EP1304401B1 - Dispositif et procédé pour le filage de fibres synthétiques - Google Patents

Dispositif et procédé pour le filage de fibres synthétiques Download PDF

Info

Publication number
EP1304401B1
EP1304401B1 EP01124823A EP01124823A EP1304401B1 EP 1304401 B1 EP1304401 B1 EP 1304401B1 EP 01124823 A EP01124823 A EP 01124823A EP 01124823 A EP01124823 A EP 01124823A EP 1304401 B1 EP1304401 B1 EP 1304401B1
Authority
EP
European Patent Office
Prior art keywords
plate
distribution plate
metering
flowable material
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01124823A
Other languages
German (de)
English (en)
Other versions
EP1304401A1 (fr
Inventor
Jeffrey S. Dugan
Frank O. Harris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fiber Innovation Technology Inc
Original Assignee
Fiber Innovation Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fiber Innovation Technology Inc filed Critical Fiber Innovation Technology Inc
Priority to EP01124823A priority Critical patent/EP1304401B1/fr
Priority to DE60120983T priority patent/DE60120983D1/de
Priority to AT01124823T priority patent/ATE331057T1/de
Publication of EP1304401A1 publication Critical patent/EP1304401A1/fr
Application granted granted Critical
Publication of EP1304401B1 publication Critical patent/EP1304401B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/06Distributing spinning solution or melt to spinning nozzles

