EP1315895A1 - Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung - Google Patents

Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung

Info

Publication number
EP1315895A1
EP1315895A1 EP01971658A EP01971658A EP1315895A1 EP 1315895 A1 EP1315895 A1 EP 1315895A1 EP 01971658 A EP01971658 A EP 01971658A EP 01971658 A EP01971658 A EP 01971658A EP 1315895 A1 EP1315895 A1 EP 1315895A1
Authority
EP
European Patent Office
Prior art keywords
adaptation
mixture
program module
operating mode
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01971658A
Other languages
English (en)
French (fr)
Other versions
EP1315895B1 (de
Inventor
Gholamabas Esteghlal
Dieter Lederer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1315895A1 publication Critical patent/EP1315895A1/de
Application granted granted Critical
Publication of EP1315895B1 publication Critical patent/EP1315895B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/263Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the program execution being modifiable by physical parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2448Prohibition of learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Definitions

  • No. 4,584,982 describes, for example, an adaptation with different adaptation variables in different areas of the load / speed spectrum of an internal combustion engine. The different adaption sizes are aimed at the compensation of different errors. Three types of errors can be distinguished according to cause and effect: Errors in a hot film air mass meter have a multiplicative effect on the fuel metering. Leakage air influences have an additive effect per unit of time and errors in the compensation of the retarding of the injection valves have an additive effect per injection.
  • emissions-related errors should be recognized with on-board means and, if necessary, should an error lamp can be activated.
  • the mixture adaptation is also used for fault diagnosis. If, for example, the corrective action of the adaptation is too great, this indicates an error.
  • the measured lambda value deviates from the physically available lambda value in engines with gasoline direct injection mainly in stratified operation over the service life, the sample spread and in the case of uncontrolled probe heating. Since the mixture adaptation is the measured
  • the engine In shift operation, the engine is operated with a strongly stratified cylinder charge and a large excess of air in order to achieve the lowest possible fuel consumption.
  • the stratified charge is achieved by a late fuel injection, which ideally leads to the combustion chamber being divided into two zones: the first
  • Zone contains a combustible air-fuel mixture cloud on the spark plug. It is surrounded by the second zone, which consists of an insulating layer of air and residual gas. The potential for optimizing consumption results from the possibility of avoiding the engine
  • Shift operation is preferred at a comparatively low load.
  • the engine is operated with a homogeneous cylinder charge.
  • the homogeneous cylinder charge results from early fuel injection during the intake process. As a result, there is more time available for mixture formation until combustion.
  • the potential of this operating mode for performance optimization results, for example, from the use of the entire combustion chamber volume for filling with a combustible mixture.
  • the motor temperature must have reached the switch-on temperature threshold and the
  • Lambda sensor must be ready for operation. Furthermore, the current values of load and speed must lie in certain areas in which learning takes place. This is known for example from US 4,584,982. Homogeneous operation must also exist. According to the known program, the mixture adaptation is activated in fixed time ranges.
  • Activated carbon filter to be active. It is also desirable to activate the mixture adaptation when the activated carbon filter is not fully loaded and the adaptation has not been completed.
  • the invention aims to increase the period of time in which the engine can be operated in a shift-optimal manner in terms of consumption.
  • Switching to homogeneous operation for diagnosis reduces the Fuel consumption advantage of direct petrol injection, since homogeneous operation is less economical than shift operation.
  • Switching to homogeneous operation, which is carried out specifically for diagnosis, therefore unnecessarily increases fuel consumption if there is no fault. It should be avoided as far as possible without worsening the discovery of emissions-related errors.
  • a plurality of operating mode requirements is determined, and wherein each of the operating mode requirements is assigned a priority
  • Another embodiment provides that the time slots are dependent on whether an error or an error is suspected.
  • the motor control program contains, among other things, a program module acting as a phase decision maker, a program module acting as a basic adaptation requestor GA_Requirer, a program module acting as a basic adaptation stop GA_Stop and a program module acting as a final decision maker.
  • Another embodiment provides that the mixture adaptation requestor (GA_Anforderer) program module requests TGAPA of less than one minute of mixture adaptation (GA) when the activated carbon filter is low when the other switch-on conditions of the mixture adaptation are met.
  • Program module mixture adaptation stop forbids a mixture adaptation request by the phase decision maker when the activated carbon filter is loaded with fuel and when mixture adaptation is complete.
  • phase decision program module increases the physical urgency of the mixture adaptation in different time intervals and thus requires a switchover to homogeneous operation.
  • Another embodiment provides that these time slots depend on whether the control unit is aware of an error or whether there is a suspected error.
  • the invention also relates to an electronic control device for carrying out at least one of the methods and embodiments mentioned.
  • Fig. 1 shows the technical environment of the invention.
  • FIG. 2 illustrates the formation of a fuel metering signal on the basis of the signals from FIG. 1
  • Fig. 3 discloses a schematic representation of an embodiment of the mode switching.
  • FIG. 1 in FIG. 1 represents an internal combustion engine with an intake manifold 2, an exhaust pipe 3, a fuel metering device 4, sensors 5-8 for operating parameters of the engine and a control unit 9.
  • the fuel metering device 4 can be, for example, from a
  • Sensor 5 supplies the control unit with a signal about the air mass ml sucked in by the engine.
