EP1303415B1 - An ink supply assembly for a print engine - Google Patents
An ink supply assembly for a print engine Download PDFInfo
- Publication number
- EP1303415B1 EP1303415B1 EP00938317A EP00938317A EP1303415B1 EP 1303415 B1 EP1303415 B1 EP 1303415B1 EP 00938317 A EP00938317 A EP 00938317A EP 00938317 A EP00938317 A EP 00938317A EP 1303415 B1 EP1303415 B1 EP 1303415B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ink
- printhead
- wafer
- ink supply
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
Definitions
- This invention relates to a print engine.
- the invention has particular application in a print engine for use in an instantaneous print, digital camera. More particularly, the invention relates to an ink supply assembly for supplying ink to a printhead of the print engine.
- a printhead of the printer engine of a page width printer has a width dimension measured in fractions of millimeters.
- the printhead has a width dimension of about six hundred micrometers.
- adjacent nozzles could be spaced from each other by dimensions in the order of 100 micrometers.
- the substrate of the printhead is made from a silicon wafer a supply mechanism for supplying ink to the substrate is often made out of plastic. To mold the plastic such that individual ink supplies are provided to each ink supply passage in the substrate results in extremely fine tolerances with the consequential expense, which that entails.
- page width is meant that the printhead prints one line at a time on the print media without traversing the print media, or rastering, as the print media moves past the printhead.
- US 5,666,140 describes a typical prior art ink supply arrangement comprising a silicon printhead directly bonded to a mounting frame.
- an ink supply arrangement for a printhead of a print engine, the printhead comprising an array of microelectromechanical system (MEMS) ink ejection devices mounted on a first surface of a wafer and a plurality of ink supply passages each extending through the wafer from an opposed surface of the wafer to a respective ink ejection device, with the ink ejection devices being arranged in groups, the ink supply arrangement including a block bonded to said opposed surface of the wafer, the block having a plurality of channels defined therein and opening out into a first surface of the block in abutment with said opposed surface of the wafer; and at least one ink supply inlet opening in communication with each channel, said ink supply inlet openings opening out into a second surface of the block opposed to the first surface, characterized in that the block is a silicon block.
- MEMS microelectromechanical system
- the block may include an isolating means for isolating each ink inlet opening from its neighboring opening.
- the isolating means may be a bead of a sealing material arranged transversely across the block between adjacent ink inlet openings.
- reference numeral 500 generally designates a print engine, in accordance with the invention.
- the print engine 500 includes a print engine assembly 502 on which a print roll cartridge 504 is removably mountable.
- the print cartridge 504 is described in greater detail in our co-pending applications entitled “A Print Cartridge” (docket number CA02) and “An Ink Cartridge” (docket number CAo4) filed simultaneously herewith as International Patent Application numbers PCT/AU00/00741 and PCT/AU00/00742 respectively, the contents of that disclosure being specifically incorporated herein by reference.
- the print engine assembly 502 comprises a first sub-assembly 506 and a second, printhead sub-assembly 508.
- the sub-assembly 506 includes a chassis 510.
- the chassis 510 comprises a first molding 512 in which ink supply channels 514 are molded.
- the ink supply channels 514 supply inks from the print cartridge 504 to a printhead 516 ( Figures 5 to 7 ) of the printhead sub-assembly 508.
- the printhead 516 prints in four colors or three colors plus ink which is visible in the infrared light spectrum only (hereinafter referred to as 'infrared ink').
- four ink supply channels 514 are defined in the molding 512 together with an air supply channel 518.
- the air supply channel 518 supplies air to the printhead 516 to inhibit the build up of foreign particles on a nozzle guard of the printhead 516.
- the chassis 510 further includes a cover molding 520.
- the cover molding 520 supports a pump 522 thereon.
- the pump 522 is a suction pump, which draws air through an air filter in the print cartridge 504 via an air inlet pin 524 and an air inlet opening 526. Air is expelled through an outlet opening 528 into the air supply channel 518 of the chassis 510.
- the chassis 510 further supports a first drive motor in the form of a stepper motor 530.
- the stepper motor 530 drives the pump 522 via a first gear train 532.
