EP1291600B1 - Verfahren zur Lenkung eines Gerätes, insbesondere einer Munition - Google Patents

Verfahren zur Lenkung eines Gerätes, insbesondere einer Munition Download PDF

Info

Publication number
EP1291600B1
EP1291600B1 EP02292199A EP02292199A EP1291600B1 EP 1291600 B1 EP1291600 B1 EP 1291600B1 EP 02292199 A EP02292199 A EP 02292199A EP 02292199 A EP02292199 A EP 02292199A EP 1291600 B1 EP1291600 B1 EP 1291600B1
Authority
EP
European Patent Office
Prior art keywords
vector
ammunition
target
munition
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02292199A
Other languages
English (en)
French (fr)
Other versions
EP1291600A1 (de
Inventor
Jean-Paul Thales Intellectual Property Labroche
Guy-André Thales Intellectual Property Tonnerre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDA Armements SAS
Original Assignee
TDA Armements SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDA Armements SAS filed Critical TDA Armements SAS
Publication of EP1291600A1 publication Critical patent/EP1291600A1/de
Application granted granted Critical
Publication of EP1291600B1 publication Critical patent/EP1291600B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/34Direction control systems for self-propelled missiles based on predetermined target position data
    • F41G7/346Direction control systems for self-propelled missiles based on predetermined target position data using global navigation satellite systems, e.g. GPS, GALILEO, GLONASS