  • Sensor 6 provides an engine speed signal n.
  • Sensor 7 provides engine temperature T and sensor 8 delivers a signal Us about the exhaust gas composition of the engine. From these and possibly other signals via further operating parameters of the engine, the control unit forms, in addition to further manipulated variables, the fuel metering signals ti for actuating the fuel metering means 4 such that a desired behavior of the engine, in particular a desired exhaust gas composition, is established.
  • FIG. 2 shows the formation of the fuel metering signal.
  • Block 2.1 represents a map which is addressed by the speed n and the relative air filling rl and in which pilot control values rk for the formation of the fuel metering signals are stored.
  • the relative air filling rl is related to a maximum filling of the combustion chamber with air and thus to a certain extent indicates the fraction of the maximum combustion chamber or cylinder filling. It is essentially formed from the signal ml, rk corresponds to the fuel quantity assigned to the air quantity rl.
  • Block 2.2 shows the known multiplicative lambda control intervention.
  • a mismatch in the amount of fuel to the amount of air is shown in the signal Us of the exhaust gas probe.
  • a controller 2.3 forms the control manipulated variable fr, which reduces the mismatch via the intervention 2.2.
  • the metering signal for example a trigger pulse width for the injection valves, can already be formed from the signal corrected in this way in block 2.4.
  • Block 2.4 thus represents the conversion of the relative and corrected fuel quantity into a real control signal taking into account fuel pressure, injector geometry etc.
  • Blocks 2.5 to 2.9 represent the known operating parameter-dependent mixture adaptation, which can have a multiplicative and / or additive effect.
  • the circle 2.9 should represent these 3 possibilities.
  • the switch 2.5 is opened or closed by the means 2.6, the means 2.6 being supplied with operating parameters of the internal combustion engine, such as temperature T, air mass ml and speed n. Means 2.6 in connection with the switch 2.5 thus enables an activation of the three mentioned adaptation options depending on the operating parameter range.
  • the formation of the adaptation intervention fra on the fuel metering signal formation is illustrated by blocks 2.7 and 2.8. With switch 2.5 closed, block 2.7 forms the mean value frm of the control variable fr. Deviations of the mean value frm from the neutral value 1 are transferred from block 2.8 to the adaptation intervention variable fra.
  • the control manipulated variable fr initially approaches 1.05 due to a mismatch in the precontrol.
  • the deviation 0.05 from the value 1 is transferred from block 2.8 to the value fra of the adaptation intervention.
  • fra then goes to 1.05, with the result that fr goes back to 1.
  • the adaptation ensures that mismatches in the pilot control do not have to be corrected every time the operating point changes.
  • This adaptation of the adaptation variable fra is carried out at high temperatures of the internal combustion engine, for example above a cooling water temperature of 70 ° Celsius with switch 2.5 then closed; Once adjusted, fra also acts on the formation of the fuel metering signal when switch 2.5 is open.
  • Fig. 3 shows a schematic representation of an embodiment of the mode switching.
  • the motor control program contains, among other things, a program module called a phase decision maker, a program module called a basic adaptation requestor GA_requirer, a program module called a basic adaptation stop GA_Stop and a program module called a final decision maker. This is illustrated in Fig. 3a.
  • the program module phase decider increases the physical urgency of the mixture adaptation in different time intervals and thus requires a switchover to homogeneous operation. This is illustrated in Fig. 3b.
  • time slots depend on whether the control unit is aware of an error or whether an error is suspected.
  • An error or a suspected error can be set as a bit in the program by a diagnostic program. In the following, an error or suspected error is assumed to be a variable known in the control unit. If there is no suspicion of a fault in the control unit when the internal combustion engine is started, in FIG. 3b, after an initialization in state 3.1, no mixture adaptation is initially required for a long time in the order of half an hour (state 3.2). If an error is detected via a diagnostic function during this time or if the error was known from the last trip through the diagnosis ' , the time tteofini in state 3.2 is reduced to ttefvini in the order of a few minutes.
  • phase decider is implemented as a state machine. This is understood to be a switching function algorithm executed as a program module within the engine control program, which controls the transition between the states with different durations. The request and prohibition of the mixture adaptation is shown in Fig. 3 c.
  • the mixture adaptation requester program module GA_requirer requests the additive or multiplicative adaptation correction for the TGAPA time of less than one minute of mixture adaptation (GA) when the activated carbon filter is low and the cycle flag is not set, if the other switch-on conditions of the mixture adaptation are fulfilled. This requirement can either be activated only for homogeneous operation or for all operating modes.
  • the GA_Stop mixture adaptation stop program module prohibits a mixture adaptation request by the phase decision maker when the activated carbon filter is loaded with fuel and when the mixture adaptation is complete.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Vorgestellt wird ein Verfahren zur Kompensation von Fehlanpassungen der Vorsteuerung einer Kraftstoffzumessung für einen Verbrennungsmotor, der in den wenigstens zwei verschiedenen Betriebsarten Homogenbetrieb und Schichtbetrieb betrieben wird: wobei im Homogenbetrieb eine Gemischregelung und eine Adaption der Gemischregelung stattfindet; und wobei zwischen den Betriebsarten in Abhängigkeit von einer Soll-Betriebsart umgeschaltet wird, die aus einer Mehrzahl von Betriebsartenanforderungen ermittelt wird, wobei jeder der Betriebsartenanforderungen eine Priorität zugeordnet ist; und wobei die Ermittlung der Soll-Betriebsart in Abhängigkeit von den Prioritäten der Betriebsartenanforderungen durchgeführt wird, wobei die physikalische Dringlichkeit der Adaption in unterschiedlichen Zeitrastern hochgesetzt wird und damit eine Umschaltung in den Homogenbetrieb gefordert wird.