- the stepper motor 530 is also connected to a drive roller 534 ( Figure 5 ) of a roller assembly 536 of the print cartridge 504 via a second gear train 538.
- the gear train 538 engages an engagable element 540 ( Figure 2 ) carried at an end of the drive roller 534.
- the stepper motor 530 thus controls the feed of print media 542 to the printhead 516 of the sub-assembly 508 to enable an image to be printed on the print media 542 as it passes beneath the printhead 516.
- the pump 522 is only operational to blow air over the printhead 516 when printing takes place on the print media 542.
- the molding 512 of the chassis 510 also supports a plurality of ink supply conduits in the form of pins 544 which are in communication with the ink supply channels 514.
- the ink supply pins 544 are received through an elastomeric collar assembly 546 of the print cartridge 504 for drawing ink from ink chambers or reservoirs 548 ( Figure 5 ) in the print cartridge 504 to be supplied to the printhead 516.
- a second motor 550 which is a DC motor, is supported on the cover molding 520 of the chassis 510 via clips 552.
- the motor 550 is provided to drive a separating means in the form of a cutter arm assembly 554 to part a piece of the print media 542, after an image has been printed thereon, from a remainder of the print media.
- the motor 550 carries a beveled gear 556 on an output shaft thereof.
- the beveled gear 556 meshes with a beveled gear 558 carried on a worm gear 560 of the cutter assembly 554.
- the worm gear 560 is rotatably supported via bearings 562 in a chassis base plate 564 of the printhead sub-assembly 508.
- the cutter assembly 554 includes a cutter wheel 566, which is supported on a resiliently flexible arm 568 on a mounting block 570.
- the worm gear 560 passes through the mounting block 570 such that, when the worm gear 560 is rotated, the mounting block 570 and the cutter wheel 566 traverse the chassis base plate 564.
- the mounting block 570 bears against a lip 572 of the base plate 564 to inhibit rotation of the mounting block 570 relative to the worm gear 560.
- the cutter wheel 566 bears against an upper housing or cap portion 574 of the printhead sub-assembly 508.
- This cap portion 574 is a metal portion. Hence, as the cutter wheel 566 traverses the capped portion 574, a scissors-like cutting action is imparted to the print media to separate that part of the print media 542 on which the image has been printed.
- the sub-assembly 506 includes an ejector mechanism 576.
- the ejector mechanism 576 is carried on the chassis 510 and has a collar 578 having clips 580, which clip and affix the ejector mechanism 576 to the chassis 510.
- the collar 578 supports an insert 582 of an elastomeric material therein.
- the elastomeric insert 582 defines a plurality of openings 584.
- the openings 584 close off inlet openings of the pins 544 to inhibit the ingress of foreign particles into the pins 544 and, in so doing, into the channels 514 and the printhead 516.
- the insert 584 defines a land or platform 586 which closes off an inlet opening of the air inlet pin 524 for the same purposes.
- a coil spring 588 is arranged between the chassis 510 and the collar 578 to urge the collar 578 to a spaced position relative to the chassis 510 when the cartridge 504 is removed from the print engine 500, as shown in greater detail in Figure 3 of the drawings.
- the ejector mechanism 576 is shown in its retracted position in Figure 4 of the drawings.
- the printhead sub-assembly 508 includes, as described above, the base plate 564.
- a capping mechanism 590 is supported displaceably on the base plate 564 to be displaceable towards and away from the printhead 516.
- the capping mechanism 590 includes an elongate rib 592 arranged on a carrier 593.
- the carrier is supported by a displacement mechanism 594, which displaces the rib 592 into abutment with the printhead 516 when the printhead 516 is inoperative. Conversely, when the printhead 516 is operational, the displacement mechanism 594 is operable to retract the rib 592 out of abutment with the printhead 516.
- the printhead sub-assembly 508 includes a printhead support molding 596 on which the printhead 516 is mounted.
- the molding 596 together with an insert 599 arranged in the molding 596, define a passage 598 through which the print media 542 passes when an image is to be printed thereon.
- a groove 700 is defined in the molding 596 through which the capping mechanism 590 projects when the capping mechanism 590 is in its capping position.