Definitions

  • the subject of the present invention is a method of guiding a gear towards a target, in particular to improve the accuracy of the shooting of a Ammunition previously calculated to reach the target.
  • the position of the target target is provided before firing to a fire calculator determining values of fire parameters like the angles of the shot and the initial speed to be transmitted to the ammunition when firing. After the shot and in the absence of guidance, the ammunition follows a trajectory ballistic.
  • the impact accuracy of the ammunition is better when the gap between the actual point of impact and the planned point of impact is reduced and the guns or current mortars equipped with their fire calculator ensure accuracy relatively good impact.
  • a mortar with a shell and draws from the front presents a curved shot with a range of less than 15 kilometers and a precision of a hundred meters.
  • a gun is loaded to the back and makes a more horizontal shot with a range of up to 40 kilometers.
  • the more important and frequent imbrication of the forces adversaries and the presence of civilian populations impose the need for the artillery to be able to operate further destruction and neutralization more precise by firing a munition and guiding it on its flight to a well defined target.
  • the guiding of a munition is carried out in a known manner by placing implementation of a guide law on all or part of the flight of the ammunition.
  • the law The guide system determines instructions to be applied to an actuator of the munition, for example an impeller or a group of control surfaces, for modify the trajectory of the ammunition during its flight in order to bring it closer of the target.
  • Proportional navigation is a known guide law of a ammunition which consists in controlling a proportional charge factor to the rotation speed of the line connecting the ammunition to the target. This speed being for example measured using homing devices carried by the ammunition or calculated from parameters provided for example by a central inertial embedded in the ammunition. Load factor control peculiar to proportional navigation leads to a rotational speed from the line connecting the ammunition to the target tending toward zero. Navigation Proportional tends to collide the guided munition with the target. This guidance makes it possible to null the distance of passage which is the distance between the point of real impact and the target.
  • Proportional navigation guidance is easy to implement it has the disadvantage of imposing a rectilinear trajectory on the ammunition that is not optimal with respect to the curved ballistic trajectory that follows a munition without guidance.
  • the problem is to develop a guidance of the ammunition ensuring like proportional navigation a passing distance theoretically zero but with a lower load factor. It's about to find guidance with impact accuracy as good as the one obtained with proportional navigation guidance while presenting a lower energy cost.
  • the invention responds to this problem by a guiding method of a machine, in particular a munition, towards a target, the method applying to the machine a proportional acceleration proportional to the vector product of the speed of the machine by the difference of the vectors rotation of the connecting line the craft and the target and the right connecting the craft to the point of ballistic impact predicts said craft.
  • the guidance according to the process starts for example after the climax the trajectory of the ammunition fired.
  • the process is iterative in closed loop for example until the impact of the ammunition, or to a position of the ammunition providing significantly better impact accuracy than obtained with unguided ballistic fire.
  • the method generates guiding orders carrying out a navigation proportional change around the ballistic trajectory of the munition.
  • the guide law of the method according to the invention allows the munition thus guided to move towards the target by deviating slightly from its ballistic trajectory.
  • the implementation of the method according to the invention has the advantage of requiring a low load factor.
  • FIG. 1 schematically illustrates a conventional servocontrol of an acceleration instruction applied to a munition.
  • a guidance calculator 1 generates from the information represented by the inputs X1 to Xn a guiding order for controlling the transverse acceleration vector of the munition 8 in the form of a vector value.
  • ⁇ c acceleration setpoint This instruction ⁇ it is compared in a comparator 2 to vector transverse acceleration ⁇ measured m of the ammunition 8 using an instrument case 3 comprising gyrometers and accelerometers.
  • the gap 4 between the commanded acceleration ⁇ c and measured acceleration ⁇ m is introduced into a compensating calculator 5, which generates, starting from particular current rotation angles of the ammunition and the gap 4, a position command ⁇ of a rudder of the ammunition whose purpose is to reduce the difference between the measurement and the instruction.
  • the position command ⁇ is executed for example by means of a signal amplifier 6 followed by a steering motor 7.
  • the reactions of the ammunition 8 to the position command ⁇ are measured using the instrument box 3 and again compared to the setpoint ⁇ c acceleration so as to achieve a closed loop servo to the set value provided by the guidance computer.
  • FIG. 2 schematically shows a servo a position instruction applied to a munition containing a embedded inertial unit.
  • a position command 30 to be reached by a munition 23 is supplied as input to a guidance calculator 21 which also receives as input measures 25 from an inertial unit 22 on the munition 23.
  • the guidance computer 21 implement a guiding algorithm elaborating from the inputs of the calculator a load factor value 24 to be applied to the cell aerodynamic represented by the ammunition 23 to change the trajectory so that it satisfies said position instruction provided at the input of the guidance computer 21.
  • the load factor is a acceleration developed laterally to change the ammunition of path.
  • the guidance algorithm makes it possible to control an acceleration respecting a guide law.
  • the onboard inertial unit 22 is example, a hybridized GPS inertial unit, whose abbreviation stands for Global Positionning System in English, with accelerometers and gyrometers, and to calculate the coordinates of the position, the components of the speed and attitudes of the ammunition.
  • the power plant embedded inertial 22 makes 25 measurements of the flight situation of the munition which feed the guidance computer 21 in a loop of guidance which is a closed loop servo.
  • the load factor value 24 is applied to the ammunition 23 by means of a control computer 26 receiving as input the value of load factor 24 on the one hand and measures 27 on the actual movement of the ammunition subjected to the load factor 24 that come from the central inertial 22 boarded on the other hand.
  • the piloting computer 26 elaborates a steering value 28 which is applied to the actuators 29 which influence on the flight path and orientation of the ammunition.
  • a control loop is closed between the control computer 26 and the ammunition 23 by the introduction in the control computer 26 of new measures 27 of the flight situation of the ammunition, for example acceleration variations and rotation captured by the accelerometers and gyrometers of the plant inertial 22 boarded. The control loop ensures the enslavement of the ammunition 23 at the load factor value 24 recorded.
  • the activation of the guidance and steering loops assures the guiding the ammunition. Guiding can be carried out on all or part of the ammunition race.
  • Figure 3 shows two trajectories of a munition.
  • a munition M is drawn for example from a point O with a conventional preliminary fire calculation determining the firing angles and the initial speed to apply to the munition based assumptions about values such as the mass of the munition, aerodynamic characteristics of the munition and a known wind condition or predicts.
