EP1291600B1 - Procédé de guidage d'un engin, notamment d'une munition - Google Patents

Procédé de guidage d'un engin, notamment d'une munition Download PDF

Info

Publication number
EP1291600B1
EP1291600B1 EP02292199A EP02292199A EP1291600B1 EP 1291600 B1 EP1291600 B1 EP 1291600B1 EP 02292199 A EP02292199 A EP 02292199A EP 02292199 A EP02292199 A EP 02292199A EP 1291600 B1 EP1291600 B1 EP 1291600B1
Authority
EP
European Patent Office
Prior art keywords
vector
ammunition
target
munition
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02292199A
Other languages
German (de)
English (en)
Other versions
EP1291600A1 (fr
Inventor
Jean-Paul Thales Intellectual Property Labroche
Guy-André Thales Intellectual Property Tonnerre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDA Armements SAS
Original Assignee
TDA Armements SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDA Armements SAS filed Critical TDA Armements SAS
Publication of EP1291600A1 publication Critical patent/EP1291600A1/fr
Application granted granted Critical
Publication of EP1291600B1 publication Critical patent/EP1291600B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/34Direction control systems for self-propelled missiles based on predetermined target position data
    • F41G7/346Direction control systems for self-propelled missiles based on predetermined target position data using global navigation satellite systems, e.g. GPS, GALILEO, GLONASS

