EP1303684B1 - Procede servant a faire fonctionner une installation de turbine a gaz ou a vapeur, et installation correspondante - Google Patents

Procede servant a faire fonctionner une installation de turbine a gaz ou a vapeur, et installation correspondante Download PDF

Info

Publication number
EP1303684B1
EP1303684B1 EP01967162A EP01967162A EP1303684B1 EP 1303684 B1 EP1303684 B1 EP 1303684B1 EP 01967162 A EP01967162 A EP 01967162A EP 01967162 A EP01967162 A EP 01967162A EP 1303684 B1 EP1303684 B1 EP 1303684B1
Authority
EP
European Patent Office
Prior art keywords
pressure
gas
steam
partial
partial flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01967162A
Other languages
German (de)
English (en)
Other versions
EP1303684A1 (fr
Inventor
Werner Schwarzott
Erich Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP01967162A priority Critical patent/EP1303684B1/fr
Publication of EP1303684A1 publication Critical patent/EP1303684A1/fr
Application granted granted Critical
Publication of EP1303684B1 publication Critical patent/EP1303684B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler

Definitions

  • the invention relates to a method of operation a gas and steam turbine plant, in which the one from both with gas as well as oil operable gas turbine exiting Flue gas is passed through a heat recovery steam generator, its heating surfaces in the water-steam cycle of a Number of pressure stages having steam turbine connected are, wherein in the heat recovery steam generator preheated condensate as compared to this under high pressure feed water heated and fed as steam to the steam turbine becomes.
  • a gas and steam turbine plant In a gas and steam turbine plant is in the relaxed Working fluid or flue gas contained in the gas turbine Heat for generating steam for in a water-steam cycle switched steam turbine used.
  • the heat transfer takes place in one of the gas turbine downstream Heat recovery steam generator or boiler, in which heating surfaces in Form of pipes or tube bundles are arranged. These in turn are in the water-steam cycle of the steam turbine connected.
  • the water-steam cycle usually includes several, for example two or three, pressure stages, in each pressure stage as heating surfaces, a preheater and an evaporator and a superheater are provided.
  • a Such gas and steam turbine plant is for example from EP 0 523 467 B1.
  • the total amount of water carried in the water-steam cycle is thereby dimensioned such that the leaving the heat recovery steam generator Flue gas due to heat transfer to a temperature is cooled from about 70 ° C to 100 ° C.
  • the hot flue gas exposed heating surfaces and provided for a water-steam separation pressure drums are designed for full load or nominal operation, at which achieves plant efficiency of currently around 55% to 60% becomes.
  • the temperatures of the individual heating surfaces guided and under different pressure Feed water as close as possible to the temperature profile of the along the heat recovery steam generator due to the heat exchange cooling flue gas.
  • the goal here is the temperature difference between over the individual heating surfaces guided feedwater and the flue gas in each area of the To keep heat recovery steam generator as low as possible.
  • the gas turbine of such a gas and steam turbine plant can be designed for operation with different fuels be. Is the gas turbine designed for heating oil and natural gas, so is fuel oil as fuel for the gas turbine only for one short operating time, for example, for 100 to 500H / a, as so-called backup provided for natural gas. This is the gas and Steam turbine plant usually urgent for natural gas operation the gas turbine designed and optimized. In order to in fuel oil operation, especially when changing from gas operation on the oil operation, a sufficiently high inlet temperature of the condensate flowing into the heat recovery steam generator can ensure the necessary heat to different Way removed from the heat recovery steam generator itself become.
  • an effective degassing of the condensate to ensure the condensate temperature in the feedwater tank usually in a temperature range between 130 ° C and 160 ° C held.
  • This is usually a preheat condensate over one with low pressure steam or Provided hot water from an economizer-fed preheater, so that the warm-up period of the condensate in the feedwater tank kept as small as possible.
  • It is in particular in two- or three-pressure systems a hot water extraction from the high-pressure economizer required to heat enough to provide.
  • Three-pressure systems or circuits have the considerable disadvantage that an external, additional condensate preheater needed which is responsible for the high pressures and high temperatures or high temperature differences must be designed. These Method is therefore already due to the considerable costs and the additional space required for the condensate preheater extremely undesirable.
