EP1297249B1 - Procede servant a faire fonctionner un moteur thermique appartenant notamment a un vehicule automobile - Google Patents

Procede servant a faire fonctionner un moteur thermique appartenant notamment a un vehicule automobile Download PDF

Info

Publication number
EP1297249B1
EP1297249B1 EP01935998A EP01935998A EP1297249B1 EP 1297249 B1 EP1297249 B1 EP 1297249B1 EP 01935998 A EP01935998 A EP 01935998A EP 01935998 A EP01935998 A EP 01935998A EP 1297249 B1 EP1297249 B1 EP 1297249B1
Authority
EP
European Patent Office
Prior art keywords
lean
lambda
mode
air mass
operating mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01935998A
Other languages
German (de)
English (en)
Other versions
EP1297249A1 (fr
Inventor
Andreas Michalske
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1297249A1 publication Critical patent/EP1297249A1/fr
Application granted granted Critical
Publication of EP1297249B1 publication Critical patent/EP1297249B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • F02D41/307Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes to avoid torque shocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Definitions

  • the invention is based on a method for operating an internal combustion engine, in particular of a motor vehicle, in the fuel in a lean mode and in a rich mode injected into a combustion chamber and between the two modes is switched.
  • the invention also relates to a corresponding internal combustion engine and a control unit for such an internal combustion engine.
  • a NOx storage catalyst for reducing the Use pollutant emissions.
  • Internal combustion engine from lean mode to fat Switch operating mode In this fat mode is regenerates the NOx storage catalyst. After Carrying out the regeneration becomes the internal combustion engine switched back to the lean mode again.
  • the object of the invention is a method for operating an internal combustion engine, in particular of a motor vehicle to create a switch between the fat ones Mode and lean mode without any Switching pressure or the like is possible.
  • This task is used in a method of the beginning mentioned type according to the invention achieved in that a Air mass and an injection quantity for lean operation constantly be determined that from the air mass and out the injection amount is a lambda for lean operation is constantly determined that one of the lambda for the Lean operation deviating Lambda for the rich mode and for which transitions are given there, and that a desired air mass for the rich mode and for the Transitions there from the Lambda for lean operation and from the lambda for the rich mode and for the Transitions there is determined.
  • the control and / or regulation of the internal combustion engine during Transition from lean to fat mode, as well in the fat mode itself, is thus on the Basis of injection quantity and air mass performed, the ansich for the lean mode are provided. From this air mass and injection quantity for lean operation is a lambda for the leaner Operating mode calculated. This lambda comes with a lambda linked to the desired lambda for transition into the rich operating mode or for the rich operating mode as represents such. From this link of the calculated Lambdas for the lean mode as well as the desired Lambdas for the rich mode or for the transition There, the target air mass is then determined in which the Internal combustion engine during transition to rich mode or in the rich operating mode itself is supplied. It It is understood that in determining the desired air mass also other operating variables of the internal combustion engine play a role.
  • the inventive control and / or Control is an air-guided system. It is located on the Basis of lambda for lean operation in dependence from the desired lambda for the rich mode or for the transition there calculates the target air mass, the the internal combustion engine to be supplied.
  • the Internal combustion engine is thus in the first step with the help a change in the air mass towards the fat Operating mode influenced.
  • an actual air mass or is modeled in the measured or simulated an actual air mass or is modeled, is a setpoint for the lambda in the fat mode and for the transitions there in Dependence on the air mass and the injection quantity for determines the lean operation, and it becomes a target injection quantity for the fat mode and for the Transitions there from the actual air mass and the setpoint determined for the lambda.
  • the inventive Control and / or regulation an air-guided system.
  • the desired air mass according to the invention as a function of determined the respective desired lambda.
  • the actual air mass So the actual of the internal combustion engine supplied air mass measured. It is also possible the actual air mass from other operating variables of To simulate or model internal combustion engine.
