EP1291974B1 - High efficient and high power antenna system - Google Patents

High efficient and high power antenna system Download PDF

Info

Publication number
EP1291974B1
EP1291974B1 EP02292218A EP02292218A EP1291974B1 EP 1291974 B1 EP1291974 B1 EP 1291974B1 EP 02292218 A EP02292218 A EP 02292218A EP 02292218 A EP02292218 A EP 02292218A EP 1291974 B1 EP1291974 B1 EP 1291974B1
Authority
EP
European Patent Office
Prior art keywords
radiating
tuning
master
power supply
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02292218A
Other languages
German (de)
French (fr)
Other versions
EP1291974A1 (en
Inventor
Frédéric Thales IP Ngo Bui Hung
Michel Thales IP Francis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1291974A1 publication Critical patent/EP1291974A1/en
Application granted granted Critical
Publication of EP1291974B1 publication Critical patent/EP1291974B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • H01Q21/12Parallel arrangements of substantially straight elongated conductive units

Definitions

  • the present invention relates to an antenna system comprising a plurality of elements or radiating structures arranged in parallel with each other, each structure being in connection with a power supply and impedance matching device.
  • HF band high frequency
  • NVIS abbreviation of Near Vertical Incidence Skywave
  • Radiocommunication systems using the frequency range of 1.5 to 30 MHz and intended for installation in vehicles usually use antennal systems consisting essentially of a radiating structure, a power supply device of radiating structure and an impedance matching device, usually referred to as ATU (Antenna Tuning Unit).
  • ATU Antenna Tuning Unit
  • the radiating structure 1, of monopole type is constituted in this example by a vertical whip secured by one of its ends 7 to a vehicle 2 via a base E traversing, also providing a role of supply device 6 by connecting the end 7 of the whip 1 to the supply and impedance matching device 3.
  • the whip is thus connected to a transceiver 5 via the set power supply and impedance matching device 3 comprising an impedance matching device 4.
  • the most suitable radiating structure is a radiating structure loop type. Examples of such structures are described for example in patents US 4,893,131 , FR 2,553,586 and FR 2 785 094 .
  • the Figures 4 and 5 schematize such a structure.
  • a filamentary conductive element 1 is bent over the top of a vehicle 2. This element is fed at one of its ends 8 by a supply device 6 composed of a broadband impedance transformer 10 and a cable of link 11 ( figure 5 ). The other end 7 of this radiating element is connected to the ground by a variable pre-tuning capacitor 12 in order to generate the radiating surface S of the loop-type antenna structure.
  • the radio frequency power supplied by the transceiver unit 5 is transmitted to the power supply device 6 through an impedance matching device which is, in this embodiment, integrated with the variable capacitance 12 pre-tuning into one and the same. casing 13. This integration makes it possible to control the variable capacity by means of the algorithm AL.
  • the patent DE 19955950 discloses an antenna system of dipole type for obtaining radiation in an angle ranging from 70 to 90 °.
  • the patent US 4,176,356 discloses a directional antenna system that selectively couples two antenna elements to a transmitter.
  • the system includes a "matching" matching device that allows the generation of a 90 ° phase shift between the two antennas to produce directional and directional radiation patterns in substantially opposite directions.
  • the variation of the values is carried out for example iteratively according to algorithms known to those skilled in the art.
  • the information is transferred from the "master" radiating structure to the “slave” structures, for example by modulating them at a frequency different from the working frequency and using the cables 90i. They can also be transferred by any other means known to those skilled in the art.
  • the figure 8 represents a partial embodiment of an antennal system comprising two radiating elements installed on a vehicle and connected directly to the mass of the latter.
  • a first filamentary radiating element 1 1 has one of its ends 8 1 connected directly to the mass of the vehicle 2.
  • the other end 7 1 is connected through a feedthrough E 1 to the input terminal 30 1 of the power supply and impedance matching 3 1 .
  • An example of a detail of this set is shown in figure 9 . It comprises, for example, a variable pre-tuning capacitor 20, one of whose terminals constitutes the input terminal 30 1 connected in series with the primary of a wide-band impedance-boosting transformer 21, of an ATU connected to the secondary of the transformer 21 and a control logic Cm that allows this set to function as a master.
  • the second filiform element 1 2 disposed in parallel to the first element 1 1 , at a distance of the order of 0.5 m so that these radiating elements do not do not touch under the effect of the movement of the vehicle.
  • the ends 8 2 and 7 2 are respectively connected to the vehicle earth and to the input terminal 30 2 of the second supply assembly and impedance 3 2 adaptation.
  • This second set being regarded as slave with respect to the first set, it is equipped with a control logic Cs, allowing, in particular, the copying at any moment, in particular during the tuning phase, the state of the first together or master.
  • the information exchanged between the different assemblies is effected by means of a bus known to a person skilled in the art or else a connecting cable, for example the coaxial cables 31 1 and 31 2 connecting the power supply and adaptation assemblies. impedance 3 1 and 3 2 to the power divider 9.
  • These two cables connected to two separate outputs 90 1 and 90 2 of the power divider have the same length or substantially the same length to allow the arrival of the signals at the same time on the radiating elements.
  • the RF powers transmitted to the radiating elements 1 1 and 1 2 are therefore identical in amplitude and in phase or at least the most similar possible.
  • the Figures 10 and 11 correspond to a partial embodiment where the radiating elements 1 1 , 1 2 are of the monopole type. In this case the supply and impedance assemblies are directly connected to the ATU 4. Only one end 7 1 , 7 2 of the radiating element is connected to the antenna system via the base E 1 , E 2 .
  • the figure 11 represents a single element for the sake of simplification.
  • the figure 12 shows a partial embodiment where a dipole antenna is installed on a support mast M.
  • this embodiment makes it possible to transmit twice as much RF power. It consists of two radiating structures of monopole type 1 1 and 1 2 installed in a substantially collinear manner head to tail at the top of the support mast and horizontally. The ends 7 1 and 7 2 of the radiating structures are respectively connected to the two power supply and impedance matching 3 1 and 3 2 assemblies which function respectively as master and as slave.
  • the two coaxial cords 31 1 and 31 2 of the same electrical length connect the two supply and impedance matching assemblies to the outputs of a hybrid power divider 0-180 °, 9 '.
  • the two outputs 90 ' 1 and 90' 2 are in phase opposition.

Description

La présente invention concerne un système antennaire comportant plusieurs éléments ou structures rayonnantes disposées en parallèle les unes des autres, chaque structure étant en liaison avec un dispositif d'alimentation et d'adaptation d'impédance.The present invention relates to an antenna system comprising a plurality of elements or radiating structures arranged in parallel with each other, each structure being in connection with a power supply and impedance matching device.

Elle s'applique par exemple pour les systèmes de radiocommunication utilisant la gamme de fréquences comprises entre 1.5 et 30 MHz.It applies for example for radio systems using the frequency range between 1.5 and 30 MHz.

