EP1303561A1 - Expandierte thermoplastische polyurethane - Google Patents
Expandierte thermoplastische polyurethaneInfo
- Publication number
- EP1303561A1 EP1303561A1 EP01965004A EP01965004A EP1303561A1 EP 1303561 A1 EP1303561 A1 EP 1303561A1 EP 01965004 A EP01965004 A EP 01965004A EP 01965004 A EP01965004 A EP 01965004A EP 1303561 A1 EP1303561 A1 EP 1303561A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- process according
- weight
- thermoplastic polyurethane
- parts
- blowing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/32—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0066—Use of inorganic compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
Definitions
- the present invention is concerned with a process for the preparation of foamed thermoplastic polyurethanes, novel foamed thermoplastic polyurethanes and reaction systems for preparing foamed thermoplastic polyurethanes.
- Thermoplastic polyurethanes herein after referred to as TPUs, are well-known thermoplastic elastomers. In particular, they exhibit very high tensile and tear strength, high flexibility at low temperatures, extremely good abrasion and scratch resistance. They also have a high stability against oil, fats and many solvents, as well as stability against UN radiation and are being employed in a number of end use applications such as the automotive and the footwear industry.
- a low density TPU needs to be developed which, in turn, represents a big technical challenge to provide, at minimum, equal physical properties to conventional low density PU.
- the present invention thus concerns a process for the preparation of foamed thermoplastic polyurethanes whereby the foaming of the thermoplastic polyurethane is carried out in the presence of thermally expandable microspheres and a flow aid.
- the low density thermoplastic polyurethanes thus obtained have a fine cell structure, very good surface appearance, a relatively thin skin and show comparable physical properties to conventional PU which renders them suitable for a wide variety of applications.
- the invention provides TPU products having outstanding low temperature dynamic flex properties and green strength at the time of demould, at density 800 kg/rn ⁇ and below.
- green strength denotes the basic integrity and strength of the TPU at demould.
- the polymer skin of a moulded item for example, a shoe sole and other moulded articles, should possess sufficient tensile strength and elongation and tear strength to survive a 90 to 180 degree bend without exhibiting surface cracks.
- the prior art processes often require 5 minutes minimum demould time to attain this characteristic.
- the present invention therefore provides a significant improvement in minimum demould time. That is to say, a demould time of 2 to 3 minutes is achievable.
- microspheres in a polyurethane foam has been described in EP-A 29021 and US-A 5418257.
- blowing agents during the processing of TPUs is widely known, see e.g. WO-A 94/20568, which discloses the production of foamed TPUs, in particular expandable, particulate TPUs, EP-A 516024, which describes the production of foamed sheets from TPU by mixing with a blowing agent and heat-processing in an extruder, and DE-A 4015714, which concerns glass-fibre reinforced TPUs made by injection moulding TPU mixed with a blowing agent.
- Thermoplastic polyurethanes are obtainable by reacting a difunctional isocyanate composition with at least one difunctional polyhydroxy compound and optionally a chain extender in such amounts that the isocyanate index is between 90 and 110, preferably between 95 and 105, and most preferably between 98 and 102.
- 'difunctional' as used herein means that the average functionality of the isocyanate composition and the polyhydroxy compound is about 2.
- isocyanate index is the ratio of isocyanate-groups over isocyanate- reactive hydrogen atoms present in a formulation, given as a percentage.
- the isocyanate index expresses the percentage of isocyanate actually used in a formulation with respect to the amount of isocyanate theoretically required for reacting with the amount of isocyanate-reactive hydrogen used in a formulation.
- the isocyanate index as used herein is considered from the point of view of the actual polymer forming process involving the isocyanate ingredient and the isocyanate-reactive ingredients. Any isocyanate groups consumed in a preliminary step to produce modified polyisocyanates (including such isocyanate-derivatives referred to in the art as quasi- or semi-prepolymers) or any active hydrogens reacted with isocyanate to produce modified polyols or polyamines, are not taken into account in the calculation of the isocyanate index. Only the free isocyanate groups and the free isocyanate-reactive hydrogens present at the actual elastomer forming stage are taken into account.
