker arm, which receives one end of the spring.
  • the translator is preferably arranged in a guide sleeve.
  • the translator is then guided in this guide sleeve during operation.
  • the guide sleeve can be easily manufactured in advance with very low component tolerances. Thus the transfer only minimal play, which gives the entire system maximum rigidity.
  • the valve element is designed as a double-seat valve.
  • the two seats are preferably arranged on a lever side of the rocker arm.
  • the valve can be designed in such a way that it can assume three positions, namely a first position in which the valve element lies against and closes the first valve seat, a second position in which the valve element lies against and closes the second valve seat. and a third position in which the valve element is not in contact with either of the two valve seats, so that both valve seats are open (middle position).
  • the rocker arm is preferably connected to the piezo actuator via a drawstring. This enables the valve to be easily held in the central position.
  • a through opening is preferably formed in the rocker arm, in which a separate valve element, such as e.g. a ball is picked up.
  • the valve according to the invention is preferably used to control liquids in an injection device for a co-mon-rail system. It is particularly preferably used as a control valve of an injector.
  • a valve for controlling liquids is thus provided which, due to its small number of components, provides a compact design and thus maximum system rigidity. This allows the The injection process, in particular in the case of fuel injection in storage injection systems, can be carried out more precisely and further improved.
  • Figure 1 is a schematic partial sectional view of a
  • Control valve for a fuel injection valve according to a first embodiment of the present invention
  • FIG. 2 shows a schematic partial sectional view of a control valve for a fuel injection valve according to a second exemplary embodiment of the present invention
  • FIG. 3 shows a schematic partial sectional view of a control valve for a fuel injection valve according to a third exemplary embodiment of the present invention
  • FIG. 4 shows a schematic partial cross-sectional view of a control valve for a fuel injection valve according to a fourth exemplary embodiment of the present invention
  • Figure 5 is a graphical representation of the nozzle position of the fuel injection valve as a function of the control valve
  • Figure 6 is a graphical representation of the position of the control valve shown in Figure 4 over time.
  • Figure 1 shows a control valve for a fuel injector in a Comrrton rail system.
  • the control valve 1 comprises a piezo actuator 2, a mechanical translator designed as a rocker arm 3 and a helical spring 4 used as a reset element.
  • the rocker arm is arranged in a space 25 in the valve.
  • the rocker arm 3 has a hemispherical area 5 which is designed as a valve element.
  • the hemispherical region 5 closes a valve seat 6.
  • the rocker arm 3 is rotatably mounted at two points, namely a first bearing 9 and a second bearing 10.
  • the rocker arm 3 rotates about an imaginary point P, which lies in the middle of the distance between the two bearing points 9 and 10.
  • the rocker arm 3 has a support surface 13 on which a piston 8 rests, which is connected to the piezo actuator 2.
  • the area 5 of the rocker arm 3 closes an outlet from a control chamber 18, in which a control piston 19 is arranged.
  • the control piston 19 is indirectly or directly connected to a valve needle of the fuel injection valve in order to open or close it.
  • a fuel supply line 17 is connected to the control chamber 18 via a throttle 16.
  • the ratio of the rocker arm is a: b, where a is the length of the lever arm between a straight line AA through the bearing points 9 and 10 and a center line BB for a bore to the control chamber 18, which is closed or closed by the area 5 of the rocker arm 3. is opened.
  • the length b is the distance between the axis AA and an axis CC, which forms the center line of the piston 8, which presses the rocker arm 3.
  • control valve The function of the control valve according to the first embodiment is described below. If fuel which is in contact with an injection needle of the injector under high pressure via the supply line 17 is to be injected, the piezo actuator 2 is activated such that it carries out a stroke in the direction of the piston. This stroke of the piezo actuator 2 is transmitted via the piston 8 to the first lever b of the rocker arm 3. As a result, the rocker arm 3 rotates about the point P on the axis A-A, so that the region 5 of the rocker arm is lifted off the valve seat 6 against the force of the coil spring 4. As a result, the control chamber 18 is connected via a throttle 15 to the chamber 25 in which the rocker arm is arranged. Control chamber 18 is also connected to fuel supply line 17 via throttle 16.
  • FIG. 2 shows a second exemplary embodiment of a control valve for an injector for injecting fuel.
  • the same or functionally the same parts are denoted by the same reference numerals as in the first embodiment. Since the second exemplary embodiment essentially corresponds to the first exemplary embodiment, only differences are explained in detail below.
  • the rocker arm 3 of the second exemplary embodiment is designed such that it has a cutout 11 in which a separate valve element 5 is arranged.
  • the valve element is designed as a valve ball 5.