  • the ammunition After firing, the ammunition describes a real trajectory 31 and reaches at a certain date t a point M, for example located after the apogee 32 of the path.
  • Various deviations from the assumptions taken into account during of the shot lead the ammunition to travel a real trajectory 31 different from the ballistic trajectory 30 provided during the firing.
  • the ammunition is not guided, it is subjected to a ballistic acceleration ⁇ TP due mainly to the forces of gravity and drag corresponding to the aerodynamic slowdown, and from the point M it follows a ballistic trajectory whose estimate at time t is a first ballistic trajectory that does not reach the target B but presents a ballistic impact point 1 whose position in space is distinct from that of the target.
  • the implementation of the guiding method according to the invention leads to the ammunition to perform a second trajectory 34 which reaches the target.
  • the ammunition is controlled by a position command whose value is that of the position of the target B.
  • the enslavement is for example the one described with reference to FIG. 2 and implements a guiding law according to the invention.
  • the munition is for example equipped with an inertial unit hybridized GPS that calculates the coordinates of position M and the components of ammunition velocity as well as the attitudes of the ammunition.
  • the ammunition trajectory is ballistic and has an impact point I with the ground.
  • the ammunition animated by the speed V M , is located at the position M.
  • the inertial hybridised GPS onboard unit calculates the speed V M and the position M for example by the calculation of the vector OM between the point O of origin of the shot and the position M.
  • the coordinates of the point of ballistic impact I are for example evaluated by prediction in a landmark by simplified simulation of the ballistic trajectory ⁇ from the point M of the munition at time t in integrating the state vector until the impact l.
  • the ballistic trajectory variable ⁇ In a temporal landmark of variable ⁇ , the ballistic trajectory variable ⁇ has a current point P (t, ⁇ ) depending on the time t during which the munition is at position M.
  • the current point P (t , ⁇ ) is animated by a speed V p (t, ⁇ ) also dependent on t and the variable ⁇ to describe the predicted ballistic trajectory ⁇ .
  • g the acceleration of gravity
  • V the speed module
  • V p (t, ⁇ ) equal to the square root of the sum of the squares of the components V x , V y and V z of said velocity vector V p (t, ⁇ )
  • q is equal to 1/2 ⁇ V 2
  • is the density of the air
  • S is the surface of the master torque of the ammunition
  • Cx is the drag coefficient of the ammunition
  • m the mass of
  • ⁇ MB - MB ⁇ V M r 2 in which the data of the onboard GPS hybridised inertial unit allow the calculation of the three terms MB , V M and r.
  • the guiding method according to the invention controls a setpoint acceleration ⁇ c on ammunition at point M whose value is proportional to the vector product of the ammunition velocity V M by the difference of the rotation vector ⁇ MB of the line connecting the ammunition and the target and the rotation vector ⁇ MI of the straight line connecting the ammunition to the point of ballistic impact I predicted for said munition from its known position in point M.
  • ⁇ vs - K V M ⁇ ( ⁇ MB - ⁇ MID )
  • K is a coefficient of proportionality.
  • K is strictly greater than 2.
  • a value of K strictly greater than two ensures a stability of the guide servo.
  • the value of the coefficient of proportionality K is preferably limited to a value between three and four.
  • the munition is equipped with a GPS hybridized inertial unit, which comprises three accelerometers and three gyrometers, and the setpoint acceleration vector.
  • ⁇ c is calculated in terrestrial axes for example in said reference (O, x, y, z).
  • the vector ⁇ it is projected on the axes of the munition, in which the actuators of the munition operate, by the rotations ⁇ , ⁇ and ⁇ measured by the inertial unit.
  • the rotations ⁇ , ⁇ and ⁇ correspond to the passage of the terrestrial trihedron (x, y, z) to the trihedron of the axes of pitch, yaw and roll of the munition.
  • the method of the invention controls an acceleration perpendicular to the speed of the ammunition.
  • the setpoint acceleration according to the invention advantageously has a substantially zero projection on the roll axis of the ammunition.
  • the munition is not equipped with a GPS hybridized inertial unit, but it is equipped with a GPS receiver, two accelerometers for generating control commands for the actuators, and a gyrometer.
  • the GPS receiver provides measurements in a reference pseudo-aerodynamic trihedron.
  • the target acceleration vector ⁇ c according to the invention is projected on said pseudo-aerodynamic trihedron by the rotations of aerodynamic azimuth ⁇ and aerodynamic slope ⁇ , which are calculated using the components of the speed of the ammunition V M expressed in terrestrial axes, and by the rolling rotation of the munition ⁇ measured by said gyrometer.
  • the yaw and pitch angles of the munition are respectively assimilated to, or modeled by, the azimuth and slope angles of the velocity vector provided by the GPS receiver.
  • This variant has the advantage of leading to a lighter ammunition than in the example of FIG.
  • rotation ⁇ MB to which the vector is subject MB is measured by means of a homing device equipping the munition.
  • the on-board autodirector comprises a target detection system B and calculation means or mechanical means for estimating the rotational speed ⁇ MB of the right ammunition-target.
  • the ammunition includes an onertial unit and an onboard self-steering. This variant has the advantage of being free of knowledge of the speed of the target.
  • the calculation of the setpoint acceleration ⁇ c according to the guide law of the invention is iterated by the method according to a temporal sampling which depends on the dynamic response of said munition to a load factor.
  • the method is for example implemented with a sampling of 20 Hertz for a 120 millimeter mortar ammunition.
  • the second trajectory 34 of FIG. 3 has the advantage of being curve. It is at every moment close to the ballistic trajectory instant ammunition.
  • the guide path according to the method of the invention differs from the guidance according to the proportional navigation classic that imposes a rectilinear trajectory to the ammunition.
  • the proportional method tends to make the guidance trajectory lower than that of the natural ballistics of the ammunition, this lower trajectory to be compensated at the end of the guidance by a trajectory higher than the ballistic trajectory.
  • Navigation proportional leads over time to commands from an actuator ammunition that are a bit contradictory and are not optimal.
  • the guidance according to the invention has the particular advantage of controlling a setpoint acceleration ⁇ c zero, it does not perform trajectory error correction when the ballistic trajectory reaches the target. Proportional navigation in such a case a course correction which corresponds to a degradation compared to natural ballistics.
  • the guidance according to the invention allows a cost in energy, a size and a reduced mass of ammunition.
  • the method according to the invention provides the control of a factor of zero final charge.
  • the speed of the ammunition has the advantage of being aligned with its longitudinal axis during the impact.
  • the invention makes it possible to optimize the terminal efficiency of the load of the ammunition.
  • the method according to the invention has been described for an application to guiding a munition. It applies of course also to other types gear to guide to a target.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Claims (12)