  • These Actual air mass changes according to the changes the target air mass..A change in the actual air mass has According to the invention, a change in the desired injection quantity result. This means that the target injection quantity ultimately adapted to the desired air mass. All in all thus always a desired air mass and a target injection quantity generated on the one hand by the desired Lambda depend on the other hand always on each other are coordinated.
  • an advantageous embodiment of the invention is the conversion of a lambda into an associated one Efficiency or vice versa by means of a reference characteristic and by means of additive and / or multiplicative Corrections performed.
  • This way on the one hand achieved that conversion between a lambda and an efficiency or vice versa with a possible low computational effort can be made.
  • this ensures that Changes of the internal combustion engine with the help of corrected for additive and / or multiplicative adaptation can be.
  • the Start of injection or the start of control and / or the Injection duration or the activation duration of Partial injections depending on the operating mode and / or depending on operating variables of Internal combustion engine determined differently. That's it particularly advantageous if for the start of injection and / or the injection duration when switching between the Operating modes a hysteresis is taken into account.
  • the computer program is executable on a computer of the controller and the Execution of the method according to the invention suitable. In this case, therefore, the invention by the Computer program realized, so this Computer program in the same way represents the invention like the method that the Computer program is suitable.
  • the computer program can preferably stored on a flash memory.
  • a microprocessor may be provided.
  • the Control unit in which the computer program is included is in particular for controlling and / or regulating a Plurality of Massiverien.der internal combustion engine intended.
  • NOx storage catalyst To reduce the pollutant emissions of a diesel engine is a NOx storage catalyst intended.
  • This NOx storage catalyst is provided, the internal combustion engine alternately in one lean and operate a fat mode. In the become the lean mode nitrogen oxides received by the NOx storage catalyst and cached.
  • the NOx storage catalyst is with loaded with nitrogen oxides.
  • the internal combustion engine Before the NOx storage catalytic converter completely with the nitrogen oxides is laden, the internal combustion engine is in a fat Switched operating mode. In this fat mode get unburned hydrocarbons as well Carbon monoxide and hydrogen to the NOx storage catalyst.
  • the in the NOx storage catalyst stored nitrogen oxides then react with the Hydrocarbons, carbon monoxide and hydrogen and then can u.a. as carbon dioxide and water to the Atmosphere are delivered.
  • the fat mode of operation Internal combustion engine is maintained until the NOx storage catalytic converter again as completely as possible Nitrogen oxides is discharged. This unloading of Nitrogen oxides is also called regenerating the
  • FIG. 1 shows a control with which it is possible to switch over between a lean and a rich operating mode, without a torque jump occurring in the process.
  • Starting point of the control of Figure 1 is a predetermined injection amount M E, lean for lean operation and a predetermined air mass M L, lean also for lean operation.
  • M E, lean and M L, lean are provided by a general control and / or regulation of the internal combustion engine. If the internal combustion engine has, for example, an exhaust gas recirculation, then said quantity M L, lean, is usually generated by a regulation for this exhaust gas recirculation.
  • the size M E, lean usually corresponds to the propulsion request of the driver or the torque to be generated.
  • an actual air mass M L is present, which is measured by means of an air mass sensor. It is possible that the signal of the air mass sensor is corrected by means of further measured variables.
  • the switchover between the lean and the rich operating mode takes place with the aid of a predefinable lambda value ⁇ between which, as has been explained, can be changed in particular as a function of the loading of the NOx storage catalytic converter to a rich lambda value or a lean lambda value.
  • the injection quantity M E, lean is multiplied by a fixed factor 14.5 for diesel fuel, and then divided by the air mass M L, lean . The result of this division is then a lambda value ⁇ lean for lean operation.
  • This lambda value ⁇ lean is permanently generated from the two quantities M E, lean and M L, lean , irrespective of whether the internal combustion engine is in a lean or a rich operating mode.
  • the lambda value ⁇ lean is converted in a block 10 into an efficiency ⁇ lean for the lean operation.
  • This efficiency ⁇ lean is then multiplicatively linked to the air mass M L, lean .
  • the result of this multiplication is indicated by the reference numeral A in FIG.