Definitions

  • the subject of the present invention is a method of guiding a gear towards a target, in particular to improve the accuracy of the shooting of a Ammunition previously calculated to reach the target.
  • the position of the target target is provided before firing to a fire calculator determining values of fire parameters like the angles of the shot and the initial speed to be transmitted to the ammunition when firing. After the shot and in the absence of guidance, the ammunition follows a trajectory ballistic.
  • the impact accuracy of the ammunition is better when the gap between the actual point of impact and the planned point of impact is reduced and the guns or current mortars equipped with their fire calculator ensure accuracy relatively good impact.
  • a mortar with a shell and draws from the front presents a curved shot with a range of less than 15 kilometers and a precision of a hundred meters.
  • a gun is loaded to the back and makes a more horizontal shot with a range of up to 40 kilometers.
  • the more important and frequent imbrication of the forces adversaries and the presence of civilian populations impose the need for the artillery to be able to operate further destruction and neutralization more precise by firing a munition and guiding it on its flight to a well defined target.
  • the guiding of a munition is carried out in a known manner by placing implementation of a guide law on all or part of the flight of the ammunition.
  • the law The guide system determines instructions to be applied to an actuator of the munition, for example an impeller or a group of control surfaces, for modify the trajectory of the ammunition during its flight in order to bring it closer of the target.
  • Proportional navigation is a known guide law of a ammunition which consists in controlling a proportional charge factor to the rotation speed of the line connecting the ammunition to the target. This speed being for example measured using homing devices carried by the ammunition or calculated from parameters provided for example by a central inertial embedded in the ammunition. Load factor control peculiar to proportional navigation leads to a rotational speed from the line connecting the ammunition to the target tending toward zero. Navigation Proportional tends to collide the guided munition with the target. This guidance makes it possible to null the distance of passage which is the distance between the point of real impact and the target.
  • Proportional navigation guidance is easy to implement it has the disadvantage of imposing a rectilinear trajectory on the ammunition that is not optimal with respect to the curved ballistic trajectory that follows a munition without guidance.
  • the problem is to develop a guidance of the ammunition ensuring like proportional navigation a passing distance theoretically zero but with a lower load factor. It's about to find guidance with impact accuracy as good as the one obtained with proportional navigation guidance while presenting a lower energy cost.
  • the invention responds to this problem by a guiding method of a machine, in particular a munition, towards a target, the method applying to the machine a proportional acceleration proportional to the vector product of the speed of the machine by the difference of the vectors rotation of the connecting line the craft and the target and the right connecting the craft to the point of ballistic impact predicts said craft.
  • the guidance according to the process starts for example after the climax the trajectory of the ammunition fired.
  • the process is iterative in closed loop for example until the impact of the ammunition, or to a position of the ammunition providing significantly better impact accuracy than obtained with unguided ballistic fire.
  • the method generates guiding orders carrying out a navigation proportional change around the ballistic trajectory of the munition.
  • the guide law of the method according to the invention allows the munition thus guided to move towards the target by deviating slightly from its ballistic trajectory.
  • the implementation of the method according to the invention has the advantage of requiring a low load factor.
  • FIG. 1 schematically illustrates a conventional servocontrol of an acceleration instruction applied to a munition.
  • a guidance calculator 1 generates from the information represented by the inputs X1 to Xn a guiding order for controlling the transverse acceleration vector of the munition 8 in the form of a vector value.
  • ⁇ c acceleration setpoint This instruction ⁇ it is compared in a comparator 2 to vector transverse acceleration ⁇ measured m of the ammunition 8 using an instrument case 3 comprising gyrometers and accelerometers.
  • the gap 4 between the commanded acceleration ⁇ c and measured acceleration ⁇ m is introduced into a compensating calculator 5, which generates, starting from particular current rotation angles of the ammunition and the gap 4, a position command ⁇ of a rudder of the ammunition whose purpose is to reduce the difference between the measurement and the instruction.
  • the position command ⁇ is executed for example by means of a signal amplifier 6 followed by a steering motor 7.
  • the reactions of the ammunition 8 to the position command ⁇ are measured using the instrument box 3 and again compared to the setpoint ⁇ c acceleration so as to achieve a closed loop servo to the set value provided by the guidance computer.
  • FIG. 2 schematically shows a servo a position instruction applied to a munition containing a embedded inertial unit.
  • a position command 30 to be reached by a munition 23 is supplied as input to a guidance calculator 21 which also receives as input measures 25 from an inertial unit 22 on the munition 23.
  • the guidance computer 21 implement a guiding algorithm elaborating from the inputs of the calculator a load factor value 24 to be applied to the cell aerodynamic represented by the ammunition 23 to change the trajectory so that it satisfies said position instruction provided at the input of the guidance computer 21.
  • the load factor is a acceleration developed laterally to change the ammunition of path.
  • the guidance algorithm makes it possible to control an acceleration respecting a guide law.
  • the onboard inertial unit 22 is example, a hybridized GPS inertial unit, whose abbreviation stands for Global Positionning System in English, with accelerometers and gyrometers, and to calculate the coordinates of the position, the components of the speed and attitudes of the ammunition.
  • the power plant embedded inertial 22 makes 25 measurements of the flight situation of the munition which feed the guidance computer 21 in a loop of guidance which is a closed loop servo.
  • the load factor value 24 is applied to the ammunition 23 by means of a control computer 26 receiving as input the value of load factor 24 on the one hand and measures 27 on the actual movement of the ammunition subjected to the load factor 24 that come from the central inertial 22 boarded on the other hand.
  • the piloting computer 26 elaborates a steering value 28 which is applied to the actuators 29 which influence on the flight path and orientation of the ammunition.
  • a control loop is closed between the control computer 26 and the ammunition 23 by the introduction in the control computer 26 of new measures 27 of the flight situation of the ammunition, for example acceleration variations and rotation captured by the accelerometers and gyrometers of the plant inertial 22 boarded. The control loop ensures the enslavement of the ammunition 23 at the load factor value 24 recorded.
  • the activation of the guidance and steering loops assures the guiding the ammunition. Guiding can be carried out on all or part of the ammunition race.
  • Figure 3 shows two trajectories of a munition.