- An ink feed arrangement 702 is supported by the insert 599 beneath the cap portion 574.
- the ink feed arrangement 702 comprises a spine portion 704 and a casing 706 mounted on the spine portion 704.
- the spine portion 704 and the casing 706, between them, define ink feed galleries 708 which are in communication with the ink supply channels 514 in the chassis 510 for feeding ink via passages 710 ( Figure 7 ) to the printhead 516.
- An air supply channel 711 ( Figure 8 ) is defined in the spine portion 704, alongside the printhead 516.
- TAB film 712 which is held captive between the insert 599 and the ink feed arrangement 702.
- the molding 596 includes an angled wing portion 714.
- a flexible printed circuit board (PCB) 716 is supported on and secured to the wing portion 714.
- the flex PCB 716 makes electrical contact with the TAB film 712 by being urged into engagement with the TAB film 712 via a rib 718 of the insert 599.
- the flex PCB 716 supports busbars 720 thereon.
- the busbars 720 provide power to the printhead 516 and to the other powered components of the print engine 500.
- a camera print engine control chip 721 is supported on the flex PCB 716 together with a QA chip (not shown) which authenticates that the cartridge 504 is compatible and compliant with the print engine 500.
- the PCB 716 includes contacts 723 which engage contacts 725 in the print cartridge 504.
- the printhead itself includes a nozzle guard 722 arranged on a silicon wafer 724.
- the ink is supplied to a nozzle array (not shown) of the printhead 516 via an ink supply member 726.
- the ink supply member 726 communicates with outlets of the passages 710 of the ink feed arrangement 702 for feeding ink to the array of nozzles of the printhead 516, on demand.
- the ink supply member 726 is a block of silicon wafer which is mounted on the silicon wafer 724.
- the member 726 has channels 728 formed therein. The channels 728 extend the length of the member 726.
- the printhead 516 is a multi-color printhead having nozzles 757 arranged in groups. Each group prints one color or the infrared ink.
- the nozzles 757 are MEMS devices mounted on a surface 730 of the silicon wafer 724 with the member 726 being mounted on an opposed surface 732 of the silicon wafer 724.
- each group of nozzles 757 is supplied by an ink supply passage 734.
- each channel 728 of the member 726 communicates with its associated group of passages 734.
- Each channel 728 has a plurality of ink inlet openings 736, 738, 740 and 742.
- the ink inlet openings 736 supply black ink to the first group of ink supply passages 734 of the wafer 724.
- the ink inlet openings 736 provide infrared ink to the first group of passages.
- the inlet openings 738 provide magenta ink to the second group of nozzles via their inlet passages 734.
- the ink inlet openings 740 provide yellow ink to the third group of nozzles via their passages 734.
- the final group of inlet openings 742 provide cyan ink to the fourth group of nozzles via their passages 734.
- Each inlet opening 736, 738, 740, 742 is isolated from its neighboring opening via a transversely extending bead of sealing material 744. It will be appreciated that the ink feed arrangement 702 bears against the top surface 746 of the member 726 further to isolate the openings 736 to 742 from one another.
- the TAB film 712 is bonded to the surface 730 of the wafer 724 via beads of adhesive 748.
- the beads 748 further form a fluid tight seal against the side of the wafer 724.
- Ink ejected from each MEMS device 757 is ejected through a passage 750 in the nozzle guard 722.
- a passage 750 in the nozzle guard 722. To maintain a surface 752 of the nozzle guard and a region 754 between the nozzle guard 722 and the wafer 724. free of foreign particles, air is blown on to the surface 752 of the nozzle guard 722 and, via inlet openings 756 from the channel 710 into the region 754.
- the member 726 is a silicon wafer and, accordingly, the channels 728 and the inlet openings 736 to 742 are formed in the wafer by etching techniques.
- each ink inlet opening 736 to 742 has a length dimension L of approximately 0.5 millimeters.
- the spacing between adjacent inlet openings is also of the order of 0.5 millimeters. If one considers the width dimension of the printhead 516 as the X dimension with a length of the printhead as a Y dimension the ink supply member 726 effectively functions as an adapter converting a small X dimension into a much larger Y dimension. Accordingly, it is easier to fabricate the feed passages of the ink feed arrangement 702, which is a plastic molding, than would be the case if the ink feed arrangement fed the ink directly into the wafer 724 of the printhead 516.