Definitions

  • the present invention relates to an apparatus and process for the production of synthetic fibers.
  • the invention relates to an apparatus and process for the production of spun synthetic fibers having improved uniformity and production efficiencies.
  • Synthetic fibers are now used in many textile applications where natural fibers were traditionally used. This movement to the use of synthetic fibers mainly has been facilitated by their typically superior physical properties and relatively low manufacturing costs.
  • synthetic fibers can be tailor-made to have a variety of different properties in order to enhance their applicability in numerous types of applications such as clothing, roping, industrial materials, and many other applications. For example, the material used, the fiber cross-sectional shape, the fiber size, etc. can be pre-selected to form a fiber which has the requisite features preferred for its intended end use.
  • multi-component synthetic fibers can be produced and utilized, with the individual fiber components being selected to provide specific features.
  • the manufacturer can control the cross-sectional shape of each of the various components as well as their relative proportions in the fiber structure. In this way, multi-component fibers enable a user to capitalize on the particular features of multiple different synthetic materials simultaneously, often with synergistic results.
  • spinning processes are used to produce synthetic filaments.
  • a flowable material e.g ., a solution-dissolved or molten polymer
  • the liquified material passes through the spinneret where it emerges in a plurality of thin material streams which are quenched ( e.g ., by a gaseous or liquid medium) in order to solidify the flowable material streams, thereby forming spun filaments.
  • the individual fibers of the plurality typically have relatively uniform cross-sectional dimensions, in order that uniform properties are consistently provided by each fiber.
  • irregularities in fiber structures are commonly and undesirably introduced during fiber production, and variations can occur between the individual fibers relative to each other as well as along the length of each individual fiber.
  • the individual flow paths of the etched plate would thus, absent any intentional modification to their design, generally have different lengths and/or dimensions.
  • This difference in the path lengths can cause the flowable polymer material in the longer flow paths to experience a larger drop in pressure than the polymer material in the shorter flow paths.
  • This pressure differential between the materials in the different flow paths can thus cause the feed rate of the flowable polymer material to the spinneret backholes to vary, which can adversely affect the shape of the polymer streams exiting the spinneret.
  • These pressure differentials can represent an even greater problem in the production of multi-component fibers, since the feeding of the flowable materials to form particular multi-component fibers typically needs to be very precise.
  • the pressure irregularities are introduced downstream of the pressure regulating means (i.e ., generally a metering plate proximate the material supply point), the pressure irregularities tend to manifest themselves directly in the form of irregularities in the spun fibers.
  • prior art methods have employed distribution plates where the shorter path lengths are intentionally lengthened so as to equalize the lengths for all of the flow paths. In other words, some channels are made longer than necessary, to achieve a particular fiber construction. This lengthening of the channel increases the dwell time of the flowable material, which can lead to undesirable and otherwise unnecessary polymer degradation.
  • the extended length channels consume plate area which might be otherwise beneficially used.
  • the cited art allows only the positioning of exit holes relative to each other to determine the multi-component cross-section, which is a less certain method than the one of the instant invention, which allows the use of the size and shape of the exit holes to determine the fiber configuration as well.
  • US-A-3 847 524 is showing a conventional apparatus for forming synthetic fibers.
  • the known apparatus does not comprise a metering plate having at least two orifices positioned immediately downstream to each exit hole of a distribution plate.
  • the present invention provides such consistent uniform fiber spinning by generally restoring and/or initiating a pressure equilibrium to the flowable material streams as they are delivered to the spinneret. This in turn allows the spinneret to produce synthetic fibers with more uniform structures and properties. Because the apparatus in one embodiment of the present invention can be used to actually create the requisite pressure for the spinning process, in that embodiment the pressure equipment located upstream of the distribution plate, such as the pressure and metering plates often utilized to provide pressure in conventional spin pack arrangements, can essentially be eliminated.
  • an apparatus for forming synthetic fibers which includes a distribution plate for distributing flowable material in a direction perpendicular to the spinning direction, and one or more metering plates positioned downstream of the distribution plate and likewise oriented perpendicular to the spinning direction.
  • a distribution plate for distributing flowable material in a direction perpendicular to the spinning direction
  • one or more metering plates positioned downstream of the distribution plate and likewise oriented perpendicular to the spinning direction.
  • the distribution plate contains at least one flow path which is in fluid flow connection with at least one generally parallel exit hole which forms a portion of a downstream surface of the distribution plate.
  • exit hole is meant in its broadest sense to encompass the downstream orifice(s) of a plate or cooperating combination of plates, and is intended to encompass all such downstream cavities regardless of whether larger or smaller than the upstream supply channel opening, and regardless of their shape relative to that of the supply channel.
  • distribution plate appears in singular form, it is intended to encompass all distribution plate arrangements which perform a flowable material distribution function in the manner described in the instant application.
  • the distribution plate can comprise several plate elements which cooperatively function to direct at least one flowable material to a location other than that in which it would be located when exiting the material supply arrangement located immediately upstream of the distribution plate by either directing it perpendicularly relative to its feed position and/or expanding or shaping the flowable material stream from its input dimensions and configuration.
  • parallel is intended to describe the axis of the exit hole as compared with the general overall flow direction ( i.e ., upstream towards downstream) of the spinning assembly.
  • the metering plate contains at least one, and preferably at least two orifices which are desirably positioned immediately downstream of an exit hole of the distribution plate. At least a portion of the metering plate orifice (i.e ., preferably the downstream portion of the orifice) has a combination of diameter and length sufficient to moderate the pressure of flowable material flowing through the metering plate. In this way, the metering plate achieves a greater degree of equilibration of the pressures of the flowable material(s).
  • the size of the metering plate orifice(s) and the thickness of the metering plate can be specially dimensioned to produce a defined pressure increase in the flowable material.
  • the metering plate orifice(s) and/or the thickness of the metering plate can be sized to produce a pressure on the flowable material as it exits the metering plate which is alone sufficient for balanced-pressure feed to the spinneret, thereby essentially obviating the need for upstream pressurization means.
  • selected portions of the metering plate can have different orifice configurations, in order to moderate material streams exiting their respective corresponding distribution plate exit holes at different levels.
  • the flowable material In the action of the spinneret, it is typically advantageous to have the flowable material oriented in a parallel condition relative to the spinning direction before it enters the spinneret.
  • the metering plate orifice in a preferred embodiment, orients the flowable material to produce a parallelly-oriented flowable material which is distributed to the spinneret.
  • a second metering plate is also positioned upstream of the distribution plate.
  • the upstream metering plate provides flowable material to the distribution plate at an initial consistent pressure, with material pressure being re-equilibrated upon exit from the distribution plate by the downstream metering plate.