Elle concerne aussi un système antennaire de faibles dimensions fonctionnant en particulier dans la bande HF (haute fréquence ou en termes anglo-saxon High frequency) couvrant les fréquences de 1.5 à 30 MHz, et destiné à être installé par exemple sur des véhicules terrestres pour assurer des liaisons radio par réflexion ionosphérique de type NVIS (abréviation de Near Vertical Incidence Skywave).It also relates to a small antennal system operating in particular in the HF band (high frequency) covering frequencies from 1.5 to 30 MHz, and intended to be installed for example on land vehicles to ensure ionospheric reflection radio links of type NVIS (abbreviation of Near Vertical Incidence Skywave).

Elle fonctionne avec les systèmes de radiocommunication à évasion de fréquence (Hopping Frequency en termes anglo-saxon).It works with frequency-hopping radio systems (Hopping Frequency in Anglo-Saxon terms).

Les systèmes de radiocommunication utilisant la gamme de fréquences HF couvrant les fréquences de 1.5 à 30 MHz et destinés à être installés sur des véhicules font habituellement appel à des systèmes antennaires composés essentiellement d'une structure rayonnante, d'un dispositif d'alimentation de la structure rayonnante et d'un dispositif d'adaptation d'impédance, habituellement désigné ATU (Antenna Tuning Unit). L'expression « élément rayonnant » ou « structure rayonnante » désigne un même élément.Radiocommunication systems using the frequency range of 1.5 to 30 MHz and intended for installation in vehicles usually use antennal systems consisting essentially of a radiating structure, a power supply device of radiating structure and an impedance matching device, usually referred to as ATU (Antenna Tuning Unit). The expression "radiating element" or "radiating structure" designates the same element.

Un exemple type d'un tel système antennaire est donné à la figure 1. La structure rayonnante 1, de type monopole, est constituée dans cet exemple par un fouet vertical fixé par une de ses extrémités 7 sur un véhicule 2 par l'intermédiaire d'une embase de traversé E, assurant aussi un rôle de dispositif d'alimentation 6 en reliant l'extrémité 7 du fouet 1 au dispositif d'alimentation et d'adaptation d'impédance 3. Le fouet est ainsi connecté à un poste émetteur/récepteur 5 par l'intermédiaire de l'ensemble d'alimentation et d'adaptation d'impédance 3 comprenant un dispositif d'adaptation d'impédance 4.A typical example of such an antennal system is given to the figure 1 . The radiating structure 1, of monopole type, is constituted in this example by a vertical whip secured by one of its ends 7 to a vehicle 2 via a base E traversing, also providing a role of supply device 6 by connecting the end 7 of the whip 1 to the supply and impedance matching device 3. The whip is thus connected to a transceiver 5 via the set power supply and impedance matching device 3 comprising an impedance matching device 4.

Ce dispositif 4 d'adaptation d'impédance présente une structure connue décrite à la figure 2 et comprenant par exemple :

  • Un ensemble d'éléments capacitifs 41 et un ensemble d'éléments inductifs 42 qui peuvent être connectés entre eux et ajustés en valeurs par l'intermédiaire de commutateurs 43 pour constituer un réseau d'adaptation d'impédance de type LC. Ce réseau LC est capable de transformer l'impédance complexe de la structure rayonnante 1 afin de présenter à l'entrée du poste émetteur/récepteur 5 (E/R) une impédance fixée selon le fonctionnement souhaitée, par exemple une valeur voisine de 50 ohms, à la fréquence de travail, réalisant de ce fait l'accord du système antennaire,
  • Un processeur 44 pourvu d'un algorithme AL variant en fonction des concepteurs. Les fonctions principales de cet algorithme consistent notamment à dialoguer avec le poste émetteur-récepteur 5 afin de connaître la fréquence instantanée de travail, à assurer la commande des commutateurs 43 et à gérer, en particulier, la phase d'accord pendant laquelle l'algorithme fait varier, par exemple par itérations successives, les valeurs des éléments capacitifs et celles des éléments inductifs pour les faire converger vers les valeurs conduisant à l'accord.
This impedance matching device 4 has a known structure described in FIG. figure 2 and including for example:
  • A set of capacitive elements 41 and a set of inductive elements 42 which can be connected to each other and adjusted in values via switches 43 to form an LC type impedance matching network. This LC network is capable of transforming the complex impedance of the radiating structure 1 in order to present at the input of the transceiver station 5 (E / R) an impedance set according to the desired operation, for example a value close to 50 ohms , at the working frequency, thereby realizing the tuning of the antennal system,
  • A processor 44 provided with an algorithm AL varying according to the designers. The main functions of this algorithm consist in particular in a dialogue with the transceiver station 5 in order to know the instantaneous working frequency, to control the switches 43 and to manage, in particular, the tuning phase during which the algorithm varies, for example by successive iterations, the values of the capacitive elements and those of the inductive elements to make them converge towards the values leading to the agreement.

Le synoptique de fonctionnement d'un tel système antennaire est donné à la figure 3.The synoptic of operation of such an antennal system is given to the figure 3 .

Pour des liaisons devant être assurées sur des courtes et sur des moyennes distances (typiquement de l'ordre de 0 à 500 kms) à partir d'un système de radiocommunication installé sur un véhicule mobile, la structure rayonnante la mieux adaptée est une structure rayonnante de type boucle. Des exemples de telles structures sont décrits par exemple dans les brevets US 4 893 131 , FR 2 553 586 et FR 2 785 094 . Les figures 4 et 5 schématisent une telle structure.For links to be provided over short and medium distances (typically of the order of 0 to 500 km) from a radio system installed on a mobile vehicle, the most suitable radiating structure is a radiating structure loop type. Examples of such structures are described for example in patents US 4,893,131 , FR 2,553,586 and FR 2 785 094 . The Figures 4 and 5 schematize such a structure.

Un élément conducteur filiforme 1 est recourbé sur le dessus d'un véhicule 2. Cet élément est alimenté à une de ses extrémités 8 par un dispositif d'alimentation 6 composé d'un transformateur d'impédance large bande 10 et d'un câble de liaison 11 (figure 5). L'autre extrémité 7 de cet élément rayonnant est reliée à la masse par une capacité 12 variable de préaccord afin de générer la surface rayonnante S de la structure antennaire de type boucle. La puissance radio fréquence fournie par le poste émetteur/récepteur 5 est transmise au dispositif d'alimentation 6 à travers un dispositif d'adaptation d'impédance qui est, dans cet exemple de réalisation, intégré avec la capacité variable 12 de préaccord dans un même boîtier 13. Cette intégration permet de commander la capacité variable au moyen de l'algorithme AL.A filamentary conductive element 1 is bent over the top of a vehicle 2. This element is fed at one of its ends 8 by a supply device 6 composed of a broadband impedance transformer 10 and a cable of link 11 ( figure 5 ). The other end 7 of this radiating element is connected to the ground by a variable pre-tuning capacitor 12 in order to generate the radiating surface S of the loop-type antenna structure. The radio frequency power supplied by the transceiver unit 5 is transmitted to the power supply device 6 through an impedance matching device which is, in this embodiment, integrated with the variable capacitance 12 pre-tuning into one and the same. casing 13. This integration makes it possible to control the variable capacity by means of the algorithm AL.

D'autres configurations d'ensemble d'alimentation et d'adaptation d'impédance peuvent être utilisées.Other configurations of power supply and impedance matching can be used.

