EP1311466A1 - Verfahren zur gasphasenpartialoxidation von aromatischen kohlenwasserstoffen - Google Patents

Verfahren zur gasphasenpartialoxidation von aromatischen kohlenwasserstoffen

Info

Publication number
EP1311466A1
EP1311466A1 EP01971932A EP01971932A EP1311466A1 EP 1311466 A1 EP1311466 A1 EP 1311466A1 EP 01971932 A EP01971932 A EP 01971932A EP 01971932 A EP01971932 A EP 01971932A EP 1311466 A1 EP1311466 A1 EP 1311466A1
Authority
EP
European Patent Office
Prior art keywords
temperature
reactor
gas stream
phthalic anhydride
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01971932A
Other languages
English (en)
French (fr)
Inventor
Peter Reuter
Bernhard Ulrich
Thomas Heidemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1311466A1 publication Critical patent/EP1311466A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups

Definitions

  • the invention relates to a process for the gas phase partial oxidation of aromatic hydrocarbons to carboxylic acids or carboxylic acid anhydrides in a tube bundle reactor which is heated with a heat transfer medium in one or more thermostatic baths, which is conducted in countercurrent to the gas stream containing the reactants.
  • a number of carboxylic acids or carboxylic acid anhydrides manufactured industrially by catalytic gas phase oxidation in fixed bed reactors, preferably tubular reactor.
  • a mixture of a gas containing molecular oxygen, for example air, and the starting material to be oxidized is generally passed through a multiplicity of tubes arranged in a reactor.
  • the tubes are surrounded by a heat transfer medium, for example a molten salt.
  • a heat transfer medium for example a molten salt.
  • the hot-spot temperature depends on the educt load of the air flow, on the loading of the catalyst with the educt / air mixture, on the aging condition of the catalyst, on the heat transfer conditions characteristic of the fixed bed reactor (reactor tube, salt bath) and on the salt bath temperature , Various measures have been taken to weaken the hot spots, including those in DE 25 46 268 A, EP 286 448 A, DE 29 48 163 A, EP 163 231 A, WO 98/37967, DE 41 09 387 A and DE 198 23 362 are listed, for example in the PSA production the layered arrangement of differently active catalysts in the catalyst bed.
  • the gas phase oxidation is controlled via the salt bath temperature. This is determined for each individual reactor under the specific technical conditions with the help of raw and end product analyzes.
  • the salt bath temperature is set correctly if only a slight overoxidation or total oxidation occurs and the quality of the product is not impaired beyond the desired maximum by underoxidation products.
  • DE 41 09 387 C proposes the production of PSA with the aid of a formula which shows the current hot spot temperature and o-xylene concentration and standard values for hot spot or salt bath temperature at a standard o-xylene concentration and a time-dependent apparent activation energy in relation to each other to calculate a current salt bath temperature to be set.
  • the formula used assumes linear aging of the catalyst over time and the assumption that the optimal salt bath temperature is independent of the volume velocity of the o-xylene-air mixture. Under these conditions or assumptions, the mathematical expression [T (hot-spot) -T (salt bath)] / o-xylene concentration developed in this publication represents a variable proportional to the relevant reaction rate constant. However, such an assumption cannot be generalized , as has been shown in practice.
  • the object of the invention is therefore to provide an easy-to-carry out method for temperature control of tube bundle reactors in the catalytic gas phase partial oxidation of aromatic hydrocarbons, which is neither time-consuming nor cost-intensive and which enables the oxidation to be controlled in a simple manner.
  • This object is achieved by a process for the catalytic gas phase partial oxidation of aromatic hydrocarbons to carboxylic acids or carboxylic acid anhydrides at elevated temperature, a gas stream laden with the educts being passed through a tube bundle reactor which is separated from one another and in countercurrent to the educt gas stream guided thermostatic bath, the difference between the temperature of the thermostatic bath in the region of the reactor outlet and the temperature of the crude product gas stream emerging from the reactor being used to control the selectivity of the gas phase oxidation.
  • the thermostatic bath preferred for these gas phase oxidations, namely a salt bath.
  • the idea underlying the invention is to determine the optimum salt bath temperature by measuring the temperature of the thermostatic bath in the area of the reactor outlet and the gas temperature of the product gas stream emerging from the reactor (the latter being different from the hot spot temperature).
  • the optimum salt bath temperature can easily be set from the difference in the measured temperatures.
  • the thermostatic bath is conducted in countercurrent to the gas stream containing the educts and has to be cooled to remove heat.
  • This can be effected in a known manner by an internal or external cooling system, see for example Ullmann's Encyclopedia of Industrial Che istry, 5th Edition, vol. A 20, p. 186.
  • the temperature of the thermostatic bath which is decisive according to the invention, is in the area of the reactor outlet.
  • it is expedient to use the temperature of the thermostatic bath entering the reactor which takes place in the region of the reactor outlet. This means that the temperature at a point after passing through the cooling system and before the thermostat Tisierbades is measured in the reactor.
  • the temperature can also be measured after entering the reactor. This also applies when using two or more thermostatic baths that have separate circuits.
  • the measurement value relevant for the temperature difference is obtained from the thermostatic bath located towards the reactor outlet, ie in the area of the reactor outlet, see also the figure explained below.
  • the temperature difference is preferably selected such that a by-product characteristic of the gas phase oxidation in question, generally an under- or over-oxidation product, is contained in the product gas stream in a predetermined concentration range.
  • concentration range depends on the gas phase oxidation in question and also depends on the desired product specifications.
  • the process according to the invention is preferably used to prepare phthalic anhydride from o-xylene, naphthalene or mixtures thereof.
  • phthalide is a characteristic underoxidation product
  • naphthoquinone is a characteristic underoxidation product.
  • the process according to the invention is advantageously also useful for the production of maleic anhydride from benzene (underoxidation product: furan); Pyromellitic anhydride (underoxidation product: 4,5-dimethylphthalic anhydride); Benzoic acid from toluene (underoxidation product: benzaldehyde); Isophthalic acid from m-xylene (underoxidation product: isophthalic dialdehyde); and terephthalic acid (underoxidation product: terephthalic dialdehyde).
  • the temperature difference is chosen so large that the phthalide or naphthoquinone content does not exceed a certain maximum value (e.g. the value specified in the specification of the PSA). If the temperature difference is high, the phthalide or naphthoquinone content is very low, but at the same time the PSA yield is reduced. In practice, the temperature difference will therefore be selected so that there is a balanced relationship between the phthalide or naphthoquinone content and the PSA yield.
  • a certain maximum value e.g. the value specified in the specification of the PSA
  • the temperature difference is selected such that the phthalide or naphthoquinone content is in the range from 0.05% to 0.30%, preferably 0.1% to 0.20%, in each case based on PSA, lies.
  • the upper or lower limit values for other phthalide or naphthoquinone contents of the product gas stream can also be set.