  • the specifiable lambda value ⁇ between is converted by a block 11 into an efficiency ⁇ between . This conversion will be explained in connection with FIGS. 2a and 2b.
  • the above multiplication result A is divided by the efficiency ⁇ between .
  • the result of this division represents a desired air mass M L, soll is.
  • This target air mass M L is an output signal of the controller of Figure 1.
  • the target air mass M L should be used, for example.,
  • the opening angle of a Throttle to influence, with the air that is supplied to the internal combustion engine, for example. Via an intake manifold, can be changed.
  • the target air mass M L is to represent the target value, ie the desired, the internal combustion engine to be supplied air mass.
  • the actual air supplied to the internal combustion engine mass is measured by means of an air mass sensor.
  • the measurement signal is then - as already explained - the actual air mass M L, is .
  • the aforementioned multiplication result A is divided according to FIG. 1 by the actual air mass M L, is .
  • the result of the division represents a desired efficiency ⁇ soll .
  • This target efficiency ⁇ soll is converted by a block 12 into a desired lambda value ⁇ soll . This conversion will be explained with reference to FIGS. 2a and 2b.
  • Lambda setpoint ⁇ soll is multiplied by a fixed factor of 14.5 for diesel fuel. After that, the actual air mass M L, is divided by the multiplied by 14.5 lambda setpoint ⁇ soll . The division result is a target injection quantity M E, soll .
  • the target injection quantity M E is to provide an output signal of the controller of Figure 1.
  • the reference injection amount M E should, for example, an injection valve of the internal combustion engine are controlled, with which the target injection quantity M E, to the combustion chamber the internal combustion engine is injected.
  • the control illustrated in FIG. 1 and explained above is guided by air. This means that first the target air mass M L, should be calculated from the input variables of the controller. This target air mass M L, should , as has been explained, the actual air mass M L, is the result. From this measured actual air mass M L, is then the target injection quantity M E, should be calculated.
  • the lambda value ⁇ between the lambda value ⁇ corresponds to lean for lean operation.
  • the target air mass M L equal to the air mass M L
  • the target injection quantity M E should equal to the injection amount M E, lean for the lean operation.
  • the control of FIG. 1 therefore has no change in the two input variables M E, lean and M L, lean .
  • the lambda value ⁇ is changed between in the direction of a rich lambda value.
  • the lambda value ⁇ between is thus reduced, for example, in the direction of the value 0.95.
  • the actual air mass M L is also smaller. According to the control of FIG. 1, this then also means that the desired injection quantity M E, is to be increased.
  • the regeneration of the NOx storage catalytic converter is completed, then it is possible to revert to the lean operating mode of the internal combustion engine. This is achieved by increasing the lambda value ⁇ between leaning back towards the lambda value ⁇ lean for the lean operation. This then has the consequence that the target air mass M L, should be greater and the target injection quantity M E, should be smaller at the same time. The air / fuel ratio of the internal combustion engine is thus changed toward a lean mode.
  • FIG. 2 a shows an efficiency ⁇ as an input variable and a lambda value ⁇ as the output variable. Furthermore, the speed n of the internal combustion engine and the injection quantity M E, lean for the lean operation of the internal combustion engine is specified. These two latter operating variables of the internal combustion engine are supplied to a total of four maps. Depending on these operating variables, the values of y off , y mul , x off and x mul are generated by the four maps. The value y off is subtracted from the efficiency ⁇ . The resulting difference is divided by the value y mul . The division result is fed to a reference characteristic curve 24 for the conversion of the efficiency into the lambda value. From the output signal of the reference characteristic 24, the value x off is subtracted. The subtraction result is divided by the value x mul . The lambda value ⁇ is then available as the result of the division.
  • the maps 20, 21, 22, 23 it is thus possible, a correction of the reference characteristic 24th make.
  • the maps 20, 22 each serve an additive correction, while the maps 21, 23 cause a multiplicative correction.
  • FIG. 2b a conversion of a lambda value ⁇ in an efficiency ⁇ in a correspondingly reverse manner carried out.
  • maps 25, 26, 27, 28 present with which a reference characteristic 29 for the Conversion of a Lambda value into an efficiency can be corrected. Again, this is a correction the reference characteristic 29 in additive and multiplicative Way possible.
  • the map 25 is identical to the map 23. The same applies to the other maps 26, 27, 28th or 22, 21, 20.