  • the valve ball 5 is loosely arranged in the recess 11 of the rocker arm 3.
  • the rocker arm 3 is only stored at a bearing 9.
  • the pivot point of the rocker arm 9 is at the contact area of the bearing 9 with the rocker arm 3 on the line A-A.
  • two protruding bulges 23 and 24 are formed on the side walls of the space 25 for receiving the rocker arm, between which the rocker arm 3 is arranged. These curvatures 23 and 24 serve to guide the rocker arm 3 and further increase the rigidity. system.
  • the lever ratio of the rocker arm 3 is determined by the length of the two arms a: b and can be changed depending on the application by changing the lever arm lengths. To do this, another rocker arm element 3 must simply be installed in the injector, the bearing point 9 of which is shifted to the left or right.
  • the function of the injector shown in FIG. 2 essentially corresponds to the function of the injector of the first exemplary embodiment, so that reference can be made to the description in the first exemplary embodiment.
  • FIG. 3 shows a control valve for an injector for injecting fuel in accordance with a third exemplary embodiment of the present invention.
  • the same or functionally identical parts are identified by the same reference numerals as in the two previously described exemplary embodiments. Since the third exemplary embodiment essentially corresponds to the second exemplary embodiment, only differences are explained in detail below.
  • no curvatures 23 and 24 are provided in the third exemplary embodiment.
  • a guide sleeve 20 is provided in the third exemplary embodiment in order to guide the rocker arm 3.
  • the guide sleeve 20 can be easily manufactured in advance and can meet high tolerance requirements, the rigidity of the system can be further improved. Otherwise, the third exemplary embodiment corresponds to the second exemplary embodiment, so that a further description is not necessary.
  • FIG. 4 shows a valve for controlling liquids in accordance with a fourth exemplary embodiment of the present invention. shown. Identical or functionally identical parts are identified by the same reference symbols as in the exemplary embodiments described above.
  • the fourth embodiment of the present invention is designed as a double seat valve.
  • a first valve seat 6 and a second valve seat 7 are provided, which can each be opened or closed via a common valve element 5.
  • the rocker arm 3 of the valve is designed such that it has a through opening 14.
  • a valve element 5 designed as a ball is fixed e.g. secured with a press fit.
  • the rocker arm 3 is rotatably mounted on a first bearing 9.
  • a helical spring 4 is again provided as a resetting device, which acts on the rocker arm 3 via a piston 22.
  • the spring 4 is arranged such that it lies on a common axis C-C with a piston 8, via which the stroke of the
  • Piezo actuator 2 is transferred to the rocker arm 3.
  • the leverage ratio is again a: b.
  • the valve on seat 6 is closed.
  • the piezo actuator 2 When the piezo actuator 2 is actuated, the valve is moved against the force of the spring 4 via the rocker arm 3 from the valve seat 6 to the valve seat 7, so that the valve seat 7 is closed.
  • the piezo actuator 2 By pulling the piezo actuator 2 by means of a biasing spring (not shown), the rocker arm 3 is pulled over a tension band 9, which is firmly connected to the piston 8 and surrounds the right lever arm of the rocker arm 3 in a U-shape, again lifted off the seat 7, so that a continuous opening from a line 26 to a control chamber 18 is present.
  • a fluid can flow from the control chamber 18 to the line 26, so that a negative pressure arises in the control chamber 18 and the control piston 19 moves in the direction of the valve ball 5 and, for example, a valve needle connected to the control piston 19 is lifted from its seat by one Allow fuel injection.
  • the valve 1 is reset via the spring 4, so that the ball 5 rests against the seat 6.
  • FIGS. 5 and 6 show the stroke of the control valve 1 (FIG. 6) or the stroke of the injection valve (FIG. 5) over time.
  • the seat 6 is closed in the initial state of the valve 1.
  • the piezo actuator 2 is now activated, the valve 1 closes briefly on the seat 7, a central position between the seat 6 and the seat 7 then being assumed due to the above-mentioned reset of the piezo actuator, in which a vacuum acts on the control piston 19.
  • the needle valve of the injection valve opens during the central position of the control valve, as shown in FIG. 5, in order to inject fuel into a combustion chamber. After deactivating the piezo actuator 2, this takes
  • Control valve again its basic position on the valve seat 6, which also stops the injection of fuel (see FIGS. 5 and 6).
  • FIG. 5 shows a small needle stroke before the actual injection, which theoretically occurs in the meantime between the opening of the valve seat 6 and the closing of the valve seat 7.
  • this is of no importance in practice, especially since the switching times of the control valve are very short.
  • the present invention relates to a valve for controlling liquids.
  • the valve comprises a piezo actuator 2, a translator 3, which translates a stroke of the piezo actuator 2, a resetting element 4 and a valve element 5.
  • the translator is designed as a rocker arm 3 and the valve element 5 is integrated in the rocker arm, which means a high level System rigidity is achieved with a minimized number of parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