  • the preferred upper limit value for the temperature difference to be set can be determined by determining that the temperature difference which leads to a phthalide or naphthoquinone content of 0.05%, preferably 0.1%, during the startup of the catalyst.
  • the lower limit value for the temperature difference to be set according to the invention can be obtained by determining the value for the temperature difference which leads to a product gas flow with a phthalide or naphthoquinone content of 0.30%, preferably 0.20%.
  • the optimal salt bath temperature is possible in the further implementation of the method according to the invention, in particular after a standard loading has been reached during the gas phase oxidation, without analysis of the raw product gas stream by setting a temperature difference between the determined limit values.
  • Oxidized supported catalysts are suitable as catalysts.
  • spherical, ring-shaped or shell-shaped supports made of a silicate, silicon carbide, porcelain, aluminum oxide, magnesium oxide, tin dioxide, rutile, aluminum silicate, magnesium silicate (steatite), zirconium silicate or cerium silicate mixtures or cerium silicate or mixtures from that.
  • titanium dioxide in particular in the form of its anatase modification, vanadium pentoxide is generally used as the catalytically active component.
  • the catalytically active composition may also contain small amounts of a large number of other oxidic compounds which, as promoters, influence the activity and selectivity of the catalyst, for example by lowering or increasing its activity.
  • promoters are, for example, the alkali metal oxides, thallium (I) oxide, aluminum oxide, zirconium oxide, iron oxide, nickel oxide, cobalt oxide, manganese oxide, tin oxide, silver oxide, copper oxide, chromium oxide, molybdenum oxide, tungsten oxide, iridium oxide, tantalum oxide, niobium oxide, arsenic oxide, antimony oxide, cerium oxide and phosphorus pentoxide.
  • the alkali metal oxides act, for example, as promoters which reduce activity and increase selectivity, whereas oxidic phosphorus compounds, in particular phosphorus pentoxide, increase the activity of the catalyst but reduce its selectivity.
  • Useful catalysts are Wisely described in DE 25 10 994, DE 25 47 624, DE 29 14 683, DE 25 46 267, DE 40 13 051, WO 98/37965 and WO 98/37967.
  • So-called coated catalysts in which the catalytically active composition is applied to the support in the form of a shell have proven particularly useful (see, for example, DE 16 42 938 A, DE 17 69 998 A and WO 98/37967).
  • Catalysts for the other products mentioned above are V 2 ⁇ 5 / Mo0 3 (maleic anhydride), V 2 0 5 (pyromellitic anhydride, see DE 1593536), co-naphthenate (benzoic acid) and Co-Mn-Br catalysts (iso- and terephthalic acid).
  • the catalysts are filled into the tubes of a tube bundle reactor.
  • the reaction gas is passed over the catalyst bed prepared in this way at elevated temperature and pressure.
  • the reaction conditions are dependent on the desired product and the reaction conditions, such as catalyst, loading with starting material etc., and can be found in conventional reference works, e.g. B. Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, VCH Publishing Company.
  • PSA is produced from o-xylene at temperatures of generally 300 to 450 ° C., preferably 320 to 420 ° C. and particularly preferably 340 to 400 ° C., and at an overpressure of generally 0.1 to 2.5 bar , preferably from 0.3 to 1.5 bar, with a space velocity of generally 750 to 5,000 h _1 .
  • the reaction gas supplied to the catalyst is generally obtained by mixing a gas containing molecular oxygen, the reaction moderators and / or diluents, such as steam, carbon dioxide and / or which are also suitable in addition to oxygen
  • the reaction gas generally contains 1 to 100 mol%, preferably 2 to 50 mol% and particularly preferably 10 to 30 mol% of oxygen.
  • the reaction gas is loaded with 5 to 120 g / Nm 3 gas, preferably 60 to 120 g / Nm 3 gas, and particularly preferably 80 to 115 g / Nm 3 gas, of aromatic hydrocarbon to be oxidized.
  • the first reaction zone located towards the entry of the reaction gas generally comprises 30 to 80% of the total analyzer volume and can be thermostatted to a reaction temperature higher than the second reaction zone by 1 to 20 ° C., preferably by 1 to 10 ° C. and in particular by 2 to 8 ° C. Alternatively, both reaction zones have the same temperature.
  • a vanadium pentoxide / titanium dioxide catalyst doped with alkali metal oxides and in the second reaction zone with less alkali metal oxides and / or with phosphorus compounds is used in the production of PSA.
  • the reaction is generally controlled by the temperature setting in such a way that in the first zone most of the aromatic hydrocarbon contained in the reaction gas is converted with maximum yield.
  • the salt bath temperature of the salt bath or the second reactor lying at the reactor outlet is particularly preferably set without changing the salt bath temperature of the salt bath or the first reactor lying at the reactor inlet.
  • Catalyst I (two batches of this catalyst I were produced): 50 kg of steatite (magnesium silicate) rings with an outer diameter of 8 mm, a length of 6 mm and a wall thickness of 1.5 mm were heated to 160 ° C. in a coating drum heated and with a suspension of 28.6 kg anatase with a BET surface area of 20 m 2 / g, 4.11 kg vanadyl oxalate, 1.03 kg antimony trioxide, 0.179 kg ammonium dihydrogen phosphate, 0.184 kg cesium sulfate, 44.1 kg water and 9.14 kg of formamide were sprayed until the weight of the applied layer after calcination at 450 ° C. was 10.5% of the total weight of the finished catalyst.
  • steatite magnesium silicate
  • the catalytically active composition applied in this way consisted of 0.15% by weight of phosphorus (calculated as P), 7.5% by weight of vanadium (calculated as V 2 0 5 ), 3.2% by weight .-% antimony (calculated as Sb 2 0 3 ), 0.4% by weight cesium (calculated as Cs) and 89.05% by weight titanium dioxide.
  • Catalyst II 50 kg of steatite (magnesium silicate) rings with an outer diameter of 8 mm, a length of 6 mm and a wall thickness of 1.5 mm were heated to 160 ° C.
  • the catalytically active composition applied in this way that is to say the catalyst shell, consisted of 0.50% by weight of phosphorus (calculated as P), 7.0% by weight of vanadium (calculated as V 2 0 5 ), 2.5% by weight .-% antimony (calculated as Sb 2 0 3 ) and 90.0 wt .-% titanium dioxide.
  • the reactor 1 has a cylindrical section 2 which is delimited by two tube sheets 3.
  • a multiplicity (in the present example 100) of cylindrical iron tubes 4 with a clear width of 25 mm extend between the tube sheets 3.
  • 1.30 m of catalyst II and then 1.60 m of catalyst I were filled into each of the 3.85-long iron tubes from bottom to top in iron tubes 4.
  • the iron pipes were surrounded by a salt melt for temperature control, which was divided into two separate salt baths 13 and 14.
  • Both salt baths were pumped around using pumps 11 and 12.
  • the salt baths 13 and 14 were entered via the sockets 5 and 6, the outlet via the sockets 7 and 8, respectively. After the outlet, the salt baths were passed through the heat exchangers 9 and 10, respectively.
  • the measuring points for determining the temperature difference were T2 when the lower salt bath 13 entered and T3 when the product gas flow exited.
  • the temperature at the entry of the upper salt bath 14 into the reactor was also determined (measuring point T1).
  • the reactant gas stream 15 was applied to the reactor. Through the tubes 4, 4.0 Nm 3 air per tube with loads of 50 to about 80 g of 98.5% by weight o-xylene were added hourly from top to bottom
  • the table shows the dependence of the phthalide content on the temperature difference. If the phthalide content is above the desired value (e.g.> 0.30%), the catalyst is too inactive and the salt bath temperature must be raised. If the phthalide content is below the desired value, the catalyst is operated at too high a temperature and the salt bath temperature must be reduced.
  • the desired value e.g.> 0.30%

