EP1303415B1 - Tintenversorgungseinheit für einen drucker - Google Patents

Tintenversorgungseinheit für einen drucker Download PDF

Info

Publication number
EP1303415B1
EP1303415B1 EP00938317A EP00938317A EP1303415B1 EP 1303415 B1 EP1303415 B1 EP 1303415B1 EP 00938317 A EP00938317 A EP 00938317A EP 00938317 A EP00938317 A EP 00938317A EP 1303415 B1 EP1303415 B1 EP 1303415B1
Authority
EP
European Patent Office
Prior art keywords
ink
printhead
wafer
ink supply
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00938317A
Other languages
English (en)
French (fr)
Other versions
EP1303415A4 (de
EP1303415A1 (de
Inventor
Kia Silverbrook
Tobin Allen King
Garry Raymond Jackson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silverbrook Research Pty Ltd
Original Assignee
Silverbrook Research Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silverbrook Research Pty Ltd filed Critical Silverbrook Research Pty Ltd
Publication of EP1303415A1 publication Critical patent/EP1303415A1/de
Publication of EP1303415A4 publication Critical patent/EP1303415A4/de
Application granted granted Critical
Publication of EP1303415B1 publication Critical patent/EP1303415B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor

Definitions

  • This invention relates to a print engine.
  • the invention has particular application in a print engine for use in an instantaneous print, digital camera. More particularly, the invention relates to an ink supply assembly for supplying ink to a printhead of the print engine.
  • a printhead of the printer engine of a page width printer has a width dimension measured in fractions of millimeters.
  • the printhead has a width dimension of about six hundred micrometers.
  • adjacent nozzles could be spaced from each other by dimensions in the order of 100 micrometers.
  • the substrate of the printhead is made from a silicon wafer a supply mechanism for supplying ink to the substrate is often made out of plastic. To mold the plastic such that individual ink supplies are provided to each ink supply passage in the substrate results in extremely fine tolerances with the consequential expense, which that entails.
  • page width is meant that the printhead prints one line at a time on the print media without traversing the print media, or rastering, as the print media moves past the printhead.
  • US 5,666,140 describes a typical prior art ink supply arrangement comprising a silicon printhead directly bonded to a mounting frame.
  • an ink supply arrangement for a printhead of a print engine, the printhead comprising an array of microelectromechanical system (MEMS) ink ejection devices mounted on a first surface of a wafer and a plurality of ink supply passages each extending through the wafer from an opposed surface of the wafer to a respective ink ejection device, with the ink ejection devices being arranged in groups, the ink supply arrangement including a block bonded to said opposed surface of the wafer, the block having a plurality of channels defined therein and opening out into a first surface of the block in abutment with said opposed surface of the wafer; and at least one ink supply inlet opening in communication with each channel, said ink supply inlet openings opening out into a second surface of the block opposed to the first surface, characterized in that the block is a silicon block.
  • MEMS microelectromechanical system
  • the block may include an isolating means for isolating each ink inlet opening from its neighboring opening.
  • the isolating means may be a bead of a sealing material arranged transversely across the block between adjacent ink inlet openings.
  • reference numeral 500 generally designates a print engine, in accordance with the invention.
  • the print engine 500 includes a print engine assembly 502 on which a print roll cartridge 504 is removably mountable.
  • the print cartridge 504 is described in greater detail in our co-pending applications entitled “A Print Cartridge” (docket number CA02) and “An Ink Cartridge” (docket number CAo4) filed simultaneously herewith as International Patent Application numbers PCT/AU00/00741 and PCT/AU00/00742 respectively, the contents of that disclosure being specifically incorporated herein by reference.
  • the print engine assembly 502 comprises a first sub-assembly 506 and a second, printhead sub-assembly 508.
  • the sub-assembly 506 includes a chassis 510.
  • the chassis 510 comprises a first molding 512 in which ink supply channels 514 are molded.
  • the ink supply channels 514 supply inks from the print cartridge 504 to a printhead 516 ( Figures 5 to 7 ) of the printhead sub-assembly 508.
  • the printhead 516 prints in four colors or three colors plus ink which is visible in the infrared light spectrum only (hereinafter referred to as 'infrared ink').
  • four ink supply channels 514 are defined in the molding 512 together with an air supply channel 518.
  • the air supply channel 518 supplies air to the printhead 516 to inhibit the build up of foreign particles on a nozzle guard of the printhead 516.