Description

Verfahren zur Gemischadaption bei Verbrennungsmotoren mit Benzindirekteinspritzung
Stand der Technik
Es ist bereits bekannt, bei der Regelung des
Kraftstoff/Luftverhältnisses für Verbrennungsmotoren eine Vorsteuerung mit einer Regelung zu überlagern. Weiter ist bekannt, aus dem Verhalten der Regelstellgröße weitere Korrekturgrößen abzuleiten um Fehlanpassungen der Vorsteuerung an veränderte Betriebsbedingungen zu kompensieren. Diese Kompensation wird auch als Adaption bezeichnet. Die US 4 584 982 beschreibt beispielsweise eine Adaption mit unterschiedlichen Adaptionsgrößen in verschiedenen Bereichen des Last/Drehzahlspektrums eines Verbrennungsmotors. Die verschiedenen Adaptionsgrößen richten sich auf die Kompensation unterschiedlicher Fehler. Nach Ursache und Wirkung lassen sich drei Fehlerarten unterscheiden: Fehler eines Heißfilmluftmassenmessers wirken sich multiplikativ auf die Kraftstoffzumessung aus. Lecklufteinflüsse wirken additiv pro Zeiteinheit und Fehler bei der Kompensation der Anzugsverzögerung der Einspritzventile wirken additiv pro Einspritzung.
Nach gesetzlichen Vorschriften sollen abgasrelevante Fehler mit On Board Mitteln erkannt werden und gegebenfalls soll eine Fehlerlampe aktiviert werden. Die Gemischadaption wird auch zur Fehlerdiagnose genutzt. Ist beispielsweise der Korrektureingriff der Adaption zu groß, deutet dies auf einen Fehler hin.
Über der Lebensdauer, der Exemplarstreung und bei nichtgeregelter Sondenheizung weicht der gemessene Lambdawert vom physikalisch vorhandenen Lambdawert bei Motoren mit Benzindirekteinspritzung hauptsächlich im Schichtbetrieb ab. Da die Gemischadaption das gemessene
Lambda für das Lernen des Fehlers in Betracht zieht, ist die Adaption im Schichtbetrieb nicht zielführend. Für die Adaption wird daher in den Homogenbetrieb umgeschaltet' und die Gemischadaption aktiviert.
Aus der DE 198 50 586 ist ein Motorsteuerungsprogramm bekannt, das die Umschaltung zwischen Schichtbetrieb und Homogenbetrieb steuert.
Im Schichtbetrieb wird der Motor mit einer stark geschichteten Zylinderladung und hohem Luftüberschuß betrieben, um einen möglichst niedrigen Kraftstoffverbrauch zu erreichen. Die geschichtete Ladung wird durch eine späte Kraftstoffeinspritzung erreicht, die im Idealfall zur Aufteilung des Brennraums in zwei Zonen führt: Die erste
Zone enthält eine brennfähige Luft-Kraftstoff-Gemischwolke an der Zündkerze. Sie wird von der zweiten Zone umgeben, die aus einer isolierenden Schicht aus Luft und Restgas besteht. Das Potential zur Verbrauchsoptimierung ergibt sich aus der Möglichkeit, den Motor unter Vermeidung von
Ladungswechselverlusten weitgehend ungedrosselt zu betreiben. Der Schichtbetrieb wird bei vergleichsweise niedriger Last bevorzugt. Bei höherer Last, wenn die Leistungsoptimierung im Vordergrund steht, wird der Motor mit homogener Zylinderfüllung betrieben. Die homogene Zylinderfüllung ergibt sich aus einer frühen Kraftstoffeinspritzung während des Ansaugvorganges. Als Folge steht bis zur Verbrennung eine größere Zeit zur Gemischbildung zur Verfügung. Das Potential dieser Betriebsart zur Leistungsoptimierung ergibt sich zum Beispiel aus der Ausnutzung des gesamten Brennraumvolumens zur Füllung mit brennfähigem Gemisch.
Hinsichtlich der Adaption existieren mehrere Einschaltbedingungen :
So muß beispielsweise die Motortemperatur die Einschalttemperaturschwelle erreicht haben und die
Lambdasonde muß betriebsbereit sein. Weiter müssen die aktuellen Werte von Last und Drehzahl in bestimmten Bereichen liegen, in denen jeweils gelernt wird. Dies ist beispielsweise aus der US 4 584 982 bekannt. Weiterhin muß Homogenbetrieb vorliegen. Nach dem bekannten Programm wird die Gemischadaption in festen Zeitbereichen aktiviert.
Dabei können sich Zielkonflikte mit anderen Steuerungsfunktionen, beispielsweise mit der Steuerung der Tankentlüftung ergeben. Diese soll bei hoher Beladung des