Abstract

Die Erfindung betrifft ein Verfahren zur katalytischen Gasphasenpartialoxidation von aromatischen Kohlenwasserstoffen zu Carbonsäuren oder Carbonsäureanhydriden bei erhöhter Temperatur, wobei ein mit den Edukten beladener Gasstrom durch einen Rohrbündelreaktor geleitet wird, der mit einem oder mehreren, voneinander getrennten und im Gegenstrom zu dem Eduktgasstrom geführten Thermostatisierbädern temperiert wird, wobei zur Steuerung der Selektivität der Gasphasenoxidation die Differenz zwischen der Temperatur des Thermostatisierbades im Bereich des Reaktorausgangs und der Temperatur des aus dem Reaktor austretenden Produktgasstroms herangezogen wird.

Description

Verfahren zur Gasphasenpartialoxidation von aromatischen Kohlenwasserstoffen
Beschreibung
Die Erfindung betrifft ein Verfahren zur Gasphasenpartialoxidation von aromatischen Kohlenwasserstoffen zu Carbonsäuren oder Carbonsäureanhydriden in einem Rohrbundelreaktor, der mit einem Wärmeträgermedium in einem oder mehreren Thermostatisierbadem temperiert wird, das im Gegenstrom zu dem die Reaktionspartner enthaltenden Gasström geführt wird.
Bekanntlich werden eine Reihe von Carbonsäuren oder Carbonsäu- reanhydriden, z. B. Phthalsäureanhydrid (PSA) , technisch durch katalytische Gasphasenoxidation in Festbettreaktoren, vorzugsweise Rohrbündelreaktoren, hergestellt. Bei diesem Verfahren wird im Allgemeinen ein Gemisch aus einem molekularen Sauerstoff enthaltenden Gas, beispielsweise Luft, und dem zu oxidierenden Aus- gangsmaterial durch eine Vielzahl von in einem Reaktor angeordneten Rohren geleitet. In den Rohren befindet sich im Allgemeinen eine Schüttung mindestens eines Katalysators. Zur Temperaturregelung sind die Rohre von einem Wärmeträgermedium, beispielsweise einer Salzschmelze, umgeben. Trotz dieser Thermostatisierung kann es in der Katalysatorschuttung zur Ausbildung lokaler Temperatur- maxima, sogenannter Hot spots, kommen, in denen eine höhere Temperatur als im übrigen Teil der Katalysatorschuttung herrscht. Diese Hot spots geben Anlass zu Nebenreaktionen, wie der Totalverbrennung des Ausgangsmaterials, oder führen zur Bildung uner- wünschter, vom Reaktionsprodukt nicht oder nur mit viel Aufwand abtrennbarer Nebenprodukte .
Zu hohe Hot-spot-Temperaturen führen im Allgemeinen zu einer Überoxidation und damit zu einer starken Abnahme der erreichbaren Produktausbeute sowie der Katalysatorstandzeit. Zu niedrige Hot- spot-Temperaturen führen dagegen zu einem zu großen Gehalt an Un- teroxidationsprodukten, wodurch die Produktqualität entscheidend beeinträchtigt wird. Die Hot-spot-Temperatur hängt von der Edukt- beladung des Luftstroms, von der Belastung des Katalysators mit dem Edukt/Luft-Gemisch, vom Alterungszustand des Katalysators, von den für den Festbettreaktor charakteristischen Wärmeübergangsverhältnissen (Reaktorrohr, Salzbad) und von der Salzbadtemperatur ab. Zur Abschwächung der Hot spots wurden verschiedene Maßnahmen getroffen, die unter anderem in der DE 25 46 268 A, EP 286 448 A, DE 29 48 163 A, EP 163 231 A, WO 98/37967, DE 41 09 387 A und DE 198 23 362 aufgeführt sind, beispielsweise bei der PSA-Her- Stellung die schichtweise Anordnung unterschiedlich aktiver Katalysatoren in der Katalysatorschuttung.
Die Steuerung der Gasphasenoxidation erfolgt in der Praxis über die Salzbadtemperatur. Diese wird für jeden einzelnen Reaktor un- ter den konkreten technischen Bedingungen mit Hilfe von Roh- und Endproduktanalysen ermittelt. Die Salzbadtemperatur ist dann richtig eingestellt, wenn nur eine geringe Überoxidation bzw. To- taloxidation auftritt und die Qualität des Produktes durch Un- teroxidationsprodukte nicht über das erwünschte Höchstmaß hinaus beeinträchtigt wird.
Diese Art der Steuerung ist allerdings kosten- und zeitintensiv. Sie hat außerdem den Nachteil, dass zwischen der Probenentnahme, der Analyse und der Auswertung eine deutliche Zeitspanne vergeht, ehe ein Eingriff in den Prozess erfolgen kann.
Aus diesen Gründen wird in der DE 41 09 387 C zur PSA-Herstellung vorgeschlagen, mit Hilfe einer Formel, die die aktuelle Hot-spot- Temperatur und o-Xylol-Konzentration sowie Standardwerte für Hot- spot- bzw. Salzbadtemperatur bei einer Standard-o-Xylol-Konzen- tration und eine zeitabhängige scheinbare Aktivierungsenergie zueinander in Beziehung setzt, eine aktuell einzustellende Salzbadtemperatur zu errechnen. Die verwendete Formel geht von einer zeitlich linearen Alterung des Katalysators aus sowie von der An- nähme, dass die optimale Salzbadtemperatur unabhängig von der Volumengeschwindigkeit des o-Xylol-Luftgemischs ist. Unter diesen Bedingungen bzw. Annahmen stellt der in dieser Druckschrift entwickelte mathematische Ausdruck [T(Hot-spot)-T(Salzbad) ] /o-Xylol- Konzentration eine der betreffenden Reaktionsgeschwindigkeitskon- stante proportionale Größe dar. Eine derartige Annahme ist jedoch nicht verallgemeinerungsfähig, wie sich in der Praxis gezeigt hat.