  • the chassis 510 further includes a cover molding 520.
  • the cover molding 520 supports a pump 522 thereon.
  • the pump 522 is a suction pump, which draws air through an air filter in the print cartridge 504 via an air inlet pin 524 and an air inlet opening 526. Air is expelled through an outlet opening 528 into the air supply channel 518 of the chassis 510.
  • the chassis 510 further supports a first drive motor in the form of a stepper motor 530.
  • the stepper motor 530 drives the pump 522 via a first gear train 532.
  • the stepper motor 530 is also connected to a drive roller 534 ( Figure 5 ) of a roller assembly 536 of the print cartridge 504 via a second gear train 538.
  • the gear train 538 engages an engagable element 540 ( Figure 2 ) carried at an end of the drive roller 534.
  • the stepper motor 530 thus controls the feed of print media 542 to the printhead 516 of the sub-assembly 508 to enable an image to be printed on the print media 542 as it passes beneath the printhead 516.
  • the pump 522 is only operational to blow air over the printhead 516 when printing takes place on the print media 542.
  • the molding 512 of the chassis 510 also supports a plurality of ink supply conduits in the form of pins 544 which are in communication with the ink supply channels 514.
  • the ink supply pins 544 are received through an elastomeric collar assembly 546 of the print cartridge 504 for drawing ink from ink chambers or reservoirs 548 ( Figure 5 ) in the print cartridge 504 to be supplied to the printhead 516.
  • a second motor 550 which is a DC motor, is supported on the cover molding 520 of the chassis 510 via clips 552.
  • the motor 550 is provided to drive a separating means in the form of a cutter arm assembly 554 to part a piece of the print media 542, after an image has been printed thereon, from a remainder of the print media.
  • the motor 550 carries a beveled gear 556 on an output shaft thereof.
  • the beveled gear 556 meshes with a beveled gear 558 carried on a worm gear 560 of the cutter assembly 554.
  • the worm gear 560 is rotatably supported via bearings 562 in a chassis base plate 564 of the printhead sub-assembly 508.
  • the cutter assembly 554 includes a cutter wheel 566, which is supported on a resiliently flexible arm 568 on a mounting block 570.
  • the worm gear 560 passes through the mounting block 570 such that, when the worm gear 560 is rotated, the mounting block 570 and the cutter wheel 566 traverse the chassis base plate 564.
  • the mounting block 570 bears against a lip 572 of the base plate 564 to inhibit rotation of the mounting block 570 relative to the worm gear 560.
  • the cutter wheel 566 bears against an upper housing or cap portion 574 of the printhead sub-assembly 508.
  • This cap portion 574 is a metal portion. Hence, as the cutter wheel 566 traverses the capped portion 574, a scissors-like cutting action is imparted to the print media to separate that part of the print media 542 on which the image has been printed.
  • the sub-assembly 506 includes an ejector mechanism 576.
  • the ejector mechanism 576 is carried on the chassis 510 and has a collar 578 having clips 580, which clip and affix the ejector mechanism 576 to the chassis 510.
  • the collar 578 supports an insert 582 of an elastomeric material therein.
  • the elastomeric insert 582 defines a plurality of openings 584.
  • the openings 584 close off inlet openings of the pins 544 to inhibit the ingress of foreign particles into the pins 544 and, in so doing, into the channels 514 and the printhead 516.
  • the insert 584 defines a land or platform 586 which closes off an inlet opening of the air inlet pin 524 for the same purposes.
  • a coil spring 588 is arranged between the chassis 510 and the collar 578 to urge the collar 578 to a spaced position relative to the chassis 510 when the cartridge 504 is removed from the print engine 500, as shown in greater detail in Figure 3 of the drawings.
  • the ejector mechanism 576 is shown in its retracted position in Figure 4 of the drawings.
  • the printhead sub-assembly 508 includes, as described above, the base plate 564.
  • a capping mechanism 590 is supported displaceably on the base plate 564 to be displaceable towards and away from the printhead 516.
  • the capping mechanism 590 includes an elongate rib 592 arranged on a carrier 593.
  • the carrier is supported by a displacement mechanism 594, which displaces the rib 592 into abutment with the printhead 516 when the printhead 516 is inoperative. Conversely, when the printhead 516 is operational, the displacement mechanism 594 is operable to retract the rib 592 out of abutment with the printhead 516.
  • the printhead sub-assembly 508 includes a printhead support molding 596 on which the printhead 516 is mounted.
  • the molding 596 together with an insert 599 arranged in the molding 596, define a passage 598 through which the print media 542 passes when an image is to be printed thereon.