- the difunctional isocyanate composition may comprise any aliphatic, cycloaliphatic or aromatic isocyanates. Preferred are isocyanate compositions comprising aromatic diisocyanates and more preferably diphenylmethane diisocyanates.
- the polyisocyanate composition used in the process of the present invention may consist essentially of pure 4,4 -diphenylmethane diisocyanate or mixtures of that diisocyanate with one or more other organic polyisocyanates, especially other diphenylmethane diisocyanates, for example the 2,4 -isomer optionally in conjunction with the 2,2 -isomer.
- the polyisocyanate component may also be an MDI variant derived from a polyisocyanate composition containing at least 95% by weight of 4,4 -diphenylmethane diisocyanate.
- MDI variants are well known in the art and, for use in accordance with the invention, particularly include liquid products obtained by introducing carbodiimide groups into said polyisocyanate composition and/or by reacting with one or more polyols.
- Preferred polyisocyanate compositions are those containing at least 80% by weight of 4,4 - diphenylmethane diisocyanate. More preferably, the 4,4 - diphenylmethane diisocyanate content is at least 90, and most preferably at least 95% by weight.
- the difunctional polyhydroxy compound used has a molecular weight of between 500 and 20000 and may be selected from polyesteramides, polythioethers, polycarbonates, polyacetals, polyolefins, polysiloxanes, polybutadienes and, especially, polyesters and polyethers, or mixtures thereof.
- Other dihydroxy compounds such as hydroxyl-ended styrene block copolymers like SBS, SIS, SEBS or STBS may be used as well.
- Mixtures of two or more compounds of such or other functionalities and in such ratios that the average functionality of the total composition is about 2 may also be used as the difunctional polyhydroxy compound.
- the actual functionality may e.g. be somewhat less than the average functionality of the initiator due to some terminal unsaturation. Therefore, small amounts of trifunctional polyhydroxy compounds may be present as well in order to achieve the desired average functionality of the composition.
- Polyether diols which may be used include products obtained by the polymerisation of a cyclic oxide, for example ethylene oxide, propylene oxide, butylene oxide or tetrahydrofuran in the presence, where necessary, of difunctional initiators.
- Suitable initiator compounds contain 2 active hydrogen atoms and include water, butanediol, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,3-propane diol, neopentyl glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-pentanediol and the like. Mixtures of initiators and/or cyclic oxides may be used.
- Especially useful polyether diols include polyoxypropylene diols and poly(oxyethylene- oxypropylene) diols obtained by the simultaneous or sequential addition of ethylene or propylene oxides to difunctional initiators as fully described in the prior art. Random copolymers having oxyethylene contents of 10-80%, block copolymers having oxyethylene contents of up to 25% and random/block copolymers having oxyethylene contents of up to 50%, based on the total weight of oxyalkylene units, may be mentioned, in particular those having at least part of the oxyethylene groups at the end of the polymer chain.
- Other useful polyether diols include polytetramethylene diols obtained by the polymerisation of tetrahydrofuran. Also suitable are polyether diols containing low unsaturation levels (i.e. less than 0.1 milliequivalents per gram diol).
- modified diols often referred to as 'polymer' diols have been fully described in the prior art and include products obtained by the in situ polymerisation of one or more vinyl monomers, for example styrene and acrylonitrile, in polymeric diols, for example polyether diols, or by the in situ reaction between a polyisocyanate and an amino- and/or hydroxyfunctional compound, such as triethanolamine, in a polymeric diol.
- Polyoxyalkylene diols containing from 5 to 50% of dispersed polymer are useful as well. Particle sizes of the dispersed polymer of less than 50 microns are preferred.