Aktivkohlefilters aktiv sein. Außerdem ist es wünschenswert, bei niedriger Beladung des Aktivkohlefilters und nicht vollständig abgeschlossener Adaption die Gemischadaption zu aktivieren.
Vor diesem Hintergrund zielt die Erfindung darauf, den Zeitraum, in dem der Motor verbrauchsoptimal im Schichtbetrieb gefahren werden kann, zu vergrößern. Die Umschaltung auf Homogenbetrieb zur Diagnose verringert den Verbrauchsvorteil der Benzindirekteinspritzung, da der Homogenbetrieb verbrauchsungünstiger ist als der Schichtbetrieb. Eine Umschaltung in den Homogenbetrieb, die speziell für die Diagnose erfolgt, erhöht den Kraftstoffverbrauch daher dann unnötig, wenn kein Fehler vorliegt. Sie soll soweit wie möglich vermieden werden, ohne die Entdeckung abgasrelevanter Fehler zu verschlechtern.
Diese Wirkung wird mit den Merkmalen des Anspruchs 1 erzielt.
Im einzelnen werden dazu folgende Schritte durchgeführt: Zur Kompensation von Fehlanpassungen der Vorsteuerung einer Kraftstoffzumessung für einen Verbrennungsmotor, der in den wenigstens zwei verschiedenen Betriebsarten Homogenbetrieb und Schichtbetrieb betrieben wird,
- findet im Homogenbetrieb eine Gemischregelung und eine Adaption der Gemischregelung statt
- wobei zwischen den Betriebsarten in Abhängigkeit von einer Soll-Betriebsart umgeschaltet wird, die aus einer
Mehrzahl von Betriebsartenanforderungen ermittelt wird, und wobei jeder der Betriebsartenanforderungen eine Priorität zugeordnet ist
- und wobei die Ermittlung der Soll-Betriebsart in Abhängigkeit von den Prioritäten der
Betriebsartenanforderungen durchgeführt wird. Dabei wird die physikalische Dringlichkeit der Adaption in unterschiedlichen Zeitrastern hochgesetzt und damit eine Umschaltung in den Homogenbetrieb gefordert.
Damit wird die Anforderung des Homogenbetriebes für die Gemischadaption so optimiert, dass die gesetzlichen Anforderungen erfüllt werden. Eine weitere Ausführungsform sieht vor, daß die Zeitraster abhängig davon sind, ob ein Fehler oder ein Fehlerverdacht vorliegt.
Eine weitere Ausführungsform sieht vor, daß das Motorsteuerungsprogramm unter anderem ein als Phasenentscheider wirkendes Programmmodul, ein als Grundadaptionsanforderer GA_Anforderer wirkendes Programmmodul, ein als Grundadaptionsstop GA_Stop wirkendes Programmmodul und ein als Endentscheider wirkendes Programmmodul enthält .
Eine weitere Ausführungsform sieht vor, daß das Programmmodul Gemischadaptionsanforderer (GA_Anforderer) bei niedriger Beladung des Aktivkohlefilters für eine Zeit TGAPA von weniger als einer Minute Gemischadaption (GA) fordert, wenn die übrigen Einschaltbedingungen der Gemischadaption erfüllt sind.
Eine weitere Ausführungsform sieht vor, daß das
Programmmodul Gemischadaptionstop (GA_Stop) bei hoher Beladung des Aktivkohlefilters mit Kraftstoff und bei abgeschlossener Gemischadaption eine Gemischadaptionsanforderung durch den Phasenentscheider verbietet.
Eine weitere Ausführungsform sieht vor, daß das Programmodul Phasenentscheider die physikalische Dringlichkeit der Gemischadaption in unterschiedlichen Zeitrastern hochsetzt und damit eine Umschaltung in den Homogenbetrieb fordert.
Eine weitere Ausführungsform sieht vor, daß diese Zeitraster davon abhängig sind, ob dem Steuergerät ein Fehler bekannt ist oder ein Fehlerverdacht vorliegt. Die Erfindung richtet sich auch auf eine elektronische Steuereinrichtung zur Durchführung wenigstens eines der genannten Verfahren und Ausführungsformen.
Im normalen Alltagsbetrieb des Fahrzeugs erfolgt die
Anforderung einer Umschaltung in den Homogenbetrieb nur dann, wenn die Gemsichadaption auch aktiv werden kann. Wenn kein Fehler im System vorliegt, wird die Gemischadaption nur in bestimmten Zeitabständen aktiviert. Dies ermöglicht im zeitlichen Mittel eine Vergrößerung der Zeitabschnitte, in denen das Fahrzeug im verbrauchsgünstigen Schichtbetrieb betrieben werden kann.
Im folgenden wird ein Ausführungsbeispiel der Erfindung unter Bezug auf die Zeichnung erläutert.
Fig. 1 zeigt das technische Umfeld der Erfindung.
Fig. 2 verdeutlicht die Bildung eines Kraftstoffzumesssignals auf der Basis der Signale aus Fig. 1