  • a spinneret has a plurality of backholes and mating exit orifices in order that a number of fibers can be spun simultaneously. Therefore, the downstream metering plates used in the present invention desirably have at least one, and preferably two orifices which mate with each of the spinneret backholes which are intended to be active during the spinning process. For some applications, it is advantageous to provide a plurality of flowable material streams to a single spinneret backhole. In light of this, in certain embodiments of the invention, the downstream metering plate has a plurality of orifices which direct flowable material into each of the active individual spinneret backholes.
  • each orifice of the plurality is smaller than the distribution plate exit hole to which it corresponds.
  • the plural orifices of the metering plate receive the flowable material from the distribution plate exit hole(s) and output plural flowable material streams.
  • the metering function of the orifices causes the material to flow at equilibrated pressure through each metering orifice fed by the larger, corresponding distribution plate exit hole, rather than flowing preferentially through the metering orifice nearest the channel feeding the distribution plate exit hole.
  • the plural material streams can be fed to a single spinneret backhole as desired, thereby enabling the pattern of stream feeding to approximate the shape of areas of particular materials in the particular fiber configuration sought to be produced.
  • Such a feeding arrangement has particular advantages in the production of multi-component fibers, as it provides a high degree of precision in the feeding of the stream to the backhole of the spinneret while at the same time, maintaining consistent pressure between the plural streams.
  • the size of the individual orifices of the plurality of metering plate orifices and the thickness of the metering plate are desirably sufficiently uniform such that the pressure of any one of the plurality of streams is approximately equilibrated to the pressure of any other stream of the plurality of flowable material streams as they exit the metering plate and flow toward the spinneret.
  • the distribution plate may contain at least two flow paths which each distribute the flowable material(s) to at least one distribution plate exit hole located at a desired position on the distribution plate. Due to this configuration, the flow paths may be of differing lengths and thus provide different pressure losses to the flowable polymer streams. This problem, left unmodified, would result in flowable polymer streams with differing pressures.
  • the shape, configuration and dimensions of orifices in the metering plate and the thickness of the metering plate are such that the pressure increase through any exit hole of the plurality of exit holes in the metering plate is large enough to thereby produce a plurality of flowable material streams where the pressure of one stream of the plurality of flowable material streams is approximately equilibrated to the pressure of any other stream of the plurality.
  • each flow path in the distribution plate includes at least one exit hole such that the individual streams are combined downstream of the distribution plate.
  • the material streams may be combined in shaped cavities immediately upstream of the metering plate, although in most cases they will be combined in the spinneret backhole just downstream of the metering plate.
  • This embodiment of the invention has particular applicability to the production of multi-component fibers, as it enables precise positioning of each of the fiber components.
  • the distribution plate exit hole(s) can be formed in predetermined shape(s) for producing and distributing a flowable material stream with a predetermined shape.
  • the metering plate is desirably configured such that a plurality of metering plate orifices correspond to at least one of the distribution plate exit holes. The plurality of orifices of the metering plate which receive each of the shaped flowable material streams then output to the spinneret a plurality of flowable material streams which collectively substantially maintain the predetermined shape.
  • the plurality of orifices in the metering plate outputs to a spinneret backhole a plurality of flowable material streams, wherein the pressure of one flowable material stream is approximately equilibrated to the pressure of any of the other flowable material streams.
  • the invention involves a process for increasing the consistency of synthetic fibers produced in a spinneret.
  • the process involves directing a flow of material across a distribution plate and thereafter through a hole to an adjacent metering plate which moderates and more consistently controls the pressure of the flowable material.
  • this is performed by providing a metering plate which has a downstream orifice that is smaller than the exit hole of the distribution plate, although other forms of metering plate could be used, such as a metering plate having metering orifices which are larger than the distribution plate exit hole, but with the metering holes being long enough for drag from the hole walls to produce the desired pressure drop.
  • the equilibrated pressure flowable material streams are directed from the exit holes of the metering plate orifices to the backhole(s) of a downstream spinneret.
  • the metering plate downstream of the distribution plate can serve to improve the balance of pressures between a plurality of flowable material streams (whether they are being fed to a single or to plural spinneret backholes) and to create pressure in the flowable material streams, in some cases to an extent sufficient to obviate the need for upstream pressure means.
  • the distribution plate exit hole dispenses a flowable material having a predetermined cross-sectional shape to a plurality of orifices in the metering plate.
  • the higher resistance met by the polymer trying to flow through the metering orifices causes it to fill the upstream shaped cavity before it is able to flow steadily through the metering orifices.
  • the plurality of orifices in the metering plate desirably adjust the pressure of the shaped flowable material and produce a plurality of flowable material streams which collectively maintain the predetermined shape such that the flowable material is fed to the downstream spinneret backholes at relatively balanced pressures in a shape which approximates that desired for a particular portion of the cross-section of the spun fiber.
  • the plurality of orifices in the metering plate desirably adjust the pressure of the shaped flowable material and produce a plurality of flowable material streams which collectively maintain the predetermined shape such that the flowable material is fed to the downstream spinneret backholes at relatively balanced pressures in a shape which approximates that desired for a particular portion of the cross-section of the spun fiber.
  • the apparatus of the present invention also promotes efficiency in the forming of synthetic fibers.
  • the orifices of the metering plate can be designed with appropriate dimensions such as to create the requisite pressure for the spinning process. This in turn would alleviate the need for the conventional metering plates which are placed upstream of the distribution plate, which is particularly desirable due to the high costs typically associated with these plates. Because the feeding of the flowable material can be more consistent in the apparatus and process of the present invention, better uniformity in fiber-to-fiber cross-sections and better control over the cross-section of each individual fiber can be achieved.
  • the synthetic fiber forming apparatus of the present invention may be used to produce a variety of synthetic fibers (e.g. , polyester, nylon, rayon, etc.) including both single and multi-component material configurations.
  • synthetic fibers e.g. , polyester, nylon, rayon, etc.
  • Figure 1 is a perspective view of a synthetic fiber forming apparatus 10 for forming a variety of synthetic fibers according to the instant invention.
  • the upper material supply portion of the apparatus 10 according to the present invention can be formed in a conventional manner.
  • the supply portion of the apparatus 10 can include a conventional-type top plate 11 which receives one or more materials through inlet bores and transfers the material to a screen support plate 12 , which filters the flowable material and forwards it towards a distribution plate.
  • the apparatus 10 desirably includes a distribution plate 14 which has at least one flow path 16 oriented in a direction perpendicular to the spinning direction and at least one exit hole 18 .
  • the apparatus 10 also includes a metering plate 22 which has at least one orifice 24 which desirably extends in a direction substantially parallel to the spinning direction, and a common flow path with at least one exit hold of the distribution plate 14 .
  • the metering plate 22 is positioned downstream of the distribution plate 14 such that plural orifices 24 of the metering plate 22 are immediately downstream of each of the distribution plate exit holes 18 .
  • the orifices 24 in the metering plate 22 are adapted to moderate the pressure of a material flowing from an exit hole of the distribution plate through the metering plate.