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
- Ink Jet (AREA)
- Pens And Brushes (AREA)
- Impression-Transfer Materials And Handling Thereof (AREA)
- Dot-Matrix Printers And Others (AREA)
Abstract
Description
- This invention relates to a print engine. The invention has particular application in a print engine for use in an instantaneous print, digital camera. More particularly, the invention relates to an ink supply assembly for supplying ink to a printhead of the print engine.
- It will be appreciated that a printhead of the printer engine of a page width printer has a width dimension measured in fractions of millimeters. Typically the printhead has a width dimension of about six hundred micrometers. In an array of ink jet nozzles, adjacent nozzles could be spaced from each other by dimensions in the order of 100 micrometers. While the substrate of the printhead is made from a silicon wafer a supply mechanism for supplying ink to the substrate is often made out of plastic. To mold the plastic such that individual ink supplies are provided to each ink supply passage in the substrate results in extremely fine tolerances with the consequential expense, which that entails.
- By quote "page width" is meant that the printhead prints one line at a time on the print media without traversing the print media, or rastering, as the print media moves past the printhead.
-
US 5,666,140 describes a typical prior art ink supply arrangement comprising a silicon printhead directly bonded to a mounting frame. - According to the invention, there is provided an ink supply arrangement for a printhead of a print engine, the printhead comprising an array of microelectromechanical system (MEMS) ink ejection devices mounted on a first surface of a wafer and a plurality of ink supply passages each extending through the wafer from an opposed surface of the wafer to a respective ink ejection device, with the ink ejection devices being arranged in groups, the ink supply arrangement including
a block bonded to said opposed surface of the wafer, the block having a plurality of channels defined therein and opening out into a first surface of the block in abutment with said opposed surface of the wafer; and
at least one ink supply inlet opening in communication with each channel, said ink supply inlet openings opening out into a second surface of the block opposed to the first surface,
characterized in that the block is a silicon block. - The block may include an isolating means for isolating each ink inlet opening from its neighboring opening. The isolating means may be a bead of a sealing material arranged transversely across the block between adjacent ink inlet openings.
- The invention will now be described by way of example with reference to the accompanying diagrammatic drawings in which:-
-
Figure 1 shows a three dimensional view of a print engine, including components in accordance with the invention; -
Figure 2 shows a three dimensional, exploded view of the print engine; -
Figure 3 shows a three dimensional view of the print engine with a removable print cartridge used with the print engine removed; -
Figure 4 shows a three dimensional, rear view of the print engine with the print cartridge shown in dotted lines; -
figure 5 shows a three dimensional, sectional view of the print engine; -
Figure 6 shows a three dimensional, exploded view of a printhead sub-assembly of the print engine; -
Figure 7 shows a partly cutaway view of the printhead sub-assembly; -
Figure 8 shows a sectional end view of the printhead sub-assembly with a capping mechanism in a capping position; -
Figure 9 shows the printhead sub-assembly with the capping mechanism in its uncapped position; -
Figure 10 shows a schematic, three dimensional view of part of an ink supply arrangement, in accordance with the invention, for a printhead of a print engine; -
Figure 11 shows a schematic, sectional end view of the ink supply arrangement taking along line XI-XI inFigure 10 ; -
Figure 12 shows a schematic, sectional end view of the ink supply arrangement taken along line XII-XII inFigure 10 ; -
Figure 13 shows a schematic, sectional end view of the ink supply arrangement taken along line XIII-XIII inFigure 10 ; and -