  • a groove 700 is defined in the molding 596 through which the capping mechanism 590 projects when the capping mechanism 590 is in its capping position.
  • An ink feed arrangement 702 is supported by the insert 599 beneath the cap portion 574.
  • the ink feed arrangement 702 comprises a spine portion 704 and a casing 706 mounted on the spine portion 704.
  • the spine portion 704 and the casing 706, between them, define ink feed galleries 708 which are in communication with the ink supply channels 514 in the chassis 510 for feeding ink via passages 710 ( Figure 7 ) to the printhead 516.
  • An air supply channel 711 ( Figure 8 ) is defined in the spine portion 704, alongside the printhead 516.
  • TAB film 712 which is held captive between the insert 599 and the ink feed arrangement 702.
  • the molding 596 includes an angled wing portion 714.
  • a flexible printed circuit board (PCB) 716 is supported on and secured to the wing portion 714.
  • the flex PCB 716 makes electrical contact with the TAB film 712 by being urged into engagement with the TAB film 712 via a rib 718 of the insert 599.
  • the flex PCB 716 supports busbars 720 thereon.
  • the busbars 720 provide power to the printhead 516 and to the other powered components of the print engine 500.
  • a camera print engine control chip 721 is supported on the flex PCB 716 together with a QA chip (not shown) which authenticates that the cartridge 504 is compatible and compliant with the print engine 500.
  • the PCB 716 includes contacts 723 which engage contacts 725 in the print cartridge 504.
  • the printhead itself includes a nozzle guard 722 arranged on a silicon wafer 724.
  • the ink is supplied to a nozzle array (not shown) of the printhead 516 via an ink supply member 726.
  • the ink supply member 726 communicates with outlets of the passages 710 of the ink feed arrangement 702 for feeding ink to the array of nozzles of the printhead 516, on demand.
  • the ink supply member 726 is a block of silicon wafer which is mounted on the silicon wafer 724.
  • the member 726 has channels 728 formed therein. The channels 728 extend the length of the member 726.
  • the printhead 516 is a multi-color printhead having nozzles 757 arranged in groups. Each group prints one color or the infrared ink.
  • the nozzles 757 are MEMS devices mounted on a surface 730 of the silicon wafer 724 with the member 726 being mounted on an opposed surface 732 of the silicon wafer 724.
  • each group of nozzles 757 is supplied by an ink supply passage 734.
  • each channel 728 of the member 726 communicates with its associated group of passages 734.
  • Each channel 728 has a plurality of ink inlet openings 736, 738, 740 and 742.
  • the ink inlet openings 736 supply black ink to the first group of ink supply passages 734 of the wafer 724.
  • the ink inlet openings 736 provide infrared ink to the first group of passages.
  • the inlet openings 738 provide magenta ink to the second group of nozzles via their inlet passages 734.
  • the ink inlet openings 740 provide yellow ink to the third group of nozzles via their passages 734.
  • the final group of inlet openings 742 provide cyan ink to the fourth group of nozzles via their passages 734.
  • Each inlet opening 736, 738, 740, 742 is isolated from its neighboring opening via a transversely extending bead of sealing material 744. It will be appreciated that the ink feed arrangement 702 bears against the top surface 746 of the member 726 further to isolate the openings 736 to 742 from one another.
  • the TAB film 712 is bonded to the surface 730 of the wafer 724 via beads of adhesive 748.
  • the beads 748 further form a fluid tight seal against the side of the wafer 724.
  • Ink ejected from each MEMS device 757 is ejected through a passage 750 in the nozzle guard 722.
  • a passage 750 in the nozzle guard 722. To maintain a surface 752 of the nozzle guard and a region 754 between the nozzle guard 722 and the wafer 724. free of foreign particles, air is blown on to the surface 752 of the nozzle guard 722 and, via inlet openings 756 from the channel 710 into the region 754.
  • the member 726 is a silicon wafer and, accordingly, the channels 728 and the inlet openings 736 to 742 are formed in the wafer by etching techniques.
  • each ink inlet opening 736 to 742 has a length dimension L of approximately 0.5 millimeters.
  • the spacing between adjacent inlet openings is also of the order of 0.5 millimeters. If one considers the width dimension of the printhead 516 as the X dimension with a length of the printhead as a Y dimension the ink supply member 726 effectively functions as an adapter converting a small X dimension into a much larger Y dimension. Accordingly, it is easier to fabricate the feed passages of the ink feed arrangement 702, which is a plastic molding, than would be the case if the ink feed arrangement fed the ink directly into the wafer 724 of the printhead 516.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)
  • Pens And Brushes (AREA)
  • Impression-Transfer Materials And Handling Thereof (AREA)
  • Dot-Matrix Printers And Others (AREA)