  • the diameter of at least a portion of the metering plate orifice 24 (shown at 26 ) is desirably smaller than the diameter of the distribution plate exit hole 18 (shown at 20 ) such that it moderates the pressure of a material flowing from the distribution plate 14 through the metering plate 22 , to thereby provide a flow of material to a downstream spinneret 32 at a relatively more consistent pressure.
  • the exit holes 18 of the distribution plate 14 can be about 0.6 mm in diameter, while the exit holes of a mating metering plate 22 could be about 0.2 mm in diameter.
  • the metering plate feeds flowable material to the backholes of a spinneret, it is noted that this is to include set-ups where the metering plate directly feeds the spinneret, and those where it feeds a transition plate which in turn feeds the spinneret backholes, as will be discussed further herein.
  • the distribution and metering plates 14, 22 can be made using any known shaping means including, but not limited to, etching, electroforming, laser-cutting, milling, LIGA-technique, casting, stamping, punching, drilling or otherwise machining, molding, engraving, reaming, or the like.
  • the distribution plate holes 18 are "shaped" (i.e., non-circular) in order to produce multi-component fibers having selectively shaped regions of specific components.
  • the flow paths 16 can assume any configuration chosen by the plate designer to achieve the desired fiber shape, composition and cross-section, and can be of greater complexity than practicable using prior art spin pack assemblies, as will be readily recognized by those having ordinary skill in the art.
  • the diameter of each of the metering plate orifices 24 is consistent along the length of the orifice ( i.e ., through the entire thickness of the metering plate.)
  • a downstream or outlet end of the exit orifice 24 could be formed to have a smaller diameter than that of the downstream end of the exit hole of the distribution plate 14, to thereby provide a pressure increase to flowable material flowing therethrough.
  • the diameter of the orifices 24 of the metering plate can have a narrowed diameter between its upstream and downstream ends to form a neck.
  • the thickness 28 of the metering plate 22 and/or the diameter of the metering plate orifices 24 are sized sufficiently to moderate the pressure on the flowable material stream through the metering plate orifice 24 , thereby providing a flowable material stream with a determinable pressure to the spinneret 32 .
  • the metering plate orifice 24 orients a flowable material stream to produce an oriented flowable material stream for output to the spinneret 32 .
  • the metering plate 22 of the apparatus 10 desirably has a plurality of orifices 24 .
  • the metering plate 22 may be constructed so that it has a single orifice 24 corresponding to each exit hole 18 of the distribution plate 14 , or such that plural orifices 24 of the metering plate correspond to one or more of the exit holes 18 , as shown, for example, in Figures 4-5.
  • Each orifice 24 of the plurality of orifices 24 is desirably smaller than the corresponding distribution plate exit hole 18 , although other orifice designs can be used within the scope of the invention, as discussed above.
  • a spinneret 32 is desirably positioned downstream of the metering plate 22 such that the plurality of orifices 24 deliver a plurality of flowable material streams to one or more backholes 30 thereof.
  • the metering plate can be in the form of a conventional punched, stamped, milled, laser-cut, drilled, reamed, etched or otherwise machined plate, can be made by casting, molding, or LIGA process, engraving or electroforming or can be in the form of a screen formed of fibers, filaments, wires, or the like. For example, a mesh screen having about 125 holes per inch could be used to meter the flowable material through the apparatus of the instant invention. Alternatively, the metering plate can be made by selectively plugging holes in an existing plate or screen.
  • the dimensions of the orifices, number of orifices adapted to correspond to each of the distribution plate exit holes, shape of the orifices, etc. will be selected to provide the desired degree of metering for the particular desired fiber construction to be produced.
  • each orifice 24 of the metering plate 22 and the thickness 28 of the metering plate 22 across its width are designed so that the pressure of any single stream of flowable material of the plurality of flowable material streams is substantially equilibrated to the pressure of any other stream of the plurality.
  • the distribution plate 14, illustrated in Figure 3 has at least two flow paths 16 which are designed to feed to a single spinneret backhole 30 (i.e ., flowable material exiting from several of the exit holes 18 is designed to ultimately feed to a single spinneret backhole).
  • the pressure increase through any one of the orifices 24 of the metering plate 22 is sufficiently large in comparison to the difference in pressure drop between the flow paths 16, to thereby produce a plurality of flowable material streams in which the pressure of each material stream is substantially equilibrated to the pressure of any other material stream of the plurality.
  • the pressure increase through the metering orifices is also desirably greater than the pressure required to fill the shaped distribution plate exit hole, so this shaped area is filled before material flows steadily through the metering orifices. This insures that flowable material flows consistently through all the metering orifices downstream of each of the shaped exit holes.
  • Figure 2 shows the cross-sectional dimension of a synthetic fiber 36 which is exemplary of one which might be formed by the synthetic fiber forming apparatus 10 .
  • the synthetic fiber forming apparatus 10 has a distribution plate 14 which has shaped exit holes 18 which approximate the cross-sectional shape of the fiber to be produced.
  • the shapes of the exit holes 18 are designed such that their combined shape roughly approximates the cross-sectional shape 38 , shown in Figure 2, of the desired synthetic fiber 36 .
  • the cross-sectional shape of the fiber includes a substantially triangular core and a round sheath surrounding the core.
  • the invention will have applicability to fibers of many different shapes other than the one specifically described for purposes of illustration of the invention.
  • the flow paths 16 distribute flowable material to the distribution plate shaped exit holes 18 where, due in part to the metering action of the downstream metering plate 22 , the flowable material roughly fills the cross-sectional dimension of each of the distribution plate exit holes 18 .
  • the distribution plate exit holes 18 produce and distribute shaped, flowable material streams to the plurality of orifices 24 of the metering plate 22 , which is desirably positioned beneath the distribution plate 14 .
  • the plurality of orifices 24 of the metering plate 22 receive the shaped material stream and output a plurality of material streams which collectively substantially maintain the predetermined shape 38 .
  • the material streams which exit the distribution plate 14 may be at varying pressures. Because all of the streams are then caused to travel through the metering plate 22 , each of the streams which emerges from the metering plate tends to emerge at a pressure which approximates that of each of the other material streams.
  • the process involves the step of directing a flow of material across a distribution plate 14 , and thereafter through at least one exit hole 18 to an adjacent metering plate 22 having at least two downstream orifices 24 which act to meter the flow of the material therethrough.
  • the metering plate is used simply to balance the pressures between individual streams rather than maintain a specific shape imparted by a shaped exit hole, it will be appreciated that a single metering hole could be used to correspond with each of two or more exit holes to meter the flow of a material flowing therethrough and substantially equilibrate the flow of each of the respective flowable material streams.
  • the metering plate is positioned immediately downstream of the distribution plate, though it is to be noted that one or more plates could be positioned intermediate the distribution plate 14 and the metering plate 22 .
  • the word "thereafter" is used to define that the metering plate is located in the spinning arrangement at a position downstream of one or more distribution plates in order to increase the equilibration and/or improve the pressure of one or more flowable material streams subsequent to travel through a distribution plate and prior to entering the backhole of the spinneret.
  • the orifice in the metering plate is desirably relatively smaller than the exit hole 18 in the distribution plate, as the arrangement has been found to effectively moderate and control the pressure of the flowable material.
  • the directing step comprises either directing a flowable material or a shaped, flowable material stream into a plurality of orifices 24 in a metering plate 22 , and thereafter to a spinneret 32 .