Figure 14 shows a schematic, sectional end view of the ink supply arrangement taken along line XIV-XIV inFigure 10 . - In the drawings,
reference numeral 500 generally designates a print engine, in accordance with the invention. Theprint engine 500 includes aprint engine assembly 502 on which aprint roll cartridge 504 is removably mountable. - The
print cartridge 504 is described in greater detail in our co-pending applications entitled "A Print Cartridge" (docket number CA02) and "An Ink Cartridge" (docket number CAo4) filed simultaneously herewith as International Patent Application numbersPCT/AU00/00741 PCT/AU00/00742 - The
print engine assembly 502 comprises afirst sub-assembly 506 and a second,printhead sub-assembly 508. - The
sub-assembly 506 includes achassis 510. Thechassis 510 comprises afirst molding 512 in whichink supply channels 514 are molded. Theink supply channels 514 supply inks from theprint cartridge 504 to a printhead 516 (Figures 5 to 7 ) of theprinthead sub-assembly 508. Theprinthead 516 prints in four colors or three colors plus ink which is visible in the infrared light spectrum only (hereinafter referred to as 'infrared ink'). Accordingly, fourink supply channels 514 are defined in themolding 512 together with anair supply channel 518. Theair supply channel 518 supplies air to theprinthead 516 to inhibit the build up of foreign particles on a nozzle guard of theprinthead 516. - The
chassis 510 further includes acover molding 520. Thecover molding 520 supports apump 522 thereon. Thepump 522 is a suction pump, which draws air through an air filter in theprint cartridge 504 via anair inlet pin 524 and anair inlet opening 526. Air is expelled through an outlet opening 528 into theair supply channel 518 of thechassis 510. - The
chassis 510 further supports a first drive motor in the form of astepper motor 530. Thestepper motor 530 drives thepump 522 via afirst gear train 532. Thestepper motor 530 is also connected to a drive roller 534 (Figure 5 ) of aroller assembly 536 of theprint cartridge 504 via asecond gear train 538. Thegear train 538 engages an engagable element 540 (Figure 2 ) carried at an end of thedrive roller 534. Thestepper motor 530 thus controls the feed ofprint media 542 to theprinthead 516 of thesub-assembly 508 to enable an image to be printed on theprint media 542 as it passes beneath theprinthead 516. It also to be noted that, as thestepper motor 530 is only operated to advance theprint media 542, thepump 522 is only operational to blow air over theprinthead 516 when printing takes place on theprint media 542. - The
molding 512 of thechassis 510 also supports a plurality of ink supply conduits in the form ofpins 544 which are in communication with theink supply channels 514. Theink supply pins 544 are received through anelastomeric collar assembly 546 of theprint cartridge 504 for drawing ink from ink chambers or reservoirs 548 (Figure 5 ) in theprint cartridge 504 to be supplied to theprinthead 516. - A
second motor 550, which is a DC motor, is supported on thecover molding 520 of thechassis 510 viaclips 552. Themotor 550 is provided to drive a separating means in the form of acutter arm assembly 554 to part a piece of theprint media 542, after an image has been printed thereon, from a remainder of the print media. Themotor 550 carries abeveled gear 556 on an output shaft thereof. Thebeveled gear 556 meshes with abeveled gear 558 carried on aworm gear 560 of thecutter assembly 554. Theworm gear 560 is rotatably supported viabearings 562 in achassis base plate 564 of theprinthead sub-assembly 508. - The
cutter assembly 554 includes acutter wheel 566, which is supported on a resilientlyflexible arm 568 on amounting block 570. Theworm gear 560 passes through themounting block 570 such that, when theworm gear 560 is rotated, themounting block 570 and thecutter wheel 566 traverse thechassis base plate 564. The mountingblock 570 bears against alip 572 of thebase plate 564 to inhibit rotation of the mountingblock 570 relative to theworm gear 560. Further, to effect cutting of theprint media 542, thecutter wheel 566 bears against an upper housing orcap portion 574 of theprinthead sub-assembly 508. Thiscap portion 574 is a metal portion. Hence, as thecutter wheel 566 traverses the cappedportion 574, a scissors-like cutting action is imparted to the print media to separate that part of theprint media 542 on which the image has been printed. - The sub-assembly 506 includes an