Aufgabe der Erfindung ist es daher, ein einfach durchzuführendes Verfahren zur Temperatursteuerung von Rohrbündelreaktoren bei der katalytischen Gasphasenpartialoxidation von aromatischen Kohlenwasserstoffen bereitzustellen, das weder zeit- noch kostenintensiv ist und das in einfacher Weise die Steuerung der Oxidation ermöglicht. Diese Aufgabe wird gelöst durch ein Verfahren zur katalytischen Gasphasenpartialoxidation von aromatischen Kohlenwasserstoffen zu Carbonsäuren oder Carbonsäureanhydriden bei erhöhter Temperatur, wobei ein mit den Edukten beladener Gasstrom durch einen Rohrbün- delreaktor geleitet wird, der mit einem oder mehreren, voneinander getrennten und im Gegenstrom zu dem Eduktgasstrom geführten Thermostatisierbadem temperiert wird, wobei zur Steuerung der Selektivität der Gasphasenoxidation die Differenz zwischen der Temperatur des Thermostatisierbades im Bereich des Reaktoraus- gangs und der Temperatur des aus dem Reaktor austretenden Rohproduktgasstroms herangezogen wird. Im Folgenden wird auch auf das bei diesen Gasphasenoxidationen bevorzugte Thermostatisierbad, nämlich ein Salzbad, Bezug genommen.
Der der Erfindung zugrunde liegende Gedanke besteht darin, die optimale Salzbadtemperatur zu ermitteln, indem man die Temperatur des Thermostatisierbades im Bereich des Reaktorausgangs sowie die Gastemperatur des aus dem Reaktor austretenden ProduktgasStroms misst (letztere ist von der Hot-spot-Temperatur verschieden). Aus der Differenz der gemessenen Temperaturen kann problemlos die optimale Salzbadtemperatur eingestellt werden.
Es wurde nämlich gefunden, dass der bei den üblichen Verfahren in den Rohproduktgasanalysen gefundene Gehalt an Nebenprodukten (Un- teroxidationsprodukten oder gegebenenfalls auch Überoxidations- produkten) mit der Temperaturdifferenz aus der Salzbadtemperatur am Reaktorausgang und der Temperatur des aus dem Reaktor austretenden Rohproduktgasstromes korreliert. Liegt der Anteil an unteroxidierten Produkten relativ hoch, so ist die Temperaturdiffe- renz relativ niedrig; ist der Anteil an unteroxidierten Produkten dagegen niedrig, so ist die Temperaturdifferenz relativ hoch. Grenzwerte für die erfindungsgemäß einzustellende Temperaturdif- ferenz hängen von den reaktorspezifischen Gegebenheiten und von der betreffenden Gasphasenoxidation ab.
Das Thermostatisierbad wird im Gegenstrom zu dem die Edukte enthaltenden Gasstrom geführt und muss zur Wärmeabführung gekühlt werden. Dies kann in bekannter Weise durch ein internes oder externes Kühlsystem bewirkt werden, siehe beispielsweise Ullmann's Encyclopedia of Industrial Che istry, 5th Edition, vol. A 20, S. 186. Die erfindungsgemäß maßgebliche Temperatur des Thermostatisierbades liegt in beiden Fällen im Bereich des Reaktorausgangs vor. Bei einem Reaktor mit externer Kühlung ist es zweckmäßig, die Temperatur des in den Reaktor eintretenden Thermostatisierba- des, was im Bereich des Reaktorausgangs erfolgt, heranzuziehen. Darunter ist zu verstehen, dass die Temperatur an einem Punkt nach Durchlaufen des Kühlsystems und vor Eintritt des Thermosta- tisierbades in den Reaktor gemessen wird. Die Temperatur kann aber auch nach Eintritt in den Reaktor gemessen werden. Dies gilt auch bei Verwendung von zwei oder mehreren Thermostatisierbadem, die voneinander getrennte Kreisläufe besitzen. Der für die Tempe- ratrurdifferenz maßgebliche Messwert wird von dem zum Reaktorausgang hin gelegenen Thermostatisierbad erhalten, also im Bereich des Reaktorausgangs, siehe auch die unten erläuterte Figur.
Vorzugsweise wird die Temperaturdifferenz so gewählt, dass ein für die betreffende Gasphasenoxidation charakteristisches Nebenprodukt, im Allgemeinen ein Unter- oder Überoxidationsprodukt, in einem vorbestimmten Konzentrationsbereich im Produktgasström enthalten ist. Der Konzentrationsbereich ist abhängig von der betreffenden Gasphasenoxidation und richtet sich außerdem nach den gewünschten Produktspezifikationen.
Vorzugsweise dient das erfindungsgemäße Verfahren zur Herstellung von Phthalsäureanhydrid aus o-Xylol, Naphthalin oder Gemischen davon. Bei Verwendung von o-Xylol ist Phthalid und bei Verwendung von Naphthalin ist Naphthochinon ein charakteristisches Unteroxi- dationsprodukt.
Das erfindungsgemäße Verfahren ist mit Vorteil auch brauchbar zur Herstellung von Maleinsäureanhydrid aus Benzol (Unteroxidation- sprodukt: Furan) ; Pyromellithsäureanhydrid (Unteroxidationspro- dukt: 4,5-Dimethylphthalsäureanhydrid) ; Benzoesäure aus Toluol (Unteroxidationsprodukt: Benzaldehyd); Isophthalsäure aus m-Xylol (Unteroxidationsprodukt: Isophthaldialdehyd) ; und Terephthalsäure (Unteroxidationsprodukt: Terephthaldialdehyd) .
Bei der Herstellung von PSA aus o-Xylol oder Naphthalin wählt man die Temperaturdifferenz so groß, dass der Gehalt an Phthalid bzw. Naphthochinon einen bestimmten Höchstwert (z. B. den in der Spezifikation des PSA's festgelegten Wert) nicht überschreitet. Bei hoher Temperaturdifferenz ist dann zwar der Phthalid- bzw. Naph- thochinongehalt sehr niedrig, gleichzeitig aber verringert sich auch die PSA-Ausbeute . In der Praxis wird man daher die Temperaturdifferenz so wählen, dass ein ausgewogenes Verhältnis zwischen Phthalid- bzw. Naphthochinongehalt und PSA-Ausbeute vorliegt. Dies ist vorzugsweise dann der Fall, wenn die Temperaturdifferenz so gewählt ist, dass der Phthalid- bzw. Naphthochinongehalt im Bereich von 0,05 % bis 0,30 %, vorzugsweise 0,1 % bis 0,20 %, jeweils bezogen auf PSA, liegt. Je nach Phthalsäureanhydrid-Spezi- fikation am jeweiligen Standort können jedoch auch die oberen bzw. unteren Grenzwerte bei anderen Phthalid- bzw. Nap thochinon- gehalten des Produktgasstromes festgesetzt werden. Der bevorzugte obere Grenzwert für die einzustellende Temperaturdifferenz kann erfindungsgemäß dadurch festgelegt werden, dass während des Hochfahrens des Katalysators diejenige Temperaturdifferenz ermittelt wird, die zu einem Phthalid- bzw. Naphthochinon- gehalt von 0,05 %, bevorzugt 0,1 %, führt.