  • the process of the present invention can serve to equilibrate the pressure of the flow of the plurality of flowable materials and therefore to increase the ease of achieving uniformity of fibers, including those of complex cross-sections.
  • the pressure created by the metering plate 22 can be sufficient to operate the spinning process, thereby obviating the need for a conventional metering plate upstream of the distribution plate 14 .
  • a second metering plate 34 can be provided upstream of the distribution plate 14 , to feed the material to the distribution plate 14 at an initially equilibrated pressure, with the downstream metering plate 22 securing, among other things, to reduce pressure irregularities imparted between the upstream metering plate 34 and the downstream metering plate.
  • FIG. 6 illustrates an alterative distribution/metering plate arrangement useful in performing the instant invention.
  • a distribution plate shown generally at 50 , directs a flowable material from an upstream supply source (not shown) to a downstream metering plate 55 having a plurality of exit orifices 56 .
  • the distribution plate 50 is provided as two separate plate sections: in the illustrated embodiments the first plate section 51 includes a channel 53 which extends through its full thickness to define a flow path in the distribution plate, while a second plate section 52 includes an opening 54 , which forms the exit hole of the distribution plate.
  • the respective distribution plate sections 51, 52 collectively define a flow path and exit hole arrangement similar to that provided by the single distribution plate 14 illustrated in Figs. 1, 3 and 5.
  • the plate sections are preferably designed to fit closely together such that material flowing though the channel 53 and opening 54 does not have a tendency to seep between the plate sections.
  • the plate sections 51, 52 can be specially configured to facilitate their tight securement together (e.g ., by forming one of the plate sections with a protrusion and the other with a mating depression, such that the plate sections are properly aligned relative to each other, the protrusion and depression are mated together).
  • a metering plate 54 is positioned immediately downstream of the distribution plate 50 , and includes a plurality of orifices 56 in fluid flow connection with the orifice 54 in the second distribution plate section 52 .
  • orifices 56 are adapted to regulate the flow of material therethrough and into the spinneret; in the illustrated embodiment, the orifices 56 are substantially smaller than the orifice 54 in the second distribution plate section, so that they act to meter the flow of material through the metering plate, as well as material through the distribution plate sections 51 and 52 . While only a single distribution plate 50 and metering plate 55 are shown, it is noted that plural distribution and metering plates can be provided to achieve the fiber configuration desired.
  • Figure 7 illustrates a distribution plate 60 designed to provide substantially the same flow path pattern as that shown in Figure 6, through the use of a single plate having overlying flow path 61 and exit hole 63 portions of different configurations. In this way, the single distribution plate can provide substantially the same flow pattern as the dual plate system shown in Figure 5.
  • the metering plate 22 is positioned immediately upstream of the spinneret backholes, so that it feeds the flowable material stream directly into one or more of the spinneret backholes.
  • a further alternative arrangement of the metering plate relative to the spinneret backholes useful in performing the instant invention is shown in Figure 8.
  • a transition plate 74 is positioned intermediate the metering plate 72 and the spinneret 76 .
  • the transition plate 74 desirably includes an orifice 75 which is relatively larger than the backhole 77 of the spinneret, so as to effectively expand the diameter of the backhole.
  • the orifice 75 of the transition plate is illustrated as having substantially straight walls 75a which extend substantially parallel to the walls of the spinneret backhole, it is to be noted that the orifice can also be substantially conical or otherwise shaped, so as to have a relatively wider diameter upstream (adjacent to the metering plate) and a relatively narrower diameter downstream (adjacent to the backhole of the spinneret). For example, Fig.
  • transition plate 84 positioned intermediate a metering plate 82 and a spinneret 86 .
  • the transition plate 84 includes an orifice 85 which is relatively larger than the backhole 87 of the spinneret 86 , so as to effectively expand the diameter of the backhole and enable a greater area of the metering plate 82 (and thus a correspondingly greater number of orifices 83 ) to feed a single spinneret backhole.
  • the orifice on the transition plate has tapered walls 84a rather than straight ones like those illustrated at 74a in Fig. 8.
  • transition plate 84 in this arrangement has a relatively large thickness T (for example, as shown compared with the thickness t of the metering plate) which enables a gradual combining of the plural material streams exiting the metering plate 82 and entering the backhole 87 of the spinneret 86 .
  • Figs. 10 and 11 illustrate another distribution plate/metering plate arrangement according to the instant invention.
  • a first flowable material (indicated as Polymer A) is provided in a conventional manner through supply channel 90
  • a second flowable material (indicated as Polymer B) is provided in a conventional manner through supply channel 92 .
  • the first flowable material differs from the second flowable material such that a multi-component fiber is produced therefrom.
  • the flowable materials are supplied to a first distribution plate 93 as follows: Polymer A is fed from supply channel 90 to flow path 94 , where it is directed through a downstream exit hole 95 , while Polymer B is fed from supply channel 92 to flow paths 96, 98, 100 , where it is directed through their respective exit holes 97, 99, 101 in the form of strategically located flowable material streams.
  • the exit holes 95, 97, 99, 101 are respectively in fluid flow connection with flow paths 105, 107, 109, and 111 (by way of entry holes 104, 106, 108 and 110 ) in distribution plate 102 , which is positioned adjacent to the first distribution plate 93 .
  • the second distribution plate 102 is formed such that the flow paths 105, 107, 109, and 111 are formed on the downstream surface of the plate, and terminate in exit holes which are substantially the same dimensions as the flow paths.
  • this second distribution plate appears substantially as an upside-down version of a distribution plate like that of first distribution plate 93 (although in this illustration the exit holes 105, 107, 109, and 111 of the second distribution plate 102 are differently shaped from the flow paths 94, 96, 98 and 100 of the first distribution plate), and the exit holes have substantially the same dimensions as the flow paths.
  • the flowable material flowing through the paths 104, 106, 108, and 110 fills the relatively larger, shaped exit holes 105, 107, 109, and 111, thereby flowing to the downstream metering plate 112 in the form of shaped, strategically located flowable material streams.
  • These polymer streams then flow through the orifices 114 in the metering plate 112, such that they exit the metering plate in the form of fine streams of flowable material ( i.e ., Polymers A and B) which are arranged so as to substantially assume the configuration collectively formed by the exit holes 105, 107, 109, and 111 in the second distribution plate 102 .
  • Figure 12 illustrates an alternative embodiment of the invention, in which the distribution plate 122 and downstream metering plate 124 are integrally formed as a single unit 120 .
  • the distribution plate 122 includes a flow path 122a and an exit hole 122b through which a flowable material can be output to a metering plate 124 .
  • the metering plate 124 portion of the unit 120 includes a plurality of orifices 126 which are in fluid flow connection with the distribution plate 122 portion of the unit, and are adapted to moderate the pressure of a flowable material flowing therethrough.
  • Fig. 13 illustrates an alternative metering plate 130 which can be used in the instant invention.
  • the metering plate is shown as it would appear when it is positioned beneath a distribution plate 132 similar to that shown in Figs. 4 and 5.
  • the orifices 134a, 134b of the plate adapted to correspond to different flow paths 133a, 133b, 133c, and 133d in the distribution plate 132 are differently configured to thereby differently moderate the pressure of flowable material flowing through the respective corresponding flow paths in the distribution plate.
  • the orifices are differently sized, although it is noted that they could be differently shaped or otherwise differently configured to achieve the desired pressure moderation, within the scope of the instant invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Claims (35)