  • the invention is therefore based on the object, a method for operating a gas and steam turbine plant of the above Specify type, the same at low equipment and operating expenses in more effective and re the plant efficiency favorable way a change from gas operation to oil operation of the gas turbine under cover a wide temperature range of the inlet temperature of the condensate flowing into the heat recovery steam generator guaranteed. Furthermore, one should be carried out the process particularly suitable gas and steam turbine plant be specified.
  • the object is achieved according to the invention by the features of claim 1.
  • the heated feed water or Hot water is used in a two-pressure system, i. H. at a Two-pressure system from a high-pressure drum and one Three-pressure system or in a three-pressure system from the High-pressure drum and / or from a medium-pressure drum as first partial flow taken.
  • the removal of the first partial flow also at the outlet of the high-pressure economizer or the medium-pressure economizer done.
  • the pressure of the low-pressure system be raised to heat contained in the flue gas the low-pressure system downstream of this flue gas side Move condensate preheater out.
  • Essential here is that the water-steam cycle at a suitable place removed heated feed water in the form of a partial flow mixture from feedwater partial streams of different temperature without warming up, d. H. without heat exchange in an additional heat exchanger mixed with the cold condensate becomes.
  • the invention is based on the consideration that on a additional heat exchanger, which is the water-steam cycle withdrawn heated feed water or heating water before its pressure reduction to the temperature level of the condensate system cools, thereby causing the formation of steam in the Connection to prevent the pressure reduction, be waived can, if the heated feed water before its pressure reduction such a partial flow of feed water with also high pressure, but comparatively low temperature is admixed that the adjusting mixing temperature is below the boiling point in the condensate system.
  • the object is achieved according to the invention by the features of claim 6.
  • the system includes a condensate preheater Supply line for the heated feed water with a Zumischstelle for supplying the relatively cool Feedwater.
  • the advantages achieved by the invention are in particular in that one required in oil operation of the gas turbine and increased compared to gas operation of the gas turbine Water inlet temperature in the heat recovery steam generator, too without additional heat exchanger or external condensate preheater by direct, i. heat exchangerless admixing of set to a suitable mixing temperature, heated and high pressure feed water to the cold Condensate with particularly simple means is adjustable.
  • by providing a partial flow mixture from two feedwater partial streams of different temperature one below the boiling temperature of the preheated or preheated condensate lying mixing temperature of the cold condensate in oil operation directly mixed partial flow mixture in a very simple and effective way getting produced.
  • FIG. 1 shows schematically one designed for a change of operation from gas to oil Gas and steam turbine plant.
  • the gas and steam turbine plant 1 comprises a gas turbine plant 1a and a steam turbine plant 1b.
  • the gas turbine plant 1a comprises a gas turbine 2 with coupled Air compressor 4 and one of the gas turbine 2 upstream Combustion chamber 6, to a fresh air line 8 of the Air compressor 4 is connected.
  • In the combustion chamber. 6 opens a fuel line 10, via the combustion chamber. 6 optionally gas or oil as fuel B can be fed. This is under supply of compressed air L to the working medium or Fuel gas burned for the gas turbine 2.
  • the gas turbine 2 and the air compressor 4 and a generator 12 sit on one common turbine shaft 14.
  • the steam turbine installation 1 b comprises a steam turbine 20 coupled generator 22 and in a water-steam cycle 24 a steam turbine 20 downstream capacitor 26 and a heat recovery steam generator 30.
  • the steam turbine 20 has a first pressure stage or a high pressure part 20a and a second compression stage or a medium-pressure member 20b as well a third pressure stage or a low pressure part 20c on, via a common turbine shaft 32, the generator 22 drive.