- Polyester diols which may be used include hydroxyl-terminated reaction products of dihydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, 2-methylpropanediol, 3-methylpentane-l,5-diol, 1,6-hexanediol or cyclohexane dimethanol or mixtures of such dihydric alcohols, and dicarboxylic acids or their ester-forming derivatives, for example succinic, glutaric and adipic acids or their dimethyl esters, sebacic acid, phthalic anhydride, tetrachlorophthalic anhydride or dimethyl terephthalate or mixtures thereof.
- dihydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, 2-methylpropanediol, 3-methyl
- Polyesteramides may be obtained by the inclusion of aminoalcohols such as ethanolamine in polyesterification mixtures.
- Polythioether diols which may be used include products obtained by condensing thiodiglycol either alone or with other glycols, alkylene oxides, dicarboxylic acids, formaldehyde, aminoalcohols or amiriocarboxylic acids.
- Polycarbonate diols which may be used include those prepared by reacting glycols such as diethylene glycol, triethylene glycol or hexanediol with formaldehyde. Suitable polyacetals may also be prepared by polymerising cyclic acetals.
- Suitable polyolefin diols include hydroxy-terminated butadiene homo- and copolymers and suitable polysiloxane diols include polydimethylsiloxane diols.
- Suitable difunctional chain extenders include aliphatic diols, such as ethylene glycl, 1,3- propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2-propanediol, 2- methylpropanediol, 1,3-butanediol, 2,3-butanediol, 1,3-pentanediol, 1,2-hexanediol, 3- methylpentane-l,5-diol, diethylene glycol, dipropylene glycol and tripropylene glycol, and aminoalcohols such as ethanolamine, N-methyldiethanolamine and the like. 1,4-butanediol is preferred.
- TPUs suitable for processing according to the invention can be produced in the so-called one-shot, semi-prepolymer or prepolymer method, by casting, extrusion or any other process known to the person skilled in the art and are generally supplied as granules or pellets.
- thermoplastic elastomers such as PNC, ENA or TR
- TPU thermoplastic elastomers
- Any thermally expandable microspheres can be used in the present invention. However, microspheres containing hydrocarbons, in particular aliphatic or cycloaliphatic hydrocarbons, are preferred.
- hydrocarbon as used herein is intended to include non-halogenated and partially or fully halogenated hydrocarbons.
- Thermally expandable microspheres containing a (cyclo)aliphatic hydrocarbon which are particularly preferred in the present invention, are commercially available. These include unexpanded and expanded microspheres. Preferred microspheres are unexpanded or partially unexpanded microspheres consisting of small spherical particles with an average diameter of typically 10 to 15 micron.
- the sphere is formed of a gas proof polymeric shell (consisting e.g. of acrylonitrile or PNDC), encapsulating a minute drop of a (cyclo)aliphatic hydrocarbon, e.g. liquid isobutane.
- PNDC acrylonitrile
- a minute drop of a (cyclo)aliphatic hydrocarbon e.g. liquid isobutane.
- the resultant gas expands the shell and increases the volume of the microspheres.
- the microspheres When expanded, the microspheres have a diameter
- microspheres 3.5 to 4 times their original diameter as a consequence of which their expanded volume is about 50 to 60 times greater than their initial volume in the unexpanded state.
- EXPA ⁇ CEL-DU microspheres which are marketed by AKZO
- EXPANCEL' is a trademark of AKZO Nobel Industries.
- Another essential ingredient of the present invention is the flow aid.
- suitable flow aids include metal oxides, such as titanium oxides, zinc oxides, strontium titanates, colloidal silicas, such as Aerosil run, metal salts and metal salts of fatty acids inclusive of zinc stearate, potassium stearate, potassium oleates, aluminum oxides, cerium oxides, and mixtures thereof, which are generally present in an amount of from 0.1 percent by weight to about 10 pecent by weight, and preferably in an amount of from 0,1 percent by weight to about 5 percent by weight of the TPU.
- metal oxides such as titanium oxides, zinc oxides, strontium titanates, colloidal silicas, such as Aerosil run, metal salts and metal salts of fatty acids inclusive of zinc stearate, potassium stearate, potassium oleates, aluminum oxides, cerium oxides, and mixtures thereof, which are generally present in an amount of from 0.1 percent by weight to about 10 pecent by weight, and preferably in an amount of from 0,1 percent by weight to about 5 percent by weight of the TPU.