  • a munition M is drawn for example from a point O with a conventional preliminary fire calculation determining the firing angles and the initial speed to apply to the munition based assumptions about values such as the mass of the munition, aerodynamic characteristics of the munition and a known wind condition or predicts.
  • the ammunition After firing, the ammunition describes a real trajectory 31 and reaches at a certain date t a point M, for example located after the apogee 32 of the path.
  • Various deviations from the assumptions taken into account during of the shot lead the ammunition to travel a real trajectory 31 different from the ballistic trajectory 30 provided during the firing.
  • the ammunition is not guided, it is subjected to a ballistic acceleration ⁇ TP due mainly to the forces of gravity and drag corresponding to the aerodynamic slowdown, and from the point M it follows a ballistic trajectory whose estimate at time t is a first ballistic trajectory that does not reach the target B but presents a ballistic impact point 1 whose position in space is distinct from that of the target.
  • the implementation of the guiding method according to the invention leads to the ammunition to perform a second trajectory 34 which reaches the target.
  • the ammunition is controlled by a position command whose value is that of the position of the target B.
  • the enslavement is for example the one described with reference to FIG. 2 and implements a guiding law according to the invention.
  • the munition is for example equipped with an inertial unit hybridized GPS that calculates the coordinates of position M and the components of ammunition velocity as well as the attitudes of the ammunition.
  • the ammunition trajectory is ballistic and has an impact point I with the ground.
  • the ammunition animated by the speed V M , is located at the position M.
  • the inertial hybridised GPS onboard unit calculates the speed V M and the position M for example by the calculation of the vector OM between the point O of origin of the shot and the position M.
  • the coordinates of the point of ballistic impact I are for example evaluated by prediction in a landmark by simplified simulation of the ballistic trajectory ⁇ from the point M of the munition at time t in integrating the state vector until the impact l.
  • the ballistic trajectory variable ⁇ In a temporal landmark of variable ⁇ , the ballistic trajectory variable ⁇ has a current point P (t, ⁇ ) depending on the time t during which the munition is at position M.
  • the current point P (t , ⁇ ) is animated by a speed V p (t, ⁇ ) also dependent on t and the variable ⁇ to describe the predicted ballistic trajectory ⁇ .
  • g the acceleration of gravity
  • V the speed module
  • V p (t, ⁇ ) equal to the square root of the sum of the squares of the components V x , V y and V z of said velocity vector V p (t, ⁇ )
  • q is equal to 1/2 ⁇ V 2
  • is the density of the air
  • S is the surface of the master torque of the ammunition
  • Cx is the drag coefficient of the ammunition
  • m the mass of
  • ⁇ MB - MB ⁇ V M r 2 in which the data of the onboard GPS hybridised inertial unit allow the calculation of the three terms MB , V M and r.
  • the guiding method according to the invention controls a setpoint acceleration ⁇ c on ammunition at point M whose value is proportional to the vector product of the ammunition velocity V M by the difference of the rotation vector ⁇ MB of the line connecting the ammunition and the target and the rotation vector ⁇ MI of the straight line connecting the ammunition to the point of ballistic impact I predicted for said munition from its known position in point M.
  • ⁇ vs - K V M ⁇ ( ⁇ MB - ⁇ MID )
  • K is a coefficient of proportionality.
  • K is strictly greater than 2.
  • a value of K strictly greater than two ensures a stability of the guide servo.
  • the value of the coefficient of proportionality K is preferably limited to a value between three and four.
  • the munition is equipped with a GPS hybridized inertial unit, which comprises three accelerometers and three gyrometers, and the setpoint acceleration vector.
  • ⁇ c is calculated in terrestrial axes for example in said reference (O, x, y, z).
  • the vector ⁇ it is projected on the axes of the munition, in which the actuators of the munition operate, by the rotations ⁇ , ⁇ and ⁇ measured by the inertial unit.
  • the rotations ⁇ , ⁇ and ⁇ correspond to the passage of the terrestrial trihedron (x, y, z) to the trihedron of the axes of pitch, yaw and roll of the munition.
  • the method of the invention controls an acceleration perpendicular to the speed of the ammunition.
  • the setpoint acceleration according to the invention advantageously has a substantially zero projection on the roll axis of the ammunition.
  • the munition is not equipped with a GPS hybridized inertial unit, but it is equipped with a GPS receiver, two accelerometers for generating control commands for the actuators, and a gyrometer.
  • the GPS receiver provides measurements in a reference pseudo-aerodynamic trihedron.
  • the target acceleration vector ⁇ c according to the invention is projected on said pseudo-aerodynamic trihedron by the rotations of aerodynamic azimuth ⁇ and aerodynamic slope ⁇ , which are calculated using the components of the speed of the ammunition V M expressed in terrestrial axes, and by the rolling rotation of the munition ⁇ measured by said gyrometer.
  • the yaw and pitch angles of the munition are respectively assimilated to, or modeled by, the azimuth and slope angles of the velocity vector provided by the GPS receiver.
  • This variant has the advantage of leading to a lighter ammunition than in the example of FIG.
  • rotation ⁇ MB to which the vector is subject MB is measured by means of a homing device equipping the munition.
  • the on-board autodirector comprises a target detection system B and calculation means or mechanical means for estimating the rotational speed ⁇ MB of the right ammunition-target.
  • the ammunition includes an onertial unit and an onboard self-steering. This variant has the advantage of being free of knowledge of the speed of the target.
  • the calculation of the setpoint acceleration ⁇ c according to the guide law of the invention is iterated by the method according to a temporal sampling which depends on the dynamic response of said munition to a load factor.
  • the method is for example implemented with a sampling of 20 Hertz for a 120 millimeter mortar ammunition.
  • the second trajectory 34 of FIG. 3 has the advantage of being curve. It is at every moment close to the ballistic trajectory instant ammunition.
  • the guide path according to the method of the invention differs from the guidance according to the proportional navigation classic that imposes a rectilinear trajectory to the ammunition.
  • the proportional method tends to make the guidance trajectory lower than that of the natural ballistics of the ammunition, this lower trajectory to be compensated at the end of the guidance by a trajectory higher than the ballistic trajectory.
  • Navigation proportional leads over time to commands from an actuator ammunition that are a bit contradictory and are not optimal.
  • the guidance according to the invention has the particular advantage of controlling a setpoint acceleration ⁇ c zero, it does not perform trajectory error correction when the ballistic trajectory reaches the target. Proportional navigation in such a case a course correction which corresponds to a degradation compared to natural ballistics.
  • the guidance according to the invention allows a cost in energy, a size and a reduced mass of ammunition.
  • the method according to the invention provides the control of a factor of zero final charge.
  • the speed of the ammunition has the advantage of being aligned with its longitudinal axis during the impact.
  • the invention makes it possible to optimize the terminal efficiency of the load of the ammunition.
  • the method according to the invention has been described for an application to guiding a munition. It applies of course also to other types gear to guide to a target.