Les systèmes antennaires selon l'art antérieur, bien qu'efficaces, présentent toutefois des limitations dans leur fonctionnement.Prior art antennal systems, while effective, however, have limitations in their operation.

Par exemple, leur utilisation sur des véhicules, en particulier sur des véhicules en mouvement, impose de limiter ou de restreindre les dimensions des structures rayonnantes. Ceci a notamment pour conséquence :

  • de réduire fortement le rendement des systèmes antennaires, parfois de manière importante,
  • de générer des tensions élevées et de forts courants dans tous les éléments constitutifs du système antennaire. Cet aspect limite la puissance admissible de ces systèmes antennaires pour véhicule aux alentours d'une centaine de Watts et nécessite de séparer le dispositif d'alimentation 6 de la capacité de préaccord ce qui représente un inconvénient pour l'intégration de l'antenne sur son véhicule porteur.
  • n'étant pas capables de supporter des puissances RF (Radio fréquence) élevées, en particulier celles des postes émetteurs/récepteurs utilisés sur des véhicules pouvant délivrer plusieurs centaines de Watts voire le kilowatt, ils ne peuvent pas faire fonctionner les éléments réactifs tels que les éléments capacitifs 41, 12 ou inductifs 42, à des taux de charge très élevés au détriment de la fiabilité et ne sont pas adaptés pour mettre en oeuvre des composants de commutation 43 de forte puissance dont le temps de commutation est trop lent pour suivre tous les rythmes d'évasion de fréquence offerts par les émetteurs/récepteurs.
For example, their use on vehicles, in particular on moving vehicles, requires limiting or restricting the dimensions of the radiating structures. This results in particular:
  • greatly reduce the performance of antennal systems, sometimes significantly,
  • to generate high voltages and strong currents in all the constituent elements of the antennal system. This aspect limits the allowable power of these antennal systems for vehicles around a hundred watts and requires the separation of the feed device 6 of the pre-tuning capacity which represents a drawback for the integration of the antenna on its carrier vehicle.
  • not being able to withstand high RF (Radio Frequency) powers, especially those of transceivers used on vehicles that can deliver several hundred Watts or even a kilowatt, they can not operate reactive elements such as capacitive elements 41, 12 or inductive 42, at very high load rates to the detriment of reliability and are not adapted to implement switching components 43 of high power whose switching time is too slow to track all frequency evasion rhythms offered by transmitters / receivers.

Le brevet DE 19955950 divulgue un système antennaire de type dipôle permettant d'obtenir un rayonnement dans un angle variant de 70 à 90 °.The patent DE 19955950 discloses an antenna system of dipole type for obtaining radiation in an angle ranging from 70 to 90 °.

Le brevet US 4 176 356 décrit un système antennaire directionnel qui couple de manière sélective deux éléments antennaires à un émetteur. Le système comporte un dispositif de mise en concordance « matching » qui permet la génération d'un décalage de phase de 90° entre les deux antennes afin de produire des diagrammes de rayonnement directifs et dirigés dans des directions sensiblement opposés.The patent US 4,176,356 discloses a directional antenna system that selectively couples two antenna elements to a transmitter. The system includes a "matching" matching device that allows the generation of a 90 ° phase shift between the two antennas to produce directional and directional radiation patterns in substantially opposite directions.

L'invention concerne un système antennaire comprenant un émetteur-récepteur relié à un diviseur de puissance de rapport N+1 égal au nombre des (N+1) structures rayonnantes dudit émetteur-récepteur, lesdites structures rayonnantes étant sensiblement identiques avec N supérieur à 1, lesdites (N+1) structures sont disposées parallèlement les unes aux autres, chaque structure rayonnante est reliée à un dispositif d'alimentation et d'adaptation d'impédance pour former un ensemble R: caractérisé en ce que :

  • lesdites N+1 ensembles R1, R2, ...Ri,.., Rn, Rn+1 comportent chacun au moins une structure rayonnante associée à un dispositif d'alimentation et d'adaptation d'impédance respectivement, chaque ensemble Ri est en liaison avec le diviseur de puissance au moyen d'un câble,
  • les N+1 structures rayonnantes sont implantées en parallèle, une de ces structures jouant le rôle de maître et les N autres structures un rôle d'esclave,
  • un dispositif Z (Zmètre) de mesure de l'impédance en sortie de la structure rayonnante désignée comme maître,
  • pour la structure maître, un processeur équipé d'une logique de commande Cm ayant notamment pour fonction de réaliser l'accord d'une façon active durant la phase d'accord, ladite logique de commande Cm permet notamment de gérer la phase d'accord du système antennaire en déterminant et en faisant varier, les valeurs des éléments variables de l'ensemble d'alimentation et d'adaptation, tels que les éléments capacitifs, les éléments inductifs, la capacité variable pour les faire converger vers les valeurs qui donnent l'accord,
  • pour chacun des N structures rayonnantes ayant un rôle d'esclave dans une configuration de fonctionnement donné du système antennaire, un processeur équipé d'une logique de commande Cs ayant notamment pour fonction de recopier à tout moment et donc pendant toute la phase d'accord, l'état de l'équipement maître, notamment les paramètres d'accord, tels que les valeurs des éléments variables vers respectivement les éléments variables des ensembles d'alimentation et d'adaptation dits « esclaves »,
  • les dispositifs d'alimentation sont choisis pour fournir des fréquences Radio Fréquence sensiblement égales en phase à la majorité ou la totalité des (N+1) structures rayonnantes.
The invention relates to an antenna system comprising a transceiver connected to a power divider of ratio N + 1 equal to the number of (N + 1) radiating structures of said transceiver, said radiating structures being substantially identical with N greater than 1 , said (N + 1) structures are arranged parallel to each other, each radiating structure is connected to a power supply and impedance matching device to form a set R: characterized in that:
  • said N + 1 sets R 1 , R 2 ,... Ri, .., R n , R n + 1 each comprise at least one radiating structure associated with a power supply and impedance matching device respectively, each together Ri is in connection with the power divider by means of a cable,
  • the N + 1 radiating structures are implanted in parallel, one of these structures acting as master and the other N structures a slave role,
  • a device Z (Z meter) for measuring the impedance at the output of the radiating structure designated as master,
  • for the master structure, a processor equipped with a control logic Cm whose particular function is to achieve the agreement in an active manner during the tuning phase, said control logic Cm allows in particular to manage the tuning phase of the antennal system by determining and varying the values of the variable elements of the supply and adaptation assembly, such as the capacitive elements, the inductive elements, the variable capacitance to converge them to the values which give rise to 'agreement,
  • for each of the N radiating structures having a slave role in a given operating configuration of the antennal system, a processor equipped with a control logic Cs having in particular the function of copying at any moment and therefore throughout the tuning phase the state of the master equipment, in particular the tuning parameters, such as the values of the variable elements to respectively the variable elements of the so-called "slave" power supply and adaptation assemblies,
  • the power devices are selected to provide substantially equal Radio Frequency frequencies in phase with the majority or all of the (N + 1) radiating structures.