- a blowing agent is added to the system, which may either be an exothermic or endothermic blowing agent, or a combination of both. Most preferably however, an endothermic blowing agent is added.
- blowing agent used in the preparation of foamed thermoplastics may be used in the present invention as blowing agents.
- suitable chemical blowing agents include gaseous compounds such as nitrogen or carbon dioxide, gas (e.g. CO2) forming compounds such as azodicarbonamides, carbonates, bicarbonates, citrates, nitrates, borohydrides, carbides such as alkaline earth and alkali metal carbonates and bicarbonates e.g. sodium bicarbonate and sodium carbonate, ammonium carbonate, diaminodiphenylsulphone, hydrazides, malonic acid, citric acid, sodium monocitrate, ureas, azodicarbonic methyl ester, diazabicylooctane and acid/carbonate mixtures.
- gase.g. CO2 gas e.g. CO2
- azodicarbonamides carbonates
- bicarbonates citrates
- citrates e.g. sodium bicarbonate and sodium carbonate
- ammonium carbonate e.g. sodium bicarbonate and sodium carbonate
- diaminodiphenylsulphone
- suitable physical blowing agents include volatile liquids such as chlorofluorocarbons, partially halogenated hydrocarbons or non-halogenated hydrocarbons like propane, n-butane, isobutane, n-pentane, isopentane and or neopentane.
- volatile liquids such as chlorofluorocarbons, partially halogenated hydrocarbons or non-halogenated hydrocarbons like propane, n-butane, isobutane, n-pentane, isopentane and or neopentane.
- Preferred endothermic blowing agents are the so-called ⁇ YDROCEROL' blowing agents as disclosed in a.o. EP-A 158212 and EP-A 211250, which are known as such and commercially available ( ⁇ YDROCEROL' is a trademark of Clariant).
- Azodicarbonamide type blowing agents are preferred as exothermic blowing agents.
- Microspheres are usually used in amount of from 0.1 to 5.0 parts by weight per 100 parts by weight of thermoplastic polyurethane. From 0.5 to 4.0 parts by weight per 100 parts by weight of thermoplastic polyurethane of microspheres are preferred. Most preferably, microspheres are added in amounts from 1.0 to 3.0 parts by weight per 100 parts by weight of thermoplastic polyurethane.
- the total amount of blowing agent added is usually from 0.1 to 5.0 parts by weight per 100 parts by weight of thermoplastic polyurethane. Preferably, from 0.5 to 4.0 parts by weight per 100 parts by weight of thermoplastic polyurethane of blowing agent is added. Most preferably, blowing agent is added in amounts from 1.0 to 3.0 parts by weight per 100 parts by weight of thermoplastic polyurethane.
- additives which are conventionally used in thermoplastics processing may also be used in the process of the present invention.
- additives include catalysts, for example tertiary amines and tin compounds, surface-active agents and foam stabilisers, for example siloxane- oxyalkylene copolymers, flame retardants, antistatic agents, plasticizers, organic and inorganic fillers, pigments, and internal mould release agents.
- the foamed thermoplastic polyurethanes of the present invention can be made via a variety of processing techniques, such as extrusion, calendering, thermoforming, flow moulding or injection moulding. Injection moulding is however the preferred production method.
- processing techniques such as extrusion, calendering, thermoforming, flow moulding or injection moulding.
- injection moulding is however the preferred production method.
- the presence of thermally expandable microspheres allows for a reduction in processing temperatures. Typically the process of the present invention is carried out at temperatures between 150 and 175°C.
- the mould is pressurised, preferably with air, and the pressure is released during foaming.
- a pressurised mould results in TPU articles having an excellent surface finish and physical properties, while having an even further reduced density (down to 350 kg m ⁇ ).