Description

La présente invention a pour objet un procédé de guidage d'un engin vers une cible, notamment pour améliorer la précision du tir d'une munition préalablement calculé pour atteindre la cible.
Le document DE 35 22 154 est mentionné comme art antérieur.
Pour lancer une munition d'artillerie, notamment une munition de canon ou de mortier, la position de la cible à atteindre est fournie avant le tir à un calculateur de tir déterminant des valeurs des paramètres de tir comme les angles du tir et la vitesse initiale à transmettre à la munition lors du tir. Après le tir et en l'absence de guidage, la munition suit une trajectoire balistique.
Les hypothèses posées lors du calcul de tir diffèrent des conditions réelles du tir et du vol de la munition. Ainsi par exemple la masse réelle de la munition ou sa répartition dans le volume de la munition est légèrement différente, dans la limite des tolérances de fabrication de la munition, de la masse ou de la répartition de masse prise en compte dans le calcul du tir. Par ailleurs les conditions de vent peuvent évoluer sensiblement au cours du temps de vol. Les écarts entre les hypothèses et les conditions réelles conduisent à un point d'impact réel de la munition distinct du point d'impact initialement prévu sur la cible.
La précision d'impact de la munition est meilleure lorsque l'écart entre le point d'impact réel et le point d'impact prévu est réduit et les canons ou mortiers actuels équipés de leur calculateur de tir assurent une précision d'impact relativement bonne. Par exemple un mortier dont l'obus se charge et se tire par l'avant présente un tir courbe avec une portée de moins de 15 kilomètres et une précision d'une centaine de mètres. Un canon se charge à l'arrière et réalise un tir plus horizontal avec une portée pouvant atteindre 40 kilomètres. Cependant l'imbrication plus importante et fréquente des forces adverses et la présence de populations civiles imposent la nécessité pour l'artillerie de pouvoir opérer des destructions et des neutralisations encore plus précises en tirant une munition et en la guidant au cours de son vol vers une cible bien définie.
Le guidage d'une munition est réalisé de façon connue par la mise en oeuvre d'une loi de guidage sur tout ou partie du vol de la munition. La loi de guidage détermine des consignes à appliquer sur un actionneur de la munition, par exemple un impulseur ou un groupe de gouvernes, pour modifier la trajectoire de la munition au cours de son vol afin de la rapprocher de la cible.
La navigation proportionnelle est une loi de guidage connue d'une munition qui consiste à commander un facteur de charge proportionnel à la vitesse de rotation de la droite reliant la munition à la cible. Cette vitesse étant par exemple mesurée à l'aide d'autodirecteurs portés par la munition ou calculée à partir de paramètres fournis par exemple par une centrale inertielle embarquée dans la munition. La commande de facteur de charge particulière à la navigation proportionnelle conduit à une vitesse de rotation de la droite reliant la munition à la cible tendant vers zéro. La navigation proportionnelle tend à la collision de la munition guidée avec la cible. Ce guidage permet de rendre nulle la distance de passage qui est la distance entre le point d'impact réel et la cible.
Le guidage par navigation proportionnelle est facile à mettre en oeuvre mais il présente l'inconvénient d'imposer une trajectoire rectiligne à la munition qui n'est pas optimale par rapport à la trajectoire balistique courbe que suit une munition sans guidage.
Le problème consiste à élaborer un guidage de la munition assurant comme la navigation proportionnelle une distance de passage théoriquement nulle mais présentant un facteur de charge moindre. Il s'agit de trouver un guidage présentant une précision d'impact aussi bonne que celle obtenue avec un guidage par navigation proportionnelle tout en présentant un coût en énergie moindre.
L'invention répond à ce problème par un procédé de guidage d'un engin, notamment d'une munition, vers une cible, le procédé appliquant à l'engin une accélération de consigne proportionnelle au produit vectoriel de la vitesse de l'engin par la différence des vecteurs rotation de la droite reliant l'engin et la cible et de la droite reliant l'engin au point d'impact balistique prédit dudit engin.
Plus particulièrement, le procédé comporte par exemple les étapes suivantes :
  • le procédé effectue une mesure de la position courante M de ladite munition à l'instant t et de son vecteur vitesse courant V M,
  • le procédé calcule par prédiction de trajectoire le point d'impact balistique I correspondant à la position courante M de ladite munition,
  • le procédé estime le vecteur rotation munition-impact Ω MI de la droite reliant la munition M au point d'impact balistique I,
  • le procédé calcule le vecteur rotation munition-cible Ω MB de la droite reliant la munition M à ladite cible B,
  • le procédé calcule une accélération Γ c de consigne proportionnelle et de signe inverse au produit vectoriel du vecteur vitesse V M de la munition par la différence entre le vecteur rotation munition-impact Ω MI et le vecteur rotation munition-cible Ω MB soit Γ c = - K V M Λ (Ω MB - Ω MI)
  •    où K est un coefficient strictement supérieur à 2,
    Le guidage selon le procédé débute par exemple après l'apogée de la trajectoire de la munition tirée. Le procédé est itératif en boucle fermée par exemple jusqu'à l'impact de la munition, ou jusqu'à une position de la munition assurant une précision d'impact sensiblement meilleure que celle obtenue avec un tir balistique non guidé.
    Le procédé génère des ordres de guidage réalisant une navigation proportionnelle modifiée autour de la trajectoire balistique de la munition. La loi de guidage du procédé selon l'invention permet à la munition ainsi guidée de se diriger vers la cible en s'écartant peu de sa trajectoire balistique. La mise en oeuvre le procédé selon l'invention présente l'avantage de nécessiter un faible facteur de charge.
    D'autres caractéristiques et avantages de l'invention apparaítront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :
    • la figure 1, un exemple d'asservissement classique d'une consigne d'accélération appliquée à une munition ;
    • la figure 2, un exemple d'asservissement d'une consigne de position appliquée à une munition ;
    • la figure 3, un exemple de trajectoire avec et sans l'invention.
    La figure 1 illustre de façon schématique un asservissement classique d'une consigne d'accélération appliquée à une munition. Après le tir et au cours de son vol, la munition ne suit plus sa trajectoire balistique mais elle est guidée au moyen d'une commande de son vecteur d'accélération transversale. Un calculateur de guidage 1 élabore à partir d'informations représentées par les entrées X1 à Xn un ordre de guidage permettant de commander le vecteur d'accélération transversale de la munition 8 sous la forme d'une valeur vectorielle γ c de consigne d'accélération. Cette consigne γ c est comparée dans un comparateur 2 à l'accélération transversale vectorielle γ m mesurée de la munition 8 à l'aide d'un boítier d'instruments 3 comportant des gyromètres et des accéléromètres. L'écart 4 entre l'accélération commandée γ c et l'accélération mesurée γ m est introduit dans un calculateur compensateur 5, lequel élabore à partir notamment des angles de rotation courants de la munition et de l'écart 4, un ordre de position δ d'une gouverne de la munition dont le but est de réduire l'écart entre la mesure et la consigne. Sur la cellule aérodynamique représentée par la munition 8, l'ordre de position δ est exécuté par exemple au moyen d'un amplificateur 6 de signal suivi d'un moteur 7 de gouverne. Les réactions de la munition 8 à l'ordre de position δ sont mesurées à l'aide du boítier d'instruments 3 et à nouveau comparées à la consigne γ c d'accélération de façon à réaliser une boucle fermée d'asservissement à la valeur de consigne fournie par le calculateur de guidage.