Der erfindungsgemäß bevorzugte untere Grenzwert für die einzustellende Temperaturdifferenz kann dadurch erhalten werden, dass der Wert für die Temperaturdifferenz ermittelt wird, die zu einem Produktgasström mit einem Phthalid- bzw. Naphthochinongehalt von 0,30 %, bevorzugt 0,20 %, führt.
Bei der Herstellung anderer Produkte als PSA geht man in analoger Weise vor.
Sind in der erfindungsgemäßen Weise die oberen und unteren Grenzwerte für den einzustellenden Bereich der Temperaturdifferenz festgelegt, so ist es bei der weiteren Durchführung des erfindungsgemäßen Verfahrens, insbesondere nach Erreichen einer Stan- dardbeladung, während der Gasphasenoxidation möglich, ohne Analyse des Rohproduktgasstromes, die optimale Salzbadtemperatur dadurch einzustellen, dass eine Temperaturdifferenz realisiert wird, die zwischen den ermittelten Grenzwerten liegt.
Als Katalysatoren sind oxidische Trägerkatalysatoren geeignet. Zur Herstellung von Phthalsäureanhydrid durch Gasphasenoxidation von o-Xylol oder Naphthalin verwendet man kugelförmige, ringförmige oder schalenförmige Träger aus einem Silikat, Siliciumcar- bid, Porzellan, Aluminiumoxid, Magnesiumoxid, Zinndioxid, Rutil, Aluminiumsilikat, Magnesiumsilicat (Steatit), Zirkoniumsilicat oder Cersilicat oder Mischungen davon. Als katalytisch aktiver Bestandteil dient im Allgemeinen neben Titandioxid, insbesondere in Form seiner Anatasmodifikation, Vanadiumpentoxid. Weiter können in der katalytisch aktiven Masse geringe Mengen einer Viel- zahl anderer oxidischer Verbindungen enthalten sein, die als Promotoren die Aktivität und Selektivität des Katalysators beeinflussen, beispielsweise indem sie seine Aktivität absenken oder erhöhen. Derartige Promotoren sind beispielsweise die Alkalimetalloxide, Thallium(I)oxid, Aluminiumoxid, Zirkoniumoxid, Eisen- oxid, Nickeloxid, Cobaltoxid, Manganoxid, Zinnoxid, Silberoxid, Kupferoxid, Chromoxid, Molybdänoxid, Wolframoxid, Iridiumoxid, Tantaloxid, Nioboxid, Arsenoxid, Antimonoxid, Ceroxid und Phosp- horpentoxid. Die Alkalimetalloxide wirken beispielsweise als die Aktivität vermindernde und die Selektivität erhöhende Promotoren, wohingegen oxidische Phosphorverbindungen, insbesondere Phosphor- pentoxid, die Aktivität des Katalysators erhöhen, aber dessen Selektivität vermindern. Brauchbare Katalysatoren sind beispiels- weise beschrieben in DE 25 10 994, DE 25 47 624, DE 29 14 683, DE 25 46 267, DE 40 13 051, WO 98/37965 und WO 98/37967. Besonders bewährt haben sich sogenannte Schalenkatalysatoren, bei denen die katalytisch aktive Masse schalenförmig auf den Träger aufgebracht ist (siehe z. B. DE 16 42 938 A, DE 17 69 998 A und WO 98/37967) .
Katalysatoren für die anderen oben genannten Produkte sind V2θ5/Mo03 (Maleinsäureanhydrid), V205 (Pyromellithsäureanhydrid, siehe DE 1593536), Co-naphthenat (Benzoesäure) und Co-Mn-Br-Kata- lysatoren (Iso- und Terephthalsäure) .
Zur Reaktion werden die Katalysatoren in die Rohre eines Rohrbündelreaktors gefüllt. Über die so bereitete Katalysatorschuttung wird das Reaktionsgas bei erhöhter Temperatur und bei erhöhtem Druck geleitet. Die Reaktionsbedingungen sind abhängig von dem gewünschten Produkt und den Reaktionsgegebenheiten, wie Katalysator, Beladung mit Edukt etc., und können üblichen Nachschlagewerken entnommen werden, z. B. Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, VCH Verlagsgesellschaft. Die Herstellung von PSA aus o-Xylol erfolgt bei Temperaturen von im Allgemeinen 300 bis 450 °C, vorzugsweise 320 bis 420 °C und besonders bevorzugt 340 bis 400 °C, und bei einem Überdruck von im Allgemeinen 0,1 bis 2,5 bar, vorzugsweise von 0,3 bis 1,5 bar, mit einer Raumgeschwindigkeit von im Allgemeinen 750 bis 5 000 h_1.
Das dem Katalysator zugeführte Reaktionsgas wird im Allgemeinen durch Vermischen von einem molekularen Sauerstoff enthaltenden Gas , das außer Sauerstoff noch geeignete Reaktionsmoderatoren und/oder Verdünnungsmittel, wie Dampf, Kohlendioxid und/oder
Stickstoff enthalten kann, mit dem zu oxidierenden, aromatischen Kohlenwasserstoff erzeugt. Das Reaktionsgas enthält im Allgemeinen 1 bis 100 Mol-%, vorzugsweise 2 bis 50 Mol-% und besonders bevorzugt 10 bis 30 Mol-% Sauerstoff. Im Allgemeinen wird das Re- aktionsgas mit 5 bis 120 g/Nm3 Gas, vorzugsweise 60 bis 120 g/Nm3 Gas, und besonders bevorzugt 80 bis 115 g/Nm3 Gas an zu oxidieren- de , aromatischem Kohlenwasserstoff beladen.