- Thermoplastic polyurethanes of any density between about 100 and 1200 kg/ ⁇ can be prepared by the method of this invention, but it is primarily of use for preparing foamed thermoplastic polyurethanes having densities of less than 800 kg/ , more preferably less than 700 kg/m3 and most preferably less than 600 kg/ ⁇
- thermoplastic polyurethane is customarily manufactured as pellets for later processing into the desired article.
- the term 'pellets' is understood and used herein to encompass various geometric forms, such as squares, trapezoids, cylinders, lenticular shapes, cylinders with diagonal faces, chunks, and substantially spherical shapes including a particle of powder or a larger-size sphere. While thermoplastic polyurethanes are often sold as pellets, the polyurethane could be in any shape or size suitable for use in the equipment used to form the final article.
- the thermoplastic polyurethane pellet of the present invention comprises a thermoplastic polyurethane body, the thermally expandable microspheres and a binding agent which binds the body and the microspheres.
- the binding agent comprises a polymeric component that has an onset temperature for its melt processing lower than the onset temperature of the melt processing range of the TPU.
- the pellets may also include blowing agents and/or additive components such as colorant or pigments.
- the binding agent covers at least part of the thermoplastic polyurethane body.
- the thermoplastic polyurethane body and microspheres are substantially encapsulated by the binding agent.
- substantially encapsulated we mean that at least three- quarters of the surface of the thermoplastic polyurethane body is coated, and preferably at least about nine-tenths of the resin body is coated. It is particularly preferred for the binding agent to cover substantially all of the polyurethane body and microspheres.
- the amount of binding agent to the thermoplastic polyurethane may typically range from at least about 0.1% by weight and up to about 10% by weight, based on the weight of the thermoplastic polyurethane pellet.
- the amount of the binding agent is at least about 0.5% by weight and up to 5% by weight, based on the weight of the thermoplastic polyurethane pellet.
- the binding agent has an onset temperature for its melt processing range that is below the onset temperature of the melt processing range of the thermoplastic polyurethane body.
- the binding agent may be applied as a melt to the thermoplastic polyurethane body composition while the latter is a solid or substantially a solid.
- the onset temperature of the melt processing range ot the binding agent is preferably above about 20 degree C, and more preferably it is above 60 degree C, and even more preferably it is at least about 80 degree C.
- the onset temperature of the melt processing range of the polymeric component of the coating preferably has an onset temperature for its melt processing range at least about 20 degree C and even more preferably at least about 40 degree C. below, the onset temperature for the melt processing range of the thermoplastic polyurethane body.
- the melt processing range of the binding agent is preferably above the temperature of the dryer.
- the binding agent is chosen to prevent or slow water absorption so that a drying step before forming the desired article is unnecessary.
- the binding agent may then be added to the TPU pellets by several different methods.
- the pellets are placed in a container with the coating composition while the pellets are still at a temperature above the onset temperature of the melt processing range of the binding agent.
- the binding agent may be already melted or may be melted by the heat of the pellets or by heat applied externally to the container.
- the binding agent may be introduced to the container as a powder when it is to be melted in the container.
- the binding agent can be any substance capable of binding the thermoplastic polyurethane body and the microspheres.
- the binding agent comprises a polymeric component. Examples of suitable polymeric components include polyisocyanates and/or prepolymers thereof.
- thermoplastic polyurethanes obtainable via the process of the present invention are particularly suitable for use in any application of thermoplastic rubbers including, for example, footwear or integral skin applications like steering wheels.
- Customized thermoplastic polyurethanes may be produced more efficiently using the process according to the present invention.
- the customized thermoplastic polyurethanes may be formed into any of the articles generally made with thermoplastic resins. Examples of articles are interior and exterior parts of automobiles, such as inside panels, bumpers, housing of electric devices such as television, personal computers, telephones, video cameras, watches, note-book personal computers; packaging materials; leisure goods; sporting goods and toys
- the present invention concerns a reaction system comprising (a) a TPU, (b) thermally expandable microspheres and (c) flow aid.