    La figure 2 représente de façon schématique un asservissement d'une consigne de position appliquée à une munition comportant une centrale inertielle embarquée. Une consigne de position 30 à atteindre par une munition 23 est fournie en entrée à un calculateur de guidage 21 lequel reçoit également en entrée des mesures 25 issues d'une centrale inertielle 22 embarquée sur la munition 23. Le calculateur de guidage 21 met en oeuvre un algorithme de guidage élaborant à partir des entrées du calculateur une valeur de facteur de charge 24 à appliquer sur la cellule aérodynamique représentée par la munition 23 pour en faire évoluer la trajectoire de façon à ce qu'elle satisfasse ladite consigne de position fournie en entrée du calculateur de guidage 21. Le facteur de charge est une accélération développée en latéral pour faire changer la munition de trajectoire. L'algorithme de guidage permet de commander une accélération respectant une loi de guidage. La centrale inertielle embarquée 22 est par exemple une centrale inertielle hybridée GPS, dont l'abréviation signifie Global Positionning System en anglais, comportant des accéléromètres et des gyromètres, et permettant de calculer les coordonnées de la position, les composantes de la vitesse et les attitudes de la munition. La centrale inertielle embarquée 22 effectue des mesures 25 de la situation de vol de la munition lesquelles alimentent le calculateur de guidage 21 en une boucle de guidage qui est une boucle fermée d'asservissement.
    La valeur de facteur de charge 24 est appliquée à la munition 23 au moyen d'un calculateur de pilotage 26 recevant en entrée la valeur de facteur de charge 24 d'une part et des mesures 27 sur le mouvement effectif de la munition soumise au facteur de charge 24 qui sont issues de la centrale inertielle 22 embarquée d'autre part. Le calculateur de pilotage 26 élabore une valeur de braquage 28 qui est appliquée aux actionneurs 29 qui influent sur la trajectoire et l'orientation en vol de la munition. Une boucle de pilotage est fermée entre le calculateur de pilotage 26 et la munition 23 par l'introduction dans le calculateur de pilotage 26 de nouvelles mesures 27 de la situation de vol de la munition, par exemple des variations d'accélération et de rotation captées par les accéléromètres et les gyromètres de la centrale inertielle 22 embarquée. La boucle de pilotage assure l'asservissement de la munition 23 à la valeur de facteur de charge 24 consignée.
    L'activation des boucles de guidage et de pilotage assure le guidage de la munition. Le guidage peut s'effectuer sur tout ou partie de la course de la munition.
    La figure 3 représente deux trajectoires d'une munition. Pour viser une cible, ou but, B de position connue, une munition M est tirée par exemple à partir d'un point O avec un calcul de tir classique préalable déterminant les angles de tir et la vitesse initiale à appliquer à la munition en fonction d'hypothèses sur des valeurs comme par exemple la masse de la munition, des caractéristiques aérodynamiques de la munition et un état du vent connu ou prédit. Après le tir, la munition décrit une trajectoire réelle 31 et atteint à une certaine date t un point M, par exemple situé après l'apogée 32 de la trajectoire. Divers écarts par rapport aux hypothèses prises en compte lors du tir conduisent la munition à parcourir une trajectoire réelle 31 différente de la trajectoire balistique 30 prévue lors du tir.
    Si la munition n'est pas guidée, elle est soumise à une accélération balistique Γ TP due principalement aux forces de pesanteur et à la traínée correspondant au ralentissement aérodynamique, et à partir du point M elle suit une trajectoire balistique dont une estimation au temps t est une première trajectoire 33 balistique qui n'atteint pas la cible B mais présente un point d'impact balistique 1 dont la position dans l'espace est distincte de celle de la cible.
    La mise en oeuvre du procédé de guidage selon l'invention conduit la munition à effectuer une seconde trajectoire 34 qui atteint la cible.
    La munition est asservie à une consigne de position dont la valeur est celle de la position de la cible B. L'asservissement est par exemple celui décrit à l'aide de la figure 2 et met en oeuvre une loi de guidage selon l'invention. La munition est par exemple équipée d'une centrale inertielle hybridée GPS qui permet de calculer les coordonnées de la position M et les composantes de la vitesse de la munition ainsi que les attitudes de la munition.
    A partir du point M et en l'absence de commande de guidage, la trajectoire de la munition est balistique et présente un point d'impact I avec le sol.
    A l'instant t, la munition, animée de la vitesse V M, est située à la position M. La centrale inertielle hybridée GPS embarquée permet de calculer la vitesse V M et la position M par exemple par le calcul du vecteur OM entre le point O d'origine du tir et la position M.
    Les coordonnées du point d'impact balistique I sont par exemple évaluées par prédiction dans un repère terrestre par simulation simplifiée de la trajectoire balistique Π à partir du point M de la munition à l'instant t en intégrant le vecteur d'état jusqu'à l'impact l.
    Dans un repère temporel de variable τ, la trajectoire Π balistique prédite à l'instant t présente un point courant P(t, τ) dépendant de l'instant t pendant lequel la munition est à la position M. Le point courant P(t, τ) est animé d'une vitesse V p (t, τ) dépendant également de t et de la variable τ permettant de décrire la trajectoire balistique prédite Π.
    Dans la simulation simplifiée de la trajectoire balistique Π, les dérivées V ˙x, V ˙y et V ˙z par rapport au temps τ des composantes Vx, Vy et Vz du vecteur vitesse V p (t, τ) sur un repère terrestre (O, x, y, z) s'expriment par les relations suivantes : V x = - q S Cx Vx m V V y = - q S Cx Vy m V V z = - q S Cx Vz m V + g    où g est l'accélération de la pesanteur,
       V est le module de la vitesse V p (t , τ) égal à la racine carrée de la somme des carrés des composantes Vx , Vy et Vz dudit vecteur vitesse V p (t, τ),
       q est égal à 1 / 2 ρ V2 où ρ est la masse volumique de l'air,
       S est la surface du maítre couple de la munition,
       Cx est le coefficient de traínée de la munition et
       m est la masse de la munition.
    Lesdites composantes Vx, Vy et Vz sont les dérivées par rapport au temps τ des composantes dans ledit repère terrestre (O, x, y, z) du point courant P(t, τ).