Le système est par exemple utilisé dans la gamme de fréquences comprises entre 1.5 et 30 MHz.
L'invention concerne aussi un procédé pour accorder un système antennaire composé d'un émetteur-récepteur comportant (N+1) structures rayonnantes sensiblement identiques, avec N supérieur à 1, comportant au moins une étape où chacune des structures rayonnantes disposées en parallèle les unes aux autres sont alimentées et adaptées en impédance pour une valeur de fréquence de fonctionnement donnée caractérisé en ce qu'il comporte au moins les étapes suivantes :

  • associer à une structure rayonnante une fonction de maître, et aux autres N structures rayonnantes une fonction « d'esclave »,
  • transmettre les paramètres d'accord de la structure rayonnante maître vers les structures rayonnantes esclaves,
  • faire varier au moins une des valeurs d'au moins un des paramètres pour les faire converger et obtenir l'accord.
et en ce qu'il comporte les étapes suivantes :
  • b) initialiser les paramètres d'accord pour la structure rayonnante « maître »,
  • c) transmettre les paramètres d'accord aux autres structures rayonnantes esclaves,
  • d) déterminer la valeur d'impédance Zmesurée en sortie de la structure rayonnante « maître » et comparer ladite valeur à une valeur spécifiée Zfixée,
  • e) tant que ladite valeur déterminée est différente de la valeur spécifiée déterminer les valeurs des paramètres permettant l'accord pour la structure rayonnante maître,
  • f) faire varier au moins un des paramètres d'accord de la structure rayonnante maître, et réitérer les étapes e à d.
The system is for example used in the frequency range between 1.5 and 30 MHz.
The invention also relates to a method for tuning an antenna system composed of a transceiver comprising (N + 1) radiating structures substantially identical, with N greater than 1, comprising at least one step in which each of the radiating structures arranged in parallel with each other is fed and adapted in impedance for a given operating frequency value, characterized in that it comprises at least the following steps :
  • to associate with a radiating structure a function of master, and with the other N structures radiating a function of "slave",
  • transmit the tuning parameters of the master radiating structure to the radiating slave structures,
  • varying at least one of the values of at least one of the parameters to make them converge and obtain agreement.
and in that it comprises the following steps:
  • b) initialize the tuning parameters for the "master" radiating structure,
  • c) transmit the tuning parameters to the other slave radiating structures,
  • d) determining the impedance value Z measured at the output of the "master" radiating structure and comparing said value with a specified value Z fixed ,
  • e) as long as said determined value is different from the specified value determining the values of the parameters allowing agreement for the master radiating structure,
  • f) varying at least one of the tuning parameters of the master radiating structure, and repeating steps e to d.

Le système antennaire selon l'invention présente notamment les avantages suivants :

  • Il assure un débit de données numériques (en bits/secondes) de plus en plus élevé en radiocommunication dans la bande HF (High Frequency),
  • Il peut supporter des puissances radiofréquence des postes émetteurs-récepteurs, pouvant aller de plusieurs centaines de watts voire le kilowatt,
  • Il augmente le rendement en accroissant la résistance de rayonnement du système rayonnant, tout en restant dans un encombrement compatible avec un véhicule terrestre,
  • Il limite les tensions et les courants développés dans les éléments réactifs et permet de ce fait le regroupement sur une seule extrémité de la capacité de préaccord et du dispositif d'alimentation même pour une forte puissance émise,
  • Il autorise l'utilisation de composants de commutation de faible puissance et en conséquence est donc rapide et fiable contrairement aux systèmes de l'art antérieur qui doivent faire fonctionner les éléments réactifs, capacitifs ou inductifs à des taux de charge très élevés au détriment de la fiabilité et doivent mettre en oeuvre des composants de commutation de forte puissance dont le temps de commutation est trop lent pour suivre tous les rythmes d'évasion de fréquences offerts par les émetteurs-récepteurs.
The antenna system according to the invention has the following advantages:
  • It provides a digital data rate (in bits / second) of higher and higher radiocommunication in the band HF (High Frequency),
  • It can support radiofrequency powers of transceivers, ranging from several hundred watts to the kilowatt,
  • It increases the efficiency by increasing the radiation resistance of the radiating system, while remaining in a space compatible with a land vehicle,
  • It limits the voltages and currents developed in the reactive elements and thus allows the grouping on one end of the pre-tuning capacitance and the power supply device even for a high emitted power,
  • It allows the use of low power switching components and therefore is fast and reliable unlike the systems of the prior art which must operate the reactive, capacitive or inductive elements at very high load rates to the detriment of the reliability and must implement high power switching components whose switching time is too slow to follow all the frequency evasion rates offered by the transceivers.

D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit donnée à titre illustratif et nullement limitatif en regard des figures annexées qui représentent :

  • Les figures 1, 2 et 3 un système antennaire HF selon l'art antérieur, le détail d'une ATU et le synoptique du système,
  • Les figures 4 et 5 un exemple de système d'antenne de type boucle,
  • La figure 6 un synoptique du système antennaire selon l'invention et la figure 7 un organigramme détaillant les étapes principales du procédé,
  • Les figures 8 et 9 un exemple partiel d'installation du système antennaire sur un véhicule et un détail de l'ensemble d'alimentation et d'adaptation d'impédance,
  • Les figures 10 et 11 une autre variante partielle de réalisation à base de monopoles,
  • La figure 12 un exemple partiel de système antennaire pour installation sur un mât-support.
Other features and advantages of the invention will emerge more clearly on reading the description which follows, given by way of illustration and in no way limiting, with reference to the appended figures which represent:
  • The figures 1 , 2 and 3 an RF antenna system according to the prior art, the detail of an ATU and the synoptic of the system,
  • The Figures 4 and 5 an example of a loop antenna system,
  • The figure 6 a synoptic of the antennal system according to the invention and the figure 7 a flowchart detailing the main steps of the process,
  • The Figures 8 and 9 a partial example of installation of the antennal system on a vehicle and a detail of the power supply and impedance matching assembly,
  • The Figures 10 and 11 another partial variant of realization based on monopolies,
  • The figure 12 a partial example of an antenna system for installation on a support mast.