- TPU pellets (Avalon 65AE; 'Avalon' is a trademark of Huntsman ICI Chemicals LLC.) were dry blended with 2% of thermally expandable microspheres (Expancel 092 MB120). The dry blend was then processed on an injection moulding machine (Desma SPE 231) to form a test moulding of dimensions 19.5 *12.0 * 1 cm.
- TPU pellets (Avalon 65AE; 'Avalon' is a trademark of Huntsman ICI Chemicals, LLC.) were dry blended with an exothermic blowing agent (Celogen AZNP130; available from Uniroyal) with 2% of thermally expandable microspheres (Expancel 092 MB 120). The dry blend was then processed on an injection moulding machine (Desma SPE 231) to form a test moulding of dimensions 19.5 *12.0 * 1 cm.
- TPU of example 1 was dry blended with 2% of thermally expandable microspheres (Expancel 092 MB 120) and a flow aid (0.3% ZnO) and processed in the same way as Example 1.
- TPU of example 1 was dry blended with exothermic blowing agent (Celogen AZNP130; available from Uniroyal) with 2% of thermally expandable microspheres (Expancel 092 MB120) and a flow aid (0.3% ZnO) and processed in the same way as Example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyurethanes Or Polyureas (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01965004A EP1303561A1 (de) | 2000-07-20 | 2001-06-19 | Expandierte thermoplastische polyurethane |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00115639A EP1174459A1 (de) | 2000-07-20 | 2000-07-20 | Expandierte thermoplastische Polyurethane |
EP00115639 | 2000-07-20 | ||
EP01965004A EP1303561A1 (de) | 2000-07-20 | 2001-06-19 | Expandierte thermoplastische polyurethane |
PCT/EP2001/006896 WO2002008322A1 (en) | 2000-07-20 | 2001-06-19 | Foamed thermoplastic polyurethanes |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1303561A1 true EP1303561A1 (de) | 2003-04-23 |
Family
ID=8169312
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00115639A Withdrawn EP1174459A1 (de) | 2000-07-20 | 2000-07-20 | Expandierte thermoplastische Polyurethane |
EP01965004A Withdrawn EP1303561A1 (de) | 2000-07-20 | 2001-06-19 | Expandierte thermoplastische polyurethane |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00115639A Withdrawn EP1174459A1 (de) | 2000-07-20 | 2000-07-20 | Expandierte thermoplastische Polyurethane |
Country Status (7)
Country | Link |
---|---|
EP (2) | EP1174459A1 (de) |
JP (1) | JP2004504462A (de) |
CN (1) | CN1443215A (de) |
AU (1) | AU2001285760A1 (de) |
BR (1) | BR0112632A (de) |
MX (1) | MXPA03000444A (de) |
WO (1) | WO2002008322A1 (de) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8777011B2 (en) | 2001-12-21 | 2014-07-15 | Novartis Ag | Capsule package with moisture barrier |
US7022099B2 (en) * | 2003-03-17 | 2006-04-04 | Cardiovention, Inc. | Extracorporeal blood handling system with automatic flow control and methods of use |
EP1727854A1 (de) * | 2004-03-15 | 2006-12-06 | Dow Global Technologies Inc. | Verfahren zum haftenden aufbringen eines expandierbaren weichen polyurethans auf einem substrat |
DE102005050411A1 (de) | 2005-10-19 | 2007-04-26 | Basf Ag | Schuhsohlen auf Basis von geschäumtem thermoplastischen Polyurethan (TPU) |