  1. Un appareil (10) pour former des fibres synthétiques (36) dans une direction de filage comprenant :
    une première plaque de distribution (14, 50, 60, 93) orientée substantiellement perpendiculaire à la direction de filage, ladite première plaque de distribution (14, 50, 60, 93) définissant au moins une voie d'écoulement (16) généralement perpendiculaire à ladite direction de filage et comprenant au moins un trou de sortie (18, 54, 95) adapté pour faire sortir un matériau capable de fluer dans une direction généralement parallèle à la direction de filage;
    une plaque de calibrage (22, 55, 72, 82) positionnée en aval de la plaque de distribution (14, 50, 60, 93), ladite plaque de calibrage (22, 55, 72, 82) étant orientée dans une direction généralement perpendiculaire à la direction de filage et incluant au moins deux orifices (24, 56, 83) positionnés immédiatement en aval de chaque trou de sortie (18, 54, 95) de la plaque de distribution (14, 50, 60, 93), chaque orifice (24, 56, 83) s'étendant généralement parallèlement à ladite direction de filage en aval de la première plaque de distribution (14, 50, 60, 93) et formant un chemin d'écoulement commun avec le trou de sortie (18, 54, 95) de la première plaque de distribution (14, 50, 60, 93), dans laquelle chacun desdits orifices (24, 56, 83) de la plaque de calibrage a une combinaison d'un diamètre et d'une longueur suffisante pour augmenter la pression d'un matériau s'écoulant depuis ladite première plaque de distribution (14, 50, 60, 93) à travers ladite plaque de calibrage (22, 55, 72, 82) et pour fournir un écoulement de matériau à un trou arrière unique (30, 77, 87) d'une filière (32, 76, 80).
  2. Un appareil (10) conforme à la revendication 1,
    dans lequel ledit trou de sortie (18) de ladite plaque de distribution (14) forme une partie de la surface aval de ladite première plaque de distribution (14) et
    dans lequel lesdits orifices (24) de la plaque de calibrage ont des dimensions périphériques qui sont plus petites qu'une dimension périphérique dudit trou de sortie (18) de la première plaque de distribution.
  3. Un appareil (10) conforme à la revendication 1,
    dans lequel ladite première plaque de distribution (14) définit au moins deux voies d'écoulement séparées généralement perpendiculaires à la direction de filage, chacune desdites voies d'écoulement ayant au moins un trou de sortie pour faire sortir le matériau capable de fluer sous la forme d'un jet et dans lequel ladite plaque de calibrage (22) a au moins deux orifices correspondant à chacun desdits trous de sortie (18) dans ladite plaque de distribution (14) de telle manière que le matériau s'écoulant depuis un premier d'au moins deux chemins d'écoulement quitte la plaque de calibrage (22) à une pression qui est substantiellement égale à celle du matériau d'un second des chemins d'écoulement lorsqu'il quitte la plaque de calibrage (22).
  4. Un appareil (10) conforme à la revendication 3,
    dans lequel ladite plaque de calibrage (22) a une pluralité d'orifices (24) correspondant à chacun desdits trous de sortie (18) dans ladite plaque de distribution (14).
  5. Un appareil (10) conforme à la revendication 3,
    dans lequel la sortie des matériaux capables de fluer depuis chacun desdits au moins deux chemins d'écoulement est finalement envoyée par la plaque de calibrage (22) à l'un quelconque trou arrière unique (30) d'une filière (32) ou à un orifice d'une plaque de transition (74) qui alimente à son tour un trou arrière unique (30) d'une filière (32).
  6. Un appareil (10) conforme à la revendication 2,
    dans lequel les dimensions périphériques des orifices (24) de la plaque de calibrage sont suffisamment plus petites que la dimension du trou de sortie (18) de la plaque de distribution pour produire une augmentation de pression définie dans le matériau capable de fluer.
  7. Un appareil (10) conforme à la revendication 6,
    dans lequel les dimensions du trou de sortie de la plaque de calibrage et l'épaisseur (28) de la plaque de calibrage (22) sont dimensionnées de manière suffisante pour créer une pression suffisante pour le fonctionnement de l'appareil (10).
  8. Un appareil (10) conforme à la revendication 2,
    dans lequel ledit trou de sortie (18) dans ladite première plaque de distribution (14) a une forme en coupe transversale prédéterminée et ladite plaque de calibrage (22) a une pluralité d'orifices (24) relativement plus petits qui définissent des chemins d'écoulement communs avec ledit trou de sortie (18) de telle manière que du matériau s'écoulant à travers ledit appareil (10) quitte ladite plaque de calibrage (22) sous forme d'une pluralité de jets de matériau qui définissent collectivement substantiellement la forme dudit trou de sortie (18) de la plaque de distribution.
  9. Un appareil (10) conforme à la revendication 1,
    dans lequel chacun desdits au moins deux orifices (24) dans ladite plaque de calibrage (22) définit des parois s'étendant substantiellement parallèlement à la direction de filage et lesdites parois sont adaptées pour fournir une rétropulsion au matériau capable de fluer, calibrant de ce fait son écoulement à travers eux.
  10. Un appareil (10) conforme à la revendication 1,
    comprenant en outre une plaque de transition (74) positionnée entre une extrémité aval dudit orifice (24) dans ladite plaque de calibrage (22) et le trou arrière (30) d'une filière (32), ladite plaque de transition (74) étant adaptée pour augmenter le diamètre efficace du trou arrière (30) de la filière.
  11. Un appareil (10) conforme à la revendication 1,
    dans lequel l'épaisseur de la plaque de calibrage (22) est dimensionnée de manière suffisante pour produire une augmentation de pression définie dans le matériau capable de fluer.
  12. Un appareil (10) conforme à la revendication 1,
    dans lequel ledit appareil (10) comprend en outre une seconde plaque de calibrage (34) en amont de ladite première plaque de distribution (14) pour modérer la pression d'un matériau capable de fluer amené à ladite plaque de distribution (14).
  13. Un appareil (10) conforme à la revendication 1,
    dans lequel ladite voie d'écoulement généralement perpendiculaire s'étend le long de la surface aval de ladite première plaque de distribution (14).
  14. Un appareil (10) conforme à la revendication 1,
    dans lequel ladite voie d'écoulement généralement perpendiculaire s'étend le long de la surface amont de ladite plaque de distribution (14).
  15. Un appareil (10) conforme à la revendication 1,
    dans lequel ladite première plaque de distribution (14) et ladite plaque de calibrage (22) sont formées d'une seule pièce sous forme d'une unité unique.
  16. Un appareil (10) conforme à la revendication 1,
    dans lequel ladite première plaque de distribution (14) comprend une première section de plaque (51) ayant un canal (53) qui s'étend à travers substantiellement son épaisseur totale pour définir une voie d'écoulement et une seconde section de plaque (52) qui inclut une ouverture (54) qui définit le trou de sortie dans ladite plaque de distribution (14).
  17. Un appareil (10) conforme à la revendication 1,
    comprenant en outre une seconde plaque de distribution (102) positionnée entre ladite première plaque de distribution (14) et ladite plaque de calibrage (22), ladite seconde plaque de distribution (102) ayant au moins une voie d'écoulement généralement perpendiculaire relativement à la direction de filage en relation d'écoulement de fluide avec ladite première plaque de distribution (14) et ladite plaque de calibrage (22).
  18. Un appareil (10) conforme à la revendication 17,
    dans lequel ladite voie d'écoulement dans ladite seconde plaque de distribution (102) s'étend le long de la surface aval de ladite plaque de distribution.
  19. Un appareil (10) pour former des fibres synthétiques comprenant :
    une plaque de distribution (14) pour faire sortir un matériau capable de fluer dans une direction de filage ;
    une plaque de calibrage (22) en aval de la plaque de distribution;
    une voie d'écoulement (16) dans ladite plaque de distribution pour diriger un matériau capable de fluer dans une direction substantiellement perpendiculaire à une direction de filage ;
    un trou de sortie (18) formant une partie d'une surface aval de ladite plaque de distribution (14) pour diriger un matériau capable de fluer sous la forme d'un jet conformé capable de fluer ; et