La description qui suit est donnée à titre d'exemple non limitatif pour un système antennaire destiné à être utilisé dans la gamme de fréquences HF allant de 1.5 à 30 MHz et installé sur un véhicule.
   En se référant au synoptique de la figure 6, le système antennaire selon l'invention comprend :

  • Un émetteur-récepteur 5 relié à un diviseur de puissance 9 de rapport N+1 égal au nombre d'éléments rayonnants utilisés,
  • N+1 ensembles R1, R2, ...Ri,.., Rn, Rn+1 comportant chacun au moins un élément rayonnant 11, 12, ...1i,..,1n,1n+1 associé à un ensemble d'alimentation et d'adaptation d'impédance respectivement 31, 32, 3i,..., 3n, 3n+1, chaque ensemble Ri est en liaison avec le diviseur de puissance 9 au moyen d'un câble 901, 902, ... 90i,.., 90n, 90n+1,
  • Les N+1 éléments rayonnants 1i sont implantés en parallèle, un de ces éléments jouant le rôle de maître et les N autres éléments un rôle d'esclave, (sur la figure 6, c'est l'élément 11 qui joue ce rôle),
  • Un dispositif Z (Zmètre) de mesure de l'impédance en sortie de l'élément rayonnant 11 désigné comme maître,
  • Pour l'élément maître, un processeur 15 équipé d'une logique de commande Cm ayant notamment pour fonction de réaliser l'accord d'une façon active durant la phase d'accord. La logique de commande Cm permet notamment de gérer la phase d'accord du système antennaire en faisant varier, les valeurs des éléments variables de l'ensemble d'alimentation et d'adaptation, tels que les éléments capacitifs 41, les éléments inductifs 42, la capacité variable 12 pour les faire converger vers les valeurs qui donnent l'accord,
  • Pour chacun des N éléments rayonnants ayant un rôle d'esclave dans une configuration de fonctionnement donné du système antennaire, un processeur 15 équipé d'une logique de commande Cs ayant notamment pour fonction de recopier à tout moment et donc pendant toute la phase d'accord, l'état de l'équipement maître, notamment les paramètres d'accord, tels que les valeurs des éléments variables 411, 412, ..vers respectivement les éléments variables 41i, 42i, .....des ensembles d'alimentation et d'adaptation dits « esclaves ».
       Avantageusement, la résistance de rayonnement de l'ensemble des N+1 éléments rayonnants par rapport à celle d'un seul élément rayonnant se trouve multipliée approximativement par N+1 et il en est de même pour le rendement du système antennaire. Les équipements d'alimentation et d'adaptation ne supportent alors qu'une (N+1)ième partie de la puissance RF totale délivrée par l'émetteur-récepteur.
       Dans le cas particulier d'un système antennaire fonctionnant sur une fréquence fixe unique, il est possible de fixer manuellement les valeurs des capacités et des inductances pour obtenir l'accord souhaitée et de fait les logiques de commande par processeur ne sont plus nécessaires.
The following description is given by way of nonlimiting example for an antenna system intended to be used in the HF frequency range from 1.5 to 30 MHz and installed on a vehicle.
Referring to the synoptic of the figure 6 , the antennal system according to the invention comprises:
  • A transceiver 5 connected to a power divider 9 of ratio N + 1 equal to the number of radiating elements used,
  • N + 1 sets R 1 , R 2 ,... Ri, .., R n , R n + 1 each comprising at least one radiating element 1 1 , 1 2 , ... 1 i , .., 1 n , 1 n + 1 associated with a power supply and impedance matching respectively 3 1 , 3 2 , 3i, ..., 3 n , 3 n + 1 , each set Ri is in connection with the power divider 9 by means of a cable 90 1 , 90 2 , ... 90 i , .., 90 n , 90 n + 1 ,
  • The N + 1 radiating elements 1 i are implanted in parallel, one of these elements acting as master and the other N elements a slave role, (on the figure 6 it is the element 1 1 that plays this role),
  • A device Z (Z meter) for measuring the impedance at the output of the radiating element 11 designated as master,
  • For the master element, a processor 15 equipped with a control logic Cm whose particular function is to achieve the agreement in an active manner during the tuning phase. The control logic Cm makes it possible in particular to manage the tuning phase of the antenna system by varying the values of the variable elements of the supply and adaptation assembly, such as the capacitive elements 41, the inductive elements 42, the variable capacity 12 to converge them to the values that give the agreement,
  • For each of the N radiating elements having a slave role in a given operating configuration of the antenna system, a processor 15 equipped with a control logic Cs having in particular for function to copy at any time and therefore throughout the tuning phase, the state of the master equipment, including the tuning parameters, such as the values of the variable elements 41 1 , 41 2 , respectively. the variable elements 41 i , 42 i , ..... supply and adaptation assemblies called "slaves".
    Advantageously, the radiation resistance of the set of N + 1 radiating elements relative to that of a single radiating element is multiplied approximately by N + 1 and the same is true for the efficiency of the antennal system. The power supply and adaptation equipment then supports only one (N + 1) th part of the total RF power delivered by the transceiver.
    In the particular case of an antennal system operating on a single fixed frequency, it is possible to manually set the values of the capacitors and inductances to obtain the desired agreement and in fact the logic of control by processor are no longer necessary.

La figure 7 représente, sous la forme d'organigramme, un exemple d'étapes mises en oeuvre au cours du procédé dans le cas particulier où le système est pourvu d'une logique de commande :

  1. a) désigner un des éléments rayonnants comme « maître »,
  2. b) initialiser les paramètres d'accord de la structure rayonnante « maître » en fonction de la fréquence de fonctionnement du système antennaire,
  3. c) communiquer les paramètres d'accord, par exemple les valeurs des capacités et des inductances du circuit d'adaptation à tous les circuits d'adaptation des éléments rayonnants « esclaves », la logique de commande Cs permet une recopie des valeurs du maître vers les esclaves,
  4. d) déterminer, par exemple par mesure, la valeur d'impédance en sortie de l'élément rayonnant maître », et
    comparer la valeur mesurée Zmesurée à une valeur souhaitée Zfixée, cette dernière est choisie par exemple selon les conditions de fonctionnement du système antennaire, de façon à obtenir l'accord souhaité,
  5. e) tant que Zmesurée est différente ou sensiblement différente de la valeur Zfixée, déterminer les valeurs des paramètres permettant l'accord pour la structure rayonnante maître,
  6. f) faire varier au moins une des valeurs des éléments variables pour les faire converger vers les valeurs qui donnent l'accord et réitérer les étapes e) à d). La tolérance est par exemple fixée à une valeur de TOS inférieure ou égale à 1,5.
The figure 7 represents, in flowchart form, an example of steps implemented during the method in the particular case where the system is provided with a control logic:
  1. a) designate one of the radiating elements as "master",
  2. b) initializing the tuning parameters of the "master" radiating structure according to the operating frequency of the antenna system,
  3. c) communicating the tuning parameters, for example the values of the capacitors and the inductances of the adaptation circuit to all the adaptation circuits of the "slave" radiating elements, the control logic Cs makes it possible to copy the values of the master to the slaves,
  4. d) determining, for example by measurement, the impedance value at the output of the master radiator ", and
    comparing the measured value Z measured with a desired value Z fixed , the latter is chosen for example according to the operating conditions of the antenna system, so as to obtain the desired agreement,
  5. e) as long as Z measured is different or substantially different from the fixed Z value, determining the values of the parameters allowing agreement for the master radiating structure,
  6. f) varying at least one of the values of the variable elements to converge them to the values that give the agreement and reiterate the steps e) to d). The tolerance is for example set at a value of TOS less than or equal to 1.5.

La variation des valeurs est réalisée par exemple de manière itérative selon des algorithmes connus de l'Homme du métier.
   Les informations sont transférées de la structure rayonnante « maître » vers les structures « esclaves » par exemple en les modulant à une fréquence différente de la fréquence de travail et en utilisant les câbles 90i.
   Elles peuvent aussi être transférées par tout autre moyen connu de l'Homme du métier.
The variation of the values is carried out for example iteratively according to algorithms known to those skilled in the art.
The information is transferred from the "master" radiating structure to the "slave" structures, for example by modulating them at a frequency different from the working frequency and using the cables 90i.
They can also be transferred by any other means known to those skilled in the art.