Es hat sich als vorteilhaft erwiesen, zwei oder mehrere Katalysa- toren unterschiedlicher Aktivität schichtweise in der Katalysatorschuttung oder in zwei oder mehreren getrennten Reaktoren anzuordnen, wobei die Katalysatoren im Allgemeinen so angeordnet sind, dass das Reaktionsgasgemisch zuerst mit dem weniger aktiven Katalysator (erste Reaktionszone) und erst im Anschluss daran mit dem aktiveren Katalysator (zweite Reaktionszone) in Kontakt kommt. Die zum Eintritt des Reaktionsgases hin gelegene erste Reaktionszone umfasst im Allgemeinen 30 bis 80 % des gesamten Kata- lysatorvolumens und kann auf eine um 1 bis 20 °C, vorzugsweise um 1 bis 10 °C und insbesondere um 2 bis 8 °C höhere Reaktionstempe- ratur als die zweite Reaktionszone thermostatisiert werden. Alternativ haben beide Reaktionszonen die gleiche Temperatur. Im Allgemeinen wird bei der Herstellung von PSA in der ersten Reaktionszone ein mit Alkalimetalloxiden dotierter und in der zweiten Reaktionszone ein mit weniger Alkalimetalloxiden und/oder mit Phosphorverbindungen dotierter Vanadiumpentoxid/Titandioxid-Kata- lysator eingesetzt.
Die Umsetzung wird im Allgemeinen durch die Temperatureinstellung so gesteuert, dass in der ersten Zone der größte Teil des im Reaktionsgas enthaltenen aromatischen Kohlenwasserstoffs bei maximaler Ausbeute umgesetzt wird.
Bei dem Reaktortyp mit zwei oder mehr Zonen wird besonders bevorzugt die Salzbadtemperatur des zum Reaktorausgang liegenden Salzbades bzw. des zweiten Reaktors ohne Änderung der Salzbadtemperatur des zum Reaktoreingang liegenden Salzbades bzw. des ersten Reaktors eingestellt.
Die nachfolgenden Beispiele erläutern die Erfindung ohne sie zu begrenzen.
Herstellungsbeispiel
Herstellung von Katalysatoren I und II für die Herstellung von PSA
Katalysator I (von diesem Katalysator I wurden zwei Partien hergestellt) : 50 kg Steatit (Magnesiumsilicat) -Ringe mit einem äußeren Durchmesser von 8 mm, einer Länge von 6 mm und einer Wandstärke von 1,5 mm wurden in einer Dragiertrommel auf 160 °C erhitzt und mit einer Suspension aus 28,6 kg Anatas mit einer BET- Oberfläche von 20 m2/g, 4,11 kg Vanadyloxalat, 1,03 kg Antimon- trioxid, 0,179 kg Ammoniumdihydrogenphosphat, 0,184 kg Cäsiumsulfat, 44,1 kg Wasser und 9,14 kg Formamid besprüht, bis das Gewicht der aufgetragenen Schicht nach Kalzinierung bei 450 °C 10,5 % des Gesamtgewichts des fertigen Katalysators betrug.
Die auf diese Weise aufgebrachte katalytisch aktive Masse, also die Katalysatorschale, bestand aus 0,15 Gew.-% Phosphor (berechnet als P), 7,5 Gew.-% Vanadium (berechnet als V205), 3,2 Gew.-% Antimon (berechnet als Sb203), 0,4 Gew.-% Cäsium (berechnet als Cs) und 89,05 Gew.-% Titandioxid. Katalysator II: 50 kg Steatit(Magnesiumsilicat) -Ringe mit einem äußeren Durchmesser von 8 mm, einer Länge von 6 mm und einer Wandstärke von 1,5 mm wurden in einer Dragiertrommel auf 160 °C erhitzt und mit einer Suspension aus 28,6 kg Anatas mit einer BET-Oberflache von 11 m2/g, 3,84 kg Vanadyloxalat, 0,80 kg Anti- montrioxid, 0,597 kg Ammoniumhydrogenphosphat, 44,1 kg Wasser und 9,14 kg Formamid besprüht, bis das Gewicht der aufgetragenen Schicht nach Kalzinierung bei 450 °C 12,5 % des Gesamtgewichts des fertigen Katalysators betrug.
Die auf diese Weise aufgebrachte katalytisch aktive Masse, also die Katalysatorschale, bestand aus 0,50 Gew.-% Phosphor (berechnet als P), 7,0 Gew.-% Vanadium (berechnet als V205), 2,5 Gew.-% Antimon (berechnet als Sb203) und 90,0 Gew.-% Titandioxid.
Durchführungsbeispiele und Vergleichsbeispiele:
Die Beispiele werden nachfolgend unter Bezug auf die Figur beschrieben. Diese zeigt schematisiert einen Querschnitt durch ei- nen PSA-Reaktor.
Herstellung von PSA
Der Reaktor 1 weist einen zylindrischen Abschnitt 2 auf, der von zwei Rohrböden 3 begrenzt ist. In dem zylindrischen Abschnitt erstrecken sich zwischen den Rohrböden 3 eine Vielzahl (im vorliegenden Beispiel 100) von zylindrischen Eisenrohren 4 mit einer lichten Weite von 25 mm. In die Eisenrohre 4 wurden von unten nach oben jeweils 1,30 m des Katalysators II und anschließend 1,60 m des Katalysators I in jedes der 3,85 langen Eisenrohre eingefüllt. Die Eisenrohre waren zur Temperaturregelung von einer Salzschmelze umgeben, die in zwei getrennte Salzbäder 13 und 14 unterteilt war.
Beide Salzbäder wurden mit Hilfe der Pumpen 11 und 12 umgepumpt. Der Eintritt in die Salzbäder 13 und 14 erfolgte über die Stutzen 5 bzw. 6, der Austritt über die Stutzen 7 bzw. 8. Nach dem Austritt werden die Salzbäder über die Wärmetauscher 9 bzw. 10 geführt. Die Messstellen für die Ermittlung der Temperaturdifferenz waren T2 beim Eintritt des unteren Salzbades 13 und T3 beim Austritt des ProduktgasStroms. Darüber hinaus wurde auch die Temperatur beim Eintritt des oberen Salzbades 14 in den Reaktor bestimmt (Messstelle Tl).
Der Reaktor wurde mit dem Eduktgasstrom 15 beaufschlagt. Durch die Rohre 4 wurden stündlich von oben nach unten 4,0 Nm3-Luft pro Rohr mit Beladungen von 50 bis etwa 80 g 98,5 gew.-%igem o-Xylol
PHD-Gehalt >0,30 => Katalysator ist zu inaktiv, SBT muss angehoben werden; PHD-Gehalt <0,05 % in der Gasphase => Katalysatortemperatur ist zu hoch, SBT kann gesenkt werden.
Die Tabelle zeigt die Abhängigkeit des Phthalidgehaltes von der Temperaturdifferenz. Falls der Phthalidgehalt oberhalb des gewünschten Wertes liegt (z. B. >0,30 %), ist der Katalysator zu inaktiv und die Salzbadtemperatur muss angehoben werden. Falls der Phthalidgehalt unterhalb des gewünschten Wertes liegt, wird der Katalysator bei zu hoher Temperatur betrieben und die Salzbadtemperatur muss abgesenkt werden.