  • Exhaust pipe 34 For supplying relaxed in the gas turbine 2 working fluid or flue gas AM in the heat recovery steam generator 30 is a Exhaust pipe 34 to an input 30 a of the heat recovery steam generator 30 connected. That is along the heat recovery steam generator 30 due to indirect heat exchange with the water-steam cycle 24 guided condensate K and feed water S cooling flue gas AM from the gas turbine 2 leaves the heat recovery steam generator 30 via its output 30b in the direction of a fireplace, not shown.
  • the heat recovery steam generator 30 comprises as heating surfaces Condensate preheater 36, the input side via a condensate line 38, in which a condensate pump 40 is connected, is fed with condensate K from the condenser 40.
  • Condensate preheater 36 is the output side to the suction side of a Feedwater pump 42 out.
  • the condensate preheater 36 is this with a bypass line 44, in which a valve 46 is connected, bridged.
  • the feedwater pump 42 is a high-pressure feed pump with Medium pressure taken trained. It brings the condensate K to one for a high-pressure part 20 a of the steam turbine 20 associated high-pressure stage 50 of the water-steam cycle 24th suitable pressure level of about 120 bar to 150 bar. About the Medium pressure is the condensate K by means of the feedwater pump 42 on a for a the medium-pressure part 20 b of Steam turbine 20 associated medium-pressure stage 70 suitable Pressure level from about 40 bar to 60 bar.
  • the feed water S is also partially under medium pressure via a check valve 71 and one of these downstream Valve 72 a feedwater or medium pressure economizer 73 supplied. This is the output side via a valve 74 connected to a medium-pressure drum 75. Analogous is as part of the low pressure part 20c of the steam turbine 20 associated low pressure stage 90 of the water-steam cycle 24 of the condensate preheater 36 on the output side via a Valve 91 is connected to a low-pressure drum 92.
  • the medium-pressure drum 75 is connected to a heat recovery steam generator 30 arranged medium-pressure evaporator 76 for the formation a water-steam circulation 77 connected.
  • Steam side is on the intermediate-pressure drum 75 is connected to a reheater 78, the output side (hot ZÜ) to an input 79th the medium-pressure part 20b is guided and in the input side (cold ZÜ) one with an outlet 80 of the high pressure part 20a of the steam turbine 20 connected exhaust steam line 81 out is.
  • a steam line 95 opens one with an output 97 of the Mitteldruckteils 20b connected overflow 98.
  • An output 99 of the low-pressure part 20c is via a steam line 100 connected to the capacitor 26.
  • the gas turbine 2 of the combined cycle power plant 1 is both operable with natural gas as well as fuel oil as fuel B
  • this has the heat recovery steam generator 30 supplied working fluids or flue gas AM a comparatively high purity, wherein the water-steam cycle 24 and the system components to this operating state designed and in terms of its efficiency is optimized.
  • this operating state is a valve 101 closed, in a via the valve 55 with the Pressure side of the feedwater pump 42 connected partial flow line 102 is located.
  • the valve 101 When switching from gas operation to oil operation of the gas turbine 2 the valve 101 is opened.
  • the partial flow line 102 is connected to a mixing point 103 of a supply line 104, the downstream in the flow direction 105 via a Mixing point 106 is connected to the condensate line 38.
  • In the supply line 104 is in the flow direction 105 before Zumischstelle 103 a check valve 107 and behind the Zumischstelle 103 a valve 108th
  • an adjustable first partial flow t 1 of heated feed water S ' is introduced into the admixing line 104, which is taken from the water side via a valve 109, preferably the high-pressure drum 54.
  • the heated feed water S 'as an adjustable first partial flow t 1 via a valve 110 to the first high-pressure economizer 51 or via a valve 111 to the second high-pressure economizer 52 are taken on the output side.
  • a second partial stream t 2 of comparatively cool feedwater S is admixed with the first partial stream t 1 of heated feedwater S 'at the admixing point 103.
  • the guided over the partial flow line 102 second partial flow t 2 is adjustable by means of the valve 101.
  • the partial stream mixture t 1,2 formed in this case is added to the cold condensate K via the mixing point 106.
  • the temperature T S 'of the first partial flow t 1 at its removal as a heated feed water S' from the high-pressure drum 54 for example, 320 ° C.
  • a mixing temperature T M of the partial flow mixture t 1,2 of about 210 ° C.
  • T S formed partial stream mixture t 1.2 to the cold condensate K can with very simple means and in particular without the interposition of an additional heat exchanger a in the oil operation of the gas turbine 2 required and compared to the gas operation increased water or boiler inlet temperature T K ' of eg 120 to 130 ° C are set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