La figure 8 représente un exemple partiel de réalisation d'un système antennaire comportant deux éléments rayonnants installés sur un véhicule et connectés directement à la masse de ce dernier.
   Un premier élément rayonnant filiforme 11 a une de ses extrémités 81 connectée directement à la masse du véhicule 2. L'autre extrémité 71 est connectée au travers d'une embase de traversée E1 à la borne d'entrée 301 de l'ensemble d'alimentation et d'adaptation d'impédance 31. Un exemple de détail de cet ensemble est représenté à la figure 9. Il comprend par exemple une capacité variable de préaccord 20 dont une des bornes constitue la borne d'entrée 301 mise en série avec le primaire d'un transformateur large bande élévateur d'impédance 21, d'un ATU branché au secondaire du transformateur 21 et d'une logique de commande Cm qui permet à cet ensemble de fonctionner en tant que maître. Il en est de même pour le deuxième élément filiforme 12 disposé en parallèle au premier élément 11, à une distance de l'ordre de 0.5 m afin que ces éléments rayonnants ne se touchent pas sous l'effet du mouvement du véhicule. De même, les extrémités 82 et 72 sont connectées respectivement à la masse du véhicule et à la borne d'entrée 302 du deuxième ensemble d'alimentation et d'adaptation d'impédance 32. Ce deuxième ensemble étant considéré comme esclave vis à vis du premier ensemble, il est équipé d'une logique de commande Cs, permettant, notamment, la recopie à tout instant en particulier lors de la phase d'accord, de l'état du premier ensemble ou maître.
   Les informations échangées entre les différents ensembles s'effectuent au moyen de bus connu de l'Homme du métier ou encore de câble de liaison, par exemple les câbles coaxiaux 311 et 312 reliant les ensembles d'alimentation et d'adaptation d'impédance 31 et 32 au diviseur de puissance 9. Ces deux câbles reliés à deux sorties distinctes 901 et 902 du diviseur de puissance ont la même longueur ou sensiblement la même longueur pour permettre l'arrivée des signaux en même temps sur les éléments rayonnants. Les puissances RF transmises aux éléments rayonnants 11 et 12 sont donc identiques en amplitude et en phase ou au moins le plus semblable possible.
The figure 8 represents a partial embodiment of an antennal system comprising two radiating elements installed on a vehicle and connected directly to the mass of the latter.
A first filamentary radiating element 1 1 has one of its ends 8 1 connected directly to the mass of the vehicle 2. The other end 7 1 is connected through a feedthrough E 1 to the input terminal 30 1 of the power supply and impedance matching 3 1 . An example of a detail of this set is shown in figure 9 . It comprises, for example, a variable pre-tuning capacitor 20, one of whose terminals constitutes the input terminal 30 1 connected in series with the primary of a wide-band impedance-boosting transformer 21, of an ATU connected to the secondary of the transformer 21 and a control logic Cm that allows this set to function as a master. It is the same for the second filiform element 1 2 disposed in parallel to the first element 1 1 , at a distance of the order of 0.5 m so that these radiating elements do not do not touch under the effect of the movement of the vehicle. Similarly, the ends 8 2 and 7 2 are respectively connected to the vehicle earth and to the input terminal 30 2 of the second supply assembly and impedance 3 2 adaptation. This second set being regarded as slave with respect to the first set, it is equipped with a control logic Cs, allowing, in particular, the copying at any moment, in particular during the tuning phase, the state of the first together or master.
The information exchanged between the different assemblies is effected by means of a bus known to a person skilled in the art or else a connecting cable, for example the coaxial cables 31 1 and 31 2 connecting the power supply and adaptation assemblies. impedance 3 1 and 3 2 to the power divider 9. These two cables connected to two separate outputs 90 1 and 90 2 of the power divider have the same length or substantially the same length to allow the arrival of the signals at the same time on the radiating elements. The RF powers transmitted to the radiating elements 1 1 and 1 2 are therefore identical in amplitude and in phase or at least the most similar possible.

Les figures 10 et 11 correspondent à une variante partielle de réalisation où les éléments rayonnants 11, 12 sont de type monopôle. Dans ce cas les ensembles d'alimentation et d'impédance sont directement connectés à l'ATU 4. Une seule extrémité 71, 72 de l'élément rayonnant est connectée au système antennaire par l'intermédiaire de l'embase E1, E2. La figure 11 représente un seul élément pour des soucis de simplification .The Figures 10 and 11 correspond to a partial embodiment where the radiating elements 1 1 , 1 2 are of the monopole type. In this case the supply and impedance assemblies are directly connected to the ATU 4. Only one end 7 1 , 7 2 of the radiating element is connected to the antenna system via the base E 1 , E 2 . The figure 11 represents a single element for the sake of simplification.

La figure 12 montre une variante partielle de réalisation où une antenne dipôle est installée sur un mât support M. Pour des niveaux de tension et de courant générés dans les éléments constitutifs de l'antenne identiques à ceux correspondants à une antenne dipôle équipée d'un ATU unique, cette réalisation permet de transmettre deux fois plus de puissance RF. Elle est constituée de deux structures rayonnantes de type monopôle 11 et 12 installées d'une façon sensiblement colinéaire en tête bêche au sommet du mât support et de façon horizontale. Les extrémités 71 et 72 des structures rayonnantes sont connectées respectivement aux deux ensembles d'alimentation et d'adaptation d'impédance 31 et 32 qui fonctionnent respectivement en tant que maître et en tant qu'esclave. Les deux cordons coaxiaux 311 et 312 de même longueur électrique relient les deux ensembles d'alimentation et d'adaptation d'impédance aux sorties d'un diviseur de puissance hybride 0-180°, 9'. Les deux sorties 90'1 et 90'2 sont en opposition de phase.The figure 12 shows a partial embodiment where a dipole antenna is installed on a support mast M. For voltage and current levels generated in the constituent elements of the antenna identical to those corresponding to a dipole antenna equipped with a single ATU, this embodiment makes it possible to transmit twice as much RF power. It consists of two radiating structures of monopole type 1 1 and 1 2 installed in a substantially collinear manner head to tail at the top of the support mast and horizontally. The ends 7 1 and 7 2 of the radiating structures are respectively connected to the two power supply and impedance matching 3 1 and 3 2 assemblies which function respectively as master and as slave. The two coaxial cords 31 1 and 31 2 of the same electrical length connect the two supply and impedance matching assemblies to the outputs of a hybrid power divider 0-180 °, 9 '. The two outputs 90 ' 1 and 90' 2 are in phase opposition.