La présente invention concerne une soupape pour réguler le débit de liquides. Cette soupape comprend un actionneur piézo (2), un multiplicateur (3), qui amplifie la poussée de l'actionneur piézo (2), un élément de rappel (4) et un obturateur (5). Ledit multiplicateur se présente sous la forme d'un levier basculant (3) et ledit obturateur (5) fait partie intégrante de ce levier basculant, ce qui permet d'obtenir une rigidité élevée du système tout en ayant un nombre de pièces minimal.
EP01951348A 2000-09-08 2001-05-25 Soupape pour reguler le debit de liquides Withdrawn EP1317618A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10044389 2000-09-08
DE10044389A DE10044389A1 (de) 2000-09-08 2000-09-08 Ventil zum Steuern von Flüssigkeiten
PCT/DE2001/002027 WO2002020975A1 (fr) 2000-09-08 2001-05-25 Soupape pour reguler le debit de liquides

Publications (1)

Publication Number Publication Date
EP1317618A1 true EP1317618A1 (fr) 2003-06-11

Family

ID=7655472

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01951348A Withdrawn EP1317618A1 (fr) 2000-09-08 2001-05-25 Soupape pour reguler le debit de liquides

Country Status (7)

Country Link
US (1) US20030038259A1 (fr)
EP (1) EP1317618A1 (fr)
JP (1) JP2004508493A (fr)
KR (1) KR20020061614A (fr)
CZ (1) CZ20021538A3 (fr)
DE (1) DE10044389A1 (fr)
WO (1) WO2002020975A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774539B2 (en) * 2002-09-23 2004-08-10 Lockheed Martin Corporation High pressure, high speed actuator
DE10308613A1 (de) * 2003-02-27 2004-09-16 Siemens Ag Ventil mit einem Hebel, Hebel und Verfahren zur Herstellung eines Hebels
PL1751931T3 (pl) * 2004-06-03 2016-04-29 Nokia Technologies Oy Kontrola nośnika na podstawie usługi i działanie szablonu przepływu ruchu z ruchomym IP
DE102004044154A1 (de) * 2004-09-13 2006-03-30 Siemens Ag Hebelvorrichtung und Einspritzventil
US8074625B2 (en) 2008-01-07 2011-12-13 Mcalister Technologies, Llc Fuel injector actuator assemblies and associated methods of use and manufacture
DE102008043085A1 (de) 2008-10-22 2010-04-29 Robert Bosch Gmbh Kraftstoffinjektor mit druckausgeglichener Bewegungsübertragung
DE202009007298U1 (de) * 2009-05-20 2009-09-17 Bürkert Werke GmbH & Co. KG Antriebseinrichtung mit einem Piezostapelaktor
DE102011089905A1 (de) 2011-12-27 2013-06-27 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
US9309846B2 (en) 2012-11-12 2016-04-12 Mcalister Technologies, Llc Motion modifiers for fuel injection systems
US20140131466A1 (en) 2012-11-12 2014-05-15 Advanced Green Innovations, LLC Hydraulic displacement amplifiers for fuel injectors
DE102016216871A1 (de) * 2016-09-06 2018-03-08 Continental Automotive Gmbh Fluidinjektor für ein Kraftfahrzeug
JP7279954B2 (ja) * 2018-07-31 2023-05-23 株式会社フジキン アクチュエータ、バルブ、および流体制御装置
CN109433505A (zh) * 2018-11-26 2019-03-08 深圳市锐德精密科技有限公司 一种流体喷射阀