und Fig. 3 offenbart eine schematische Darstellung eines Ausführungsbeispiels der Betriebsartenumschaltung.
Die 1 in der Fig. 1 repräsentiert einen Verbrennungsmotor mit einem Saugrohr 2, einem Abgasrohr 3, einem Kraftstoffzumessmittel 4, Sensoren 5 - 8 für Betriebsparameter des Motors und einem Steuergerät 9. Das Kraftstoffzumessmittel 4 kann beispielsweise aus einer
Anordnung von Einspritzventilen zur direkten Einspritzung von Kraftstoff in die Brennräume des Verbrennungsmotors bestehen. Der Sensor 5 liefert dem Steuergerät ein Signal über die vom Motor angesaugte Luftmasse ml. Sensor 6 liefert ein Motordrehzahlsignal n. Sensor 7 stellt die Motortemperatur T bereit und Sensor 8 liefert ein Signal Us über die Abgaszusammensetzung des Motors. Aus diesen und gegebenenfalls weiteren Signalen über weitere Betriebsparameter des Motors bildet das Steuergerät neben weiteren Stellgrößen die Kraftstoffzumesssignale ti zur Ansteuerung des Kraftstoffzumessmittels 4 so, dass sich ein gewünschtes Verhalten des Motors, insbesondere eine gewünschte AbgasZusammensetzung einstellt.
FIG. 2 zeigt die Bildung des KraftstoffZumesssignals . Block 2.1 stellt ein Kennfeld dar, das durch die Drehzahl n und die relative Luftfüllung rl adressiert wird und in dem Vorsteuerwerte rk für die Bildung der Kraftstoffzumesssignale abgelegt sind. Die relative Luftfüllung rl ist auf eine maximale Füllung des Brennraums mit Luft bezogen und gibt damit gewissermaßen den Bruchteil der maximalen Brennraum- oder Zylinderfüllung an. Sie wird im wesentlichen aus dem Signal ml gebildet, rk entspricht der zur Luftmenge rl zugeordneten Kraftstoffmenge.
Block 2.2 zeigt den bekannten multiplikativen Lambdaregeleingriff . Eine Fehlanpassung der Kraftstoffmenge an die Luftmenge bildet sich im Signal Us der Abgassonde ab. Aus diesem formt ein Regler 2.3 die Regelstellgröße fr, die über den Eingriff 2.2 die Fehlanpassung verringert.
Aus dem so korrigierten Signal kann im Block 2.4 bereits das Zumesssignal, beispielsweise eine Ansteuerimpulsbreite für die Einspritzventile gebildet werden. Block 2.4 repräsentiert damit die Umrechnung der relativen und korrigierten Kraftstoffmenge in ein reales Ansteuersignal unter Berücksichtigung von Kraftstoffdruck, Einspritzventilgeometrie etc.
Die Blöcke 2.5 bis 2.9 repräsentieren die bekannte betriebsparameterabhängige Gemischadaption die multiplikativ und/oder additiv wirken kann. Der Kreis 2.9 soll diese 3 Möglichkeiten repräsentieren. Der Schalter 2.5 wird vom Mittel 2.6 geöffnet oder geschlossen, wobei dem Mittel 2.6 Betriebsparameter des Verbrennungsmotors wie Temperatur T, Luftmasse ml und Drehzahl n zugeführt wird. Mittel 2.6 in Verbindung mit dem Schalter 2.5 erlaubt damit eine betriebsparameterbereichsabhängige Aktivierung der drei genannten Adaptionsmöglichkeiten. Die Bildung des Adaptionseingriffs fra auf die Kraftstoffzumeßsignalbildung wird durch die Blöcke 2.7 und 2.8 veranschaulicht. Block 2.7 bildet bei geschlossenem Schalter 2.5 den Mittelwert frm der Regelstellgröße fr. Abweichungen des Mittelwerts frm vom neutralen Wert 1 werden vom Block 2.8 in die Adaptionseingriffsgröße fra übernommen. Beispielsweise gehe die Regelstellgrösse fr aufgrund einer Fehlanpassung der Vorsteuerung zunächst gegen 1,05. Die Abweichung 0,05 vom Wert 1 wird vom Block 2.8 in den Wert fra des Adaptionseingriffs übernommen. Bei einem multiplikativen fra-Eingriff geht dann fra gegen 1,05 mit der Folge, dass fr wieder gegen 1 geht. Die Adaption sorgt damit dafür, dass Fehlanpassungen der Vorsteuerung nicht bei jedem Betriebspunktwechsel erneut ausgeregelt werden müssen. Diese Anpassung der Adaptionsgröße fra wird bei hohen Temperaturen des Verbrennungsmotors, beispielsweise oberhalb einer Kühlwassertemperatur von 70°Celsius bei dann geschlossenem Schalter 2.5 durchgeführt; einmal angepasst, wirkt fra aber auch bei offenem Schalter 2.5 auf die Bildung des Kraftstoffzumesssignals ein. Fig. 3 zeigt eine schematische Darstellung eines Ausführungsbeispiels der Betriebsartenumschaltung.