  1. Verfahren zum Lenken eines Geräts zu einem Ziel, dadurch gekennzeichnet, dass es an das Gerät (M) eine Sollbeschleunigung anlegt, die proportional zum Vektorprodukt aus der Geschwindigkeit des Geräts (M) und der Differenz zwischen den Rotationsvektoren der das Gerät (M) und das Ziel (B) verbindenden Geraden und der das Gerät mit dem ballistischen Auftreffpunkt des Geräts verbindenden Geraden ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es mindestens die folgenden Schritte aufweist:
    das Verfahren führt eine Messung der laufenden Position M des Geräts im Zeitpunkt t und seines laufenden Geschwindigkeitsvektors V M ausgehend von Sensoren durch,
    das Verfahren berechnet durch Streckenvorhersage den ballistischen Auftreffpunkt I entsprechend der laufenden Position des Geräts M,
    das Verfahren berechnet den Rotationsvektor Gerät-Auftreffen Ω MI der Geraden, die das Gerät M mit dem ballistischen Auftreffpunkt I verbindet,
    das Verfahren schätzt den Rotationsvektor Gerät-Ziel Ω MB der Geraden, die das Gerät M mit dem Ziel B verbindet,
    das Verfahren berechnet eine Sollbeschleunigung Γ c proportional und mit umgekehrtem Vorzeichen zum Vektorprodukt aus dem Geschwindigkeitsvektor V M des Geräts und der Differenz zwischen dem Rotationsvektor Gerät-Auftreffen Ω MI und dem Rotationsvektor Gerät-Ziel Ω MB, nämlich Γ c = - K V M Λ (Ω MB - Ω MI),
    wobei K ein Koeffizient strikt größer als 2 ist, das Verfahren legt die Sollbeschleunigung Γ c an das Gerät an.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Koeffizient K zwischen 3 und 4 liegt.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es in geschlossener Schleife wiederholt wird.
  5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass es in geschlossener Schleife bis zum Auftreffen wiederholt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es eine Abtastung der Sollbeschleunigung durchführt, die von der Antwortdynamik des Geräts abhängt.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gerät eine Nickachse, eine Gierachse und eine Rollachse aufweist, und die Sollgeschwindigkeit Γ c auf die Nickachse und die Gierachse des Geräts projiziert wird und auf der Rollachse im Wesentlichen Null ist.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gerät eine Nickachse und eine Gierachse aufweist und mit einem GPS-Empfänger ausgestattet ist, wobei die Nickwinkel und Gierwinkel des Geräts den Azimut- und Neigungswinkeln des Geschwindigkeitsvektors des Geräts gleichgestellt werden.
  9. Lenkverfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass, da das Gerät mit einem hybriden GPS-Trägheitsnavigationsleitsystem ausgestattet ist, das mindestens drei Drehungen ψ, , und ϕ misst, der in Erdachsen berechnete Sollbeschleunigungsvektor Γ c durch die drei Drehungen auf die Achsen des Geräts projiziert wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rotationsvektor Gerät-Ziel Ω MB unter der Annahme berechnet wird, dass das Ziel eine Geschwindigkeit Null hat.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass, da das Gerät ein Zielsuchgerät aufweist, der Rotationsvektor Gerät-Ziel Ω MB vom Zielsuchgerät schätzt wird.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gerät eine Munition ist.
EP02292199A 2001-09-07 2002-09-06 Verfahren zur Lenkung eines Gerätes, insbesondere einer Munition Expired - Lifetime EP1291600B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0111621 2001-09-07
FR0111621A FR2829593B1 (fr) 2001-09-07 2001-09-07 Procede de guidage d'un engin, notamment d'une munition