ejector mechanism 576. Theejector mechanism 576 is carried on thechassis 510 and has acollar 578 havingclips 580, which clip and affix theejector mechanism 576 to thechassis 510. Thecollar 578 supports aninsert 582 of an elastomeric material therein. Theelastomeric insert 582 defines a plurality ofopenings 584. Theopenings 584 close off inlet openings of thepins 544 to inhibit the ingress of foreign particles into thepins 544 and, in so doing, into thechannels 514 and theprinthead 516. In addition, theinsert 584 defines a land orplatform 586 which closes off an inlet opening of theair inlet pin 524 for the same purposes. - A
coil spring 588 is arranged between thechassis 510 and thecollar 578 to urge thecollar 578 to a spaced position relative to thechassis 510 when thecartridge 504 is removed from theprint engine 500, as shown in greater detail inFigure 3 of the drawings. Theejector mechanism 576 is shown in its retracted position inFigure 4 of the drawings. - The
printhead sub-assembly 508 includes, as described above, thebase plate 564. Acapping mechanism 590 is supported displaceably on thebase plate 564 to be displaceable towards and away from theprinthead 516. Thecapping mechanism 590 includes anelongate rib 592 arranged on acarrier 593. The carrier is supported by adisplacement mechanism 594, which displaces therib 592 into abutment with theprinthead 516 when theprinthead 516 is inoperative. Conversely, when theprinthead 516 is operational, thedisplacement mechanism 594 is operable to retract therib 592 out of abutment with theprinthead 516. - The
printhead sub-assembly 508 includes aprinthead support molding 596 on which theprinthead 516 is mounted. Themolding 596, together with aninsert 599 arranged in themolding 596, define apassage 598 through which theprint media 542 passes when an image is to be printed thereon. Agroove 700 is defined in themolding 596 through which thecapping mechanism 590 projects when thecapping mechanism 590 is in its capping position. - An
ink feed arrangement 702 is supported by theinsert 599 beneath thecap portion 574. Theink feed arrangement 702 comprises aspine portion 704 and acasing 706 mounted on thespine portion 704. Thespine portion 704 and thecasing 706, between them, defineink feed galleries 708 which are in communication with theink supply channels 514 in thechassis 510 for feeding ink via passages 710 (Figure 7 ) to theprinthead 516. - An air supply channel 711 (
Figure 8 ) is defined in thespine portion 704, alongside theprinthead 516. - Electrical signals are provided to the
printhead 516 via aTAB film 712 which is held captive between theinsert 599 and theink feed arrangement 702. - The
molding 596 includes anangled wing portion 714. A flexible printed circuit board (PCB) 716 is supported on and secured to thewing portion 714. Theflex PCB 716 makes electrical contact with theTAB film 712 by being urged into engagement with theTAB film 712 via arib 718 of theinsert 599. Theflex PCB 716 supportsbusbars 720 thereon. Thebusbars 720 provide power to theprinthead 516 and to the other powered components of theprint engine 500. Further, a camera printengine control chip 721 is supported on theflex PCB 716 together with a QA chip (not shown) which authenticates that thecartridge 504 is compatible and compliant with theprint engine 500. For this purpose, thePCB 716 includescontacts 723 which engagecontacts 725 in theprint cartridge 504. - As illustrated more clearly in
Figure 7 of the drawings, the printhead itself includes anozzle guard 722 arranged on asilicon wafer 724. The ink is supplied to a nozzle array (not shown) of theprinthead 516 via anink supply member 726. Theink supply member 726 communicates with outlets of thepassages 710 of theink feed arrangement 702 for feeding ink to the array of nozzles of theprinthead 516, on demand. - The arrangement of the printhead is shown in greater detail in
Figures 10 to 14 of the drawings. Theink supply member 726 is a block of silicon wafer which is mounted on thesilicon wafer 724. Themember 726 haschannels 728 formed therein. Thechannels 728 extend the length of themember 726. - As described above, the