    Après l'estimation du point d'impact l, le procédé de l'invention évalue la rotation Ω MI à laquelle est soumis le vecteur MI, appelée rotation de la droite munition-impact Ml, selon l'expression suivante : Ω MI = - MI Λ V M rl 2 selon laquelle le vecteur rotation Ω MI est égal à l'opposé du produit vectoriel du vecteur MI reliant la munition à son impact balistique par le vecteur vitesse de la munition V M, lequel produit vectoriel étant divisé par le carré de la distance rl entre la position M de la munition et la position l du point d'impact balistique I correspondant à ladite position M.
    A partir d'une position M quelconque de la munition dont les coordonnées sont par exemple calculées à partir du point O d'origine du tir et à l'aide de la centrale inertielle hybridée GPS embarquée dans la munition, et de la position connue de la cible B, le procédé de guidage selon l'invention évalue la rotation Ω MB à laquelle est soumis le vecteur MB, appelée rotation de la droite munition-cible MB, par exemple à l'aide de la relation vectorielle suivante : Ω MB = MB Λ (V B - V M)r2 selon laquelle le vecteur rotation est égal au produit vectoriel du vecteur MB reliant la munition à la cible par la différence du vecteur vitesse de la cible V B et du vecteur vitesse de la munition V M, lequel produit vectoriel étant divisé par le carré de la distance r entre la position M de la munition et la position B de la cible.
    Dans l'exemple particulier de la figure 3, la vitesse de la cible est nulle et l'expression de la rotation munition-cible Ω MB est simplifiée en conséquence. L'expression de Ω MB est alors la suivante : Ω MB = - MB Λ V M r2    dans laquelle les données de la centrale inertielle hybridée GPS embarquée permettent le calcul des trois termes MB, V M et r.
    Dans tous les cas, le procédé de guidage selon l'invention commande une accélération de consigne Γ c sur la munition au point M dont la valeur est proportionnelle au produit vectoriel de la vitesse de la munition V M par la différence du vecteur rotation Ω MB de la droite reliant la munition et la cible et du vecteur rotation Ω MI de la droite reliant la munition au point d'impact balistique I prédit pour ladite munition à partir de sa position connue au point M. Soit la loi de guidage suivante : Γ c = - K V M Λ (Ω MB - Ω MI)    où K est un coefficient de proportionnalité.
       K est strictement supérieur à 2.
    Une valeur de K strictement supérieure à deux permet d'assurer une stabilité de l'asservissement de guidage. La valeur du coefficient de proportionnalité K est de préférence limitée à une valeur comprise entre trois et quatre.
    Dans l'exemple de la figure 3, la munition est équipée d'une centrale inertielle hybridée GPS, qui comporte trois accéléromètres et trois gyromètres, et le vecteur d'accélération de consigne Γ c est calculé en axes terrestres par exemple dans ledit repère (O, x, y, z). Le vecteur Γ c est projeté sur les axes de la munition, dans lesquels les actionneurs de la munition fonctionnent, par les rotations ψ,  et ϕ mesurés par la centrale inertielle. Les rotations ψ,  et ϕ correspondent au passage du trièdre terrestre (x, y, z) au trièdre des axes de tangage, de lacet et de roulis de la munition.
    Le procédé de l'invention commande une accélération perpendiculaire à la vitesse de la munition. L'obliquité dont la valeur mesure l'angle entre l'axe longitudinal, ou axe de roulis, de la munition et le vecteur vitesse de la munition présente dans la phase de vol de la munition une valeur inférieure à quelques degrés. L'accélération de consigne selon l'invention présente avantageusement une projection sensiblement nulle sur l'axe de roulis de la munition.
    Dans une variante de réalisation de l'invention, la munition n'est pas équipée d'une centrale inertielle hybridée GPS, mais elle est équipée d'un récepteur GPS, de deux accéléromètres pour l'élaboration des ordres de commande des actionneurs et d'un gyromètre. Le récepteur GPS fournit des mesures dans un trièdre pseudo-aérodynamique de référence. Le vecteur accélération de consigne Γ c selon l'invention est projeté sur ledit trièdre pseudo-aérodynamique par les rotations d'azimut aérodynamique χ et de pente aérodynamique γ, qui sont calculées à l'aide des composantes de la vitesse de la munition V M exprimées en axes terrestres, et par la rotation en roulis de la munition ϕ mesurée par ledit gyromètre. Les angles de lacet et de tangage de la munition sont respectivement assimilés aux, ou modélisés par les, angles d'azimut et de pente du vecteur vitesse fourni par le récepteur GPS. Cette variante présente l'avantage de conduire à une munition plus légère que dans l'exemple de la figure 3.
    Dans une autre variante de l'invention se distinguant de l'exemple de la figure 3 par une valeur du vecteur vitesse de la cible V B non nulle, la rotation Ω MB à laquelle est soumis le vecteur MB, appelée rotation de la droite munition-cible MB, est mesurée au moyen d'un autodirecteur équipant la munition. L'autodirecteur embarqué comporte un système de détection de la cible B et des moyens de calcul ou moyens mécaniques d'estimation de la vitesse de rotation Ω MB de la droite munition-cible. Dans cette variante, la munition comporte une centrale inertielle et un autodirecteur embarqués. Cette variante présente l'avantage de s'affranchir de la connaissance de la vitesse de la cible.
    Le calcul de l'accélération de consigne Γ c selon la loi de guidage de l'invention est itéré par le procédé selon un échantillonnage temporel qui dépend de la dynamique de réponse de ladite munition à un facteur de charge. Le procédé est par exemple mis en oeuvre avec un échantillonnage de 20 Hertz pour une munition de mortier de 120 millimètres.
    La seconde trajectoire 34 de la figure 3 présente l'avantage d'être courbe. Elle est à chaque instant proche de la trajectoire balistique instantanée de la munition. La trajectoire de guidage selon le procédé de l'invention se distingue du guidage selon la navigation proportionnelle classique qui impose une trajectoire rectiligne à la munition. La navigation proportionnelle tend notamment à faire suivre au départ du guidage une trajectoire plus basse que celle de la balistique naturelle de la munition, cette trajectoire plus basse devant être compensée en fin de guidage par une trajectoire plus haute que la trajectoire balistique. La navigation proportionnelle conduit au cours du temps à des commandes d'un actionneur de la munition qui sont un peu contradictoires et ne sont pas optimales.
    Lorsque le point d'impact balistique 1 coïncide avec la position de la cible B, le guidage selon l'invention présente notamment l'avantage de commander une accélération de consigne Γ c nulle, il ne réalise pas de correction d'erreur de trajectoire lorsque la trajectoire balistique atteint la cible. La navigation proportionnelle effectue dans un tel cas une correction de trajectoire qui correspond alors à une dégradation par rapport à la balistique naturelle.
    Le guidage selon l'invention permet un coût en énergie, une taille et une masse de la munition réduits.
    Le procédé selon l'invention assure la commande d'un facteur de charge final nul. En fin de guidage selon l'invention, la vitesse de la munition présente l'avantage d'être alignée avec son axe longitudinal lors de l'impact. L'invention permet d'optimiser l'efficacité terminale de la charge de la munition.
    Le procédé selon l'invention a été décrit pour une application au guidage d'une munition. Il s'applique bien sûr également à d'autres types d'engins à guider vers une cible.