  • the characteristic curve 29 is the inverse function the characteristic 24.
  • the setpoint injection quantity M E ought to be used in FIG. 1 to control an injection valve of the internal combustion engine. With this injector then the said target injection quantity M E, is to be injected into the combustion chamber of the internal combustion engine.
  • a pilot injection quantity M E, VE is injected as part of a pilot injection and a main injection quantity M E, HE in the context of a main injection into the combustion chamber of the internal combustion engine.
  • the pre-injection amount M E, VE and the main injection amount M E, HE together then give the target injection quantity M E, soll .
  • the respective start of activation or injection start and the respective activation duration or injection duration are decisive.
  • the distribution of the target injection quantity M E is to the pilot injection and the main injection, as well as the determination of the respective control start and the respective control duration of the pilot injection and the main injection are dependent on a plurality of operating variables of the internal combustion engine. It is possible that under certain conditions, for example. In a lean mode of the internal combustion engine, no pre-injection is no longer available. It is also possible that, for example, in a rich operating mode of the internal combustion engine, the time interval between the pilot injection and the main injection is substantially increased.
  • FIG. 3 shows by way of example a possibility with which the activation duration AD HE for the main injection can be determined as a function of the operating state of the internal combustion engine.
  • the injection quantity M E, HE for the main injection and the rail pressure p Rail are specified as input variables. These input variables are fed to three characteristic diagrams 30, 31, 32.
  • a drive duration AD HE is output for the main injection, in which no pilot injection is present.
  • a drive duration AD HE is output for the main injection, in which a pre-injection is present.
  • the map 32 outputs a drive time AD HE for the main injection provided for the rich mode of the internal combustion engine.
  • one of the three maps 30, 31, 32 is selected as a function of a signal B.
  • the respective output signal of the selected map 30, 31, 32 is then passed as the drive time AD HE .
  • the signal B is a status signal which, for example, is predetermined as a function of the operating mode of the internal combustion engine. Likewise, the signal B can be predefined as a function of further operating variables of the internal combustion engine.
  • FIG. 4 shows by way of example a possibility with which such a hysteresis can be realized on the basis of the activation start AB VE of the pilot injection.
  • a map 40 is provided, which are fed as input signals, the rotational speed n of the internal combustion engine and the injection quantity M E, lean for the lean operation of the internal combustion engine.
  • the map 40 generates a delta value ⁇ AB VE for the start of the pilot injection.
  • the desired lambda value ⁇ soll is supplied to a hysteresis characteristic 41. If the lambda setpoint is in a rich range, the hysteresis curve 41 produces the value 1 as the output signal. If, however, the lambda setpoint ⁇ soll is in a lean range, the output value of the hysteresis curve 41 is 0.
  • This output value of the hysteresis characteristic 41 is multiplicatively linked to the delta value ⁇ AB VE for the start of the pilot injection. This means that this delta value ⁇ AB VE is completely passed on in a rich region of the internal combustion engine, but is completely suppressed in a lean region of the internal combustion engine.
  • the multiplication result generated in the described manner is additively linked to the drive start AB VE, lean for the pre-injection in a lean mode.
  • the result of this addition is then the control start AB VE for the pre-injection, which ultimately determines the point in time at which the injection valve is opened for the purpose of pre-injection.
  • control start AB VE of the pilot injection can be applied in a corresponding manner also to the start of control of the main injection and to the activation duration of the pilot and / or the Haupteirispritzung.
  • a hysteresis is used, as an example explained in connection with Figure 4, it can be advantageous or even necessary that even with the Conversions of the blocks 10, 11, 12 of Figure 1 a Hysteresis is applied.
  • Such hysteresis is illustrated by way of example in FIG.
  • the hysteresis 5 in the blocks 10, 11, 12 of Figure 1 to Application comes, then it is convenient or even required if the additive and multiplicative Corrections of the reference characteristics 24 and 29 of the figures 2a and 2b are performed in sections, namely each separately for the two branches in FIG. 5 illustrated hysteresis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Claims (10)