Publications (2)

Publication Number Publication Date
EP1291600A1 EP1291600A1 (de) 2003-03-12
EP1291600B1 true EP1291600B1 (de) 2005-12-14

Family

ID=8867083

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02292199A Expired - Lifetime EP1291600B1 (de) 2001-09-07 2002-09-06 Verfahren zur Lenkung eines Gerätes, insbesondere einer Munition

Country Status (3)

Country Link
EP (1) EP1291600B1 (de)
DE (1) DE60207952T2 (de)
FR (1) FR2829593B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2893154B1 (fr) * 2005-11-10 2007-12-28 Tda Armements Sas Soc Par Acti Procede et dispositif de determination de la vitesse de rotation d'une droite projectile-cible et dispositif de guidage d'un projectile, notamment d'une munition
CN104197954B (zh) * 2014-08-13 2017-01-18 北京航天控制仪器研究所 一种惯性导航系统三维空间落点精度估计方法
CN108519104B (zh) * 2018-02-11 2020-12-18 北京航天控制仪器研究所 三参数椭圆概率误差描述导航落点精度的估计方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512537A (en) * 1973-08-10 1985-04-23 Sanders Associates, Inc. Canard control assembly for a projectile
DE3522154A1 (de) * 1985-06-21 1987-01-02 Diehl Gmbh & Co Suchzuender-submunition
FR2748814B1 (fr) * 1996-05-14 1998-08-14 Tda Armements Sas Dispositif de determination de l'orientation en roulis d'un engin volant, notamment d'une munition
FR2799833B1 (fr) * 1999-10-15 2002-10-25 Tda Armements Sas Dispositif de correction de trajectoire pour projectiles guides gyroscopes

Also Published As

Publication number Publication date
EP1291600A1 (de) 2003-03-12
FR2829593B1 (fr) 2003-11-21
FR2829593A1 (fr) 2003-03-14
DE60207952T2 (de) 2006-08-03
DE60207952D1 (de) 2006-01-19

Similar Documents

Publication Publication Date Title
US8489258B2 (en) Propulsive guidance for atmospheric skip entry trajectories
EP2169508B1 (de) Geschosssteuerungssystem
EP3111166B1 (de) Trägheitsnavigationssystem
US7500636B2 (en) Processes and devices to guide and/or steer a projectile
US20180093755A1 (en) Unmanned aerial vehicle angular reorientation
KR20170142903A (ko) 관성 내비게이션 시스템
US8047070B2 (en) Fast response projectile roll estimator
EP1480000B1 (de) Verfahren zur Lenkung der Flugbahn eines drehenden Geschosses
CN112461060A (zh) 一种火箭末级离轨控制方法和装置
CN105486307A (zh) 针对机动目标的视线角速率估计方法
EP1291600B1 (de) Verfahren zur Lenkung eines Gerätes, insbesondere einer Munition
EP1798622B1 (de) Verfahren, das ein Absichern der Navigation und/oder der Lenkung und/oder der Steuerung eines Projektils zu einem Ziel ermöglicht, und Vorrichtung, die ein solches Verfahren einsetzt
EP2758744B1 (de) Bestimmung eines einfallswinkels
SE1130087A1 (sv) Bestämning av rollvinkel
EP1422587B1 (de) Verfahren zur Herstellung eines Steuerungsbefehles für ein die Steuerung eines drehenden Geschosses ermöglichendes Gerät
WO2004074760A1 (fr) Procede et dispositif de guidage d'un engin volant, notamment un missile, sur une cible
WO2002016204A1 (en) Employing booster trajectory in a payload inertial measurement unit
FR2463909A1 (fr) Procede de pilotage et de guidage d'un missile, et missile equipe de moyens de mise en oeuvre de ce procede
EP1785688B1 (de) Verfahren und Vorrichtung um die Rotationsgeschwindigkeit der Geschoßziellinie zu bestimmen und Lenkvorrichtung eines Geschoßes, insbesondere von Munition
WO2011002343A1 (en) An extended method for terminal guidance
FR2652640A1 (fr) Procede et systeme de guidage autonome vers une cible d'un projectile balistique aeroporte propulse.
FR2657690A1 (fr) Dispositif de mesure d'attitude en roulis et/ou en tangage d'un projectile.
FR2826109A1 (fr) Procede de separation d'une arme aeroportee propulsee par rapport a un porteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030901

AKX Designation fees paid

Designated state(s): DE FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60207952

Country of ref document: DE

Date of ref document: 20060119

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060227

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060915

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170830

Year of fee payment: 16

Ref country code: GB

Payment date: 20170831

Year of fee payment: 16

Ref country code: IT

Payment date: 20170925

Year of fee payment: 16

Ref country code: FR

Payment date: 20170829

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170912

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60207952

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180906