Claims

Patentansprüche
1. Verfahren zur katalytischen Gasphasenpartialoxidation von aromatischen Kohlenwasserstoffen zu Carbonsäuren oder Carbonsäureanhydriden bei erhöhter Temperatur, wobei ein mit den Edukten beladener Gasstrom durch einen Rohrbundelreaktor geleitet wird, der mit einem oder mehreren, voneinander getrennten und im Gegenstrom zu dem Eduktgasstrom geführten Thermostatisierbadem temperiert wird, dadurch gekennzeichnet, dass zur Steuerung der Selektivität der Gasphasenoxidation die Differenz zwischen der Temperatur des Thermostatisierbades im Bereich des Reaktorausgangs und der Temperatur des aus dem Reaktor austretenden ProduktgasStroms herangezo- gen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperaturdifferenz so gewählt wird, dass ein für die betreffende Gasphasenoxidation charakteristisches Nebenprodukt in einem vorbestimmten Konzentrationsbereich im Produktgasstrom enthalten ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass bei der Gasphasenpartialoxidation von o-Xylol zu P thal- säureanhydrid die Temperaturdifferenz so gewählt wird, dass der Phthalidgehalt des Phthalsäureanhydrids im Bereich von 0,05 % bis 0,3 %, bezogen auf Phthalsäureanhydrid, liegt,
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Temperaturdifferenz so gewählt wird, dass der Phthalidgehalt des Produktgasstroms im Bereich von 0,1 % bis 0,2 %, bezogen auf Phthalsäureanhydrid, liegt.
5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass bei der Gasphasenpartialoxidation von Naphthalin zu
Phthalsäureanhydrid die Temperaturdifferenz so gewählt wird, dass der Naphthochinongehalt des ProduktgasStroms im Bereich von 0,05 bis 0,3 Gew.-%, bezogen auf Phthalsäureanhydrid, liegt.
Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Temperaturdifferenz so gewählt wird, dass der Naphthochinongehalt des ProduktgasStroms im Bereich von 0,1 bis 0,2 Gew.-%, bezogen auf Phthalsäureanhydrid, liegt.
7. Verfahren nach einem der Ansprüche 3 bis 6 , dadurch gekennzeichnet, dass die Umsetzung an Vanadiumpentoxid/Titandioxid- Trägerkatalysatoren erfolgt.
8. Verfahren nach einem der Ansprüche 3 bis 7 , dadurch gekennzeichnet, dass die Umsetzung bei 300 °C bis 450 °C erfolgt.
9. Verfahren nach einem der Ansprüche 3 bis 8 , dadurch gekennzeichnet, dass die Umsetzung bei einem Überdruck von 0,1 bis 2,5 bar erfolgt.
EP01971932A 2000-08-21 2001-08-20 Verfahren zur gasphasenpartialoxidation von aromatischen kohlenwasserstoffen Withdrawn EP1311466A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10040818 2000-08-21
DE10040818A DE10040818A1 (de) 2000-08-21 2000-08-21 Verfahren zur Gasphasenpartialoxidation von aromatischen Kohlenwasserstoffen
PCT/EP2001/009585 WO2002016300A1 (de) 2000-08-21 2001-08-20 Verfahren zur gasphasenpartialoxidation von aromatischen kohlenwasserstoffen