La présente invention concerne un procédé servant à faire fonctionner une installation de turbine à gaz ou à vapeur (1) comprenant une turbine à gaz (2) pouvant fonctionner aussi bien au gaz qu'à l'huile. Selon ledit procédé, lors d'un changement de fonctionnement du gaz à l'huile, un mélange de courants partiels (t12), formé d'un premier courant partiel (t1) d'eau chaude d'alimentation (S') et d'un second courant partiel (t2) d'eau d'alimentation de température en comparaison moins élevée (S), est mélangé au condensat (K) à basse température, directement et donc sans échange de chaleur. De plus, l'installation (1) comprend une conduite d'amenée (104) menant au dispositif de préchauffage de condensat (36), destinée à l'eau chaude d'alimentation (S'), dotée d'une zone de mélange (103) servant à amener l'eau d'alimentation de température en comparaison moins élevée (S).

Claims (10)

  1. Procédé pour faire fonctionner une installation (1) de turbine à gaz et de turbine à vapeur, dans lequel on envoi le gaz (AM) de fumée sortant d'une turbine (2) à gaz pouvant fonctionner tant au gaz qu'au pétrole sur un générateur (30) de vapeur à récupération de la chaleur perdue dont les surfaces de chauffe sont montées dans le circuit (24) eau-vapeur d'une turbine (20) à vapeur ayant un certain nombre d'étages (20a, 20b, 20c) de pression, dans lequel on chauffe du condensat préchauffé dans le générateur (30) de vapeur à récupération de la chaleur perdue en tant qu'eau (S) d'alimentation se trouvant par rapport à ce condensat sous une pression haute et on l'envoie en tant que vapeur (F) à la turbine (20) à vapeur,
       caractérisé en ce que, lors d'un passage du gaz au pétrole, on ajoute directement au condensat (K) froid un mélange (t12) de courants partiels formé d'un premier courant (t1) partiel d'eau (S') d'alimentation chauffée et d'un deuxième courant (t2) partiel d'eau (S) d'alimentation relativement froide.
  2. Procédé suivant la revendication 1,
       caractérisé en ce que l'on règle le deuxième courant (t2) partiel ajouté au premier courant (t1) partiel avant son abaissement de pression au niveau de pression du condensat (K) de façon à ce que la température (TM) du mélange (t12) du courant partiel soit inférieur au point d'ébullition du condensat (K) à préchauffer.
  3. Procédé suivant la revendication 1 ou 2,
       caractérisé en ce que l'on prélève le premier courant (t1) partiel d'un étage (50) haute pression et/ou d'un étage (70) moyenne pression du circuit (24) eau-vapeur.
  4. Procédé suivant la revendication 1 à 3,
       caractérisé en ce que l'on prélève du côté sortie le premier courant (t1) partiel d'un économiseur (51, 52) haute pression ou d'un économiseur (73) moyenne pression prévu en tant que surface de chauffe dans le générateur (30) de vapeur à récupération de la chaleur perdue.
  5. Procédé suivant l'une des revendications 1 à 4,
       caractérisé en ce que l'on prélève le premier courant (t1) partiel d'un ballon (54) haute pression ou d'un ballon (75) moyenne pression monté dans le circuit (24) eau-vapeur.