    une pluralité d'orifices (24) dans ladite plaque de calibrage (22), au moins deux de ladite pluralité d'orifices (24) formant collectivement des chemins d'écoulement communs avec le trou de sortie (18) de la plaque de distribution, ladite pluralité d'orifices (24) de la plaque de calibrage étant chacun efficacement plus petit que ledit trou de sortie (18) de la plaque de distribution pour augmenter la pression d'un matériau s'écoulant depuis ledit trou de sortie (18) de la plaque de distribution à ladite pluralité de trous de sortie de la plaque de calibrage pour de ce fait fournir à une filière (32) une pluralité de jets de matériau capable de fluer qui maintiennent collectivement substantiellement la forme du jet conformé capable de fluer quittant la plaque de distribution (14) à une consistance de pression augmentée.
  20. Un appareil conforme à la revendication 19,
    dans lequel la dimension des orifices (24) de ladite plaque de calibrage (22) et l'épaisseur (28) de la plaque de calibrage (22) sont formées de telle manière que la pression d'un quelconque jet de matériau capable de fluer est avantageusement équilibrée à la pression d'un quelconque autre jet de matériau capable de fluer de ladite pluralité de jets de matériau capable de fluer.
  21. Un appareil conforme à la revendication 20,
    dans lequel ladite plaque de distribution (14) a au moins deux chemins d'écoulement chacun en liaison d'écoulement de fluide avec au moins un d'au moins deux trous de sortie (18) de la plaque de distribution, dans lequel l'augmentation de pression à travers un orifice quelconque (24) de la pluralité d'orifices (24) dans la plaque de calibrage (22) est plus grande que la différence de chute de pression entre les chemins d'écoulement, pour produire une pluralité de jets de matériau capable de fluer où la pression d'un jet de ladite pluralité de jets de matériau capable de fluer est relativement équilibrée à la pression d'un quelconque autre jet de ladite pluralité.
  22. Un appareil conforme à la revendication 21,
    dans lequel les orifices (24) de la plaque de calibrage (22) correspondant à l'une des au moins deux voies d'écoulement dans la plaque de distribution (14) sont configurés différemment de ceux correspondant à une autre des au moins deux voies d'écoulement.
  23. Un appareil conforme à la revendication 19,
    dans lequel le trou de sortie (18) de la plaque de distribution a une forme pour produire et distribuer un jet de matériau capable de fluer avec une forme prédéterminée en section transversale.
  24. Un appareil conforme à la revendication 23,
    dans lequel ladite pluralité d'orifices (24) de la plaque de calibrage (22) reçoivent un jet conformé de matériau capable de fluer et sortent vers la filière (32) une pluralité de jets de matériau capable de fluer qui maintiennent collectivement substantiellement la forme prédéterminée.
  25. Un appareil conforme à la revendication 23,
    dans lequel ladite pluralité d'orifices (24) de la plaque de calibrage (22) reçoivent un jet conformé de matériau capable de fluer et sortent vers la filière (32) une pluralité de jets de matériau capable de fluer dans lesquels la pression d'un jet de matériau capable de fluer est approximativement équilibrée à la pression d'un quelconque autre jet de matériau capable de fluer.
  26. Un appareil conforme à la revendication 19,
    dans lequel ladite pluralité d'orifices (24) de ladite plaque de calibrage (22) divisent un jet de matériau capable de fluer pour produire une pluralité de jets de matériau capable de fluer orientés dans la direction de filage pour sortir à l'un quelconque trou arrière (30) d'une filière (32) ou à une plaque de transition (74) qui à son tour alimente un trou arrière de filière.
  27. Un appareil conforme à la revendication 19,
    dans lequel le dit appareil comprend en outre une plaque de calibrage (34) en amont de ladite plaque de distribution pour modérer initialement la pression d'un matériau s'écoulant vers ladite plaque de distribution.
  28. Un procédé pour produire des fibres synthétiques dans une filière, comprenant :
    l'envoi dirigé d'un écoulement de matériau dans une direction perpendiculaire à celle de la direction de filage au moyen d'une plaque de distribution (14) et à travers un trou de sortie (18) de celle-ci et ensuite à travers une plaque de calibrage (22) adjacente ayant une pluralité d'orifices (24) qui sont dimensionnés relativement au trou de sortie de la plaque de distribution (14) de manière à augmenter et contrôler de manière plus consistante de ce fait la pression du matériau capable de fluer, dans lequel au moins deux de ladite pluralité d'orifices (24) forment collectivement des chemins d'écoulement communs avec le trou de sortie (18) de la plaque de distribution ; et ensuite
    l'envoi dirigé du matériau capable de fluer à pression augmentée depuis chaque orifice (24) de la plaque de calibrage (22) vers le trou arrière (30) correspondant d'une filière (32).
  29. Un procédé conforme à la revendication 28,
    dans lequel ladite étape d'envoi dirigé d'un écoulement de matériau depuis une plaque de distribution (14) à une plaque de calibrage (22) comprend l'envoi dirigé d'un écoulement de matériau à une plaque de calibrage (22) ayant une pluralité d'orifices (24) qui sont plus petits que le trou de sortie (18) dans la plaque de distribution (14) et la production d'une pluralité de jets de matériau capable de fluer pour de ce fait modérer et contrôler de manière plus consistante la pression du matériau capable de fluer.
  30. Un procédé conforme à la revendication 29,
    dans lequel ladite étape d'envoi dirigé d'un écoulement d'un matériau à travers une plaque de calibrage (22) comprend l'ajustement de la pression d'une pluralité de jets de matériau capable de fluer à une pression désirée.
  31. Un procédé conforme à la revendication 30,
    dans lequel ladite étape d'envoi dirigé d'un écoulement de matériau à travers une plaque de calibrage (22) comprend l'étape d'équilibrer approximativement la pression entre des jets de matériau capable de fluer de la pluralité.
  32. Un procédé conforme à la revendication 28,
    dans lequel ladite étape d'envoi dirigé d'un écoulement de matériau à travers une plaque de calibrage (22) comprend l'envoi d'un jet de matériau capable de fluer, conformé en section transversale de manière prédéterminée, à ladite pluralité d'orifices (24) dans ladite plaque de calibrage (22).
  33. Un procédé conforme à la revendication 32,
    dans lequel ladite étape d'envoi dirigé d'un écoulement de matériau à travers une plaque de calibrage (22) comprend l'écoulement d'un jet de matériau capable de fluer conformé à travers ladite pluralité d'orifices (24) créant une pluralité de jets de matériau capable de fluer qui maintiennent collectivement substantiellement la forme prédéterminée.
  34. Un procédé conforme à la revendication 32,
    dans lequel ladite étape d'envoi dirigé d'un écoulement de matériau à travers une plaque de calibrage (22) comprend d'écoulement d'un matériau capable de fluer à travers ladite pluralité d'orifices (24) pour créer une pluralité de jets de matériau capable de fluer, dans lequel la pression d'un jet de matériau capable de fluer est approximativement équilibrée avec la pression de tout autre quelconque jet de matériau capable de fluer.
  35. Un procédé conforme à la revendication 28,
    dans lequel ladite étape d'envoi dirigé d'un écoulement de matériau à travers une plaque de calibrage (22) comprend l'étape de création d'une pression sur un matériau capable de fluer suffisante pour alimenter la filière (32) à pression équilibrée.
EP01124823A 2001-10-18 2001-10-18 Dispositif et procédé pour le filage de fibres synthétiques Expired - Lifetime EP1304401B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01124823A EP1304401B1 (fr) 2001-10-18 2001-10-18 Dispositif et procédé pour le filage de fibres synthétiques
DE60120983T DE60120983D1 (de) 2001-10-18 2001-10-18 Vorrichtung und Verfahren zum Spinnen von synthetischen Fasern
AT01124823T ATE331057T1 (de) 2001-10-18 2001-10-18 Vorrichtung und verfahren zum spinnen von synthetischen fasern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01124823A EP1304401B1 (fr) 2001-10-18 2001-10-18 Dispositif et procédé pour le filage de fibres synthétiques