    Claims (12)

    1. Procédé de guidage d'un engin vers une cible, caractérisé en ce qu'il applique à l'engin (M) une accélération de consigne proportionnelle au produit vectoriel de la vitesse de l'engin (M) par la différence des vecteurs rotation de la droite reliant l'engin (M) et la cible (B) et de la droite reliant l'engin au point d'impact balistique prédit dudit engin.
    2. Procédé selon la revendication 1, caractérisé en ce qu'il comporte au moins les étapes suivantes :
      le procédé effectue une mesure de la position courante M de l'engin à l'instant t et de son vecteur vitesse courant V M à partir de senseurs,
      le procédé calcule par prédiction de trajectoire le point d'impact balistique I correspondant à la position courante M de l'engin,
      le procédé calcule le vecteur rotation engin-impact Ω MI de la droite reliant l'engin M au point d'impact balistique l,
      le procédé estime le vecteur rotation engin-cible Ω MB de la droite reliant l'engin M à ladite cible B,
      le procédé calcule une accélération Γ c de consigne proportionnelle et de signe inverse au produit vectoriel du vecteur vitesse V M de l'engin par la différence entre le vecteur rotation engin-impact Ω MI et le vecteur rotation engin-cible Ω MB soit Γ c = - K V M Λ ( Ω MB - Ω MI) où K est un coefficient strictement supérieur à 2,
      le procédé applique la consigne Γ c en accélération à l'engin.
    3. Procédé selon la revendication 2, le procédé étant caractérisé en ce que ledit coefficient K est compris entre 3 et 4.
    4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est itéré en boucle fermée.
    5. Procédé selon la revendication 3, caractérisé en ce qu'il est itéré en boucle fermée jusqu'à l'impact.
    6. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il réalise un échantillonnage de l'accélération de consigne qui dépend de la dynamique de réponse de l'engin.
    7. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'engin présentant un axe de tangage, un axe de lacet et un axe de roulis, l'accélération de consigne Γ c est projetée sur les axes de tangage et de lacet de l'engin et est sensiblement nulle sur l'axe de roulis.
    8. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'engin présentant un axe de tangage et un axe de lacet et étant équipé d'un récepteur GPS, les angles de lacet et de tangage de l'engin sont respectivement assimilés aux angles d'azimut et de pente du vecteur vitesse de l'engin.
    9. Procédé de guidage selon l'une des revendications 1 à 7, caractérisé en ce que l'engin étant équipé d'une centrale inertielle hybridée GPS mesurant au moins trois rotations ψ,  et ϕ, le vecteur accélération de consigne Γ c calculé en axes terrestres est projeté sur les axes de l'engin par lesdites trois rotations.
    10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la cible étant supposée de vitesse nulle, le vecteur rotation engin-cible Ω MB est calculé.
    11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'engin comportant un autodirecteur, le vecteur rotation engin-cible Ω MB est estimé par l'autodirecteur.
    12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'engin est une munition.
    EP02292199A 2001-09-07 2002-09-06 Procédé de guidage d'un engin, notamment d'une munition Expired - Fee Related EP1291600B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0111621A FR2829593B1 (fr) 2001-09-07 2001-09-07 Procede de guidage d'un engin, notamment d'une munition
    FR0111621 2001-09-07