  6. Installation (1) de turbine à gaz et de turbine à vapeur comprenant une turbine (2) à gaz pouvant fonctionner tant au gaz qu'au pétrole et un générateur (30) de vapeur à récupération de la chaleur perdue monté côté des gaz d'échappement en aval de la turbine et dont les surfaces de chauffe sont montées dans le circuit (24) eau-vapeur d'une turbine (20) à vapeur comprenant au moins un étage (20c) basse pression et un étage (20b) haute pression, caractérisé par côté évacuation un conduit (104) d'entrée qui passe côté entrée sur un préchauffeur (36) de condensat disposé en tant que surface de chauffe dans le générateur (30) de vapeur à récupération de la chaleur perdue, qui a un point (103) d'addition et qui côté d'afflux passe côté eau sur un ballon (54, 75) sous pression monté dans le circuit (24) eau-vapeur et/ou côté sortie sur un économiseur (51, 52, 73) monté comme surface de chauffe dans le générateur (30) de vapeur à récupération de la chaleur perdue, un deuxième courant (t2) partiel réglable d'eau (S) d'alimentation relativement froide pouvant être envoyé par le point (103) d'addition à un premier courant (t1) partiel d'eau (S') d'alimentation chauffée prélevé du ballon (54, 75) sous pression ou de l'économiseur (51, 52, 73) et passant par le conduit (104) d'entrée.
  7. Installation (1) de turbine à gaz et de turbine à vapeur suivant la revendication 6,
       caractérisé en ce qu'il est monté en aval, considéré dans le sens (105) d'écoulement du mélange (t12) de courants partiels formé du premier courant (t1) partiel et du deuxième courant (t2) partiel, du point (103) d'addition, dans le conduit (104) d'entrée une vanne (108) de réduction de la pression du premier courant (t1) partiel et/ou du mélange (t12) de courants partiels.
  8. Installation (1) de turbine à gaz et de turbine à vapeur suivant la revendication 6 ou 7,
       caractérisé en ce que pour régler le premier courant (t1) partiel il est monté en amont, dans sa direction (105) d'écoulement, du point (103) d'addition au moins une vanne (109, 113) dans le conduit (104) d'entrée.
  9. Installation (1) de turbine à gaz et de turbine à vapeur suivant la revendication 6 à 8,
       caractérisé par un conduit (102) pour un courant partiel débouchant du côté sortie au point (103) d'addition et communiquant côté refoulement du côté entrée avec un pompe (42) d'eau d'alimentation.
  10. Installation (1) de turbine à gaz et de turbine à vapeur suivant la revendication 9,
       caractérisé en ce qu'il est monté dans le conduit (102) pour du courant partiel une vanne (101) de réglage du deuxième courant (t2) partiel.
EP01967162A 2000-07-25 2001-07-12 Procede servant a faire fonctionner une installation de turbine a gaz ou a vapeur, et installation correspondante Expired - Lifetime EP1303684B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01967162A EP1303684B1 (fr) 2000-07-25 2001-07-12 Procede servant a faire fonctionner une installation de turbine a gaz ou a vapeur, et installation correspondante

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00115909 2000-07-25
EP00115909 2000-07-25
EP01967162A EP1303684B1 (fr) 2000-07-25 2001-07-12 Procede servant a faire fonctionner une installation de turbine a gaz ou a vapeur, et installation correspondante
PCT/EP2001/008079 WO2002008577A1 (fr) 2000-07-25 2001-07-12 Procede servant a faire fonctionner une installation de turbine a gaz ou a vapeur, et installation correspondante

Publications (2)

Publication Number Publication Date
EP1303684A1 EP1303684A1 (fr) 2003-04-23
EP1303684B1 true EP1303684B1 (fr) 2005-05-11

Family

ID=8169340

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01967162A Expired - Lifetime EP1303684B1 (fr) 2000-07-25 2001-07-12 Procede servant a faire fonctionner une installation de turbine a gaz ou a vapeur, et installation correspondante

Country Status (9)