US8506983B2 (en) | 2006-05-01 | 2013-08-13 | Warsaw Orthopedic, Inc. | Bone filler material |
US7838022B2 (en) | 2006-05-01 | 2010-11-23 | Warsaw Orthopedic, Inc | Malleable implants containing demineralized bone matrix |
JP5624892B2 (ja) | 2008-01-04 | 2014-11-12 | セントラル アデレード ローカル ヘルス ネットワーク インコーポレイテッド | Efmr(女性に限られた癲癇及び精神遅滞)の診断方法及び治療方法 |
TWI486368B (zh) | 2010-01-11 | 2015-06-01 | Lubrizol Advanced Mat Inc | 用於印刷包覆層之熱塑性聚胺基甲酸酯 |
DE102012206094B4 (de) | 2012-04-13 | 2019-12-05 | Adidas Ag | Sohlen für Sportschuhe, Schuhe und Verfahren zur Herstellung einer Schuhsohle |
DE102013202291B4 (de) | 2013-02-13 | 2020-06-18 | Adidas Ag | Dämpfungselement für Sportbekleidung und Schuh mit einem solchen Dämpfungselement |
US9930928B2 (en) | 2013-02-13 | 2018-04-03 | Adidas Ag | Sole for a shoe |
USD776410S1 (en) | 2013-04-12 | 2017-01-17 | Adidas Ag | Shoe |
DE102014215897B4 (de) | 2014-08-11 | 2016-12-22 | Adidas Ag | adistar boost |
DE102014216115B4 (de) | 2014-08-13 | 2022-03-31 | Adidas Ag | Gemeinsam gegossene 3D Elemente |
JP6679363B2 (ja) | 2015-03-23 | 2020-04-15 | アディダス アーゲー | ソールおよびシューズ |
DE102015206486B4 (de) | 2015-04-10 | 2023-06-01 | Adidas Ag | Schuh, insbesondere Sportschuh, und Verfahren zur Herstellung desselben |
DE102015206900B4 (de) | 2015-04-16 | 2023-07-27 | Adidas Ag | Sportschuh |
DE102015209795B4 (de) | 2015-05-28 | 2024-03-21 | Adidas Ag | Ball und Verfahren zu dessen Herstellung |
DE202015005873U1 (de) | 2015-08-25 | 2016-11-28 | Rti Sports Gmbh | Fahrradsattel |
DE202016005103U1 (de) | 2016-08-24 | 2017-11-29 | Rti Sports Gmbh | Fahrradsattel |
WO2018036808A1 (de) | 2016-08-24 | 2018-03-01 | Rti Sports Gmbh | Fahrradsattel |
DE202017000579U1 (de) | 2017-02-03 | 2018-05-04 | Ergon International Gmbh | Fahrradsattel |
EP3564101B1 (de) | 2016-08-30 | 2021-11-10 | Ergon International GmbH | Fahrradsattel |
DE102016216309A1 (de) | 2016-08-30 | 2018-03-01 | Ergon International Gmbh | Fahrradsattel, Sattelpolster sowie Verfahren zur Herstellung eines Fahrradsattels oder Sattelpolsters |
DE102017201775A1 (de) | 2017-02-03 | 2018-08-09 | Ergon International Gmbh | Fahrradsattel, Sattelpolster sowie Verfahren zur Herstellung eines Fahrradsattels oder Sattelpolsters |
US11597462B2 (en) | 2017-01-28 | 2023-03-07 | Ergon International Gmbh | Bicycle saddle |
DE202017004495U1 (de) | 2017-08-28 | 2018-11-30 | Ergon International Gmbh | Fahrradsattel |
DE202017000484U1 (de) | 2017-01-28 | 2018-05-03 | Ergon International Gmbh | Fahrradsattel |
DE102017202026A1 (de) | 2017-02-09 | 2018-08-09 | Ergon International Gmbh | Fahrradsattel sowie Verfahren zur Herstellung eines Fahrradsattels |
DE202017002940U1 (de) | 2017-05-29 | 2018-08-30 | Ergon International Gmbh | Fahrradsattel |
EP3441291A1 (de) | 2017-08-10 | 2019-02-13 | SQlab GmbH | Ergonomischer fahrradsattel zur druckentlastung der sitzknochen |
DE202017004489U1 (de) | 2017-08-29 | 2018-12-02 | Ergon International Gmbh | Fahrradsattel |
DE202018000895U1 (de) | 2018-02-21 | 2019-05-23 | Ergon International Gmbh | Fahrradsattel |