Claims (10)

  1. An antenna system comprising a transmitter-receiver (5) connected to a power splitter (9) with a ratio N+1 that is equal to the number of (N+1) radiating structures of transmitter-receiver, said radiating structures being substantially identical with N greater than 1, said (N+1) structures are disposed parallel to each other, each radiating structure is connected to a power supply supply impedance device to form an assembly Ri:
    • said N+1 assemblies R1, R2, ...Ri,.., Rn, Rn+1 each comprise at least one radiating structure (11, 12, ... 1i,...,1n, 1n+1) respectively with a power supply and impedance device (31, 32, 3i,...,3n, 3n+1), each assembly Ri is connected to the power splitter 9 by means of a cable (901, 902,,..90i,..,90n,90n+1),
    • the N+1 radiating structures (1i) are installed in parallel, one of these structures acting as master and the N other structures acting as slaves,
    • a device Z (Zmetre) for measuring the impedance at the output of the radiating structure (11) that is designated as master,
    • for the master structures, a processor (15) provide with a control logic Cm, the notable function of which is to actively tune during the tuning phase, said control logic Cm notably allowing the tuning phase of the antenna system to be managed by determining and by varying the values of the variable elements of the power supply and matching assembly, such as the capacitive elements (41), the inductive elements (42) and the variable capacity (12), in order to make them converge towards the values that result in the tuning,
    • for each of the N radiating structures acting as slaves in a given operating configuration of the antenna system, a processor (15) fitted with a control logic Cs, the notable function of which is to copy at any moment, and thus during the entire tuning phase, the status of the master equipment, notably the tuning parameters, such as the values of the variable elements (411, 412,..), towards the variable elements (41i, 42i,......) respectively of the power supply and matching assemblies referred to as "slaves",
    • the power supply devices are designed to provide Radio Frequency frequencies that are substantially equal in phase to most or all of the (N+1) radiating structures.
  2. The antenna system according to claim 1, characterised in that it comprises at least:
    • a first assembly (R1) constituted by a radiating structure (11), a power supply and impedance matching assembly (31) having a control logic (Cm) that allows it to operate as master so as to manage the tuning phase of the system by varying the values of the variable elements, such as the capacitive elements (411), the inductive elements (421) and the variable capacity (121), so as to make the converge towards the values that result in the tuning,
    • N additional assemblies (R2...., Rn+1) that are substantially identical with the first assembly and arranged in parallel with said assembly, having a control logic (Cs) for the power supply and impedance matching assemblies (3i,3i...3n+1) that is designed to operate as slave by copying at all times the status of the variable elements (411), (421), (121)... of the master to the variable elements (41i), (42i), (12i)... respectively of the power supply and impedance matching assemblies (3i),
    • a power splitter (9) from 1 input to N+1 outputs (901)... (90n+1) connected to the N+1 power supply and impedance matching assemblies (31...3n+1).
  3. The antenna system according to claim 1, characterised in that:
    • the radiating structures (11)... (1n+1) are of the loop type made from a filiform conductive element, one of the ends (81)... (8n+1) of which is connected to ground and the other end (71)... (7n+1) of which is connected to the input (301)... (30n+1) of a supply and impedance matching assembly (31)... (3n+1), and in that the power supply and impedance matching assemblies (31)... (3n+1) are constituted by at least:
    • one wideband impedance step-up transformer (21),
    • one variable pre-tuning capacitor (20) arranged in series with the primacy of the wideband impedance step-up transformer (21), the free terminal of which constitutes the input (301)... (30n+1),
    • an impedance matching device or ATU (4) connected to the secondary of the transformer (21).
  4. The antenna system according to claim 1, characterised in that the radiating structures (11) ... (1n+1) are of the monopole type made from a filiform conductive element, one of the ends of which is left free and the other end (71)... (7n+1) of which is connected to the input (301)... (30n+1) of a power supply and impedance matching assembly (31)... (3n+1).
  5. The antenna system according to claim 1, characterised in that it comprises at least:
    • a first assembly (R1) constituted by a radiating structure (11), a power supply and impedance matching assembly (31) having a control logic (Cm) that allows it to operate as master so as to manage the tuning phase of the antenna system by varying the values of the variable elements, such as the capacitive elements (411), the inductive elements (421) and the variable capacity (121), so as to make them converge towards the values that result in the tuning,
    • an additional assembly (R2), identical with the first assembly (R1) and placed end-to-end with said first assembly (R1), but in which the control logic (Cs) for the power supply and impedance matching assembly (32) makes it operate as a slave by copying at any time during the tuning phase the status of the variable elements (411), (421), (121)... of the master towards the variable elements (41i), (42i), (12i)... respectively of said slave assembly (32),
    • a hybrid power splitter (9') with one input and two outputs (90'1), (90'2) in phase opposition connected to two power supply and impedance matching assemblies (31) and (32).
  6. The antenna system according to claim 5, characterised in that the radiating structures (11) and (12) are monopoles.
  7. The use of the system according to any one of claims 1 to 6 in the frequency range that is between 1.5 and 30 MHz.
  8. A method for tuning an antenna system composed of a transmitter-receiver comprising (N+1) substantially identical radiating structures, with greater than 1, comprising at least one step in which each of the radiating structures disposed in parallel with each other are fed and impedance matched for a given operating frequency value, characterised in that it comprises at least the following steps:
    • associating a master function to one radiating structure, and associating a "slave" function to the other N radiating structures,
    • transmitting the tuning parameters from the master radiating structure to the slave radiating structures,
    • varying at least one of the values of at least one of the parameters in order to make them converge and obtain the tuning,
    and in that it comprises the following steps of:
    b) initialising the tuning parameters for the "master" radiating structure,
    c) transmitting the tuning parameters to the slave radiating structures,
    d) determining the impedance value Zmeasured at the output of the "master" radiating structure and comparing said value with a specified value Zfixed,
    e) determining, whilst said determined value is different from the specified value, the values of the parameters allowing the tuning for the master radiating structure,
    f) varying at least one of the tuning parameters of the master radiating structure and repeating steps e to d.
  9. The method according to claim 8, characterised in that the parameters are transmitted by modulating the information at a frequency value that differs from that of the system operation.
  10. The method according to any one of claims 8 to 9, characterised in that the operating frequency range is selected in the range of 1.5 to 30 MHz.
EP02292218A 2001-09-11 2002-09-10 High efficient and high power antenna system Expired - Lifetime EP1291974B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0111738A FR2829622B1 (en) 2001-09-11 2001-09-11 HIGH EFFICIENCY AND HIGH POWER ANTENNA SYSTEM
FR0111738 2001-09-11

Publications (2)

Publication Number Publication Date
EP1291974A1 EP1291974A1 (en) 2003-03-12
EP1291974B1 true EP1291974B1 (en) 2012-12-05

Family

ID=8867165

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02292218A Expired - Lifetime EP1291974B1 (en) 2001-09-11 2002-09-10 High efficient and high power antenna system

Country Status (4)