Country Link
US (1) US6823674B2 (fr)
EP (1) EP1303684B1 (fr)
JP (1) JP3679094B2 (fr)
CN (1) CN1313714C (fr)
BR (1) BR0112691A (fr)
DE (1) DE50106214D1 (fr)
ES (1) ES2240512T3 (fr)
TW (1) TW541393B (fr)
WO (1) WO2002008577A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1413554A1 (fr) * 2002-10-23 2004-04-28 Siemens Aktiengesellschaft Centrale thermique à gaz et à vapeur pour le dessalement d'eau
JP2005312284A (ja) * 2005-01-12 2005-11-04 Masakazu Ushijima 電流共振型放電管用インバータ回路
EP1736638A1 (fr) * 2005-06-21 2006-12-27 Siemens Aktiengesellschaft Procédé pour le démarrage d'une installation à turbine à gaz et à vapeur
US8112997B2 (en) * 2008-04-28 2012-02-14 Siemens Energy, Inc. Condensate polisher circuit
EP2224164A1 (fr) * 2008-11-13 2010-09-01 Siemens Aktiengesellschaft Procédé destiné au fonctionnement d'un générateur de vapeur à récupération de chaleur
US8069667B2 (en) * 2009-02-06 2011-12-06 Siemens Energy, Inc. Deaerator apparatus in a superatmospheric condenser system
US8007729B2 (en) * 2009-03-20 2011-08-30 Uop Llc Apparatus for feed preheating with flue gas cooler
CN103759247B (zh) * 2014-01-29 2016-03-30 国家电网公司 燃机余热锅炉汽包水位全程自动控制系统及方法
JP6516993B2 (ja) * 2014-09-26 2019-05-22 三菱日立パワーシステムズ株式会社 コンバインドサイクルプラント並びにボイラの蒸気冷却方法
US10808578B2 (en) * 2015-12-22 2020-10-20 Siemens Aktiengesellschaft Stack energy control in combined cycle power plant using heating surface bypasses
US11085336B2 (en) 2018-12-21 2021-08-10 General Electric Company Method for operating a combined cycle power plant and corresponding combined cycle power plant
US11199113B2 (en) 2018-12-21 2021-12-14 General Electric Company Combined cycle power plant and method for operating the combined cycle power plant
US10851990B2 (en) 2019-03-05 2020-12-01 General Electric Company System and method to improve combined cycle plant power generation capacity via heat recovery energy control

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756023A (en) * 1971-12-01 1973-09-04 Westinghouse Electric Corp Heat recovery steam generator employing means for preventing economizer steaming
CH621187A5 (fr) * 1977-06-16 1981-01-15 Bbc Brown Boveri & Cie
CH623888A5 (fr) * 1977-10-04 1981-06-30 Bbc Brown Boveri & Cie
US4799461A (en) * 1987-03-05 1989-01-24 Babcock Hitachi Kabushiki Kaisha Waste heat recovery boiler
JP2554101B2 (ja) * 1987-09-28 1996-11-13 三菱重工業株式会社 排ガスボイラ
DE3804605A1 (de) * 1988-02-12 1989-08-24 Siemens Ag Verfahren und anlage zur abhitzedampferzeugung
US4932204A (en) * 1989-04-03 1990-06-12 Westinghouse Electric Corp. Efficiency combined cycle power plant
DE59205446D1 (de) 1991-07-17 1996-04-04 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0582898A1 (fr) * 1992-08-10 1994-02-16 Siemens Aktiengesellschaft Méthode de fonctionnement d'un système à turbines à vapeur et à gaz et système pour la mise en oeuvre de la méthode
DE4321081A1 (de) * 1993-06-24 1995-01-05 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-Anlage
DE4333439C1 (de) * 1993-09-30 1995-02-02 Siemens Ag Vorrichtung zur Kühlmittelkühlung einer gekühlten Gasturbine einer Gas- und Dampfturbinenanlage
DE19512466C1 (de) * 1995-04-03 1996-08-22 Siemens Ag Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger
DE19736889C1 (de) 1997-08-25 1999-02-11 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Gas- und Dampfturbinenanlage zur Durchführung des Verfahrens
PT1076761E (pt) * 1998-05-06 2004-02-27 Siemens Ag Instalacao de turbina de gas e vapor