Das Motorsteuerungsprogramm enthält unter anderem ein als Phasenentscheider bezeichnetes Programmmodul, ein als Grundadaptionsanforderer GA_Anforderer bezeichnetes Programmmodul, ein als Grundadaptionsstop GA_Stop bezeichnetes Programmmodul und ein als Endentscheider bezeichnetes Programmmodul. Dies ist in Fig. 3a veranschaulicht.
Das Programmodul Phasenentscheider setzt in unterschiedlichen Zeitrastern die physikalische Dringlichkeit der Gemischadaption hoch und fordert damit eine Umschaltung in den Homogenbetrieb. Dies ist in Fig. 3b veranschaulicht .
Diese Zeitraster sind abhängig davon, ob dem Steuergerät ein Fehler bekannt ist oder ein Fehlerverdacht vorliegt. Ein Fehler oder ein Fehlerverdacht können programmtechnisch als Bit durch ein Diagnoseprogramm gesetzt werden. Im folgenden wird von einem Fehler oder Fehlerverdacht als einer im Steuergerät bekannten Größe ausgegangen. Wenn beim Start des Verbrennungsmotors kein Fehlerverdacht im Steuergerät vorliegt,wird in der Fig. 3b nach einer Initialisierung im Zustand 3.1 zunächst für eine lange Zeit tteofini in der Größenordnung einer halben Stunde keine Gemischadaption gefordert (Zustand 3.2). Wenn während dieser Zeit ein Fehler über eine Diagnosefunktion erkannt wird oder wenn der Fehler von der letzten Fahrt durch die Diagnose bekannt war', wird die Zeit tteofini im Zustand 3.2 auf ttefvini in der Größenordnung einiger Minuten verkürzt. Ohne Fehler wird nach der Zeit tteofini eine Gemischadaption für eine Zeitdauer von wenigen Minuten gefordert (Zustand 3.3). Dies stellt für die Gemischadaption eine verhältnismäßig lange Zeit dar, da die Gemischadaption in der Lage ist, Fehler innerhalb weniger Minuten zu lernen. Im Fehlerfall wird nach der Zeit ttefvini für etwa die halbe Zeit Gemischadaption gefordert (Zustand 3.4). Die genannten Zeiten sind
Initialisierungszeiten für fehlerbehaftete beziehungsweise fehlerfreie Systeme.
Nach der Initialisierungszeit wird dann, wenn die Gemischadaption geprüft ist, für lange Zeiten ttegae im Zustand 3.5 in der Größenordnung von 10 Minuten keine Gemischadaption und für kurze Zeiten tgagae im Zustand 3.6 in der Größenordnung von ein bis zwei Minuten Gemischadaption gefordert. Wenn ' in der Zeit ohne Gemischadaption ein Fehler auftritte, erfolgt ein Wechsel von der Schleife aus den Zuständen 3.5 und 3.6 in eine Schleife mit geänderten Zeitrastern. In der Fig. 3b ist dies durch eine Verzweigung vom Zustand 3.5 in die Schleife aus den Zuständen 3.8 und 3.7 dargestellt. Im Zustand 3.7 wird für kurze Zeiten ttengae von wenigen Minuten keine
Gemischadaption und im Zustand 3.8 wird ebenfalls für wenige Minuten tgangae Gemischadaption gefordert. Diese Schleife wird gegebenfall auch aus dem Zustand 3.6 erreicht. Wenn die Gemischadaption noch nicht geprüft ist, wird dagegen von den Zuständen 3.4 oder 3.3 direkt die Schleife aus den Zuständen 3.7 und 3.8 erreicht. Der Phasenentscheider ist als Zustandsautomat realisiert. Darunter versteht man einen als Programmmodul innerhalb des Motorsteuerungsprogramms ausgeführten Schaltfunktionsalgorithmus, der den Übergang zwischen den Zuständen mit unterschiedlichen Zeitdauern steuert. Das Anfordern und Verbieten der Gemischadaption ist in Fig. 3 c dargestellt. Das Programmmodul Gemischadaptionsanforderer GA_Anforderer fordert bei niedriger Beladung des Aktivkohlefilters und bei nicht gesetztem Zyklusflag der additiven beziehungsweise der multiplikativen Adaptionskorrektur für die Zeit TGAPA von weniger als einer Minute Gemischadaption (GA) , wenn die übrigen Einschaltbedingungen der Gemischadaption erfüllt sind. Diese Anforderung kann entweder nur für den Homogenbetrieb oder für alle Betriebsarten aktiviert werden.
Das Programmmodul Gemischadaptionstop GA_Stop verbietet bei hoher Beladung des Aktivkohlefilters mit Kraftstoff und bei abgeschlossener Gemischadaption eine Gemischadaptionsanforderung durch den Phasenentscheider.