Publications (1)

Publication Number Publication Date
EP1311466A1 true EP1311466A1 (de) 2003-05-21

Family

ID=7653146

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01971932A Withdrawn EP1311466A1 (de) 2000-08-21 2001-08-20 Verfahren zur gasphasenpartialoxidation von aromatischen kohlenwasserstoffen

Country Status (9)

Country Link
US (1) US20030176715A1 (de)
EP (1) EP1311466A1 (de)
JP (1) JP2004506707A (de)
KR (1) KR20030027050A (de)
CN (1) CN1191223C (de)
AU (1) AU2001291779A1 (de)
DE (1) DE10040818A1 (de)
MX (1) MXPA03001300A (de)
WO (1) WO2002016300A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2717768T3 (es) * 2013-06-26 2019-06-25 Basf Se Procedimiento para el arranque de un reactor de oxidación en fase gaseosa
CN109369544B (zh) * 2018-12-05 2022-06-03 兰州大学 一种催化氧化制备5-甲基吡嗪-2-羧酸的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2546268C3 (de) * 1975-10-16 1983-11-24 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Phthalsäureanhydrid aus o-Xylol oder Naphthalin
US4203906A (en) * 1977-07-13 1980-05-20 Nippon Shokubai Kagaku Kogyo Co., Ltd. Process for catalytic vapor phase oxidation
JPS603307B2 (ja) * 1978-11-29 1985-01-26 株式会社日本触媒 無水フタル酸の製造方法
DE4109387C2 (de) * 1991-03-22 1998-04-30 Buna Sow Leuna Olefinverb Gmbh Verfahren zur Temperatursteuerung von Salzbadröhrenreaktoren für die Phthalsäureanhydrid-Synthese
EP0966324B1 (de) * 1997-02-27 2003-04-23 Basf Aktiengesellschaft Verfahren zur herstellung von schalenkatalysatoren für die katalytische gasphasenoxidation von aromatischen kohlenwasserstoffen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0216300A1 *

Also Published As

Publication number Publication date
CN1191223C (zh) 2005-03-02
DE10040818A1 (de) 2002-03-07
US20030176715A1 (en) 2003-09-18
JP2004506707A (ja) 2004-03-04
WO2002016300A1 (de) 2002-02-28
CN1447785A (zh) 2003-10-08
KR20030027050A (ko) 2003-04-03
MXPA03001300A (es) 2003-06-24
AU2001291779A1 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
EP1311467B1 (de) Verfahren zur herstellung von phthalsäureanhydrid
EP1636161B1 (de) Herstellung von aldehyden, carbonsäuren und/oder carbonsäureanhydriden mittels vanadiumoxid, titandioxide und antimonoxid enthaltender katalysatoren
EP1082317B1 (de) Verfahren zur herstellung von phthalsäureanhydrid durch katalytische gasphasenoxidation von o-xylol/naphthalin-gemischen
EP1735093B1 (de) Katalysator mit einer silber-vanadiumoxidphase und einer promotorphase
DE2948163C3 (de) Katalysator zur Herstellung von Phthalsäureanhydrid
EP2024351B1 (de) Herstellung von phthalsäureanhydrid durch gasphasenoxidation von o-xylol
EP1478614B1 (de) Verfahren zur herstellung von phthalsäureanhydrid
EP2027102B1 (de) Herstellung von phthalsäureanhydrid durch gasphasenoxidation von o-xylol in einem haupt- und nachreaktor
EP1654211B1 (de) Silber, vanadium und ein promotormetall enthaltendes multimetalloxid und dessen verwendung
WO2009124947A1 (de) Verfahren zum anfahren eines gasphasenoxidationsreaktors, der eine katalytisch aktive silber-vanadiumoxid-bronze enthält
WO2007116018A1 (de) Katalysatorsystem zur herstellung von carbonsäuren und/oder carbonsäurenanhydriden
DE19929573A1 (de) Verfahren zur Herstellung von Pyromellitsäuredianhydrid
EP1654061B1 (de) Katalysator für gasphasenoxidationen
EP3013784B1 (de) Verfahren zum anfahren eines gasphasenoxidationsreaktors
EP1417194A1 (de) Verfahren zur herstellung von maleinsäureanhydrid
EP1311466A1 (de) Verfahren zur gasphasenpartialoxidation von aromatischen kohlenwasserstoffen
DE10334582A1 (de) Verfahren zur Herstellung von Maleinsäureanhydrid
DE102013000654B4 (de) Verfahren zur Optimierung der Aktivität eines Phthalsäureanhydrid-Katalysators
DE2129790A1 (de) Katalysatorzusammensetzung fuer die Oxydation von o-Xylol zu Phthalsaeureanhydrid
DE10236698A1 (de) Mehrstufiges Verfahren zur Herstellung von Carbonsäuren und/oder -anhydriden mit Intermediat-Auftrennung
DE19910077A1 (de) Verfahren zur Herstellung von Carbonsäureanhydriden oder Carbonsäuren durch katalytische Gasphasenoxidation von aromatischen Kohlenwasserstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030220

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEIDEMANN, THOMAS

Inventor name: ULRICH, BERNHARD

Inventor name: REUTER, PETER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060301