Also Published As

Publication number Publication date
JP3679094B2 (ja) 2005-08-03
EP1303684A1 (fr) 2003-04-23
JP2004504538A (ja) 2004-02-12
BR0112691A (pt) 2003-06-24
US20040025510A1 (en) 2004-02-12
TW541393B (en) 2003-07-11
ES2240512T3 (es) 2005-10-16
WO2002008577A1 (fr) 2002-01-31
US6823674B2 (en) 2004-11-30
DE50106214D1 (de) 2005-06-16
CN1443270A (zh) 2003-09-17
CN1313714C (zh) 2007-05-02

Similar Documents

Publication Publication Date Title
EP0819209B1 (fr) Procede de fonctionnement d'un generateur de vapeur a recuperation de chaleur, et generateur de vapeur a recuperation de chaleur fonctionnant selon ce procede
EP1009919B1 (fr) Procede pour utiliser une installation de turbines a gaz et a vapeur et installation de turbines a gaz et a vapeur pour la mise en oeuvre du procede
DE69916099T2 (de) Kombikraftwerk mit verbesserter kühlung und betriebsverfahren dazu
EP0720689B1 (fr) Systeme permettant de refroidir l'agent refrigerant de la turbine a gaz d'une installation a turbine a gaz et a turbine a vapeur combinees
DE60126721T2 (de) Kombiniertes Kreislaufsystem mit Gasturbine
EP0591163B1 (fr) Installation combinee a turbines a gaz et a vapeur
EP1119688B1 (fr) Installation a turbine a gaz et a vapeur
EP1303684B1 (fr) Procede servant a faire fonctionner une installation de turbine a gaz ou a vapeur, et installation correspondante
EP0898641B1 (fr) Installation a turbine a gaz et a turbine a vapeur et procede permettant de la faire fonctionner
EP1248897B1 (fr) Dispositif de turbine a gaz et a vapeur
EP1320665B1 (fr) Procede pour l'exploitation d'une installation de turbines a vapeur et a gaz et installation correspondante
EP0515911B1 (fr) Méthode pour opérer une installation à turbines à gaz et à vapeur et une installation correspondante
EP1105624B1 (fr) Installation de turbine a gaz et a vapeur
EP1099041B1 (fr) Installation a turbine a gaz et a turbine a vapeur
EP1099042B1 (fr) Installation a turbine a gaz et a vapeur
EP0523466B1 (fr) Procédé de fonctionnement d'une installation à turbines à gaz et à vapeur et installation pour la mise en oeuvre du procédé
EP3420202B1 (fr) Recirculation de condensat
EP0826096B2 (fr) Procede et dispositif permettant de degazer un condensat
EP0595009B1 (fr) Procédé de fonctionnement d'une centrale et centrale fonctionnant suivant ce procédé
EP0840837B1 (fr) Procede d'exploitation d'une installation de turbines a gaz et a vapeur et installation exploitee selon ce procede
EP1425079B1 (fr) Procede et dispositif de degazage thermique de la substance active d'un processus a deux phases
WO2014048742A2 (fr) Système de turbines à gaz et à vapeur à dégazeur de flux partiel d'eau d'alimentation
DE4409811C1 (de) Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger
DE10004187C1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
WO2017153022A1 (fr) Centrale thermique à vapeur à utilisation améliorée de la chaleur perdue et procédé permettant de faire fonctionner celle-ci

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021108

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES GB IT PT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT PT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050511

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50106214

Country of ref document: DE

Date of ref document: 20050616

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2240512

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120906

Year of fee payment: 12

Ref country code: ES

Payment date: 20120808

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130710

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130727

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50106214

Country of ref document: DE

Effective date: 20140201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20141010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130713

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140712