  1. Procédé de gestion d'un moteur à combustion interne notamment d'un véhicule automobile selon lequel on injecte le carburant en un mode de fonctionnement pauvre ou en un mode de fonctionnement riche dans une chambre de combustion et on commute entre les deux modes de fonctionnement,
    caractérisé en ce qu'
    on détermine en permanence une masse d'air (ML, pauv) et une dose d'injection (ME, pauv) pour le mode pauvre,
    à partir de la masse d'air et de la dose injectée on détermine en permanence un coefficient Lambda (λpauv) pour le mode pauvre,
    on prédéfinit un coefficient Lambda (λinter) différent de celui du mode pauvre pour le mode riche et pour les transitions, et
    on détermine une masse d'air de consigne (ML, cons) pour le mode riche et pour les transitions à partir du coefficient Lambda du mode pauvre et du coefficient Lambda du mode riche et pour les transitions.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    le coefficient Lambda du mode pauvre est converti en un rendement pour le mode pauvre et le coefficient Lambda du mode riche et des transitions est converti en un rendement pour le mode riche et pour les transitions,
    on multiplie le rendement du mode pauvre avec la masse d'air du mode pauvre, et
    on divise le produit de la multiplication par le rendement du mode riche et celui des transitions.
  3. Procédé selon l'une quelconque des revendications 1 ou 2,
    selon lequel on mesure une masse d'air réelle ou on la simule ou on la modélise,
    caractérisé en ce qu'
    on détermine une valeur de consigne du coefficient Lambda en mode riche et pour les transitions en fonction de la masse d'air réelle et de la dose injectée pour le mode pauvre, et
    on détermine une dose d'injection de consigne pour le mode riche et pour les transitions à partir de la masse d'air réelle et de la valeur de consigne du coefficient Lambda.
  4. Procédé selon l'une quelconque des revendications 2 et 3,
    caractérisé en ce qu'
    on détermine la valeur de consigne du coefficient Lambda en mode riche et pour les transitions à partir d'un rendement de consigne du mode riche et des transitions, et
    on détermine le rendement de consigne par division à partir de la masse d'air réelle par le produit de la multiplication.
  5. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    l'on effectue la conversion d'un coefficient Lambda en un rendement correspondant ou inversement à l'aide d'une caractéristique de référence et avec des corrections additives et/ou multiplicatives.
  6. Procédé selon l'une quelconque des revendications précédentes, selon lequel on injecte le carburant destiné à l'injection dans la chambre de combustion par deux ou plusieurs injections partielles,
    caractérisé en ce qu'
    on détermine différemment le début de la commande et/ou la durée de la commande des injections partielles selon le mode de fonctionnement et/ou selon les paramètres de fonctionnement du moteur à combustion interne.
  7. Procédé selon la revendication 6,
    caractérisé en ce que
    pour le début de la commande et/ou la durée de la commande pour la commutation entre les modes de fonctionnement, on applique une hystérésis.
  8. Programme d'ordinateur,
    caractérisé en ce qu'
    il effectue un procédé selon l'une quelconque des revendications 1 à 7 sur un appareil de commande.
  9. Programme d'ordinateur selon la revendication 8,
    caractérisé en ce qu'
    il est enregistré dans une mémoire notamment une mémoire flash.
  10. Appareil de commande d'un moteur à combustion interne notamment d'un véhicule automobile, selon lequel le carburant est injecté dans le moteur à combustion interne en mode pauvre et en mode riche dans une chambre de combustion, et on commute entre les deux modes de fonctionnement,
    caractérisé en ce que
    l'appareil de commande détermine en permanence une masse d'air (ML, pauv) et une dose d'injection ME, pauv) pour le mode pauvre,
    à partir de la masse d'air et de la dose injectée, on détermine un coefficient Lambda (λpauv) pour le mode pauvre,
    à partir du coefficient Lambda du mode pauvre on prédéfinit un coefficient Lambda différent (λinter) pour le mode riche et pour les transitions, et
    on détermine une masse d'air de consigne (ML, cons) pour le mode riche et pour les transitions à partir du coefficient Lambda du mode pauvre et du coefficient Lambda du mode riche ainsi que pour les transitions.
EP01935998A 2000-06-24 2001-04-26 Procede servant a faire fonctionner un moteur thermique appartenant notamment a un vehicule automobile Expired - Lifetime EP1297249B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10030936 2000-06-24
DE10030936A DE10030936A1 (de) 2000-06-24 2000-06-24 Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
PCT/DE2001/001573 WO2002001056A1 (fr) 2000-06-24 2001-04-26 Procede servant a faire fonctionner un moteur thermique appartenant notamment a un vehicule automobile