Claims (2)

  1. Tintenversorgungsanordnung für einen Druckkopf (516) eines Druckers, wobei der Druckkopf ein Array von MEMS-(mikroelektromechanisches System)-Tintenstrahlvorrichtungen (757), die auf einer ersten Oberfläche eines Wafers montiert sind, und eine Vielzahl von Tintenversorgungsdurchlässen (734), die sich jeweils durch den Wafer von einer gegenüberliegenden Oberfläche des Wafers zu der entsprechenden Tintenstrahlvorrichtung hin erstrecken, umfasst, wobei die Tintenstrahlvorrichtungen in Gruppen angeordnet sind, dadurch gekennzeichnet, dass:
    die Tintenversorgungsanordnung Folgendes einschließt:
    einen Siliziumblock (726), der mit der gegenüberliegenden Oberfläche des Wafers verbunden ist, wobei der Block eine Vielzahl von Kanälen (728) aufweist, die darin begrenzt sind, wobei jeder Kanal sich in eine erste Oberfläche des Blocks öffnet, die mit der gegenüberliegenden Oberfläche des Wafers anliegt, und sich in eine zweite Oberfläche (746) des Blocks gegenüber der ersten Oberfläche öffnet;
    einen Gratabschnitt (704); und
    ein Gehäuse (706), das an dem Gratabschnitt montiert ist,
    wobei der Gratabschnitt und das Gehäuse gemeinsam Tintenzuführgalerien (708) zum Empfangen von Tinte aus einer Patrone und zum Zuführen von Tinte über Durchlässe (710) an die Kanäle (728) in dem Siliziumblock (726) begrenzen,
    und wobei weiterhin der Gratabschnitt und das Gehäuse aus Kunststoffformteilen geformt sind.
  2. Tintenversorgungsanordnung nach Anspruch 1, die ein Isoliermittel (744) zum Isolieren jeder Tinteneinlassöffnung von ihrer Nachbaröffnung einschließt.
EP00938317A 2000-06-30 2000-06-30 Tintenversorgungseinheit für einen drucker Expired - Lifetime EP1303415B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2000/000744 WO2002002335A1 (en) 2000-06-30 2000-06-30 An ink supply assembly for a print engine