printhead 516 is a multi-colorprinthead having nozzles 757 arranged in groups. Each group prints one color or the infrared ink. Thenozzles 757 are MEMS devices mounted on asurface 730 of thesilicon wafer 724 with themember 726 being mounted on anopposed surface 732 of thesilicon wafer 724. Hence, as shown more clearly inFigure 10 of the drawings, each group ofnozzles 757 is supplied by anink supply passage 734. - Thus, each
channel 728 of themember 726 communicates with its associated group ofpassages 734. Eachchannel 728 has a plurality ofink inlet openings ink inlet openings 736 supply black ink to the first group ofink supply passages 734 of thewafer 724. Instead, where three colors and infrared ink are provided, theink inlet openings 736 provide infrared ink to the first group of passages. Theinlet openings 738 provide magenta ink to the second group of nozzles via theirinlet passages 734. Theink inlet openings 740 provide yellow ink to the third group of nozzles via theirpassages 734. The final group ofinlet openings 742 provide cyan ink to the fourth group of nozzles via theirpassages 734. - Each inlet opening 736, 738, 740, 742 is isolated from its neighboring opening via a transversely extending bead of sealing
material 744. It will be appreciated that theink feed arrangement 702 bears against thetop surface 746 of themember 726 further to isolate theopenings 736 to 742 from one another. - Also, it is to be noted that the
TAB film 712 is bonded to thesurface 730 of thewafer 724 via beads ofadhesive 748. Thebeads 748 further form a fluid tight seal against the side of thewafer 724. - Ink ejected from each
MEMS device 757 is ejected through apassage 750 in thenozzle guard 722. To maintain asurface 752 of the nozzle guard and aregion 754 between thenozzle guard 722 and thewafer 724. free of foreign particles, air is blown on to thesurface 752 of thenozzle guard 722 and, viainlet openings 756 from thechannel 710 into theregion 754. - The
member 726 is a silicon wafer and, accordingly, thechannels 728 and theinlet openings 736 to 742 are formed in the wafer by etching techniques. - As described in the introduction to the specification, the spacing between the
passages 734 and thewafer 724 is of the order of one hundred micrometers. In contrast, each ink inlet opening 736 to 742 has a length dimension L of approximately 0.5 millimeters. The spacing between adjacent inlet openings is also of the order of 0.5 millimeters. If one considers the width dimension of theprinthead 516 as the X dimension with a length of the printhead as a Y dimension theink supply member 726 effectively functions as an adapter converting a small X dimension into a much larger Y dimension. Accordingly, it is easier to fabricate the feed passages of theink feed arrangement 702, which is a plastic molding, than would be the case if the ink feed arrangement fed the ink directly into thewafer 724 of theprinthead 516. - It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the scope of the invention.
Claims (2)
- An ink supply arrangement for a printhead (516) of a print engine, the printhead comprising an array of microelectromechanical system (MEMS) ink ejection devices (757) mounted on a first surface of a wafer and a plurality of ink supply passages (734) each extending through the wafer from an opposed surface of the wafer to a respective ink ejection device, with the ink ejection devices being arranged in groups, characterised in that:the ink supply arrangement includes:a silicon block (726) bonded to said opposed surface of the wafer, the block having a plurality of channels (728) defined therein, each channel opening out into a first surface of the block in abutment with said opposed surface of the wafer and opening out into a second surface (746) of the block opposed to the first surface;a spine portion (704); anda casing (706) mounted on the spine portion,wherein the spine portion and casing between them define ink feed galleries (708) for receiving ink from a cartridge and for feeding ink via passages (710) to the channels (728) in the silicon block (726),and further wherein the spine portion and casing are formed from molded plastics.