Claims

Ansprüche
1. Verfahren zur Kompensation von Fehlanpassungen der Vorsteuerung einer Kraftstoffzumessung für einen Verbrennungsmotor, der in den wenigstens zwei verschiedenen Betriebsarten Homogenbetrieb und
Schichtbetrieb betrieben wird,
- wobei im Homogenbetrieb eine Gemischregelung und eine Adaption der Gemischregelung stattfindet
- und wobei zwischen den Betriebsarten in Abhängigkeit von einer Soll-Betriebsart umgeschaltet wird, die aus einer Mehrzahl von Betriebsartenanforderungen ermittelt wird, wobei jeder der Betriebsartenanforderungen eine Priorität zugeordnet ist - und wobei die Ermittlung der Soll-Betriebsart in
Abhängigkeit von den Prioritäten der Betriebsartenanforderungen durchgeführt wird,
wobei die physikalische Dringlichkeit der Adaption in unterschiedlichen Zeitrastern hochgesetzt wird und damit eine Umschaltung in den Homogenbetrieb gefordert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Zeitraster abhängig davon sind, ob ein Fehler oder ein Fehlerverdacht vorliegt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Motorsteuerungsprogramm unter anderem ein als Phasenentscheider wirkendes Programmmodul, ein als Grundadaptionsanforderer GA_Anforderer wirkendes Programmmodul, ein als Grundadaptionsstop GA_Stop wirkendes Programmmodul und ein als Endentscheider wirkendes Programmmodul enthält .
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Programmmodul Gemischadaptionsanforderer (GA_Anforderer) bei niedriger Beladung des Aktivkohlefilters für eine Zeit TGAPA von weniger als einer Minute Gemischadaption (GA) fordert, wenn die übrigen Einschaltbedingungen der Gemischadaption erfüllt sind.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Programmmodul Gemischadaptionstop (GA_Stop) bei hoher Beladung des Aktivkohlefilters mit Kraftstoff und bei abgeschlossener Gemischadaption eine Gemischadaptionsanforderung durch den Phasenentscheider verbietet.
6. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Programmodul Phasenentscheider die physikalische Dringlichkeit der Gemischadaption in unterschiedlichen Zeitrastern hochsetzt und damit eine Umschaltung in den Homogenbetrieb fordert.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß diese Zeitraster davon abhängig sind, ob dem Steuergerät ein Fehler bekannt ist oder ein Fehlerverdacht vorliegt.
8. Elektronische Steuereinrichtung zur Durchführung wenigstens eines der Verfahren nach den Ansprüchen 1 - 7.
EP01971658A 2000-09-01 2001-08-31 Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung Expired - Lifetime EP1315895B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10043072A DE10043072A1 (de) 2000-09-01 2000-09-01 Verfahren zur Gemischadaption bei Verbrennungsmotoren mit Benzindirekteinspritzung
DE10043072 2000-09-01
PCT/DE2001/003290 WO2002018768A1 (de) 2000-09-01 2001-08-31 Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung

Publications (2)

Publication Number Publication Date
EP1315895A1 true EP1315895A1 (de) 2003-06-04
EP1315895B1 EP1315895B1 (de) 2006-02-08

Family

ID=7654618

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01971658A Expired - Lifetime EP1315895B1 (de) 2000-09-01 2001-08-31 Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung

Country Status (8)

Country Link
US (1) US6655346B2 (de)
EP (1) EP1315895B1 (de)
JP (1) JP2004507657A (de)
KR (1) KR20020068332A (de)
CN (1) CN1388859A (de)
DE (2) DE10043072A1 (de)
ES (1) ES2256295T3 (de)
WO (1) WO2002018768A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10043093A1 (de) * 2000-09-01 2002-03-14 Bosch Gmbh Robert Verfahren zur Gemischadaption bei Verbrennungsmotoren mit Benzindirekteinspritzung
US6666185B1 (en) 2002-05-30 2003-12-23 Caterpillar Inc Distributed ignition method and apparatus for a combustion engine
DE10232537A1 (de) * 2002-07-18 2004-01-29 Robert Bosch Gmbh Verfahren zur Adaption eines Kraftstoff-Luft-Gemisches bei einem Verbrennungsmotor und elektronische Steuereinrichtung
DE10319257B4 (de) * 2003-04-28 2012-10-18 Volkswagen Ag Verfahren zur Ablaufsteuerung von Tankentlüftungs- und Gemischadaptionsphasen bei einem Verbrennungsmotor und Verbrennungsmotor mit Ablaufsteuerung
DE10337228A1 (de) * 2003-08-13 2005-03-17 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
JP4066961B2 (ja) * 2004-02-18 2008-03-26 トヨタ自動車株式会社 内燃機関の制御装置
DE102004016473A1 (de) * 2004-03-31 2005-10-20 Bosch Gmbh Robert Ablaufsteuerung von Funktionen auf miteinander wechselwirkenden Geräten
WO2005116427A1 (de) 2004-04-30 2005-12-08 Volkswagen Aktiengesellschaft Verfahren zur ablaufsteuerung von tankentlüftungs- und gemischadaptionsphasen bei einem verbrennungsmotor und verbrennungsmotor mit ablaufsteuerung
DE102004041217A1 (de) * 2004-08-26 2006-03-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US7007669B1 (en) 2004-12-03 2006-03-07 Caterpillar Inc. Distributed ignition method and apparatus for a combustion engine
DE102007053406B3 (de) 2007-11-09 2009-06-04 Continental Automotive Gmbh Verfahren und Vorrichtung zur Durchführung sowohl einer Adaption wie einer Diagnose bei emissionsrelevanten Steuereinrichtungen in einem Fahrzeug
DE102011006587A1 (de) * 2011-03-31 2012-10-04 Robert Bosch Gmbh Verfahren zur Adaption eines Kraftstoff-Luft-Gemischs für eine Brennkraftmaschine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3341015A1 (de) 1983-11-12 1985-05-30 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung fuer die gemischaufbereitung bei einer brennkraftmaschine
US4624679A (en) * 1985-01-03 1986-11-25 Morton Thiokol, Inc. Compositions containing antimicorbial agents in combination with stabilizers
US5704339A (en) 1996-04-26 1998-01-06 Ford Global Technologies, Inc. method and apparatus for improving vehicle fuel economy
CN1233313B (zh) * 1996-08-23 2013-01-02 卡明斯发动机公司 带最佳燃烧控制的预混合可燃混合气压燃发动机
DE19744230B4 (de) * 1997-10-07 2007-10-25 Robert Bosch Gmbh Steuergeräte für ein System und Verfahren zum Betrieb eines Steuergeräts
JPH11343911A (ja) 1998-03-31 1999-12-14 Mazda Motor Corp 筒内噴射式エンジンの燃料制御装置
JP3633283B2 (ja) * 1998-06-10 2005-03-30 日産自動車株式会社 内燃機関の蒸発燃料処理装置
DE19850586A1 (de) 1998-11-03 2000-05-04 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
DE19906376A1 (de) 1999-02-16 2000-08-17 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine
US6516782B1 (en) * 1999-05-27 2003-02-11 Detroit Diesel Corporation System and method for controlling fuel injections
US6463907B1 (en) * 1999-09-15 2002-10-15 Caterpillar Inc Homogeneous charge compression ignition dual fuel engine and method for operation
US6202601B1 (en) * 2000-02-11 2001-03-20 Westport Research Inc. Method and apparatus for dual fuel injection into an internal combustion engine
JP4161529B2 (ja) * 2000-10-02 2008-10-08 日産自動車株式会社 ディーゼルエンジンの燃料噴射制御装置
US6467495B2 (en) * 2000-11-29 2002-10-22 Delphi Technologies, Inc. Apparatus and method for sealing a solenoid valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0218768A1 *