Publications (2)

Publication Number Publication Date
EP1297249A1 EP1297249A1 (fr) 2003-04-02
EP1297249B1 true EP1297249B1 (fr) 2005-12-14

Family

ID=7646745

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01935998A Expired - Lifetime EP1297249B1 (fr) 2000-06-24 2001-04-26 Procede servant a faire fonctionner un moteur thermique appartenant notamment a un vehicule automobile

Country Status (5)

Country Link
EP (1) EP1297249B1 (fr)
JP (1) JP4650992B2 (fr)
KR (1) KR100749195B1 (fr)
DE (2) DE10030936A1 (fr)
WO (1) WO2002001056A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991619B2 (ja) * 2000-12-26 2007-10-17 日産自動車株式会社 内燃機関の空燃比制御装置
DE10163065B4 (de) * 2001-12-21 2012-06-21 Robert Bosch Gmbh Verfahren , Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
DE10210795B4 (de) * 2002-03-12 2020-03-19 Volkswagen Ag Fahrverhaltensumschaltung
DE10234849A1 (de) * 2002-07-31 2004-02-19 Robert Bosch Gmbh Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
DE10305878B4 (de) 2003-02-13 2015-04-30 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Steuer- und/oder Regelgerät für eine Brennkraftmaschine, Computerprogramm und elektrisches Speichermedium einer Brennkraftmaschine
JP4466008B2 (ja) * 2003-07-31 2010-05-26 日産自動車株式会社 エンジンの燃料噴射制御装置
JP4895333B2 (ja) 2008-02-20 2012-03-14 株式会社デンソー 内燃機関の排気浄化装置
JP6041050B2 (ja) 2013-05-14 2016-12-07 トヨタ自動車株式会社 内燃機関の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704339A (en) 1996-04-26 1998-01-06 Ford Global Technologies, Inc. method and apparatus for improving vehicle fuel economy
JP3536606B2 (ja) * 1997-08-21 2004-06-14 日産自動車株式会社 直噴火花点火式内燃機関の燃料噴射制御装置
DE19746902C2 (de) * 1997-10-23 1999-08-19 Siemens Ag Verfahren zum Steuern der Umschaltung der Verbrennung einer mehrzylindrigen Otto-Direkteinspritz-Brennkraftmaschine
JPH11182299A (ja) * 1997-12-15 1999-07-06 Nissan Motor Co Ltd エンジンのトルク制御装置
JP3569120B2 (ja) * 1997-12-25 2004-09-22 トヨタ自動車株式会社 希薄燃焼内燃機関の燃焼制御装置
DE19824915C1 (de) * 1998-06-04 1999-02-18 Daimler Benz Ag Verfahren zum Wechseln der Betriebsart einer direkt-einspritzenden Otto-Brennkraftmaschine
DE19828085A1 (de) * 1998-06-24 1999-12-30 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine

Also Published As

Publication number Publication date
KR100749195B1 (ko) 2007-08-13
DE50108395D1 (de) 2006-01-19
JP4650992B2 (ja) 2011-03-16
WO2002001056A1 (fr) 2002-01-03
JP2004502069A (ja) 2004-01-22
EP1297249A1 (fr) 2003-04-02
KR20020033769A (ko) 2002-05-07
DE10030936A1 (de) 2002-01-03

Similar Documents

Publication Publication Date Title
DE19943814C2 (de) Verfahren und Vorrichtung zur Reinigung einer Mager-NOx-Falle
DE10028539A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10239397B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP1297249B1 (fr) Procede servant a faire fonctionner un moteur thermique appartenant notamment a un vehicule automobile
DE19942270A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10029504C2 (de) Verfahren zum Betrieb eines Dieselmotors
EP1111208B1 (fr) Procédé de réglage d'un mode de fonctionnement d'un moteur à combustion interne pendant la régénération d'un catalyseur à stockage placé dans un tuyau d'échappement
DE10153901B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines einem Dieselmotor nachgeschalteten NOx-Speicherkatalysators
EP1255922B1 (fr) Dispositif et procede pour commander le mode de fonctionnement d'un moteur multicylindre pour vehicules automobiles comprenant une installation de purification des gaz d'echappement a plusieurs flux
DE10318116A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
WO1999067523A1 (fr) Procede de fonctionnement d'un moteur a combustion interne
DE102004054240B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
WO2001077508A1 (fr) Procede d'utilisation d'un moteur a combustion interne
DE102009045306A1 (de) Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors
DE10234849A1 (de) Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
DE10241505A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10241458B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1241336A2 (fr) Procédé et dispositif pour régler le débit du gaz d'échappement recirculé et/ou le rapport air-carburant
EP1620641B1 (fr) Procede pour faire fonctionner un moteur a combustion interne equipant notamment un vehicule automobile
DE10163065B4 (de) Verfahren , Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
EP1186765B1 (fr) Méthode pour la commande d'un moteur pendant le cycle de régénération
DE19925788A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10253613B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine eines Fahrzeugs, insbesondere eines Kraftfahrzeuges
DE19939053A1 (de) Verfahren zur Regelung eines Verbrennungsvorgangs in einer Verbrennungskraftmaschine während einer Regeneration eines Speicherkatalysators
EP1114928A2 (fr) Procédé de détermination des paramètres d'injection d'un moteur diesel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50108395

Country of ref document: DE

Date of ref document: 20060119

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060322

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070425

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070608

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130627

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130523

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108395

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108395

Country of ref document: DE

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430