Country Link
US (1) US6784847B2 (en)
EP (1) EP1291974B1 (en)
CA (1) CA2404504A1 (en)
FR (1) FR2829622B1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7382315B1 (en) * 2003-03-11 2008-06-03 Rockwell Collins, Inc. System for and method of improving beyond line-of-sight transmissions and receptions
US7498782B2 (en) * 2005-06-30 2009-03-03 Intel Corporation Computer systems and voltage regulator circuits with toroidal inductors
EP2266076B1 (en) * 2008-03-20 2016-09-28 Quotainne Enterprises LLC Transceiving circuit for contactless communication and nfc device or rfid reader/writer device comprising such a transceiving circuit
US8508419B2 (en) * 2010-10-22 2013-08-13 GM Global Technology Operations LLC Multiple antenna element system and method
FR2988241B1 (en) * 2012-03-13 2019-08-09 Renault S.A.S WIRELESS COMMUNICATION SYSTEM WITH MULTIPLE MULTIPLEX RECEIVERS.
US20140125530A1 (en) * 2012-11-06 2014-05-08 Omega-Tec, LLC Compact Mobile and Fixed Broadband Dual-Mode HF Antenna System
FR2998722B1 (en) 2012-11-23 2016-04-15 Thales Sa ANTENNAIRE SYSTEM WITH IMBRIQUE BUCKLES AND VEHICLE COMPRISING SUCH ANTENNA SYSTEM
FR3049397B1 (en) * 2016-03-22 2019-11-22 Thales BI-LOOP ANTENNA FOR IMMERSE ENGINE
FR3059437B1 (en) * 2016-11-30 2019-01-25 Continental Automotive France METHOD FOR DIAGNOSING A COMMUNICATION LINK IN A MOTOR VEHICLE
US10811758B2 (en) * 2018-06-15 2020-10-20 Harris Global Communications, Inc. Broadband HF dismount antenna
US11387558B2 (en) 2019-12-20 2022-07-12 Rockwell Collins, Inc. Loop antenna polarization control

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769169A (en) * 1952-03-22 1956-10-30 Arthur Leonard Munzig Jr Dipole impedance matching device
US3818480A (en) * 1971-07-12 1974-06-18 Magnavox Co Method and apparatus for controlling the directivity pattern of an antenna
US4176356A (en) * 1977-06-27 1979-11-27 Motorola, Inc. Directional antenna system including pattern control
US4343001A (en) * 1980-10-24 1982-08-03 Rockwell International Corporation Digitally tuned electrically small antenna
FR2553586B1 (en) 1983-10-13 1986-04-11 Applic Rech Electronique AUTOMATIC HALF-LOOP HALF-LOOP ANTENNA
US4611214A (en) * 1984-06-27 1986-09-09 The United States Of America As Represented By The Secretary Of The Army Tactical high frequency array antennas
US4893131A (en) 1988-06-15 1990-01-09 Smith William J Mobile or ground mounted arcuate antenna
US5268695A (en) * 1992-10-06 1993-12-07 Trimble Navigation Limited Differential phase measurement through antenna multiplexing
FR2758012B1 (en) * 1996-12-27 1999-05-28 Thomson Csf DOUBLE ANTENNA, PARTICULARLY FOR VEHICLE
FR2759498B1 (en) * 1997-02-07 1999-08-27 Thomson Csf VARIABLE GEOMETRY ANTENNA
US6005514A (en) * 1997-09-15 1999-12-21 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for attitude determination using GPS carrier phase measurements from nonaligned antennas
FR2785094A1 (en) * 1998-10-27 2000-04-28 Thomson Csf HF skywave land vehicle radio antenna, has curved whip aerial one end with variable capacitance earth connected and other end transformer primary earth connecting and secondary inputting regulating voltage.
FR2790872B1 (en) * 1999-03-12 2003-05-30 Thomson Csf DEMOUNTABLE, CAPACITIVE LOAD, WHIP TYPE ANTENNA AND METHOD FOR MANUFACTURING A RADIANT SEGMENT OF SUCH AN ANTENNA
DE19923729A1 (en) * 1999-05-22 2000-11-23 Nokia Mobile Phones Ltd Circuit arrangement for checking the operational readiness of at least one antenna
DE19955950A1 (en) * 1999-11-19 2001-06-13 Daimler Chrysler Ag Antenna system
JP2001160157A (en) * 1999-12-02 2001-06-12 Toshiba Corp Toll collection system

Also Published As

Publication number Publication date
CA2404504A1 (en) 2003-03-11
US6784847B2 (en) 2004-08-31
US20030071760A1 (en) 2003-04-17
EP1291974A1 (en) 2003-03-12
FR2829622A1 (en) 2003-03-14
FR2829622B1 (en) 2004-04-09

Similar Documents

Publication Publication Date Title
EP1291974B1 (en) High efficient and high power antenna system
EP0427654B1 (en) Tuned helical antennae consisting of two quadrifilar antennas fit into each other
EP0785635B1 (en) Method and apparatus for frequency diversity transmission using a plurality of uncorrelated carriers
FR2714242A1 (en) Filtering device for use in a phase-locked loop controller.
WO2011095384A1 (en) Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
FR2641657A1 (en) COMMUNICATION DEVICE WITH MULTIPLE POWER SUPPLY, MULTIPLE CHANNELS
FR3080476A1 (en) METHOD FOR ADJUSTING THE PHASE OF THE SIGNAL EMITTED BY AN OBJECT CAPABLE OF COMMUNICATING WITHOUT CONTACT TO A DRIVE BY ACTIVE LOAD MODULATION AND CORRESPONDING OBJECT
EP3163677B1 (en) Umbilical antenna structure
Dinis et al. All-digital transmitter based antenna array with reduced hardware complexity
EP2932624B1 (en) Radiofrequency signal receiver to be provided on a satellite
WO2009077529A2 (en) Very wide band active antenna for passive radar
FR2970129A1 (en) CAPACITOR VARIABLE FILTER SWITCHED USING MEMS COMPONENTS
FR3061807B1 (en) ANTENNA COMPRISING AN AIRCRAFT WITHOUT PILOT
WO2018055313A1 (en) Antenna with ferromagnetic rods wound and coupled together
EP0293287B1 (en) Spread spectrum phase demodulator test system
FR2785094A1 (en) HF skywave land vehicle radio antenna, has curved whip aerial one end with variable capacitance earth connected and other end transformer primary earth connecting and secondary inputting regulating voltage.
EP1548877B1 (en) Multi-band antenna with planar radiating surfaces and portable phone comprising such an antenna
FR2767420A1 (en) HIGH FREQUENCY HALF-LOOP ANTENNA DEVICE
EP2462701B1 (en) Switching circuit for broadband signals
EP1956682B1 (en) Switching monopole antenna
WO1991009502A1 (en) Process and device for transmitting video signals in a confined medium
EP1715597B1 (en) Antenna composed of planar surfaces connected by switching circuits
FR3022403A1 (en) WIRELESS COMMUNICATION SYSTEM AND VEHICLE EQUIPPED WITH SUCH A SYSTEM
EP1264399A1 (en) Frequency converter
FR3043965A1 (en) METHOD AND COMMUNICATION DEVICE FOR REMOTELY ACTIVATING A FUNCTION OF A MOTOR VEHICLE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030903

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20090427

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FRANCIS, MICHEL, THALES IP

Inventor name: NGO BUI HUNG, FREDERIC, THALES IP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 587706

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60244155

Country of ref document: DE

Effective date: 20130131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 587706

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130316

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130305

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130405

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

26N No opposition filed

Effective date: 20130906

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60244155

Country of ref document: DE

Effective date: 20130906

BERE Be: lapsed

Owner name: THALES

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130910

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170925

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170906

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180827

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180910

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60244155

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210826

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180910