Publications (2)

Publication Number Publication Date
EP1304401A1 EP1304401A1 (fr) 2003-04-23
EP1304401B1 true EP1304401B1 (fr) 2006-06-21

Family

ID=8178998

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01124823A Expired - Lifetime EP1304401B1 (fr) 2001-10-18 2001-10-18 Dispositif et procédé pour le filage de fibres synthétiques

Country Status (3)

Country Link
EP (1) EP1304401B1 (fr)
AT (1) ATE331057T1 (fr)
DE (1) DE60120983D1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50301678D1 (de) 2003-06-13 2005-12-22 Reifenhaeuser Gmbh & Co Kg Vorrichtung zur Herstellung von Filamenten

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847524A (en) * 1971-09-24 1974-11-12 L Mott Spinnerette head assembly with porous metal filter and shear element
JPS62156306A (ja) * 1985-12-27 1987-07-11 Chisso Corp 複合紡糸用口金装置
DE4211398A1 (de) * 1991-04-25 1992-10-29 Barmag Barmer Maschf Spinnduesenkopf mit verdraengerkoerper
CA2107930C (fr) * 1992-10-29 2000-07-11 John A. Hodan Plaques de repartition du flux

Also Published As

Publication number Publication date
ATE331057T1 (de) 2006-07-15
EP1304401A1 (fr) 2003-04-23
DE60120983D1 (de) 2006-08-03

Similar Documents

Publication Publication Date Title
US5505889A (en) Method of spinning bicomponent filaments
EP0870079B1 (fr) Dispositif et PROCEDE DE FABRICATION D'UNE FIBRE CONTENANT UN ADDITIF
US6361736B1 (en) Synthetic fiber forming apparatus for spinning synthetic fibers
CN101970731B (zh) 用于熔融纺制多组分纤维的装置
JPH05263307A (ja) 複合メルトブロー紡糸口金
CZ286795B6 (en) Process and apparatus for spinning material consisting of at least two different polymeric components
US3601846A (en) Spinneret assembly for multicomponent fibers
US5320512A (en) Apparatus for spinning multicomponent hollow fibers
JP3184804B2 (ja) コア/シース構造を有する複合繊維からスパンボンド布を製造するための装置
CN1322180C (zh) 用于生产长丝的装置
KR0136087B1 (ko) 편심 초심형 스피너렛 장치
EP0104081B1 (fr) Appareil pour le filage de fibres composites à plusieurs composants
EP1304401B1 (fr) Dispositif et procédé pour le filage de fibres synthétiques
US20230082772A1 (en) Melt blowing nozzle apparatus
US3320633A (en) Apparatus for forming two component yarns
US4411852A (en) Spinning process with a desensitized spinneret design
JPH0351308A (ja) シーズ・コアフイラメント用の紡糸装置
JPH02289107A (ja) メルトブローン紡糸装置
JP6142703B2 (ja) メルトブローン用紡糸口金装置
US3792944A (en) Spinneret for composite spinning
US20020094352A1 (en) Bicomponent filament spin pack used in spunbond production
EP0434448B1 (fr) Procédé et dispositif pour le filage de filaments bicomposés et produits fabriqués avec ces filaments
JP2008202163A (ja) 複合繊維紡糸用口金
JP4950856B2 (ja) 海島型複合繊維の溶融紡糸口金
JPH08158143A (ja) 複合繊維の製造方法および複合紡糸用口金

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030924

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040121

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60120983

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061121

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20070322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070112

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070504

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060922

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061018

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071018

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621