Publications (3)

Publication Number Publication Date
EP1303415A1 EP1303415A1 (de) 2003-04-23
EP1303415A4 EP1303415A4 (de) 2005-05-25
EP1303415B1 true EP1303415B1 (de) 2009-10-28

Family

ID=3700825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00938317A Expired - Lifetime EP1303415B1 (de) 2000-06-30 2000-06-30 Tintenversorgungseinheit für einen drucker

Country Status (8)

Country Link
EP (1) EP1303415B1 (de)
JP (1) JP2004504969A (de)
CN (2) CN100377882C (de)
AT (1) ATE446842T1 (de)
AU (3) AU5373400A (de)
DE (1) DE60043240D1 (de)
IL (1) IL166875A (de)
WO (1) WO2002002335A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496654B1 (en) 2000-10-20 2002-12-17 Silverbrook Research Pty Ltd Method and apparatus for fault tolerant data storage on photographs
JP4582016B2 (ja) * 2006-02-23 2010-11-17 ブラザー工業株式会社 インクジェット記録装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU657931B2 (en) * 1991-01-30 1995-03-30 Canon Kabushiki Kaisha An integrally formed bubblejet print device
US5666140A (en) * 1993-04-16 1997-09-09 Hitachi Koki Co., Ltd. Ink jet print head
JPH10151743A (ja) * 1996-11-22 1998-06-09 Hitachi Koki Co Ltd インク噴射記録ヘッドとその記録装置
JPH11245414A (ja) * 1998-02-27 1999-09-14 Casio Comput Co Ltd 半導体基板、及び半導体基板を使用したサーマルインクジェットヘッド

Also Published As

Publication number Publication date
CN1676339A (zh) 2005-10-05
WO2002002335A1 (en) 2002-01-10
CN1454154A (zh) 2003-11-05
ATE446842T1 (de) 2009-11-15
EP1303415A4 (de) 2005-05-25
EP1303415A1 (de) 2003-04-23
AU2000253734A1 (en) 2002-04-11
CN100377882C (zh) 2008-04-02
IL166875A (en) 2007-07-24
DE60043240D1 (de) 2009-12-10
AU2000253734B2 (en) 2004-04-29
CN1208196C (zh) 2005-06-29
JP2004504969A (ja) 2004-02-19
AU5373400A (en) 2002-01-14
AU2004203190A1 (en) 2004-08-12
AU2004203190B2 (en) 2005-07-28

Similar Documents

Publication Publication Date Title
US8366241B2 (en) Printhead having capped fluid passages
EP1299239B1 (de) Farbvorrichtung für eine druckmaschine
US6439704B1 (en) Ejector mechanism for a print engine
EP1303415B1 (de) Tintenversorgungseinheit für einen drucker
AU2000253738B2 (en) An ink feed arrangement for a print engine
AU2004202885B2 (en) A printhead assembly with an ink feed arrangement
EP1301349B1 (de) Druckmaschine mit luftpumpe
ZA200210185B (en) An ink supply assembly for a print engine.
AU2000253736B2 (en) An ejector mechanism for a print engine
KR100718192B1 (ko) 프린트엔진용 잉크공급 조립체
AU2004203191B2 (en) Pump assembly for a print engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030130

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

A4 Supplementary search report drawn up and despatched

Effective date: 20050412

RIC1 Information provided on ipc code assigned before grant

Ipc: 7B 41J 2/155 B

Ipc: 7B 41J 2/14 B

Ipc: 7B 41J 2/175 A

17Q First examination report despatched

Effective date: 20060804

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60043240

Country of ref document: DE

Date of ref document: 20091210

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130627

Year of fee payment: 14

Ref country code: IE

Payment date: 20130625

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130702

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20140619 AND 20140625

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60043240

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60043240

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160627

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630