DE202018000943U1 (de) | 2018-02-22 | 2019-05-23 | Ergon International Gmbh | Fahrradsattel |
DE102018211090A1 (de) | 2018-07-05 | 2020-01-09 | Ergon International Gmbh | Fahrradsattel sowie Verfahren zur Herstellung eines Polsterelements für einen Fahrradsattel |
CN108948724B (zh) * | 2018-08-22 | 2020-11-06 | 清华大学 | 一种高力学损耗因子热塑性聚氨酯泡沫的制备方法 |
DE202019104601U1 (de) | 2019-08-22 | 2020-11-24 | Ergon International Gmbh | Fahrradsattel |
CN114479422A (zh) * | 2022-01-24 | 2022-05-13 | 山东跃华新材料有限公司 | 一种高弹性高耐磨tpu复合发泡材料及其制备方法 |
CN117209712B (zh) * | 2023-08-15 | 2024-02-27 | 佛山市创意新材料科技有限公司 | 一种爆米花鞋底及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA980491A (en) * | 1971-08-02 | 1975-12-23 | Union Carbide Corporation | Polyester-polyurethane polymeric products |
CA2016270A1 (en) * | 1989-06-08 | 1990-12-08 | Duane W. Witzke | Vehicle seat with blow molded cover and method of making the same |
US5272001A (en) * | 1993-04-08 | 1993-12-21 | Morey Weisman | Modified low-density polyurethane foam body |
DE4333795C2 (de) * | 1993-10-04 | 2003-04-10 | Basf Ag | Verfahren zur Herstellung von thermoplastisch verformbaren Polyurethan-Hartschaumstoffen und hierfür verwendbare Mischungen aus Polyhydroxylverbindungen |
EP0692516A1 (de) * | 1994-07-15 | 1996-01-17 | Hans-Joachim Burger | Massgenauer thermoplastischer syntaktischer Schaum |
JPH10168215A (ja) * | 1996-12-06 | 1998-06-23 | Sekisui Plastics Co Ltd | 熱可塑性ポリウレタン発泡シート及びその製造法 |
-
2000
- 2000-07-20 EP EP00115639A patent/EP1174459A1/de not_active Withdrawn
-
2001
- 2001-06-19 CN CN 01813060 patent/CN1443215A/zh active Pending
- 2001-06-19 JP JP2002514224A patent/JP2004504462A/ja not_active Withdrawn
- 2001-06-19 WO PCT/EP2001/006896 patent/WO2002008322A1/en not_active Application Discontinuation
- 2001-06-19 AU AU2001285760A patent/AU2001285760A1/en not_active Abandoned
- 2001-06-19 BR BR0112632-6A patent/BR0112632A/pt not_active IP Right Cessation
- 2001-06-19 MX MXPA03000444A patent/MXPA03000444A/es not_active Application Discontinuation
- 2001-06-19 EP EP01965004A patent/EP1303561A1/de not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO0208322A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU2001285760A1 (en) | 2002-02-05 |
JP2004504462A (ja) | 2004-02-12 |
BR0112632A (pt) | 2003-06-10 |
WO2002008322A1 (en) | 2002-01-31 |
CN1443215A (zh) | 2003-09-17 |
MXPA03000444A (es) | 2003-06-24 |
EP1174459A1 (de) | 2002-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1233037B1 (de) | Thermoplastische Polyurethane | |
WO2002008322A1 (en) | Foamed thermoplastic polyurethanes | |
US20030158275A1 (en) | Foamed thermoplastic polyurethanes | |
EP1240006B1 (de) | Durch gas unterstütztes spritzgiessen | |
US20040138318A1 (en) | Foamed thermoplastic polyurethanes | |
MXPA01007554A (es) | Proceso para la preparacion de poliuretanos termoplasticos espumados | |
WO2003085042A1 (en) | Modified thermoplastic polyurethanes | |
JPH0485318A (ja) | 軟質ウレタンフォームの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021227 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20040716 |