Also Published As

Publication number Publication date
EP1315895B1 (de) 2006-02-08
US20030101963A1 (en) 2003-06-05
JP2004507657A (ja) 2004-03-11
ES2256295T3 (es) 2006-07-16
KR20020068332A (ko) 2002-08-27
WO2002018768A1 (de) 2002-03-07
CN1388859A (zh) 2003-01-01
DE10043072A1 (de) 2002-03-14
US6655346B2 (en) 2003-12-02
DE50108917D1 (de) 2006-04-20

Similar Documents

Publication Publication Date Title
EP1315894B1 (de) Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung
EP1317617B1 (de) Verfahren und elektronische steuereinrichtung zur diagnose der gemischbildung einer brennkraftmaschine
DE102011010488A1 (de) Verteilte Kraftstoffzufuhrsysteme für Anwendungen mit alternativem Gaskraftstoff
DE102005032506B4 (de) Gelernte Luftdurchflussveränderung
WO2017202826A1 (de) Vorrichtung für ein betreiben eines motors
DE102018113077A1 (de) Verfahren und systeme zum anpassen der kraftstoffzufuhr von motorzylindern
EP1315895B1 (de) Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung
WO2009115406A1 (de) Verfahren und steuervorrichtung zum starten einer brennkraftmaschine, welche eine heizeinrichtung zum erhitzen einer kühlflüssigkeit aufweist
DE102020107523A1 (de) Verfahren und system zum abgleichen von kraftstoffeinspritzvorrichtungen
DE10001583A1 (de) Verfahren und Einrichtung zur Funktionsüberwachung eines Gasströmungssteuerorgans, insbesondere einer Drallkappe, bei einer Brennkraftmaschine
DE102019128694A1 (de) Verfahren und system zum anwenden von motorklopffenstern
DE102020100878A1 (de) Verfahren und system zum bestimmen von schwankung der kraftstoffeinspritzvorrichtung
DE102019131107A1 (de) Verfahren und system zum erlernen von beiträgen von motorklopfhintergrundgeräuschen für einen motor mit variablem hubraum
DE102020131252A1 (de) Systeme und verfahren zur feststellung von luft- und kraftstoffversätzen in einer vorkammer
DE102019119439A1 (de) Verfahren und system zum verbessern der diagnose eines katalysators
DE112011101476B4 (de) Brennstoffzufuhrsteuervorrichtung für Brennkraftmaschine
DE102007060224A1 (de) Verfahren zur Bestimmung der Zusammensetzung eines Kraftstoffgemischs
WO2003006810A1 (de) Verfahren zum zylinderindividuellen abgleich der einspirtzmenge bei brennkraftmaschinen
WO2013087478A1 (de) Bestimmen eines werts für einen ventilhub eines ventils eines individuellen zylinders einer brennkraftmaschine mit mehreren zylindern
WO2013113542A1 (de) Verfahren zur steuerung einer brennkraftmaschine
DE102013225253B4 (de) Kraftstoffeinspritzmengen-Steuervorrichtung für einen Verbrennungsmotor und Kraftstoffeinspritzmengen-Steuerverfahren für einen Verbrennungsmotor
EP1317609A1 (de) Verfahren und elektronische steuereinrichtung zur steuerung der regenerierung eines kraftstoffdampfzwischenspeichers bei verbrennungsmotoren
EP1382822B1 (de) Verfahren zur Adaption eines Kraftstoff-Luft-Gemisches bei einem Verbrennungsmotor und elektronische Steuereinrichtung
DE102007062171B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
WO2002018766A1 (de) Verfahren zur gemischadaption

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020916

AK Designated contracting states

Designated state(s): DE ES FR SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR SE

REF Corresponds to:

Ref document number: 50108917

Country of ref document: DE

Date of ref document: 20060420

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060508

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2256295

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090821

Year of fee payment: 9

Ref country code: FR

Payment date: 20090819

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50108917

Country of ref document: DE

Effective date: 20110621

Ref country code: DE

Ref legal event code: R084

Ref document number: 50108917

Country of ref document: DE

Effective date: 20110614

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131025

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108917

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108917

Country of ref document: DE

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303