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1751543A1 (de) * 1968-06-15 1970-08-27 Kloeckner Humboldt Deutz Ag Elektrisch steuerbares Einspritzventil
US3570807A (en) * 1969-01-14 1971-03-16 Bell Aerospace Corp Electromechanical control valve
US4022166A (en) * 1975-04-03 1977-05-10 Teledyne Industries, Inc. Piezoelectric fuel injector valve
DE2940239A1 (de) * 1979-10-04 1981-04-16 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetisch betaetigbares ventil
DE3116687C2 (de) * 1981-04-28 1983-05-26 Daimler-Benz Ag, 7000 Stuttgart Elektrisch angesteuertes Stellglied
JPS62228664A (ja) * 1986-03-31 1987-10-07 Mikuni Kogyo Co Ltd 燃料噴射弁
DE3739048C2 (de) * 1987-11-17 2001-08-09 Buerkert Gmbh Mehrwegeventil
US5121730A (en) * 1991-10-11 1992-06-16 Caterpillar Inc. Methods of conditioning fluid in an electronically-controlled unit injector for starting
US5226628A (en) * 1992-02-06 1993-07-13 Siemens Automotive L.P. Actuating mechanism for a rolling ball valve
DE19540155C2 (de) * 1995-10-27 2000-07-13 Daimler Chrysler Ag Servoventil für eine Einspritzdüse
JPH09310655A (ja) * 1996-05-21 1997-12-02 Hitachi Ltd 燃料噴射装置
SE9800127L (sv) * 1998-01-20 1999-07-21 Jan Hoelcke Ventil
DE19939523B4 (de) * 1999-08-20 2004-02-26 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
US6526864B2 (en) * 2001-04-17 2003-03-04 Csa Engineering, Inc. Piezoelectrically actuated single-stage servovalve
US6595436B2 (en) * 2001-05-08 2003-07-22 Cummins Engine Company, Inc. Proportional needle control injector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0220975A1 *

Also Published As

Publication number Publication date
KR20020061614A (ko) 2002-07-24
JP2004508493A (ja) 2004-03-18
DE10044389A1 (de) 2002-04-04
US20030038259A1 (en) 2003-02-27
WO2002020975A1 (fr) 2002-03-14
CZ20021538A3 (cs) 2003-11-12

Similar Documents

Publication Publication Date Title
EP1135595B1 (fr) Soupape destinee a commander des liquides
WO1998040623A1 (fr) Soupape pour reguler des fluides
EP1317618A1 (fr) Soupape pour reguler le debit de liquides
EP1370763A1 (fr) Soupape de commande de liquides
DE102009039647A1 (de) Kraftstoffinjektor und Kraftstoff-Einspritzsystem
DE10306808A1 (de) Injektor zum Einspritzen von Kraftstoff
DE102005010453A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1144842B1 (fr) Injecteur pour systeme d'injection de carburant pour moteurs a combustion interne, muni d'un pointeau faisant saillie dans la chambre de commande de soupape
WO2001014718A1 (fr) Injecteur
DE102012220027A1 (de) Schaltventil für einen Kraftstoffinjektor
DE10145622A1 (de) Ventil zum Steuern von Flüssigkeiten
EP2458194A2 (fr) Soupape d'injection de carburant pour moteurs à combustion interne
WO2001029407A1 (fr) Soupape de commande a commutation double munie d'un element de reglage spherique
EP1541859A1 (fr) Injecteur
EP1961953A1 (fr) Soupape à plusieurs voies
DE10323871A1 (de) Injektor mit einer Registerdüse zur Kraftstoffeinspritzung
DE10104617A1 (de) Ventil zum Steuern von Flüssigkeiten
WO2002057619A1 (fr) Soupape de regulation de liquides
DE19939478C1 (de) Ventil zum Steuern von Flüssigkeiten
EP1614892A1 (fr) Soupape d'injection de carburant avec une soupape à balle pour une servo valve à deux étapes
DE10146756C1 (de) Kraftstoffinjektor
DE10032924A1 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE10333692B3 (de) Kraftstoffeinspritzvorrichtung
DE19939451A1 (de) Aggregat zur Einspritzung von Kraftstoff
DE10333693B3 (de) Kraftstoffeinspritzvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030408

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20050610

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051020