    Publications (2)

    Publication Number Publication Date
    EP1291600A1 EP1291600A1 (fr) 2003-03-12
    EP1291600B1 true EP1291600B1 (fr) 2005-12-14

    Family

    ID=8867083

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02292199A Expired - Fee Related EP1291600B1 (fr) 2001-09-07 2002-09-06 Procédé de guidage d'un engin, notamment d'une munition

    Country Status (3)

    Country Link
    EP (1) EP1291600B1 (fr)
    DE (1) DE60207952T2 (fr)
    FR (1) FR2829593B1 (fr)

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2893154B1 (fr) * 2005-11-10 2007-12-28 Tda Armements Sas Soc Par Acti Procede et dispositif de determination de la vitesse de rotation d'une droite projectile-cible et dispositif de guidage d'un projectile, notamment d'une munition
    CN104197954B (zh) * 2014-08-13 2017-01-18 北京航天控制仪器研究所 一种惯性导航系统三维空间落点精度估计方法
    CN108519104B (zh) * 2018-02-11 2020-12-18 北京航天控制仪器研究所 三参数椭圆概率误差描述导航落点精度的估计方法及系统

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4512537A (en) * 1973-08-10 1985-04-23 Sanders Associates, Inc. Canard control assembly for a projectile
    DE3522154A1 (de) * 1985-06-21 1987-01-02 Diehl Gmbh & Co Suchzuender-submunition
    FR2748814B1 (fr) * 1996-05-14 1998-08-14 Tda Armements Sas Dispositif de determination de l'orientation en roulis d'un engin volant, notamment d'une munition
    FR2799833B1 (fr) * 1999-10-15 2002-10-25 Tda Armements Sas Dispositif de correction de trajectoire pour projectiles guides gyroscopes

    Also Published As

    Publication number Publication date
    EP1291600A1 (fr) 2003-03-12
    FR2829593A1 (fr) 2003-03-14
    DE60207952D1 (de) 2006-01-19
    FR2829593B1 (fr) 2003-11-21
    DE60207952T2 (de) 2006-08-03

    Similar Documents

    Publication Publication Date Title
    US8489258B2 (en) Propulsive guidance for atmospheric skip entry trajectories
    EP2169508B1 (fr) Système de guidage d'un projectile
    EP3111166B1 (fr) Système de navigation inertielle
    US7500636B2 (en) Processes and devices to guide and/or steer a projectile
    US9211947B2 (en) Unmanned aerial vehicle angular reorientation
    KR20170142903A (ko) 관성 내비게이션 시스템
    US8047070B2 (en) Fast response projectile roll estimator
    WO2010130953A1 (fr) Procede et systeme d'estimation d'une trajectoire d'un mobile
    EP1480000B1 (fr) Procédé de controle de la trajectoire d'un projectile girant
    CN112461060A (zh) 一种火箭末级离轨控制方法和装置
    EP1291600B1 (fr) Procédé de guidage d'un engin, notamment d'une munition
    EP1798622B1 (fr) Procédé permettant d'assurer la navigation et/ou le guidage et/ou le pilotage d'un projectile vers un objectif et dispositif mettant en oeuvre un tel procédé
    EP2758744B1 (fr) Détermination d'angle d'incidence
    EP0985900B1 (fr) Procédé et dispositif de guidage d'un engin volant, notamment un missile, sur une cible
    EP1422587B1 (fr) Procédé d'élaboration d'un ordre de commande pour un organe permettant le pilotage d'un projectile girant
    EP0420760B1 (fr) Procédé et système de guidage autonome vers une cible d'un projectile balistique aéroporté propulsé
    EP1311428A1 (fr) Utilisation de la trajectoire de la fusee de lancement dans le mesureur inertiel d'une charge utile
    FR2463909A1 (fr) Procede de pilotage et de guidage d'un missile, et missile equipe de moyens de mise en oeuvre de ce procede
    EP1785688B1 (fr) Procédé et dispositif de détermination de la vitesse de rotation d'une droite projectile-cible et dispositif de guidage d'un projectile, notamment d'une munition
    WO2011002343A1 (fr) Procédé étendu pour guidage terminal
    FR2657690A1 (fr) Dispositif de mesure d'attitude en roulis et/ou en tangage d'un projectile.
    FR2826109A1 (fr) Procede de separation d'une arme aeroportee propulsee par rapport a un porteur

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    17P Request for examination filed

    Effective date: 20030901

    AKX Designation fees paid

    Designated state(s): DE FR GB IT SE

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 60207952

    Country of ref document: DE

    Date of ref document: 20060119

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20060227

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060915

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20170830

    Year of fee payment: 16

    Ref country code: GB

    Payment date: 20170831

    Year of fee payment: 16

    Ref country code: IT

    Payment date: 20170925

    Year of fee payment: 16

    Ref country code: FR

    Payment date: 20170829

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20170912

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60207952

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20180906

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180907

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190402

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180906

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180906