- The ink supply arrangement of claim 1 which includes an isolating means (744) for isolating each ink inlet opening from its neighboring opening.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/AU2000/000744 WO2002002335A1 (en) | 2000-06-30 | 2000-06-30 | An ink supply assembly for a print engine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1303415A1 EP1303415A1 (en) | 2003-04-23 |
EP1303415A4 EP1303415A4 (en) | 2005-05-25 |
EP1303415B1 true EP1303415B1 (en) | 2009-10-28 |
Family
ID=3700825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00938317A Expired - Lifetime EP1303415B1 (en) | 2000-06-30 | 2000-06-30 | An ink supply assembly for a print engine |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1303415B1 (en) |
JP (1) | JP2004504969A (en) |
CN (2) | CN100377882C (en) |
AT (1) | ATE446842T1 (en) |
AU (3) | AU5373400A (en) |
DE (1) | DE60043240D1 (en) |
IL (1) | IL166875A (en) |
WO (1) | WO2002002335A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6496654B1 (en) | 2000-10-20 | 2002-12-17 | Silverbrook Research Pty Ltd | Method and apparatus for fault tolerant data storage on photographs |
JP4582016B2 (en) * | 2006-02-23 | 2010-11-17 | ブラザー工業株式会社 | Inkjet recording device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU657931B2 (en) * | 1991-01-30 | 1995-03-30 | Canon Kabushiki Kaisha | An integrally formed bubblejet print device |
US5666140A (en) * | 1993-04-16 | 1997-09-09 | Hitachi Koki Co., Ltd. | Ink jet print head |
JPH10151743A (en) * | 1996-11-22 | 1998-06-09 | Hitachi Koki Co Ltd | Ink jet recording head and its recording device |
JPH11245414A (en) * | 1998-02-27 | 1999-09-14 | Casio Comput Co Ltd | Semiconductor substrate, and thermal ink-jet head using semiconductor substrate |
-
2000
- 2000-06-30 WO PCT/AU2000/000744 patent/WO2002002335A1/en active Application Filing
- 2000-06-30 JP JP2002518141A patent/JP2004504969A/en active Pending
- 2000-06-30 DE DE60043240T patent/DE60043240D1/en not_active Expired - Lifetime
- 2000-06-30 AU AU5373400A patent/AU5373400A/en active Pending
- 2000-06-30 EP EP00938317A patent/EP1303415B1/en not_active Expired - Lifetime
- 2000-06-30 CN CNB2005100645483A patent/CN100377882C/en not_active Expired - Fee Related
- 2000-06-30 AT AT00938317T patent/ATE446842T1/en not_active IP Right Cessation
- 2000-06-30 CN CN00819701.6A patent/CN1208196C/en not_active Expired - Fee Related
- 2000-06-30 AU AU2000253734A patent/AU2000253734B2/en not_active Ceased
-
2004
- 2004-07-15 AU AU2004203190A patent/AU2004203190B2/en not_active Ceased
-
2005
- 2005-02-14 IL IL166875A patent/IL166875A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP2004504969A (en) | 2004-02-19 |
ATE446842T1 (en) | 2009-11-15 |
WO2002002335A1 (en) | 2002-01-10 |
DE60043240D1 (en) | 2009-12-10 |
EP1303415A1 (en) | 2003-04-23 |
CN100377882C (en) | 2008-04-02 |
EP1303415A4 (en) | 2005-05-25 |
CN1676339A (en) | 2005-10-05 |
IL166875A (en) | 2007-07-24 |
AU5373400A (en) | 2002-01-14 |
CN1208196C (en) | 2005-06-29 |
CN1454154A (en) | 2003-11-05 |
AU2000253734A1 (en) | 2002-04-11 |
AU2000253734B2 (en) | 2004-04-29 |
AU2004203190A1 (en) | 2004-08-12 |
AU2004203190B2 (en) | 2005-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8366241B2 (en) | Printhead having capped fluid passages | |
EP1299239B1 (en) | An ink feed arrangement for a print engine | |
US6439704B1 (en) | Ejector mechanism for a print engine | |
EP1303415B1 (en) | An ink supply assembly for a print engine | |
AU2000253738B2 (en) | An ink feed arrangement for a print engine | |
AU2004202885B2 (en) | A printhead assembly with an ink feed arrangement | |
EP1301349B1 (en) | A print engine including an air pump | |
ZA200210185B (en) | An ink supply assembly for a print engine. | |
AU2000253736B2 (en) | An ejector mechanism for a print engine | |
KR100718192B1 (en) | An ink supply assembly for a print engine | |
AU2004203191B2 (en) | Pump assembly for a print engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030130 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20050412 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7B 41J 2/155 B Ipc: 7B 41J 2/14 B Ipc: 7B 41J 2/175 A |
|
17Q | First examination report despatched |
Effective date: 20060804 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60043240 Country of ref document: DE Date of ref document: 20091210 Kind code of ref document: P |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091028 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091028 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100208 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091028 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091028 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20100729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091028 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130627 Year of fee payment: 14 Ref country code: IE Payment date: 20130625 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130702 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20140619 AND 20140625 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60043240 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150227 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60043240 Country of ref document: DE Effective date: 20150101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150101 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160627 Year of fee payment: 17 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 |